Path integral formulation of retardation effects in nonlinear optics
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The signatures of retardation in nonlinear optical susceptibilities are studied by starting with the
multipolar Hamiltonian and using path integral techniques to develop a perturbative scheme for .
incorporating the retarded interaction with the electromagnetic field. The present approach
accounts for cooperative radiative decay and polariton transport which show up in resonant
spectroscopies of nanostructures. These effects, which require a quantum electrodynamical
description of the field, are missed by conventional nonretarded theories. Application is made to
the enhanced spontaneous emission rate of biexcitons, which may show up in the nonlinear .

reflection off molecular superlattices.

l. INTRODUCTION

Nonlinear optical signals are usually calculated by first
calculating a nonlinear susceptibility defined by expanding
the optical polarization in powers of the transverse electric
field, and then solving the Maxwell equations for the field,
using the susceptibilities as input.! Normally the suscepti-
bilities are calculated using a semiclassical procedure
whereby the material degrees of freedom are treated quan-
tum mechanically whereas the Maxwell field is assumed
classical. In this approximation, the optical susceptibilities
are purely material quantities which contain no signatures
of retardation, and can therefore be calculated using the
eigenvalues and dipole matrix elements of the purely ma-
terial Hamiltonian. Retardation effects’in the optical signal
show up in this procedure only in the second step, when
the Maxwell equations are solved and the signal is related
to the applied (external) field.>™* For example, radiative
linewidth in linear optical measurements which is absent in
" the linear susceptibilities x(”(k,w) [and the dielectric
function e(k,)] will show up in linear optical signals such
as reflection of light off an interface or a thin layer (quan-
tum well). (Note that radiative linewidth is included in
linear susceptibilities defined with respect to total Maxwell
field.>%) Since retardation effects appear only in the con-
nection of the Maxwell and the external fields, and since
the Maxwell field is expressed in terms of the external field
in the framework of linear optics, all effects of retardation
for the nonlinear signal in this approach are associated
with linear optics.

Resonant nonlinear measurements, show effects that
are missed by this procedure These include cooperative
radiative 'decay of excitons,®'? and polariton dephasing
and transport,”!*'7 which were probed in transient grating
measurements'® and two photon absorption'® in anthra-
cene and napththalene crystals. These effects are particu-
larly interesting and significant in nanostructures such
as molecular  multilayers (superlattices),® 2022
chains,*>1%2223 anq clusters.?*2% For example, spontane-
ous emission which is absent in three-dimensional crys-
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tals!® does show up in restricted geometries where sponta-
neous photons can leave the system.®'° The enhanced
optical nonlinearities induced by exciton confinement and
the existence of surface modes may lead to dramatic effects
whose systematic incorporation in the formalism remains
an open question. »

In this paper we address this problem by abandoning
the semiclassical approximation and formulating it using a
microscopic quantum electrodynamical description of the
material system and the radiation field. A Green’s function
perturbative technique is developed for incorporating radi-
ative corrections in nonlinear susceptibilities. We first ex-
press the expectation value of the transverse Maxwell field
in terms of correlation functions of electric field operators
in the joint matter and field system, calculated in the ab-
sence of external sources. We then recast the correlation
functions in the form of path integrals over material and
electromagnetic field variables. This allows us to eliminate
the material variables and express the correlation functions
in the form of path integrals over the vector potentlal
alone, using an effective action for the field. The necessary
correlation functions of the electromagnetic field are then
calculated in a reduced space containing the electromag-
netic field alone. We then construct a perturbation theory

‘and a diagrammatic technique, and expand the effective

action in powers of the vector potential; the expansion co-
efficients turn out to be material correlation functions cal-
culated in the material space, in the absence of the electro-
magnetic field. The standard nonretarded results obtained
by treating the field classically are recovered when the cor-
relation functions are calculated using classical equations
of motion for the effective actions. Radiative corrections
can then be systematically introduced by incorporating
higher order terms in the perturbation expansion of the
effective action. Adopting a diagrammatic terminology, the
nonretarded limit is known as the tree approximation (i.e.,
neglecting all diagrams containing loops) and the expan-
sion is in the number of loops.

The present expansion provides a clear physical picture
for optical nonlinearities by viewing the material and the

field degrees of freedom as weakly coupled anharmonic

oscillators. Anharmonities in the material system result in
the nonlinearities whereas anharmonities in the field result
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in radiative corrections and retardation. It also provides a
unified approach which is applicable to systems of arbi-
trary size all the way from small microscopic particles to
macroscopic nanostructures such as superlattices.?’

In the following section we present the multipolar
Hamiltonian describing the field and the material degrees
of freedom interacting with an external polarization, which
is the source for the optical response. In Sec. III we derive
expressions for the nonlinear signal and susceptibilities in
terms of Green’s functions of the electromagnetic field: In
Sec. IV we calculate the action corresponding to this
Hamiltonian and represent these Green’s functions in a
path integral form. In Sec. V we express the effective action
in terms of Green’s functions of the material system, and
develop the perturbation theory for its evaluation. In Sec.
VI we apply these results to calculate the third order re-
sponse of an assembly of two level molecules and explore
radiative corrections to the susceptibilities and to the sig-
nal. As an application, we examine in Sec. VII the radiative
decay of biexcitons in molecular monolayers which can be
probed by two photon resonances in the third order re-
sponse. ‘

ll. THE MULTIPOLAR HAMILTONIAN

The dynamics of a material system interacting with the
radiation field can be most conveniently calculated by
starting with the multipolar Hamiltonian>*"2

ﬁmult=ﬁmat+ﬁmd“fdr ﬁ(l‘) bl (r)

+277f |2 (r)|*dr. @
This Hamiltonian, which may be obtained from the mini-
mal coupling Hamiltonian by a canonical transformation,?’
describes a material system interacting with a transverse
electromagnetic field D' . The longitudinal part of electro-
magnetic field is taken into account by the Coulomb inter-
action in the material system Hamiltonian Hmat (the Cou-
‘lomb gauge). We have further neglected magnetic terms.
We denote an operator by a caret, O, and set fi=1. '
Hmd is the free-field Hamlltoman

I?rad,:,— fdr{f)l (r)2+[VXA4(r) 1%, 2)
where A(r) is the vector potential in the Coulomb gauge
D* (r) is the operator representing the transverse part of
electric displacement, V- D' (r)=0. In the multipolar
form of the Hamlltoman (1/417')D(l') is the momentum
conjugate to A(r), ie, it commutes with all material op-
erators and -

[D; (1),4,(r) 1= 4rriby; (r—r"), (2.32)

(r —r') being the transverse § functlon (i.e., the projec-
tlon of the function §; 6(1‘ r’) onto the space of trans-
verse functions). The commutatlon relations (2.3a) can be
alternatively recast in the form
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. N
D} (0),[VXAG) ]} =41 X € 5 85 (£—1"),
" (23b)

where €, is the antlsymmetnc tensor (Lev1-C1v1ta ten-

sor).
The transverse elwtromagnetic field £ (r) is related
to the electric displacement Dt (1) by -

B (ry=D* (r)—4aB (r), (2.4)

where Pt (r) is the operator of the transverse part of po-
larization. Since P (r) is a purely material operator, it
commutes with all field operators D (r') and 4* (r').

The Hamiltonian of the system in the presence of ex-
ternal sources can be obtained by substituting P+Pext for
the polarization P in the Hamiltonian (2.1). P, stands for
the external polarization coming from external sources.
Thus the total Hamiltonian of the system, including the
external polarization, has the form

A =Hyp— f dr Py (r,t) - E* (r). (2.5)

_ The Hamiltonian (2.5) provides a conveénient starting

point for calculating the optical response. The coupling of
the field and the material degrees of freedom to the exter-
nal polarization is represented by the second term which
has a simple form of a product of P, and the Maxwell field

. Strictly speaking, H (£) should contain an add1t1ona1
term

27TJ- dr] (r,t)[

however, since Pext is a given classical function, this term
does not depend on the dynamical variables of the system
and has no effect on its time evolutlon, 1t can therefore be
1gnored

III GREEN’S FUNCTION EXPRESSIONS FOR THE
OPTICAL FIELD '

 The Harpiltoniaﬁ H(¢) describes the coupled dynamics
of the material and the field degrees of freedom in their
joint space. We shall denote this space as “the system.”

The system’s evolution operator is

-dU(Lt')

= —iHU (),

(3.1a)
with U ) =i where 1 is the systerﬁ’s unit eperatdr._We
further introduce the time evolution operator for the iso-
lated system (with P, ==0), i.e.,

U aoa ’
d“;“‘ (4,¢) = — B e T (1)), (3.1b)
again mult(t 2y=1.

In the following derivation we are going to work pr1-
marily in the interaction picture where we define operators
evolving in time with U, [see Eq. (3.5)]. To avoid con-
fusion we shall label quantities evaluated at time 7 using the
full evolution operator i by a tilde O(t), whereas O(1). will
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stand for operators in the interaction picture. The expec-
tation value of the electric field in the presence of external
sources is?’

B (r,t) ={Q|0M(t,— ) E* (0 T(t,— )’| Q), (3.2)

where | Q) is the state of the system at =— co, when the
external polarization vanishes.
Equations (3.2) can also be written as

B (r,)=Tr[E' (r)p(D)], (3.32)
with p(#) being the density matrix of the system
p()=U(t,— ) m)(mﬁ’f(t,— ®). (3.3b)

E (r,t)= 2 ™| dryoeedr,

X (B (e, ) [E* (r,,m0)-

This expansmn is fully time ordered 7;<7," "
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In the conventional semiclassical (nonretarded) the-
ory, the interaction of the material and the external field
E,,, is given by '

— fdr P(r) - Eoyy(r,2).

In this case E., is the source which is coupled to the
dynamical variable P. In the present formulation [Eq.
(2.5)] the roles of the field and the polarization are thus
interchanged! P, is the source and E' is the dynamical
variable coupled to the source. Nevertheless, the expansion
of E' (r,t) in powers of P, can be made using the stan-
dard perturbation theory for the density matrix. We thus
write

3 2
dr, - f dTgf AT Py (11,71) " Pegy(¥47)

< [EY (rom) [E (rym), [ Q01T

- €7, and contains commutators, whlch act from the left as well as from the

(3.4)

right. £ (r,2) is the transverse field operator in the interaction picture

El (l',t)E mult(_ogat)E (l') Umult(t9—'°°) (35)
[O(r,?) is an operator in the interaction picture and O(r) is the corresponding expectation value].

