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The signatures of retardation in nonlinear optical susceptibilities are studied by starting with the 
multipolar Hamiltonian and using path integral techniques to develop a perturbative scheme for 
incorporating the retarded interaction with the electromagnetic field. The present approach 
accounts for cooperative radiative decay and polariton transport which show up in resonant 
spectroscopies of nanostructures. These effects, which require a quantum electrodynamical 
description of the field, are missed by conventional nonretarded theories. Application is made to 
the enhanced snontaneous emission rate of biexcitons, which may show up in the nonlinear 
reflection off molecular superlattices. 

I. INTRODUCTION 

Nonlinear optical signals are usually’calculated by first 
calculating a nonlinear susceptibility defined by expanding 
the optical polarization in powers of the transverse electric 
field, and then solving the Maxwell equations for the field, 
using the susceptibilities as input.’ Normally the suscepti- 
bilities are calculated using a semiclassical procedure 
whereby the material degrees of freedom are treated quan- 
tum mechanically whereas the Maxwell field is assumed 
classical. In this approximation, the optical susceptibilities 
are purely material quantities which contain no signatures 
of retardation, and can therefore be calculated using the 
eigenvalues and dipole matrix elements of the purely ma- 
terial Hamiltonian. Retardation effectsin the optical signal 
show up in this procedure only in the second step, when 
the Maxwell equations are solved and the signal is related 
to the applied (external) field.w For example, radiative 
linewidth in linear optical measurements which is absent in 
the linear susceptibilities ~“‘(k,w) [and the dielectric 
function e(k,Cti)] will show up in linear optical signals such 
as reflection of light off an interface or a thin layer (quan- 
tum well). (Note that radiative linewidth is included in 
linear susceptibilities defined with respect to total Maxwell 
field.3”) Since retardation effects appear only in the con- 
nection of the Maxwell and the external fields, and since 
the Maxwell field is expressed in terms of the external field 
in the framework of linear optics, all effects of retardation 
for the nonlinear signal in this approach are associated 
with linear optics. 

Resonant nonlinear measurements, show effects that 
are missed by this procedure. These include cooperative 
radiative ‘decay of excitons,612 and polariton dephasing 
and transport,2”3-‘7 which were probed in transient grating 
measurements18 and two photon absorption” in anthra- 
cene and. napththalene crystals. These effects are particu- 
larly interesting and significant in nanostructures such 
as molecular multilayers (superlattices) ,6*7,20-22 
chains 4*9110*22123 and clusters.2626 For example, spontane- , 
ous emission which is absent in three-dimensional crys- 

‘)Also at the Institute of Spectroscopy, Russian Academy of Sciences, 
Troitsk, Moscow reg, 142092, Russia. 

tals13 does show up in restricted geometries where sponta- 
neous photons can leave the system.8-10 The enhanced 
optical nonlinearities induced by exciton confinement and 
the existence of surface modes may lead to dramatic effects 
whose systematic incorporation in the formalism remains 
an open question. 

In this paper we address this problem by abandoning 
the semiclassical approximation and formulating it using a 
microscopic quantum electrodynamical description of the 
material system and the radiation field. A Green’s function 
perturbative technique is developed for incorporating radi- 
ative corrections in nonlinear susceptibilities. We first ex- 
press the expectation value of the transverse Maxwell field 
in terms of correlation functions of electric field operators 
in the joint matter and field system, calculated in the ab- 
sence of external sources. We then recast the correlation 
functions in the form of path integrals over material and 
electromagnetic field variables. This allows us to eliminate 
the material varial$es and express the correlation functions 
in the form of path integrals over the vector potential 
alone, using an effective action for the field. The necessary 
correlation functions of the electromagnetic field are then 
calculated in a reduced space containing the electromag- 
netic field alone. We then construct a perturbation theory 
and a diagrammatic technique, and expand the effective 
action in powers of the vector potential; the expansion co- 
efficients turn out to be material correlation functions cal- 
culated in the material space, in the absence of the electro- 
magnetic field. The standard nonretarded results obtained 
by treating the field classically are recovered when the cor- 
relation functions are calculated using classical equations 
of motion for the effective actions. Radiative corrections 
can then be systematically introduced by incorporating 
higher order terms in the perturbation expansion of the 
effective action. Adopting a diagrammatic terminology, the 
nonretarded limit is known as the tree approximation (i.e., 
neglecting all diagrams containing loops) and the expan- 
sion is in the number of loops. 

The present expansion provides a clear physical picture 
for optical nonlinearities by viewing the material and the 
field degrees of freedom as weakly coupled anharmonic 
oscillators. Anharmonities in the material system result in 
the nonlinearities whereas anharmonities in the field result 
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in radiative corrections and retardation. It also provides a 
unified approach which is applicable to systems of arbi- 
trary size all the way from small microscopic particles to 
macroscopic nanostructures such as superlattices.*’ 

In the following section we present the multipolar 
Hamiltonian describing the field and the material degrees 
of freedom interacting with an external polarization, which 
is the source for the optical response. In Sec. III we derive 
expressions for the nonlinear signal and susceptibilities in 
terms of Green’s functions of the electromagnetic field. In 
Sec. IV we calculate the action corresponding to this 
Hamiltonian and represent these Green’s functions in a 
path integral form. In Sec. V we express the effective action 
in terms of Green’s functions of the material system, and 
develop the perturbation theory for its evaluation. In Sec. 
VI we apply these results to calculate the third order re- 
sponse of an assembly of two level molecules and explore 
radiative corrections to the susceptibilities and to the sig- 
nal. As an application, we examine in Sec. VII the radiative 
decay of biexcitons in molecular monolayers which can be 
probed by two photon resonances in the third order re- 
sponse. 

II. THE MULTIPOLAR HAMILTONIAN 

The dynamics of a material system interacting with the 
radiation field can be most conveniently calculated by 
starting with the multipolar Hamiltonian3P27128 

&“lt= iimat+iim,- [ dr P(r) - iY (r) 
J - 

f2-r s 
I? (r)l*dr. (2.1) 

This Hamiltonian, which may be obtained from the mini- 
mal coupling Hamiltonian by a canonical transformation,27 
describes a material system interacting with a transverse 
electromagnetic field. & . The longitudinal part of electro- 
magnetic field is taken into account by the Coulomb inter- 
action in the material system Hamiltonian H,,, (the Cou- 
lomb gauge). We have further neglected magnetic terms. 
We denote an operator by a caret, 0, and set +i= 1.. 

krad is the free-field Hamiltonian 

s dr{$ (r>*+ [VX2(r)]*}, (2.2) 

where d(r) is the vector potential in the Coulomb gauge. 
& (r) is the operator representing the transverse part of 
electric displacement, V* # (r) 70. In. the multipolar 
form of the yamiltonian (l/h) D(r) is the momentum 
conjugate to A(r), i.e., it commutes with all material op- 
erators and 

[@ (r)dj(r’)] =4@$ (r-r’), (2.3a) 

St (r-r’) being the transverse S function (i.e., the projec- 
tion of the function GfjS(r-r’) onto the space of trans- 
verse functions). The commutation relations (2.3a) can be 
alternatively recast in the form 
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{fi (rLPXA(r’) lj3=4ri z c;jrn ar:, ij a 6’ (r-r’), 

(2.3b) 
where Eijm is the antisymmetric tensor (Levi-Civita ten- 
sor). 

The transverse electromagnetic field & (P) is related 
to the electric displacement & (r) by 

.i$ (r)=iY [r>-47+ (r), ‘, (2.4) 

where $ (r) is the operator of the transverse part of po- 
larization. Since P (r) is a purely material operator, it 
commutes with all field operators 3 (I! ) and A’ (r’ ) . 