We next introduce the following notation for correlation functions:

Gil, iy (rhtla srn’t )—-<0i1(r19[l) 0 (rn)t )) <QIT1 I(O(rl:tl) é(rn:t ))IQ> (3 6)

The indices /i,...,i, take the values L and R to denote action from the left (U ) and the right (UT), respectlvely, in the
expansion of the density matrix [Eq. (3.3b)]. T,l’ i, denotes an ordering operator that acts in the following manner: all
operators with the index R are placed to the left of all operators labeled L; the former being chronologically ordered, the
latter antichronologically ordered. Equation (3.6) defines the expression <0"1 (ry,2) - 'Oi,,(l'n ,t,)) as the expectation value
of the product of operators on the right-hand side. The utility of this notation will be clarified in Sec. IV where we
introduce a path integral representation for expectation values [Eqs. (4.6)]. Below we will use an abbrev1ated notation
1,...,n instead of ry, #,...,r,, t, Where possible and leave out indices where unnecessary.
Using this notation we can recast Eq. {3.4) in the form

E' (r,)= Zo dr,dt)-- fdr,, dt, Poy(r12)) Poy(X3t) * * * Py (2,2,) B P (X531 21, Tptny s T ), (3.7a)
n= .
with the signal response function ’
B (1 51181 oty ,,)-z 12 (B (n0) B} (rit)Ef (vty) B} (£48,) )iy peesi). (3.7b)
15l :
T
Here, s=1 if the number of R variables ,...,i, is even; and  where
s= -1 otherwise. Alternatively, we can change variables
and define & Vir=Vyr=% Vm,g= LV_ = —vl, , (3.8¢)
_1 and summation over repeating indices is assumed. From
0, =3(0,+0g), (3.82) the definitions (3.6) and (3.82) we immediately get
O0_=0;—0g. Gayio, (L) =V i Vo i G i (Lin).  (3.9)

.....

1
We shall label these variables O,, where a assumes the

values + and —. The Greek indices are related to the latin
indices by the linear transformation.

Oa= Vaiob

In Eq. (3.7b), the last EL (r,t) factor acts from the left.
This is because we chose to multiply the density matrix by
E' from the left before taking the trace. This choice, how-

ever, is arbitrary. Using the cyclic invariance of the trace,

(3.8b)
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. this result would not change if we choose to act from the
right instead, E%. Hereafter, we use this freedom to-act
with the more symmetric combination El = (E +E & }/2.
We then write

/AK€ 75 ST SN J )
B (r,t,)). (3.10)

Equatlon (3. 10) is an exact formal expression for the
signal field in terms of equilibrium correlation functions of
the isolated (material and radiation field) system with no
external sources. In the coming sections, we shall separate
the calculation into parts carried out separately in the ma-
terial or the field spaces.

The =+ notation introduced here allows a compact rep-
resentation of the response functions [compare Eq. (3.10)
with Eq. (3.4)]. Let us consider, for example, all possible
two-point Green’s functions. First, we have

G__(1,2)=0,

:l'"(’iﬂ:'l (l‘,l‘)Eﬁ'l (ryz) -

(3.11a)

G, , represents the symmetrized correlation function

G, (1;2)=KQ|0(1)0(2)+0(2)0(1) |,

(3.11b).
G_ represents the advanced Green’s function
G_4(12)=6""(1,2),
0, nh>n,
G“d"(l,z)s{ NSV
<Q|0(2)0(17)—0(14)0(2)|Q>, 4 <t,
- (3.11c)

and G _ represents the retarded Green s functlon
G, _(1,2)=G"™(1,2),

(©]0(1)0(2)-0(2)0(1) | Q),

Lot
0, 1<t :

Gret(1,2)5{
(3.11d)

Relations (3.11) will be used in the perturbation theory to
be developed in Sec. V.

1V. PATH INTEGRAL REPRESENTATION FOR THE
OPTICAL FIELD

In the present section we develop a path integral rep-
resentation for the signal response function %™ which
relates the expectation value of the electric field to the
external polarization. The optical signal needs eventually
to be expanded in powers of the external electric field, and
the susceptibilities are coefficients in the expansion ‘of the
nonlinear polarization in powers of the Maxwell transverse
electric field. In the coming sections we shall show how
both quantities may be related to ™,

Equations (3.10) and (3.5) are suitable for deriving
the path integral representation for the expectation value of
the Maxwell field £(¢). To that end we represent the ma-
trix elements of the evolution operator U(¢",#') in the form
of an integral of exp(iS), over all paths beginning at some
fixed point in configuration space at z=¢' and ending at
another fixed point at 1=1¢"; S is the classical action corre-
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sponding to the path. 3031 The first step is to calculate the
action corresponding to the Hamiltonian (2.5). This will
be accomplished by calculating the action corresponding to
the Hamiltonian (2.1) and then substituting everywhere
P+P,,, for P (where P is the polarization).

Hereafter, we delete the carets since the classical action
is calculated using the classical form of the Hamiltonian
(2.1), and we do not deal with operators. Using the ca-
nonical procedure®? we get

1 ,
Sl D" B1=Suul B+~ [ drdt D (20450
- f dt H,4+ f dr dt P(r,t) D* (r,t)

—27 f | P (x,t)|%dr dt. (4.1)
Here B stands for material variables. The classical action
corresponding to the Hamiltonian of the material system,
Smail Bl, can be kept completely general and need not be
specified at this stage. Here and below we use square brack-
ets for listing functional arguments of the actions. Using
the Heisenberg equations of motion, together with the
Hamiltonians (2.1) and (2.3) we obtain

A(ry=D" (r)—4wP" (1). (4.22)
Comparing (4.2a) and (2.4) we see that
E! (2,0) =A(r,2). (4.2b)

Expressing the variable D! (r) in Eq. (4.1) in terms of
A(r) by means of Eq. (4.22) we finally get .

mult [A B ]

where

Smat[B] +Srad[A] +Smt[A B]’ (43&)

1 .
Swaldl=g [ dedil AGe0P—(TXAEOP),
: (4.3b)

and

Sinc[4,B] = f dr dt P(r,t)A(r,2). (4.3c)
In Eq. (4.3c) P is the polarization which depends on the
material variables B. We will not need an explicit expres-
sion for the action S,,,[ B] since we will eventually express
all the path integrals over material variables in terms of
Green’s functions and will not use path integral methods
for their evaluation. The main motivation for expressing
Eq. (3.10) in the path integral form is to obtain an effective
action which separates the material system and the dynam-
ics of the electromagnetic field. The optical signal can then
be expressed in terms of expectation values of products of
material operators in the purely material system without
the electromagnetic field.

The action S[4, B] corresponding to the Hamiltonian
(2.5) is finally given by
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FIG. 1. Left and right operators and the Keldysh time loop. Using the
loop time variable £, all operators are time ordered.

S[A4,Bl=Snu[4,B] + f dtdr P (r,0)A(r,2),
(4.4a)
and the time evolution operator is

Uty ty) = f@[A]@[B]exp(iS[A,B] ). (4.4b)

We shall now derive the path integral representation
for the response functions (3.10). Using the unitarity of
the evolution operator, we rewrite Eq. (3.2) in the form

E (r,0) ={Q| U(— o0, B (1) U(t,— )| O).
(4.5a)

The expectation value E (r,t) can be also presén’ged as
E (r,2)
={Q|U(—w, +oo>U(+oo,r)El (MUt =) | Q)

(4.5b)
or
B (r,t)
=(Q| U(— 0,0 E* (1)U (1,4 0) U(+ 00,— 0) | Q).
(4.5¢)

The path integral representation can only be derived
for time-ordered Green’s functions. On the other hand, the
correlation functions obtained in Sec. III are expectation
values of products of two types of terms: chronologically
ordered “left” operators, and antichronologically ordered
“right” operators. To overcome this difficulty we use the
Keldysh time loop representation®® as shown in Fig. 1. We
consider the time loop from 7= — w0 to t=+ 0 and then
from t=+-c0 to t=-— o, placing the time ordered (L)
operators on the first part of the loop and the (R) opera-
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tors on the second part. Using a new time variable (£), all
operators become time ordered, and we can use the path
integral representation.

Using the path integral form®**! for the evolution op-
erators we get

G(1,..,n)=(0(1)---0(n))

= f DAL [B(1)10(r,t) - O(r,.t,)

Xexp(iS®[4(2),B()]), (4.6)

where the superscript K stands for the Keldysh time loop
and we will use the indices /=L, R to denote variables on
the first and the second parts of the time loop, A(z)
=[A4,(£),Ag(8)], B(t)=[B.(#),Bg(¢)] with ¢ changing
from t=—ow t0o t=+w; A(+w0)=A4dz(+x),
BL(+OO)—BR(+OO)and -

SEL4(), B(1) | =S[4,(5),BL(£)] —S[AR(2), BR(r)(]4)
7

In particular the path integral representation of Eqgs.
(4.5b) and (4.5c) takes the form

B (z):f DAL, AR) D[ By,Bg]

Xzi,(l‘)els[AL’BL]—iS[AR'BR], (4.8a)
with
Ar(t=+ 0) =Ap(t=+ ),
(4.8b)
Bi(t=+ )= Br(t=+w),
where /=L and i=R correspond to Eqgs. (4.5b) and

(4.5¢), respectively.
Introducing variables 4, P, with a=+,— [see Eq.
(3.8)] and taking Eq. (4.4a) into account, we get from Eq.

'(4.8) [since Eq. (4. 8a) is valid for both /=L and i=R]

E (r,t)= f D[A]D[B]A+(r,t)

Xexpli f dr dt P, (r,t)A_(r,t)
" Xexp(iS'K) 14, B]). (4.92)
Here,
Stl4, B] -
=Omult [AL ’BL] —Smult [AR ’-BR]

=SE& I B1+SL 4] + f dtdr(PLA_+P_A,).

(4.9b)

Performing the expans1on of Eq. (4.92) in powers of Py,
we get

.@(”)(rt;rltl,rztz,...,rnt,,)
=i"A_(ry,t;)  A_(t,t,) A, (r,0).
Note that Eq. (4.9c) vanishes if we substitute 4_ for 4 "

(4.9¢)
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(A_(1)++-A_(n))=0. (4.9d)

In Eq. (4.9c) we used the following notation for expecta-
tion values:

<A(1)---A(n)>=f@[A]@[B]A(l)----Am

X exp(iS¢5) [4,B1). (4.10)

We shall use the notation (4.10) for correlation functions
of arbitrary variables, not necessarily products of 4,(#).
Equations (3.6) and (3.9) express the path integrals
(4.6a) and (4.6b) in terms of expectation values of quan-
tum operators, ordered in a specific way. Note that we can~
get Eq. (4.9c) directly from Eq. (3.10) using the path
integral representation (4.6a) for the right-hand side of
Eq. (3.10). The introduction of the =+ variables in this
section provides a compact and extremely simple formal
expression for the nonlinear response functions.