The Hamiltonian of the system in the presence of ex- 
ternal sources can be obtained by substituting P+PeXt for 
the polarization @ in the Hamiltonian (2.1). PcXt stands for 
the external polarization coming from external sources. 
Thus the total Hamiltonian of the system, including the 
external polarization, has the form il(t)~&“lt-. s .dr P&r,t> -9 (r). (2.5) 

The Hamiltonian (2.5) provides a convenient starting 
point for calculating the optical response. The coupling of 
the field and the material degrees of freedom to the exter- 
nal polarization is represented by the second term which 
has a simple form of a product of PeXt and the Maxwell field 
i? . Strictly speaking, g(t)’ should contain an additional 
term 

Ai drIP’,,(r,t) 12, j. s 
however, since P,,is a given classical function, this term 
does not depend on the dynamical variables of the system 
and has no effect on its time evolution, it can therefore be 
ignored.. . 

III. GREEN’S FUNCTION EXPRESSIONS FOR THE 
OPTICAL FIELD 

The Hamiltonian k(t) describes the coupled dynamics 
of the material and the field degrees of freedom in their 
joint space. We shall denote this space as “the;system.” 
The system’s evolution operator is 

d@t,t’) 
-= -i&t> 6(t,t’,, dt (3. la) 

with 8( t’,t’> =r^ where i is the system’s unit operator. We 
further introduce the time evolution operator for the iso- 
lated system (with P,,,=O), i.e., 

diT,u,t 
7 (v’) = -i&“*t&&t,ty, 

.: 
(3.lb) 

again i7hUlt( t’,t’) =Z. 
In the following derivation we are going to work pri- 

marily in the interaction picture where we dellne operators 
evolving in time with fimult [see Eq. (3.5)]. To avoid con- 
fusion we shall label quantities evalutted at time t using the 
full evolution operator U by a tilde O(t) , whereas 6(t), will 
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stand for operators in the interaction picture. The expec- 
tation value of the electric field in the presence of external 
sources is2’ 

~!8 (r,t)=(n]@(t,-m)i’ (r)fi(t,---)jfl), (3.2) 

where [ a> is the state of the system at t= - CO, when the 
external polarization vanishes. 

Equations (3.2) can also be written as 

J? (r,t) =Tr[&’ (r)P(t)], (3.3a) 

with p(t) being the density matrix of the system 

~(t)=rj(t,-w)ISZ)(S1I~(t,-w). (3.3b) 

1 

In the conventional semiclassical (nonretarded). the- 
ory, the interaction of the material and the external field 
Eext is given by 

- 
I 

dr P(r) * Eext(r,t). 

In this case E,,, is t_he source which is coupled to the 
dynamical variable P. In the present formulation [Eq. 
(2.5)] the roles of the field and the polarization are thus 
interchanged! Pext is the source and ,? is the dynamical 
variable coupled to the source. Nevertheless, the expansion 
of E’ (r,t) in powers of Pext can be made using the stan- 
dard perturbation theory for the density matrix. We thus 
write 

2 WI= ~l~n~~~~~~~~~n~~, dr,,-*- JTm dr2Jim drlPext(rl,rl)...P,,t(mrn) 
X@ (r,t>[i’ (r,,r,)-*-[~’ (r2,r2)[k1 (r~,r~),~~>(~lll~~~l>. (3.4) 

This expansion is fully time ordered r1<r2 e.0 <r, and contains commutators, which act from the left as well as from the 
right. & (r,t> is the transverse field operator in the interaction picture 

,?I? (r,t) = CT&( - w ,t)k" (r) Omult(t,- w ) (3.5) 
[&r,t> is an operator in the interaction picture and O(r) is the corresponding expectation value]. 

We next introduce the following notation for correlation functions: 

Gt,,...,in(rl JI ,-., r,,t,)~(Oil(rl,~l)~~~Oi~(r,,t,))~(QI~i,,...,i~~(rl,t~)~~~~(r,,t,))l~>. (3.6) 

The indices i t,...& take the values L and R toAdenote action from the left ( 3) and the right (fit), respectively, in the 
expansion of the density matrix [Eq. (3.3b)]. Tf,,...,in denotes an ordering operator that acts in the following manner: all 
operators with the index R are placed to the left of all operators labeled L; the former being chronologically ordered, the 
latter antichronologically ordered. Equation (3.6) defines the expression (Oil (q ,tl ) *. *O,(r, ,t,)) as the expectation value 
of the product of operators on the right-hand side. The utility of this notation will be clarified in Sec. IV where we 
introduce a path integral representation for expectation values [Eqs. (4.6)]. Below we will use an abbreviated notation 
l,..., n instead of r,, tl ,..., rn, t where possible and leave out indices where unnecessary. II 