At this point, we should comment on the initial state of
the system. The path integral (4.10) expresses the corre-
lation function as an expectation value of a product of
operators with respect to the initial state |Q) [see, for
example, Eq. (3.6)]. Therefore, the correlation function
(4.10) depends on this state |Q}. In Eq. (4.10) this de-
pendence is hidden in the integration measure. We will
choose |Q) as the ground state of the entire material and
field system with P,,,=0. We can adiabatically switch the
interaction of the material system with the transverse elec-
tromagnetic field.?’ Therefore, we can take the state of the
system |{)) at #= — co to be a direct product of the ground
state of the material system and the ground state of the
electromagnetic field. The path integral (4.10) will be eval-
uated in two steps. First we integrate the material variables
B to get the effective action. This will be reduced to the
problem of evaluating correlation functions in the material
system alone, and due to our assumption regarding the
state |Q), we have to treat them as expectation values of
products of operators with respect to the ground state of
the material system. The second step is the integration over
the vector potential which will be performed perturba-
tively. To that end we introduce the bare Green’s function
of the electromagnetic field, calculated using only the qua-
dratic part of the effective action [Eq. (5.15)]. We can
obtain this Green’s function by adding the proper self en-
ergy to the inverse Green’s function of the electromagnetic
field in vacuum. This gives the complete prescription for
evaluating (4.10). This prescription can be easily extended
for more general cases by starting with an arbitrary initial
state | Q). For example, in defining the bare Green’s func-
tion for the effective action at finite temperatures we should
add the proper temperature dependent self energy to the
inverse temperature dependent Green’s function of the
electromagnetic field (without the material degrees of free-
dom).
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V. PERTURBATION THEORY FOR THE EFFECTIVE
ACTION

So far we derived a representation for path integrals of
the type (4.10) in the form of expectation values of prod-
ucts of operators. This representation enables us to express
the nonlinear signal in terms of Green’s functions of the
transverse electric field in the (joint material and field)
system space. A tremendous advantage of the semiclassical
procedure is that it divides the calculation into two sepa-
rate steps, the first involving the material system alone, and
the second involving the field alone. The path integral rep-
resentation [Egs. (4.9) and (4.10)] allows the development
of a perturbative procedure in which, term by term, we
work in either the field or the material spaces. We shall

- express the effective action in terms of purely material cor-

relation functions. These in turn may be evaluated using
standard Green’s function techniques. Introducing the no-
tation

D(1,..n)={A(1)---A(n)), (5.1)

we can then rewrite Eq. (4.10) in the form

D)= [ DL Amexp(iSaldD,  (52)

where

exp(Suld) = [ FIBlexp(SELABD.  (53)

Formally our goal has been accomplished by these equa-
tions. Equation (5.3) defines the effective action S.glA4],
which depends on the vector potential alone. Thus when
evaluating the expectation values (5.1) we work in the
electromagnetic field space, and when calculating the ef-
fective action we perform path integration over material
variables only, i.e., we work with the material system treat-.
ing the vector potential as an external classical field.

We shall now demonstrate how this scheme works in
practice. We first evaluate the effective action. Using the
general notation for the expectation values (4.6) and the
action §mu1t, we obtain from Eq. (5.3)

Seald]1=8&14]

+—1,-1n[<exp(ifdtdr(P+A_+P_fi+)> )]
! M
(5.4)

where the subscript M signifies that the trace is taken only
over the material degrees of freedom, keeping the field vari-
ables alive. Expanding the exponent on the right-hand side
of Eq. (5.4), we express the effective action in terms of
material Green’s functions

J. Chem. Phys., Vol. 100, No. 4, 15 February 1994 v
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2 " . .
:ﬂ-[A]—S(K)[A]—l-i‘lln[l—i- 2 p fa’tl dryedtydiy dg (1) A (M(P_g (1) P_g (1)),
n=1 ! . n n

where
(P(1)-+-P(n))pr
=Jr.@{B]P(1) *P(n)exp(iSSOl BY), (5.6)

are the ordered Green’s functions in the sense of Sec. IV.
Thus evaluating the effective action reduces to calculating
the material Green’s functions. This can be accomplished
using methods other than path integrals when appropriate
(see Sec. VI). Equation (5.6) can be expressed in terms of
ordinary material correlation functions.

(Pﬁl(rhtl)"

‘-“-“Tf[ﬁ;;'{(l‘hfl)'

'Pﬁn(rn’tn) >M
B (tsta) prr(— 0) ]
with

P‘M(r,t) ;exp(iﬁmatt)ﬁ(r)exp( _i}“-lmatt)":=

This is completely analogous to Eq. (4 6). The only dif-
ference is that the time evolution of P is determined by the
purely material Hamiltonian, When the logarithm on the
right-hand side of Eq. (5.5) is expanded in a Taylor series,
we obtain an expansion of the effective action in powers of
the vector potential.

We confine ourselves to material systems for which the
Green’s functions (5.6) are nonzero only for even values of
n (as is the case in systems with inversion symmetry).
Expanding the logarithm on the right-hand side of Eq.
(5.5) and collecting terms order by order in the vector
potential, the effective action finally takes the form

SCE[A]—S(d [“1]—'-1_1 z (2 )' fdtl drl dth dl'zn

X{(P_g, (1)

XAg, (1)

P—azn(zn)>>M

Aah(zn), (5.7)

where we have introduced the irreducible correlation func-

tions

2959
(5.5)
{
(P(P(2))) y=(P(1)P(2)) ,
((P(HP)PGYP(A)))ye
=(P(1)P(2)P(3)P(4))
—(P(1)P(2)) 4{P(3)P(4)) 5
—(P(1)P(3)) {P(2)P(4))
—(P(1)P(4)) 4 {P(2)P(3)) . (5.8)

The higher. order irreducible correlation functions are de-
fined similarly. The expectation value of a product of op-
erators is the sum over all partitions of the operators in
subgroups of products of irreducible expectations values of
products of operators. In other words, the irreducible cor-
relation function is the difference between the ordinary cor-
relation function and the sum over all the possible factor-
izations into products of lower order correlation functions.

The perturbation theory for the path integrals on the
right-hand side of Eq. (5.2) is formulated as follows.>! We
partition the effective action S,.g{4] in the form

Sea[41=SQ [4]+SA], (5.92)
where S

terms,

contains the quadratic in the vector potential

S(O) =9

of = rﬁ)[A] +5 J-dtl dl'l dtz dl'z((P__al(rl,tl)

X P_g,(r2,80) )Y A (r1,8) A (x2,5), (5.9b)

and S¢g{A] contains the higher order terms. We then ex-
pand exp[iS¢s] in powers of 4 and evaluate the expectation
values of products of the vector potential with the qua-
dratic action S(O)[A], using Wick’s theorem. This enables
us to formulate the perturbation theory in the form of
Feynmann diagrammatic techniques.”?>*® This proce-
dure defines a natural reference harmonic oscillator model
for the field, with anharmonities included perturbatively.

We shall now specialize to the third order response. In
Appendix A we recast the corresponding field correlation
functions in the form

(A_(r,2,)A4_ (ry,52)A_ (r3,t3)zi+ (r,2)) =if dr{ dt{ drj dt} dr}, dt} dr’ dt’ﬁfet(r{ S or,80) DRE(ES 2} ,00,485)

X D3 ,83,03,83) D0 )T (Y], 05,0, 8,1,8),

Chem. Pha/
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where
DNr’ b ) =i WA (2 ) A_(r,0)), (5.10b)

is the retarded Green’s function of the transverse electric
field, and T'___, is the one-particle irreducible four point
Green’s function, which can be calculated perturbatively
using the expansion given in Appendix A. I'__ _  will be
analyzed and calculated for a specific model of the material
system in the coming section.

At this point, we turn our attention to the conventional
nonlinear response functions. These are normally defined
by expanding the material polarization in powers of the
transverse field

P=57WE +% FSO(EL 3., (5.11)
- %™ being the nth order response function. In Appendix

B we show that

j"m(rtrl,tl) g (l‘,ll‘l,tl)—(Dret)_l(r’trl:tl)
(5.12a)

Here & is the Green’s function of electromagnetic field in
vacuum given by Eq. (6.12),

yu) (l’,t;l‘l ’tl i %) ,1’2,1'3 2’3)
. | (5.12b)
== r_ —_ (rllstl ,l'z,tz,l'3 :t3 ,l',t) ’

and more generally

- B A -
SZEX A TR 0 R el € X SV S )

(5.12¢)
We have thus shown that the linear response function is
equal to the self-energy of the two-point Green’s function of
the transverse electromagnetic field, and that the nth order

V. Chernyak and S. Mukamel: Retardation effects in optics

response function is equal to the one particle irreducible four
point Green’s function of the transverse electric field with a
specific choice of indices (all indices are — and one index is
+).