Using this notation we can recast Eq. (3.4) in the form 

EL (r,t)= n.O ;-Idr! dtl*-- I dr, dt, PatWl) Pext(r2t2) * * .Pext(mt~)~P(“)(rt;rltl,r2t=...,mtn), (3.7a) 

with the signal response function 

.CP(“‘(r t;rlt,,r2tB . . ..r.t,) =F , z: Oi$ (r,tV$ (rltl).$ (rg2). * *.J$* (r,t,J Mil,...,i,). (3.7b) 

Here, s= 1 if the number of R variables i, ,...,i, is even, and 
s= - 1 otherwise. Alternatively, we can change variables 
and define 

0,=4(0,+0,,, 
(3.8a) 

o-=oL-oR. 

We shall label these variables O,, where a assumes the 
values -I- and -. The Greek indices are related to the latin 
indices by the linear transformation. 

(3.8b) 

I 

where 

V+,R= v+,L=f; V-J= l,V-J= - 1, (3.8c) 

and summation over repeating indices is assumed. From 
the definitions (3.6) and (3.8a) we immediately get 

G a ,,..., a,,( L...,n) = vali,* * * va,/,Gi ,,..., i,( l,.:.,n). (3.9) 

In Eq. (3.7b), the last EL (r,t) factor acts from the left. 
This is because we chose to multiply the density matrix by 
,@ from the left before taking the trace. -This choice, how- 
ever, is arbitrary. Using the cyclic invariance of the trace, 
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this result would not. change if we choose to act from the 
right instead, &x. Hereafter, we use this freedom to act 
with the more symmetric combination 2’+ = (& +,!$ )/2. 
We then write 

3P)(rf.rltl,r2t2 > ,...,WJ 

sponding to the path.30*31 The first step is to calculate the 
action corresponding to the Hamiltonian (2.5). This will 
be accomplished by calculating the action corresponding to 
the Hamiltonian (2.1) and then substituting everywhere 
P+ Pat for P (where P is the polarization). 

~i~(~~(r,t)~~(r,tl)...~(r,t,)). (3.10) 

Equation (3.10) is an exact formal expression for the 
signal field in terms of equilibrium correlation functions of 
the isolated (material and radiation field) system with no 
external sources. In the coming sections, we shall separate 
the calculation into parts carried out separately in the ma- 
terial or the field spaces. 

Hereafter, we delete the carets since the classical action 
is calculated using the classical form of the Hamiltonian 
(2.1), and we do not deal with operators. Using the ca- 
nonical procedure32 we get 

&d4@ A =KdBl +A s dr dt r>l (r,t>k(r,t) 

The f notation introduced here allows a compact rep- 
resentation of the response functions [compare Eq. (3.10) 
with Eq. (3.4)]. Let us consider, for example, all possible 
two-point Green’s functions. First, we have 

G--( 1,2) =0, (3.11a) 
G, + represents the symmetrized correlation function 

- JdtH&+ JdrdtP(r,t)d (r,t) 

-2rr 
s 

I@ (r,t) j’dr dt. (4.1) 

G-, represents the advanced Green’s function 

Here B stands for material variables. The classical action 
corresponding to the Hamiltonian of the material system, 
S,,,[B], can be kept completely general and need not be 
specified at this stage. Here and below we use square brack- 
ets for listing functional arguments of the actions. Using 
the Heisenberg equations of motion, together with the 
Hamiltonians (2.1) and (2.3) we obtain 

I 0, t1>t2, 

Gdd’(172)= (a16(2)8(1>-6(1)6(2)In>, t1<t2, 
(3.11c) 

k(r)-& (r)-477-P (r). 

Comparing (4.2a) and (2.4) we see that 

(4.2a) 

El (r,t) =k(r,t>. (4.2b) 
and G, _ represents the retarded Green’s function 

G+-(1,2)2Get(l,2), 
Expressing the variable 0’ (r) in Eq. (4.1) in terms of 
k(r) by means of Eq. (4.2a) we finally get 

(?71,2)= I (nl8(1>~(2)--(2)~(1)IR), t1>t2 
d-. t <t’ 

9 1 2 (3.11d) where 

%ud4BI=Kn,[:Bl +%,[A1 +SidA,B], (4.3a) 

Relations (3.11) will be used in the perturbation theory to 
be developed in Sec. V. S,,dAl=& s dr dt[ (k(r,t>)2~(vXA(r,t))21, 

(4.3b) 

IV. PATH INTEGRAL REPRESENTATION FOR THE 
OPTICAL FIELD 

and 

In the present section we develop a path integral rep- 
resentation for the signal response function L%‘(“) which 
relates the expectation value of the electric field to the 
external polarization. The optical signal needs eventually 
to be expanded in powers of the external electric field, and 
the susceptibilities are coefficients in the expansion of the 
nonlinear polarization in powers of the Maxwell transverse 
electric field. In the coming sections we shall show how 
both quantities may be related to 9(‘). 

Sint[ApB]= JdrdtP(r,t)A(r,t). (4.3c) 

Equations (3.10) and (3.5) are suitable for deriving 
the path integral representation for the expectation value of 
the Maxwell field E(t). To that end WC represent the ma- 
trix elements of the evolution operator U( t”,t’) in the form 
of an integral of exp(iS), over all paths beginning at some 
fixed point in configuration space at t = t’ and ending at 
another fixed point at t=t”; S is the classical action corre- 

In Fq. (4.3~) P is the polarization which depends on the 
material variables B. We will not need an explicit expres- 
sion for the action S’,,[B] since we will eventually express 
all the path integrals over material variables in terms of 
Green’s functions and’will not use path integral methods 
for their evaluation. The main motivation foi- expressing 
Eq. (3.10) in the path integral form is to obtain an effective 
action which separates the material system and the dynam- 
ics of the electromagnetic field. The optical signal can then 
be expressed in terms of expectation values of products of 
material operators in the purely material system without 
the electromagnetic field. 

The action S[A,B] corresponding to the Hamiltonian 
(2.5) is finally given by 
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tors on the second part. Using a new time variable (c), all 
operators become time ordered, and we can use the path 
integral representation. 

Using the path integral form3o13’ for the evolution op- 
erators we get 

G(l,...,n)=(O(l)*.*O(n)) 

= ~[A(t)l~[B(t)lO(r,,tl)...O(r,,t,) s 

Xexp(iS(K)[A(t),B(t)I), (4.6) 

where the superscript K stands for the Keldysh time loop 
and we will use the indices i= L, R to denote variables on 
the first and the second parts of the time loop, A(t) 
=[AL(t),AR(t)], B(t) =[BL(t),BR(t)] with t changing 
from t=-co to t=-Fco; A,(+co)=A,(+co), 
BL(+o~)=BR(+c~) and 

~‘K’[~w,Nt)l =SrA,w,B,(t)l --S[A,(r),B,(t)]. 
(4.7) 

t=dx. 

(a) 

FIG. 1. Left and right operators and the Keldysh time loop. Using the 
loop time variable & all operators are time ordered. 

S[ABl =G,,~t[A,Bl + J- dt dr P,,,(r;t)k(r,t), 
(4.4a) 

and the time evolution operator is 

U(tl,t2)= g[A]L%[B]exp(iS[A,B]). 
I 

(4.4b) 

We shall now derive the path integral representation 
for the response functions (3.10). Using the unitarity of 
the evolution operator, we rewrite Eq. (3.2) in the form 

3 (r,t)=(~18(-~,t)~1 (r)6(t,-cO)Inj. 
(4.5a) 

The expectation value $ (r,t) can be also presented as 

El (r,t) 

=(aI~(-,,+,)~(+-,,t)~l (r)fi(t,-m)lfi) 
(4Sb) 

or 

2 (r,t) 

=(l2IO(--~,t)9 (r)~(t,+co)~(+co,--)l~). 