The perturbation theory developed in this section en-
ables us to evaluate the irreducible Green’s functions I'
order by order. In Appendix A we carry out the expansion
for the third order response function. We then have

fw)(r,t;rl,tl ,l'z,tz,l‘:; ,t3) =?+prr+ yn—'— M
. (5.13)
The leading term results from the harmonic (tree) approx-
imation and is given by the purely material correlation
function

F = —i{{P_(r,}))P_(ry,t,) P_ (f3,t3)P+ ()
(5.14)
The other terms require the 1ntroduct10n of the zeroth field
Green’s function

DY (r,ty,10,8)

a0y

=i—1f@[A]Aal(l'1,tl)Aaz(rz:fz)eXP(iség)[A])'
(5.15)

Since the interaction of electromagnetic fields with the ma-
terial polarization is proportional to the electronic charge,

each additional Green’s function D,(,(:Lz in the perturbative

expressions for I gives an additional power of the square of
the electronic charge. In fact, the expansion parameter for
this perturbation theory is the fine structure constant
a=¢*/#c. In models like the one described by Eq. (6.1),
one can use alternatively the square of the molecular dipole
moment |u|? as the formal expansion parameter. The sec-
ond term is

. 1 : -
fl(r,t;rl,tl ,rz,t2,r3,t3)f—‘-‘5 fdl'i dti dré dté 2 ((Pﬁ(rl,tl)P_(rz,tz)P_(r3,t3)P+(r,t)

1,3y

XP o (F 1) P (15,6)) ) e Dy,

The third term (second order in the ¢xpansion parameter) is

i , i . . .
u(,5r .8 ,0,k,r,5) == | drv]dt] dv) dt, dr} dt, dr) dt,
It 3) =3 1 @ty ary al aryaty argaty

(x1,21,05,8). (5.16a)
2
Qyyenesy
- X{{(P_(r,t)) P_(r2,5)P_ (r3.53) P, (r,t)P_al(r{ ,t;)P_az(ré,té)P_as(ré ,tg)P_%(l‘;,tj,)))M

3
XD, (1'1,tl,rz,t?_)D;°L4(r3,t3,r;,t£)-}—E J dr} dt, dr} dt, dr} dt} dx) dt, 2,

Apyeensy

X ((P— (rl’tl)P——(rth)P—-al(r;,t;)P—az(ri’té)))M( <P~ (r3’t3)P+ (r,t)P_—a:;(ré’t;,)P—a‘t(rc'}:ti)))M

0 0
Dz(zlgz (r{,t;,l‘g,t_a,)D( ) (r2,t2,r4,t4).

(5.16b)
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FIG. 2. Diagrammatic representation of the radiative corrections to the
nonlinear response function 5. (a) The wavy line stands for the bare
Green’s function D), (r1,t,ry,5,) from Eq. (5.15), the circle stands for
the bare vertex {(Py, (r1,11)Po,(F2,83) P, (5 1,))) 3¢ (b) The tree ap-
proximation contnbutlon F.(¢) The first order correction % 1 by Eq.
(5.16a). (d) and (e) The second order correction .#y; two terms in Eq.
(5.16b).

The diagrams corresponding to Eqs. (5.16) are presented
in Fig. 2.

VI. APPLICATION TO THE NONLINEAR RESPONSE
OF CONFINED FRENKEL EXCITONS IN
MOLECULAR ASSEMBLIES

We consider an assembly of molecules with nonover-
lapping charge distributions and an arbitrary geometry,
described by the material Hamiltonian®*

P Bttt = —i(Ca8) 1+ Cnl1) 4 N

le(tl) - +6m

Retardation effects in optics 2961

N AL A s, a 8 N ”
A= 2 0,C5Cpt 2 1ChC 45 2 (E11C,
m m¥n - m (61 )

Jda

é’,*,; which creates an excitation on the mth molecule, sat-
isfies the bosonic commutation relations

[ConsC1 =8> (6.1b)

_and the polarization operatbr ﬁ(r) is

P(r)= 2 B,(r),P,(v)=|u| p(r—R,,)(C,+C}),
" (6.1c)

with | [p(r)dr|=1.

Here R,, is the position of the mth molecule.
p(r—R,) its transition dipole density. In the dipole ap-
proximation we simply set p(r—R,,)=6(r—R,,).

Equation (6.1a) describes a set of anharmonic oscilla-
tors in the Heitler-London approximation. When the an-
harmonicity constant g— + o0, the Hamiltonian excludes
two excitations on the same molecule and thus describes an
assembly of two-level molecules. For g <0, the system can
have two particle bound states known as biexcitons,2**
which may lead to new resonances in the nonlinear re-
sponse.35 When the molecules form a 3D lattice, bound
states exist when [g| >g.~J. In the case of a 2D lattice,
bound states are formed for arbitrary value of g <0.

To evaluate the nonlinear response function % for
this model in the tree approximation we use the path inte-
gral representation for Eq. (5.14) to get

f(?,) (l',t;l'l ;tl s ,fz,l'3 ,t3) ]

=lul* X plr— Rn)p(rr—R Jp(r1—Ry,)

nmymymng

X p(l‘s—Rm3)}f,?,’,31m2m3, (6.2a)

with

L (2) NCpny (1) _+Cp, () NGy (23) +Cony (83) e

(6.2b)

Expectation values on the right-hand side of (6.2b) are taken with respect to the action glven by Egs. (Cl1) correspondmg
to the Hamiltonian (6.1a) with the commutation relations (6.1b). The variables C, and C stand for the operators C and
C+ When the expectation values are evaluated, we find only two surviving contributions

FO_P@y 2o (6.3a)
with

P gy (Bt1512583) = — I Cr (1) _Copy (1) _Cr (£3) _Cu() 1 Y (6.3b)
and

PP gy (Bt112583) = — I Cip, (1) _Cip, (1) ~Crp (1) _C() L Y s (6.3¢)

The correlation functions [Eq. (6.3)] are evaluated in Appendix C. The result, in the frequency domain, has the form
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1
P(3) (r,a)s) = (217) 6 fff d&)l da)z da)3fff dl'l dl'z dl‘3 6(ws—a>1—co2—w3)

X PV (ra;;0101,150,,0303) B (r1,01) E* (15,0,) E* (13,03), (6.4)
with '
FO(rogroun0050)= 2 pr—R,)p(r—Ry ) p(t— Ry ) p(3—R,, ) ) (0,301,02,03),  (6.52)
o+ nymy M3 ,ms )
and

}gglmzm:;(was’wl:ah,wB) = l.u'|4 2 ’Z {G n'(ws)G: m ( w3)Gn”mz(C‘)Z)Gn"ml(wl)Fn n”(w1+0)2)
perm  »n’,
(mj,w;)

G:nl( cos)Gn'ms(w3)G*nm ( wZ)G*nm ( wl)rn n"( 601—&)2)} ) (65b)

Here, G is one particle Green s function. The symbol = perm implies the sum over six permutations of three pairs (m;,0,),
(m 7 202 /)

(my,w,), (m;,0;3). To get Eq. (6.5) we used the material correlation function

(Cn(r1) 4 C(m2) ) =1 (C(1) _Calm2).3), for m>my | (6.62)
and

Gle)= f dry €22~ ™{(C, (1) _C,y(12) ) ‘ " (6.6b)

The Green’s function can be easily evaluated using the one particle eigenstates ¥, with eigenvalues eaflmat\lla=ea\lla.
Here,

W= 2 \Ila(n)éj‘zl‘Q'Mx v . (67)
where |Q,,) is the ground state of the material system. We then have
WE(m)¥,(n)
Gmn(CO)-'-—- % m (683.)
[ is a two particle scattering matrix
Fon(@) =2¢{[1—gF (@)1 }un> (6.8b)
do' , i .
Fun@)= [ Gz (@) Gpul0—a"). (6:30)

In Appendix D we extend this result beyond the tree approximation, introducing radiative corrections to %> by a
partial resummation of the infinite senes (5.13). The result i is identical to Eq. (6.5b) except that the scattering matrix r
is replaced by a renormalized matrix I". The expression for I",,:,,,,(co) in matrix notation is

M) =T(0){1—FV(o)T ()}, ' ' (6.9a)
with

V(@)= (2m) 3| u)? 2 fdcol do, dw3fdr1 dry Gy (@01) G m! (@ —@1) G, n,,(cuz)Gm:,,"(co @)

ml,ml My, mz
X p(r1—Rpy ) D x1,12) p (1, Ry, ) Gyt (0 — ") (6.9b)

Here, D is the chronologically ordered Green’s function of the electromagnetic field in the tree approximation, i.e.,
D*(w,ry,ry) = fdtl O~ WA (v ) A (ry15)), ' ' . (6.9¢)
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where the evolution on the right-hand side of Eq. (6.9c) is performed with respect to S(O) I can alternatively be
calculated by simply replacing G(w) in Eq. (6.8c) with the renormalized Green’s function G(a)) [see Eq. (6. ISa)] (the
derivation is presented in Appendix F) : .

L (@) =28{[1—gF(©) 1~} | ’ :  (6.10a)
A do' , A . I
Fn(0)= f 57 Omn(@") G0 — ). v (6.10b)

Finally, we express the nonlinear signal in terms of the exterhal field. Following Ref. . 28, we introduce the external
electric field £, and the polarization of the signal P} which is related to the external polarization P, and to the electric
field in the nonlinear signal E° by means of the vacuum Green’s function &

E(ro)= fdr' F (r—r',0) P (r'w), ) - o A&6_11a)
»

Ero)= X 9 (r—R,,0)Pi(o), D 7 (6.11b)

Pi(ro)= 2 p(r—R,)P;, - (6.11c)
with '

?(r,r';m)=(2fr)‘3fw d’q G (qo), ‘ . - (6.12a)

dre?® [ i o
G j(q0) P (5 q—;gi) (6.12b)

Using Eq (4.9¢c) and (5.10a) for the nonlinear response function %%, calculating the Green functions D™ in Eq
(5.102) using the zeroth order effective action [Bq. (5.9b)] and combining with Eq. (5.12b) and definitions (6.11) we
finally obtain after some straightforward calculations

1
P(ra) =gam? J-ff doy dwy ‘danfff dry dr, dr; 8(@wy— 01— 0, —3)

X RP (ra38101,302,73003) Eegy(T1,01) Eagy (F2,0) By (13,03), (6.13a)
where ‘
RO (rogriop,rmyrimy) = 2 p(r—R,) p(ri~R,, ) p(r,— Ry, ) p(r3— Ry )RS . 1, (05,01,003,03), (6.13b)
n,my,my,ms
and

jénmlmzm3(ws;ml:m2,w3) = Lu' | 4 Z ,z” {énn'(ws)é:lm3( _a’B)én"mz(wZ) én"ml(“)l)f‘n’n"(a)l'*'c‘)Z)
perm n',n

m-,a)j
G:nl(a)s) én'm3(a)3)é:umz( _w2)é:"ml( _wl)f:'nl'( ‘_w.l_mz)}' (6'14)
f
The renormalized Green’s function is ¢m°1(a)) and ¢°(w) are the single molecule and cooperative
N contributions to the self-energy, i.c.,
Gn(@)
={G(@){l1—-|1|*$(@) [6(0) +G*(— )1} '} "N w) = 5,,,,,fdr dr’ p(r) g (r—r',0) - p(r'),

(6.152) (6.15¢)

where the self-energy ¢ has the form ) :
. 7 ¢fnn(w)=_|:ul_Hm'g(Rm"Rn’w) "l 1—8,p]-
$(w)=¢"%0) + (o), (6.15b) : (6.15d)
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"This expression contains the effects of retardation, which
enter in two ways. First, the matrix ¢(®) changes G(w) to
G(w). This reflects retardation of the one particle states
which appears at the stage of solving Maxwell equations
for the signal, but not in & () jtself, which only depends
on G(w). Second, the matrix ¥ (w) which renormalizes I
This reflects the radiative decay and energy shift of two-
exciton states which appear in % @) jtself. This is the only
place where retardation correctlons to . appear in the
present theory.