(4Sc) 

E’ (r,t>= 
I ~[AlD[Bl~+(r,t) 

Xexp i dr dtP,,(r,t>k-(r,t) 
[I I 

Xexp(B~$,[A,B]). ~~- (4.9a) 

Here, 

e%[A 4 , 

-. =SndAL~BLl -sm”lt[AR,BRI 

The path integral representation can only be derived 
for time-ordered Green’s functions. On the other hand, the 
correlation functions obtained in Sec. III are expectation 
values of products of two types of terms: chronologically 
ordered “left” operators, and antichronologically ordered 
“right” operators. To overcome this difficulty we use the 
Keldysh time loop representation33 as shown in Fig. 1. We 
consider the time loop from t= - CO to t= + CO and then 
from t= + CO to t= - CO, placing the time ordered (L) 
operators on the first part of the loop and the (R) opera- 

=~~![~l+~~~[Al+ dtdr(P+k-+P-A+). s 
(4.9b) 

Performing the expansion of Eq. (4.9a) in powers of Pat, 
we get 

~(n)(rt;rltl,r2t2,...,r,t,) 

=p(k_(r,,tl)...k_(r,,t,)k+(r,t>). 
(4.9c) 

Note that Eq. (4.9~) vanishes if we substitute k- for k, 
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In particular the path integral representation of Eqs. 
(4.5b) and (4.5~) takes the form 

EL (t>= 2iqA,+-i,]LiqB,;B,] 
s 
Xki(t)eiSIA~,B~l--BIAR,BRI I 9 (4.8a) 

with 

AL(t= + co ) =A,(t= + co), 
(4.8b) 

BL(t= + 00 > = B&t= + co ), 

where i= L and i= R correspond to Eqs. (4.5b) and 
(4.5c), respectively. 

Introducing variables A,, Pa with a = +, 2 [see Eq. 
(3.8)] and taking Eq. (4.4a) into account, we get from Eq. 
(4.8) [since Eq. (4.8a) is valid for both i=L and i=R] 
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(4.9d) V. PERTURBATION THEORY FOR THE EFFECTIVE 
ACTION 

In Eq. (4.9~) we used the following notation for expecta- 
tion values: 

(k(l)**&z))= J~[A]~[B]&l)..-k(n) 

Xexp(iS(R)I,[A,B] ). fll” (4.10) 

We shall use the notation (4.10) for correlation functions 
of arbitrary variables, not necessarily products of k,(r,t). 
Equations (3.6) and (3.9) express the path integrals 
(4.6a) and (4.6b) in terms of expectation values of quan- 
tum operators, ordered in a specific way. Note that we can-- 
get Eq. (4.9~) directly from Eq. (3.10) using the path 
integral representation (4.6a) for the right-hand side of 
Eq. (3.10). The introduction of the It variables in this 
section provides a compact and extremely simple formal 
expression for the nonlinear response functions. 

So far we derived a representation for path integrals of 
the type (4.10) in the form of expectation values of prod- 
ucts of operators. This representation enables us to express 
the nonlinear signal in terms of Green’s functions of the 
transverse electric field in the (joint material and field) 
system space. A tremendous advantage of the semiclassical 
procedure is that it divides the calculation into two sepa- 
rate steps, the first involving the material system alone, and 
the second involving the field alone. The path integral rep- 
resentation [Eqs. (4.9) and (4. lo)] allows the development 
of a perturbative procedure in which, term by term, we 
work in either the field or the material spaces. We shall 
express the effective action in terms of purely material cor- 
relation functions. These in turn may be evaluated using 
standard Green’s function techniques. Introducing the no- 
tation 

D(l,...,n)~((k(l)...k(n)>, (5.1) 

we can then rewrite E!q. (4.10) in the form 

D(L...,n)= ~[A]k(l)...k(n)exp(iS,ff[A]), J- (5.2) 

ewG&d4)= J ~[B]exp(iS~~~*[A,B]). (5.3) 