VIi. RADIATIVE CORRECTIONS TO THE THIRD
ORDER RESPONSE OF MOLECULAR
NANOSTRUCTURES IN k SPACE: BIEXCITONS AND
POLARITON DYNAMICS

We consider a 2D lattice (monolayer) with the lattice
parameter a. All lattice sites are occupied by two level
molecules which have the same transition frequency £,
and their transition dipole moment is taken to be perpen-
dicular to the monolayer.

For this geometry, we have a good quantum number,
namely, the momentum in the plane of the monolayer in

+ the first Brillouin zone®(with components k,, k, taking
values from —w/a to w/a). The one exciton cigenstates are

Py (n) =e'* R, (7.1a)
with eigenvalues
= =wy+J(Kk), (7.16)
and
J(k)= 2 J, 28R " (7.1c)
m

V. Chernyak and S. Mukame!: Retardation effects in optics

. 'We can also neglect in Eq. (6.9b) the self-energy of the
Green’s function (6.9c). This can be rationalized as fol-
lows: Strictly speaking, the biexciton decays to form two
polaritons, but for the most part, these two polaritons are
either excitonlike or photonlike dnd only a small fraction
of the polariton phase space has a significant mixing. The
decay to two excitons is impossible as the biexciton is an
eigenstate of the material Hamiltonian. Therefore, the de- -
cay of biexcitons is determined to first order in the fine
structure constant and results in an exciton and a photon.
Eq. (6.9b) with D° given by (6.9¢) describes the decay of
biexcitons to form an exciton and a polariton. This implies
that we have already neglected polariton effects for one of
the particles. Neglectmg polariton effects for the second
particle, we substitute in (6.9b) for br

_ dq _
Dij(w,rl,r2)=f (2—:)—5:3"“'1*’2)10;].(@,«1), (7.22)

, 8i—aud,/ €

Dij(@,q) =dme’ -5 5 =5

(7.2b)

where the indices /, j denote spatial components taking the
values x, y, and z. We shall adopt the following definition
of the spatial Fourier transform of an arbitrary function P

1 y .
Any=rs fcﬂ d’k f(k)e'* R, (7.3)

Switching to the momentum domain, performing the
integrations and summations in Eq. (6.14) and neglecting
the real part of V(w), we ﬁnally obtain for R®

RO (0K 0k 0ks,00ks) = p]* 2 {G(0,k,) G*(—w3,ks) G0,k G(@,,k)) T (@) + g, k; + k)
perm )

{wpk)

+G*(—wy,—k,) G(w3,k3) G*(— 01, — k1) G*(—ay, — k) [*(— 0 — 05, — ki — k) },

Aok T(wk)

(@) = o (wk) ’
. o+ Q
G(o, @l

k)=w2—ﬂi+2lnlzﬂk¢(w,k) ’

1 ,]—1
—Qk—q ’

_ @ . '
q

(e0,k) =™ () +¢°(.k),

(7.4a)

(7.4b)

(7.4¢c)

(7.4d)

(7.4e)

(wz/cz)p(q) ple)—|q- p(q)l2 la- p(q)l

¢mol(w) 2 ,n.l ]2
em? "

o’/ —q*

o ) (7.4f)
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¢ (oK)= |p| {—r Z [ o

2

1 qQ" .
_-2_;—[ dgq( m—]q[)] for ©>0,

Note that

¢°(—a,k) =6 (w,k). (7.4h)

G =2mrm,/a and G,=2wm,/a are reciprocal lattlce vec-
tors, m;, m,. are integer numbers. k; and k, are the com-
ponents of the momentum k in the first Brillouin zone, and
p(q) is the continuous Fourier transform of p(r) [see Eq
(6.12a)] ,

V(wk)=i(2m)~2|u| zdeq dg, 8(0— @+ — i _y)

y 2mq” 1 _
Vi +q, (0—0—Oy_g)*

The integral on the right-hand side of Eq. (7.4i) is over all
" possible final states. The decay of the biexciton with energy
o and momentum k results in a photon with energy
\/q2+?z and momentum (q.,q;), and an exciton with en-
ergy Qy_g and momentum k—gq. The § function on the
right-hand side of Eq. (7.4i) represents the energy conser-
vation.
The biexciton energy wp is determined from the equa-
tion

(7.41)

T~ Ywpg,k)=0. (7.5)

Effects of radiative decay of two exciton states (in partic-
ular biexcitons) in the nonlinear signal are contained in the
function I‘(m k) [Eq. (7.4b)]. These effects are important
for two-photon resonant measurements. Consider an exam-
ple of a two photon nonlinear reflection in which a single
monochromatic field with frequency w,, tangent compo-
nent of the wave vector k,, and amplitude E, is reflected
off the surface. The relevant polarization is

p(wpk )= R“)(copkp)E :
R(3)("’pkp""pkp’ —0p—Ky0.ky) |"Ep|2Ep' .

(7.6a)

The reflected signal I is proportional to |P(w,k,) 2

a_. d'q | l? .
n;:f 2(217_)2 (COB—Q sz ) l(z )3 fdp dp27w8(wp— ,/p +pf sz _p)

/¢ — (ky+G)*— (ky+Gy)?

— TG F Mt Gy

(7.4g)

Since typically the linear contribution RV is much stron-
ger than R® we have an intrinsic heterodyne detection.
~Omitting geometrical factors we obtain :

—_—) =l )

503
I~Re{R™(k Cp=RpsCp=p/

f\](
P" a4

XRD*(0,k,)}| E,|* (7.6b)

In the vicinity of the biexciton energy, 20,~wp, and when
the biexciton resonance is well separated, i.e., |wp—2wy) |
is much larger than the radiative width of one-exciton and
two-exciton states, both G from Eq. (7.4a) and RW are
off-resonant and real, and we get for the 31gna1 in the vi-
cinity of the biexciton resonance .

. I~|E,)* Re{f*(20,,2K,)}.- _(7.6c)
To calculate the expression for I iri this particular case we

set w=2w,, k=2k, (k, is the in-plane component of the

" incident wave vector in Eq. (7.4b) and recast it in the form

1
£~} (20,,2k,) —

Expandmg the real part of the denommator of Eq (7 7a)
‘up to linear terms in 20,—w p and makmg use of Eq. (7.5),
we obtain the following expression for I'(w,k) in the vi-
cinity of the biexciton resonance:
~§'s‘?_l .
bzm'é}

Mo, k)= (7.72)

V(Za)p, )

WO Y w2k,y
r(zw,,-;zk‘p)=[_—___ (@,2k;)

© 0w
X Qo,—optirg) T, (1.7b)
with the biexciton lifetime 7 o
orYw2k,)| e R
Comp=———e e [Flep2k) |70 (78a)
; e ] w=wpg - . )
or taking into acc’ount': (7.4d) ;’and"('7:4é)
21Tp27 » 1 ~ =1
\/P +p7 (“’B—'Q' sz —p)
T (18b)
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Substituting Bq. (7.7b) into (7.6c) we get for the nonlin-
ear signal in the resonant case

I~ 20)1,—603 .
(20,—wp) +715°

(7.9)

We had derived Eq. (7.8b) for the biexciton radiative
lifetime from the near resonance expression for the third
order nonlinear response function. The same result can be
obtained using the Fermi golden rule. Expressions for this
lifetime for two dimensional structures were discussed in
Ref. 36 for Hamiltonians depending on more parameters
than Eq. (6.1a). In the particular case of the Hamiltonian
(6.1a) the radiative lifetime of the biexciton
Tp~Tm(Tp/a)?, where I', is the biexciton size and 7, is the

" single molecule radiative lifetime. This implies that the
biexciton superradiant coherent size is ', and the one
exciton coherence size is its wavelength A..

In conclusion, we note that transient grating experi-
ments as well as two photon absorption measurements in
molecular crystals have shown evidence for polariton,
rather than exciton, transport.>!®!® This is another signa-
ture of retardation in the nonlinear susceptibilities. We can
naturally account for polariton transport if we add some

~other degrees of freedom such as phonons or disorder. In
the conventional approach we average .%*) over these de-
grees of freedom, and then calculate the field. By doing so,
& will depend on averages of products of G factors
which contain no retardation effects and will represent ex-
citon (rather than polariton) transport and diffusion. We
can naturally account for polariton transport if we aban-
don the conventional two-step procedure (first susceptibil-
ities, then signals) and calculate the signal in one step,
including retardation and material ifiteractions simulta-
neously in the joint space, we shall then average our prod-
ucts of G Green functions which contain the polariton dis-
persion. In order to recover these effects through # ) we
need to incorporate retardation effects in &% & which, in
this case, will be a tedious procedure. The expansion pa-
rameter for polariton effects was discussed by Knoester
and Mukamel.?

We further note that in this article we did not need or

use the explicit form for the action of the material system
SmalBl. We have used path integrals primarily for book-
keeping and for the systematic treatment of miaterial and
field interactions. Other applications may require a path
integral approximation for the material evolution as well.
This may be accomplished using geometric quantization as
outlined in Appendix E.

Another issue not addressed here is that, in general,
the signal is related to the field density matrix ETE rather
than the field itself. Throughout this article, we have fac-
torized the expectation values of products of field operators
as

V. Chernyak and S. Mukamel: Retardation effects in optics

(E'Ey=|(E)|*.

. This factorization is expected to hold for strong coherent

fields with a large number of photons. Otherwise, photon
statistics may become important, and the present approach
needs to be extended.
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APPENDIX A: EXPANSION OF THE FIELD
CORRELATION FUNCTIONS

-In this Appendix, we derive the expression for the non-
linear response function % ) [Egs. (5.10a) and (5.12b)]
and show how to expand it in powers of the fine structure
constant [Eqgs. (5.13), (5.14), and (5.16)].

. We first introduce the one-particle irreducible Green’s
function I“;Pm’%(r,,tl,...,r4,t4) by

(g (x1,01) A, (r4sa)))
=i f dri dt|---dry dt;
X (A (r1,01)A gy (£1,8)) - (Ao, (Fasts)

xz-i_a;(r,;,t";))l"ii’m’a‘,‘(r{,t{ AR (A1)

To express the signal to third order in the external
polarization we have due to Eq. (4.9c) to evaluate the
expectation value {4_(ry,t)A_(r,t,)A4_ (r3,15)4  (r,2)).
From the definition of the irreducible Green’s function and
taking into account Eq. (3.11a) for n=2, we get

(A_- (1'1 ’tl)/i—-. (1'2,t2)14_(1'3,f3)14+ (l',t))
= ((A_(r,1)A_(Ept)A_(rs,1) A (1)),

(A2)

Combining Eqgs. (A1) and (A2) and taking into account
Eq. (4.9d), we obtain
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(A_(r1,t)A_(ry,0)A_(r5,85) 4, (r,1)) =if dr} dt] dr} dt; dv} dty dv’ d'{{(A_(r1,1) A (x],1]))
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XAA_(ry, 1) A L (x5,85) Y (A _ (r3,83)A 1 (¥},8))
XA (1) A, (00T (e85, 05,05 5,6°,8)
+<1‘i'_(l‘1,t1)z‘i.§(l‘{J{))7(1&_(1‘2J2)1‘i+(1‘£,l£))(A_(l‘3,t3)z‘i+(l‘§,f§)>
X<A (l' t')A (r’t)>lvi_.___(r1’tlar21t29r3’t3;r t,)} (AS)

From the analogous representatlon for the expectation value (A (rl,tl)A (rz,tz)A (r3,23 )A (r,r)) that is equal to .

zero due to Eq. (4.9d), we get

(A_(r1,t)A_(r,t)A_(r3,t)A_(1,2) >.=z'f dt} dr} dt} dr} dt} dr} dt’ de’ (A_(r,,1) A4, (¥},1}))

XAA_ (02, 5) A 4 (02 YA (13,80 A . (15,85))

XA (2 A_(e0))TE ___(x},80),85,05,0,0, ).

We thus get

T4 ___(x],8 ,r5,85,05,85,r",t') =0.

(A5)

Substituting Eq. (A5) into Eq. (A3) and using the nota-
tion for the Green’s functions (5.10b) we finally get Eq.
(5.10a).

In Sec. V we described a perturbation theory for cal-
culating optical susceptibilities and expressed them using
multitime correlation functions of electromagnetic field in
the joint field and material phase space. The bare (zero
order) -~ Green’s functions corresponding to lines
in diagrams of the perturbation theory are D@, and

the bare vertex of the 2nth order is determined by
the irreducible material Green’s function
<<Pa1(rlat1) e ',Pa2"(r2n:t2n)>>M-

The classical limit of the electromagnetic field in this
approach is obtained by using the tree approximation for
the corresponding diagrammatic techniques, where - we
take into account only diagrams containing no loops. For
the two point Green’s function this means that we neglect
nonlinear terms in the effective action. Thus using Egs.
(5.9) and the general relation Eq. (3.11a), the self-energy

for the one particle Green’s function {4 _ (r, ,tl)A (ryst3))

is i~YpP_ (rl,tl)P+(r2,t2)), and we immediately get for
this Green’s function in the tree approximation the result
of Ref. 28.

To get #® we evaluate the right-hand side of Eq.
(5.12b) in the tree approximation where I' A___+ coin-
cides with bare vertex, i.e., [see Eq. (5.7)] :

FA —— (rl ,tl ,1'2,1'2,1'3 :t3 ,l‘,t)

= —i((P_(r1,1) P_(2,15) P_(r3,8) P, (5,0)) ) 11
(A6)

(A4)

On the other hand, we can evaluate the % ) the non-
linear response for a classical electromagnetic field, in a
standard way, i.e., by introducing the interaction of the
material system with the external transverse field E,,; and
evaluating the polarization P= (P) using the action

S[B]=Spul Bl + f dt dr P(r,t) E(1,t). (A7)

In aﬁalogy with Sec. III we get
P(l',t)— - fdl'l dtl dl' dt
n=0

X Eexi(r158) "+
X(P (ri,t1) P (rp ) Py (1,0))
(P (r1,1) P (5t ) =0.
Using Eq. (A8b) we have
(P_(ry,ty) " P_(xy,t) Py (1,0))

=<(P-—(r11t1)“'P—(rn’tn)P-i-(r’t)))M- (A9)

From Eq. (A8a), and taking 1nto account Eq. (A9) we
obtain

Eext(rn ’tn)
(A8a)
(A8b)

- 32(3) (l‘,l’l‘l :t1r2’t2 I3 9t3)

=—i{({(P_ (1'1,f1)P (r2,6) P_ (r3,t3)P+(r,z‘)))M
(AIO)

Comparing Egs. (A6) and (5.12b) w1th Eq. (A10) we see
that in the tree approximation FB) = ) It is easy to

‘show that this result applies to higher order susceptibilities

as well, and we have in the tree approximation & )
=2 The susceptibilities #* thus become constants
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in a nonlinear theory of the electromagnetic field described
by S.s4]. By including in the perturbation theory dia-
grams containing loops, we can systematically incorporate
radiative corrections to the exact susceptibilities ™.
To get the first and the second order corrections to
&, we expand Eq. (5.2) in powers of S’glA], evaluating
the expectation values of products of variables 4 by means
of the Wick theorem keeping the terms with one or two
internal lines (Green’s functions D(o) ) This procedure

results in Eqgs. (5.16). The dlagrams corresponding to
these terms are presented in Fig. 2.

APPENDIX B: NONLINEAR RESPONSE FUNCTIONS
AND GREEN’S FUNCTIONS OF THE
ELECTROMAGNETIC FIELD

In this appendix we derive Egs. (5.12) which connect
the nonlinear response functions # (" to one particle irre-
ducible Green’s functions of electromagnetic field.

A standard procedure for calculating the nonlinear op-
tical properties of materials is by introducing nonlinear
response functions. External sources which result in cre-
ation of electromagnetic waves in the system can be de-
scribed by the external polarization P.,,. We can introduce
another variable, namely, the external electric field E.,,
related to P, linearly by means of vacuum Green’s func-
tion of electromagnetic field & {see Eq. (6.12)] (all for-
mulas in this Appendix will be written in an operator
form)

Eoq—9 Py (B1)

Equation (B1) is linear and does not contain any informa-
tion about the material. The only reason for introducing
E,,, is that it is somewhat more convenient to express the
optical signals in terms of E,,, (i.e., the electric field we
would have had we created the wave with the same sources
in vacuum) rather than in terms of the external polariza-
tion. ‘

The expectation values of the transverse electric field
E' and the polarization. of the material are determined
completely by P, [or due to Eq. (Bl) by E,,] and can be
expanded in terms of the latter. These expansions lead to
th(e)response functions %™ introduced in Sec. IV and
RY)

INgE

E' = ~1—.9?(”)(P )" (B2a)
- nl ext/ »

n=1

1

El = Y —~R(")(Em)" (B2b)

n=1
On the other hand, the transverse electric field is related to
the total polarization in the system, which consists of the
external polarization P,,, and the polarization of the ma-
terial, by means of the vacuum Green’s function of the
electromagnetic field & [see Eq. (6.12)]

=9 (P+P,,). - (B3)

Combining Eqgs. (B2a) with (B3), we get the expansion of
P.in powers of P,

V. Chernyak and S. Mukamel: Retardation effects in optics

&1
P=(9~'RV NPt X — I~ AP (P

=1 B

" (B4)

If we solve Eq. (B2a) iteratively, we get P,,, expanded in
powers of E . Substituting this expansion into Eq. (B4)
we obtain the expansion of the polarization in the material
P in powers of transverse electric field E ,!

0

P= 2

n=1

1
ﬁf(n) (El ), (B5)

Our goal is to derive Eqgs. (5.12) connecting the re-
sponse functions #® to one particle irreducible Green
function of the electromagnetic field I' [we will confine
ourselves to systems with an inversion symmetry center,
ie, #M=0].

We begin with the dlrect denvatlon of Egs. (5.12a)
and (5.12b). To that end, we expand the expectation value
of the transverse electric field in the system E' , in powers
of external polarization P, to third order in P.,,. Keeping
the first and the third order in P, terms in the expansion
(3.7a) and taking into account Bq. (4.9c) for n=3, Egs.
(5.10a), and (5.10b) we obtain the following expression in
operator form:

E' =Dp,_ + Dfetr;{__ (D™=tp,,)°. (B6)

We can easily get from Eqgs. (B6) and (B3)

P=[F'— (D)~ '|E" —i-l

31 Dt =~ (D"Pex)™. (BT)

Since we are keeping the terms up to the third order in P,
we can substitute E* instead of D™tP, , in the second term
on the right-hand side of Eq. (B7) [this follows from Eq.
(B6) after neglecting the nonlinear in P, term]. We get

- finally

- 1

P=(F1— (D) HE +5; T, __(B').  (BY)
Comparing Eqgs. (B8) and (B5) we get Egs. (5.12a) and
(5.12b). To prove Eq. (5.12c) we combine expansion

(BS) with Eq. (B3) to get
f(2n+1)

Peet Z (2n+1),

X(E.L )2n+1

(9—‘—f<1?)El

(B9)

l Makmg use of Eq (5.12a) we recast Eq. (B9) in the form

1
(Dret)—lEJ. — ext+ z or +1)'j"(2”+1)(E1,)2"+1.
(B10a)

Putting . *” =0 and using Eq. (4.9c) and the notation
(5.2) and (5.10b) we recast Eq. (B2a) in the form

l-2n+1 :

=D*P, + 2, (2n+2)
(B10b)

2 @2nrl)
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FIG. 3. Typical nonzero tree diagram for a higher order Green’s function
of the electromagnetic field Eq. (B10b). The lines stand for the exact two
point Green’s functions, the vertices (hatched circles) are the one-particle
irreducible Green’s functions I'%. This diagram contains ten free lines and ,
these correspond to D"+ with n=4. ‘

To prove Eq. (5.12¢) we shall compare Egs. (B.10a) and
(B.10b). First we observe that the coefficient D?"*2. _ in
the expansion (B.10b) is given by the sum of all diagrams
with lines and vertices presented on Fig. 2, and with one
external line with external index + and 2n external lines
with indices —. The one particle irreducible Green’s func-
tions are defined in the following - manner:

T,

one line into two disconnected diagrams. Introducing I'4
we conclude that D"+, _ is the sum of all tree diagrams
(i.e., diagrams without loops), with Pgl,'__,% as vertices,
and exact Green’s functions D,g as lines. Note that we
have to sum over all Greek indices corresponding to inter-
nal lines in the diagram. However, due to the fact that
D__=0and Fgl""'am = 0ifa;="""=a,=—, all the in-
ternal indices are fixed: for internal lines we have D,z with
a=—, PB=+4, for vertices P';l'__"%m we have o«
= =qQ,_ ;=—, q,=-+. A typical diagram is presented
in Fig. 3. In other words, all lines stand for Green’s func-
tions D™ and vertices stand for ' ... _,. On the other
hand, if we solve Eq. (B10a) iteratively, and expand E' in
powers P,,; we can present the expansion coefficients in the
form of the sum of the same tree diagrams with the only
difference that the vertices are the response functions
FCr+D gince expansion (B5) is unique, this completes
the proof of Eq. (5.12). Equations (5.12) enable us to use
a convenient Green’s function perturbation technique for
evaluating the nonlinear response functions .%(™. .