At this point, we should comment on the initial state of 
the system. The path integral (4.10) expresses the corre- 
lation function as an expectation value of a product of 
operators with respect to the initial state I a) [see, for 
example, Eq. (3.6)]. Therefore, the correlation function 
(4.10) depends on this state 1 CL>. In Eq. (4.10) this de- where 
pendence is hidden in the integration measure. We will 
choose I aZ) as the ground state of the entire material and 
field system with P,,,=O. We can adiabatically switch the 
interaction of the material system with the transverse elec- 
tromagnetic field.29 Therefore, we can take the state of the 
system I Cl) at t= - a) to be a direct product of the ground 
state of the material system and the ground state of the 
electromagnetic field. The path integral (4.10) will be eval- 
uated in two steps. First we integrate the material variables 
B to get the effective action. This will be reduced to the 
problem of evaluating correlation functions in the material 
system alone, and due to our assumption regarding the 
state In), we have to treat them as expectation values of 
products of operators with respect to the ground state of 
the material system. The second step is the integration over 
the vector potential which will be performed perturba- 
tively. To that end we introduce the bare Green’s function 
of the electromagnetic field, calculated using only the qua- 
dratic part of the effective action [Eq. (5.15)]. We can 
obtain this Green’s function by adding the proper self en- 
ergy to the inverse Green’s function of the electromagnetic 
field in vacuum. This gives the complete prescription for 
evaluating (4.10). This prescription can be easily extended 
for more general cases by starting with an arbitrary initial 
state I Q). For example, in defining the bare Green’s func- 
tion for the effective action at finite temperatures we should 
add the proper temperature dependent self energy to the 
inverse temperature dependent Green’s function of the 
electromagnetic field (without the material degrees of free- 
dom) . 

Formally our goal has been accomplished by these equa- 
tions. Equation (5.3) defines the effective action S,&4], 
which depends on the vector potential alone. Thus when 
evaluating the expectation values (5.1) we work in the 
electromagnetic field space, and when calculating the ef- 
fective action we perform path integration over material 
variables only, i.e., we work with the material system treat- 
ing the vector potential as an external classical field. 

We shall now demonstrate how this scheme works in 
practice. We first evaluate the effective action. Using the 
general notation for the expectation values (4.6) and the 
action imu,,, we obtain from Eq. (5.3) 

&ffiTA 1 =s!,“d [A 1 

dtdr(P+k-+P-k+) ) )I , M 
(5.4) 

where the subscript M signifies that the trace is taken only 
over the material degrees of freedom, keeping the field vari- 
ables alive. Expanding the exponent on the right-hand side 
of Eq. (5.4), we express the effective action in terms of 
material Green’s functions 
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I i . . 

where 

(P(l)-**P(n))M 

= ~‘EBlP(l)...P(n)exp(i~~~rB]) s , (5.6) 

are the ordered Green’s functions in the sense of Sec. IV. 
Thus evaluating the effective action reduces to calculating 
the material Green’s functions. This can be accomplished 
using methods other than path integrals when appropriate 
(see Sec. VI). Equation (5.6) can be expressed in terms of 
ordinary material correlation functions. 

(Ps,(rl,tl)...PB,(m,t,))M 
~Tr[~:(rl,tl)...~(r,,tn)~~(-oO)l 

with 

F(r,t) =exp(i&&)i;(r)exp( -i&att),s 

This is completely analogous to Eq. (4.6). The only dif- 
ference is that the time evolution of P is determined by the 
purely material Hamiltonian. When the logarithm on the 
right-hand side of Eq. (5.5) is expanded in a Taylor series, 
we obtain an expansion of the effective action in powers of 
the vector potential. 