The approach presented here shows clearly effects of
cascading in the formation of higher order nonlinear opti-
cal signals. As mentioned above, the nonlinear signal ex-
pressed in terms of the external field or external polariza-
tion is given by the sum of all tree diagrams with nonlinear
response functions % (") as vertices and one-particle
Green’s functions D™ as lines. Physically this means that

al,...,azﬂ .
is the sum of all diagrams which cannot be cut by
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a)

b) 7 c)

FIG. 4. Diagrammatic representation of contributions to the correlation
functions (6.3). Lines with arrows stand for bare Green’s functions
(CC*) [with respect to quadratic action Eq. (C.1b)]. Vertices represent
the nonquadratic part of action S, from Eq. (C.1c). The time £ in the
diagrams takes values on the Keldysh time loop (Ref. 33). (a) Ladder .
diagrams contributing to Eq. (6.3). (b) and (c) Diagrams containing
loops and therefore equal to zero. Going along the paths EFE and 4 BCA
along the directions of arrows we return to the beginning, to get zero.

nonlinear polarization creates the electric field which in
turn is involved in formation of the nonlinear polarization.
Representation of the signal in terms of the tree diagrams
in a convenient and clear way to classify all the contribu-
tions to the nonlinear signal to a given order in the external
field, expressed in terms of response functions %",

APPENDIX C: NONLINEAR RESPONSE OF
MOLECULAR ASSEMBLIES :

In this Appendix we evaluate the correlation functions
(6.3) from Sec. VI,

The expectation values in Eq. (6.3) are taken with
respect to the action of the form

Smat[ C’C] =Sx(r(1)a)t[c’é] +ngl;t[cﬁa] »

aC,(§)
9

(Cla)

ssulcei= [ aefiS cue

— 20,C(E)Cy(&) — éfmém@)cn@},
(C1b)

smicel=— [ &3 3 Eecie. (Cle)
Here & denotes the time variable on the Keldysh time loop
with the natural time ordering. For each value of the orig-
inal time variable we have two values of £ corresponding to
the two parts of the loop. The variables C and C stand for
the quantum operators C and C™, and the first term in
Eq. (C.1b) provides the commutation relations (6.1b).
We will concentrate on evaluating .%?; the procedure
of evaluating %*? is identical. To evaluate the right-hand
side of Eq. (6.3b) we expand the exp(iS™,) factor in pow-
ers of C and C, calculating the resulting expectation values
with respect to S, using the Wick theorem.
We- first - observe - that nonzero contriblitions cannot
contain  loops, ie., products of the type

(CENCEN(CENC(E,_ 1)) (C(&)C(E)) as the
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condition of all the correlators in the product being non-
zero £{&,( - (&,_1{£,(&, cannot be satisfied. Therefore,
the nonzero contributions can have only the following
types of coupling: the variables C in Eq. (6.3b) are coupled
to the variable C belonging to the same vertex given by Eq.
(C.1c), the variables C belonging to the vertex considered
can be coupled to the variables C belonging to some other
(but the same) vertex, etc. In diagrammatic techniques
such contributions are usually denoted the ladder dia-
grams. Ladder diagrams and examples of diagrams con-
taining loops are presented in Fig. 4. After making this
important observation we can switch to the == variables
using ordinary time variables, and rewriting the St in the
form »

o
‘?gﬁ‘mzms(t,tl ’t23t3) = —i NEI
= —® J1ees JN

X(éjl(ﬁ) _Cjz(Tz) + (C_'jl(’fl) +

X{Cy_ (v 1) 1€ (i) 145, () _Ca(m) 1 )(C

Since the time integration in Eq. (C.3) is performed
from — o to + oo, We can easily switch to the frequency
domain. The free correlation function is on the right-hand
side of Eq. (C.3) can be evaluated directly using the quan-
tum mechanical representation of Sec. IV: Evaluating % ®
in the same manner, and combining all the contributions
we finally obtain the expression for 5 in the frequency
domain [see Eq. (6.5)].

APPENDIX D: BEYOND THE TREE APPROXIMATION

In this appendix we derive the expression for the third
order nonlinear response function near the biexciton reso-
nance [Egs. (6.9)].

As indicated in Sec. I, we cannot describe the effects of
radiative decay of two exciton states in the nonlinear signal
without taking into account the quantum nature of elec-
tromagnetic field. The effects of radiative decay of two-
exciton states are important near the two-photon reso-
nance especially in the case when the spectrum of two-
exciton states contains bound states (biexcitons). To see
this we will use the simple model of interacting bosons
introduced in Sec. VI and calculate the nonlinear suscep-
tibility near the resonance with the bound two-particle
state using the techniques developed in the previous sec:
tions.

To evaluate the susceptibility % 3 near the b1ex01ton
resonance we use the path integral representation (5.2) for
the Green’s function [Eq. (5.102)] and perform the expan-
sion of expl[iS, ,f] [see Eq. (5.92)] in powers of A. Note that
due to Eq. (6. ic) and (5.7), each couple of variables Ain
the effective action gives an additional power of the param-
eter |u|? which is proportional to the fine structure con-

" drpedry S (=2)MCo (1)

Ci (1))
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simicl=—g [~ ar T 1CL(N-icL(n)]

xé+<f)é_(r)—gf_°° dr 3 18 (r)

—C (D]C (C_(1). (C2)

We note that nonzero contributions do not contain the
second term of Eq. (C.2). Actually, the C variables in Eq.
(6.3b) can be coupled only to the C variables of the first
term of Eq. (C.2) [due to Eq. (3.11)]. The C variables of
this vertex can be coupled only to the C variables of the
vertex of the same type, etc. We thus obtain the following
expression for Z®:

'1(7'1) +> <éml(t2) fcj;(TI) +>

(Cjy_ (ry_) Cj (Th) 1)

13 (TN) 3 Ciny (T3) ). (C3)

stant. Thus, the only reason we cannot confine ourselves to
taking into account only the lowest order terms is that the
coefficients in the expansion [Eq. (5.7)] which are the ma-
terial correlation functions can contain large resonant fac-
tors. Each of these factors is due to some two exciton (i.e.,
biexciton) intermediate states in the spectral decomposi-
tion of the material correlation functions in Eq. (5.7).
Thus to first order in the fine structure constant we have to
use only those terms in the expansion (5.7) that contain
the maximum number of resonant factors or, in other
words, the maximum number of two-exciton states in the
spectral decomposition of material correlation functions
(for the given number of the variables A). It is easy to see
that these terms are given only by terms linear in Sz in the
expansion of exp(iS;;). Near resonance we get

D,, :_,_._ + (1'1 ’tl ,l'z,tz,l'3,t3 ,l‘,t)

=i{A_(r,1)A_(ry,1)A_(r3,6) A, (r,1)Sig[A]),

where the average of 4 variables in Eq. (D.1) and below is
with the zero-order effective action S{[4] [see Egs. (5.9)].
Near resonance, substituting S(“‘t) [A] from Eqs. (5.7) and
(5.9) to (D.1), we can also replace the irreducible material
correlation functions in Eq. (5.7) by ordinary ones [Eq.
(3.6)] since the difference between them is of higher order
in the fine structure constant. We can make further sim-
plifications. On the one hand, we are interested in getting
the maximum number of two exciton intermediate states in
the spectral decomposition of iaterial correlators in Eq.

J. Chem. Phys., Vol. 100, No. 4, 15 February 1994
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(5.7). On the other hand, as we are interested in the effects
of biexciton decay in %) but not the energy shift, we
would not take into account intermediate states containing
more than two excitons, as the energy of these states is
higher than that of the biexciton. Consequently, we con-
sider only one and two exciton states in the spectral de-
composition of the material correlation functions. The next
simplification comes since there are two kinds of two-

photon resonant terms in the Green’s function (D.1):

Terms resonant when a sum of two frequencies corre-
sponding to incoming fields is close to the biexciton energy,
and the resonant terms with this sum close to the biexciton
energy taken with the opposite sign. This leads to the fol-
lowing representation of D___, from Eq. (D1):

D(+)

1+ (1,800,003, 85,8,8) = Dy + Dy,

t
fdrl dr2n ~ de,,f dry,_

w0

D= 2 i2nl“|2n
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D_

+=-D(_+) +D___+s ‘ (D2)
where D'+) and D'~ stand for the terms of the first and
the second kind.

We will concentrate on evaluating the Green’s function
D, D — 4 can be evaluated in a completely anal-
ogous manner. It is convenient to switch back from sum-
mation over Greek to latin indices in Eq. (5.7). Taking
into account all the simplifications mentioned above, sub-
stituting the expression for polarization [Eq. (6.1¢)] into
Eq. (5.7) we then use Wick’s theorem to calculate the
expectation values of products of variables 4 in Eq. (D1).
Keeping only terms containing the highest possible power
of the resonant factor we get the following expression for
D(‘L)__+ (see Fig. 5):

e 7 an O ()

= ml’ M2,
XCy ((TinD) G (1202)Coy, (123 € (1), (1) EF (1) € ()

X | Q) p(ri—R,, ) p(r3—Ry, ) -+~ p(rs,—

X X {{A_(rit) A (0 ) (0,5) A (v),m))
(l:;rtj)
X (1‘1_(1'3#3)14.4. (r3,_1 :Tzn_1)>}<r‘il(l'§ ,7'3)“11 (r4,74))

X (AL(I'g ,TS)AL(’:& T6)) (A L(l'én_;; ﬂ'zn_s)AL(l'ﬁn_z

Dy=— 3 &> fdrl -dr}, f dmf o
n=2 ml, o3,

T2n ~ ’ N N
X [ @rans(Ose] Gy, (20 (r2)

><C+ (m) IQM>p(r1 le) p(rzn

Rmznj <A—- (r;,”n 97-2;1)/1-{' (l',t))

5 _2(T2n—2) C‘\Wm

Tan—2))s

Tan—2
dry,_ -3°
-]

J. d’rl

2ﬂ_3(rz,,_3>---é;;(r4)'_ (n) (m

Ry,) (A (15,5720 A (1,1) 2 {(A_(r,5) A, (x],m))
. perm ’

(rj.t)

X (A _(r3,8) A, (,72) YA _(r3,83) A (g 1,Tan_1) YA L (05,73) A [ (x4,74))

X{AL(rh,m5)AL(x,76))

Here R,, is the position of the mth molecule. The following
procedure is straightforward. Making use of Eqs. (5.10a)
and (5.10b) we can get from Eq. (D3) an expression for
3 near the biexcitonic resonance. The material correla-
tion functions on the right-hand side of Eq. (D3) involve
only one particle and two_particle states and hence can be
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(A3 Tan_3)AL(Csy_3,T2n_2))-

(D3)

expressed in terms of one particle scattering matrix L.
Switching to the frequency domain and using the s1m11ar to
Eq. (D3) expression for the Green’s functlon D) s WE
get after strmghtforward calculations the resonant expres-
s1on for the nonlinear response of #" 3 [see Eq (6.5) with

[ given by Eq. (6.9) instead of T'].
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FIG. 5. Double sided Feynman diagram representation of contributions to Eq. (D3). Dy is represented by diagrams (a) and (b), whereas Dy is given
by (c) and (d). The left and the right lines denote the first and the second parts of the Keldysh loop. The wavy lines denote the {44) correlation
function. The solid lines stand for the material correlation function, the single and the double lines stand for one-exciton and two-exciton

intermediate states.

APPENDIX E: NONRETARDED RESPONSE FUNCTION
OF AN ASSEMBLY OF TWO-LEVEL SYSTEMS

We will apply the general results of this paper to the
case when the material system is a set of neutral nonover-
lapping two-level molecules.”® For this case we take the
material Hamiltonian in the Heitler-London form

mat— ZQ BT m+ 2 JmnB B
msn

The first term in Eq. (E1) is the Hamiltonian of noninter-

acting two-level systems, the second term describes the

Coulomb (dipole—dipole) interaction Ain the Heitler—

London approximation. The operators B,, are the transi-

tion operator of the mth two-level system, changing its

excited state to the ground state. They satlsfy the commu-
tation relations

[Br» Bl 1= (1—2B},B)8 s (E2)

The polarization operator P(r) can be represented in the
following form:

P(ry= 2 P, (1),

Bo(r)=|u|pr—Ry) (Bt BL), ! fp(r)dr.

The classical phase space of a two-level system is the
two dimensional sphere S? (it can be regarded also as one
dimensional compléx projective space CP'). The space of
states is the tWo6 dimensional space of holomorphic sections
of the twisted bundle & (1) on CP' (see Ref."37). The
classical variables corresponding to operators Band Bt are

(E1) -

(E3)

B*—iB’ and B*+iB’, respectively, where B=( B, B’, B%)

“is a unit three dimensional vector on the phase space S

The action Sy, [B] has the form

Son[Bl= 2 S9_ 3 f dt Q,

1+ B3,
2

X %

mz=n
B' = (B B0)

where S(O) 1s the multilevel action (for the mth two-level

dtJ,.B: - By,
(E4)

system), e’sm being the parallel transition along the canon-
ical connection on the bundle O(1) with the curvature
w—ithe canonical simplectic structure on S for spin 1/2

w=3€;;,dB;\NdB;B, (E5)

where |p|p(r) is the polarization operator between the
excited and the ground states of a molecule (see Ref. 3 for
the microscopic expression).

23 were calculated in Ref. 28 using a different
method (solving the equations of motion for material op-
‘erators in the external transverse field). Thus, in the tree
approximation we can use the results of Ref. 28.

APPENDIX F: GREEN'S FUNCTION EXPRESSIONS
(GFE) FOR THE NONLINEAR RESPONSE OF
THE SYSTEM OF INTERACTING BOSONS

In this appendix we denve Eqgs. (6.10) for the two-
exciton scattering matrix 1",,,,, (@) which is affected by the
quantum electromagnetic field. Together with Eq. (6.14) it
‘provides an expression for the nonlinear response function’
R with respect. to the external field.

J. Chem. Phys., Vol. 100, No. 4, 15 February 1994
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In Sec. V we obtained a general procedure of evaluat-
ing radiative corrections to the nonlinear response func-
tions by integrating first over the material variables B to get
the effective action which depends only on the field vari-
ables 4. In this appendix we adopt a different approach
based on integrating over the vector potential first to get
the effective action for the material variables. This ap-
proach seems to be more appropriate for the material sys-
tem described by Eqgs. (6.1) due to the following reasons.
Correlation functions of the material system can be evalu-
ated exactly since the Hamiltonian (6.1a) conserves the

number of particles. If we neglect the terms in the effective
material action which do not conserve the number of par-
ticles (these terms are induced by interaction with trans-
verse electromagnetic field), we can still obtain exact ex-
pressions for the correlation functions of material
variables, when the material system is described by the
effective action. To perform the integration over the vector
potential in Eq. (4.9a) it is convenient to introduce a func-
tion W[Pext L0l which depends on the generating function
Q(r1),

WPo Q1= [ FLAID[Blewpli [ di P A0+ QAL (01|

“Xexpii

. Combining Eq. (4.9a) with Eq. (F1) we get

SW [ Pext,Q]

N
E (nf)=—i 8Q(r,2)

=0

( SEB1+5B a1+ fd: dr(P,A_ +P_fi+).) .

(F1)

(F2)

The integration over the vector potential in Eq. (F1) can be performed exacﬂy, an'dv yields

;VIR“UQ]==<CXP

+ L () Qe ") P_ (r',t’))] >

X Pext(r',8') +5 4 4 (r",t";r’,t')Q(r",t'f)Q(r',t'))]4

We used in Eq. (F3) ‘the following notation:

SBsyp= [ FLBISIBlep(SPIBD, (B

for an arbitrary function f[B] of materlal vanables
S B] has the form

SEP[B]=SE + f dt’ de” dr’ dr"[9+ (r" Gl )

XP_(X)P (K 2) -
+%g e (i.ll’tll;rl’tl)P~ (l’",l’")P_ (rl’tl) ]’
' (F5)

and the Green’s functlons of the transverse field 9 B have
the form

G o170 ) = <Aa(r",t")AB(r_.',z')>smd
= [ Drara. gy

(:F6)

: (K
Xexp(er(ad) [4n, -
Downloaded 07 Mar 2001 to 128.151.1'1/'6%'{3951;n BY fflg?J'tlgl(’])o

(
s

éu’%]ect’ t105A:€p

l-f dr' dr” dr’ dl‘”(y — (l‘",l’";i",t' )P_, (rn,t")Pe’—(t(rr’t/) + fﬁ e (l‘",t";l",f’)Q(l‘”,l”)P_,_ (rl’tl)

exp[i f de' de” dv' de"(G (" 1 ) Q(x" ")

‘(F35ﬂ

v and

do v
1ol Py "o, ~ia)(t"v—t') .
G, _(" "'t )__f o I (" r"w)e
- (F7)

with & (r",r';0) given by Eq (6 12). Substltutmg Eq:
(F3) into Eq. (F2) we obtain

Pi(rt)= <P+(r,t)exp fdt’ dr’ E . (x',t")

XP_(r t’)] (F8)

s(m)

where the external electric field E,,, and the polarization P*
which generates the signal are given by Eqgs. (6.11). In the

- derivation of Eq. (F8) we made use of the relation

(P_(r,t)exp i f dt’ dt’ Eey(r',t')P_(',0')

) s mO
(F9)

The expansion of Eq. (F8) i in powers of external ﬁeld Ext
has the form

r|199r§|;t4 see http://ojps.aip.org/jcpo/jcpcpyrts.html
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1
Pr)= 2, ~ | dridn:--dr, dt, R™
n=0 1 :

X (XET 8 yereo Pl ) Broxt (T121) Eaxt (T2,), (F10a)
R™ (xt;r it ,estyt,) =8P (5, P_(r1,t1) "

X P_(Eyt) st (F10b)

This result can be derived alternatively by adding a term

_ j dr P(x,t) - Eo(n,1)

to the Hamiltonian, and expanding the density matrix in
powers of E,,,. '

We next apply the general formula (F10b) for n=3 to
the case of the material system described by Egs. (6.1)
with the corresponding action given by Egs. (C1).

It follows from Eq. (F5) and Eq. (6.1c) that the ef-
feg)t)ive action has corrections only in its quadratic part,
Seﬁ' i.e., )

S =8 +Sm. (F11)

In Appendix C, the correlation function Eq. (F10b) for
n=23 was evaluated but the expectation value on the right-
hand side of Eq. (F10b) was taken with respect to S{5)

[see Bq. (6.2b)]. The response function % 3 was ex-
pressed in terms of the one-exciton Green’s function

G (£ =(Con(£") 4 Tt )5 (F12)

If we neglect in S the terms which do not conserve the
number of excitons [namely, the terms of the type
C(£)C,(2"), Co(t')C,,(¢") and the terms C,(¢')C,,(¢")
for ¢’ >¢"] we get for Eq. (F10) with j=3 the same ex-
pression in terms of the Green’s function G. However the
expectation value in Eq. (B7) should be taken with respect
to the action Sgg’ , i.e., we define a new Green’s function G
by

Grun(£" 1) =(Cp(£") L Co(1") ;>S£g) :

Evaluating the Green function Eq. (F13) using Eq. (F5),
and making use of the results of Appendix C we obtain in
the frequency domain ,

R(rosrio,r0,,r303)

= 2 p(r—R,)p(ri~Ry,)p(r—Rp,)
nmymyms

XP(l's—’Rm3)an1mzm3(ws;w1’602’603), (F14)

where l’é,,ml,nzms(cos;wl,wz,an) is given in Eq. (6.14) with
I' defined in Eq. (6.10).
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