We confine ourselves to material systems for which the 
Green’s functions (5.6) are nonzero only for even values of 
n (as is the case in systems with inversion symmetry). 
Expanding the logarithm on the right-hand side of Eq. 
(5.5) and collecting terms order by order in the vector 
potential, the effective action finally takes the form 

&dAl =S$) [Al +i-’ nzI & s dtl dq* - ad&,, drZn 

(5.7) 

where we have introduced the irreducible correlation func- 
tions 

(~(9(1)P(2)))W~(P(1)P(2)),, 

((P(~>P(~)P(~)P(~)))M 

=(P(lV’C.2V’(3)P(4))ti 

-(P(1)P(2)),(P(3)P(4))M 

- (PC 1M3) ),UW)P(4) )M 

(5.8) 

The higher. order irreducible correlation functions are de- 
fined similarly. The expectation value of a product of op- 
erators is the sum over all partitions of the operators in 
subgroups of products of irreducible expectations values of 
products of operators. In other words, the irreducible cor- 
relation function is the difference between the ordinary cor- 
relation function and the sum over all the possible factor- 
izations into products of lower order correlation functions. 

The perturbation theory for the path integrals on the 
right-hand side of Eq. (5.2) is formulated as follows.“’ We 
partition the effective action S,R[A] in the form 

&,[A1 =$:$4 +&[A], (5.9a) 

where S’$’ contains the quadratic in the vector potential 
terms, 

S&S;a~ [A] +! 2 s dtl drldb 4((P-,,h,tl) .~ 
(5.9b) 

and S&&A] contains the higher order terms. We then ex- 
pand exp[LS’&] in powers of A and evaluate the expectation 
values of products of the vector potential with the qua- 
dratic action $$[A], using Wick’s theorem. This enables 
us to formulate the perturbation theory in the form of 
Feynmann diagrammatic techniques.29-31s33 This proce- 
dure defines a natural reference harmonic oscillator model 
for the field, with anharmonities included perturbatively. 

We shall now specialize to the third order response. In 
Appendix A we recast the corresponding field correlation 
functions in the form 

(km(rl,tl)k-(r&k-(r3,t3)k+(r,t))=i 
s 

dr; dt; dridtidrjdtjdr’ dt’~t(r;,ti,rl,tl)*t(r~,t;,r2,t2) 

x ~t(rj,~~,r3,t3)~t(r,t,r’,~‘)rl__+ (r;,t;,r;,t~,r;,t;,r’,r>, (5.1Oa) 
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where 
pt(r’,tr,r,t) zi-*(A+ (r’,t’)k-(r,t) >, (5.1Ob) 

is the retarded Green’s function of the transverse electric 
field, and J? __ _ _ + is the one-particle irreducible four point 
Green’s function, which can be calculated perturbatively 
using the expansion given in Appendix A. I?- __ + will be 
analyzed and calculated for a specific model of the material 
system in the coming section. 

At this point, we turn our attention to the conventional 
nonlinear response functions. These are normally defined 
by expanding the material polarization in powers of the 
transverse field 

p=y"'El +&3'(& )3... 
31 9 (5.11) 

y(“) being the nth order response function. In Appendix 
B we show that 

-r”(‘)(r,t;rl,tl)=3’(r,t;rl,tl)-(P)-1(r,t,rl,tl). 
(5.12a) 

Here .!? is the Green’s function of electromagnetic field in 
vacuum given by JZq. (6.12), 

Yc3) (r t-r1 ,tl ,r2,br3tt3) 9 9 

=r”_-- ~(rl,tl,r2,t2,r3,t3,r,t), 

(5.12b) 

and more generally 

Ycn)(r t’rl,tl ,..., r 9 , t ) =rA _..._ (r,t,rl,tl ,..., r n, n + t ) n7 n . 
(5.12c) 

We have thus shown that the linear response function is 
equal to the self-energy of the two-point Green’s function of 
the transverse electromagneticJfeld, and that the nth order 

response function is equal to the one particle irreducible four 
point Green’s function of the transverse electric field with a 
specific choice of indices (all indices are - and one index is 
+I. 

The perturbation theory developed in this section en- 
ables us to evaluate the irreducible Green’s functions I’ 
order by order. In Appendix A we carry out the expansion 
for the third order response function. We then have 

~(3)(r,f;rl,tl,r2,t2,r3,t3)=~+~I+~II+... . 
(5.13) 

The leading term results from the harmonic (tree) approx- 
imation and is given by the purely material correlation 
function 

~=-i((P-(rl,tl)P-(r2,t2)P-(r3,t3)P+(rtt)))~. 
(5.14) 

The other terms require the introduction of the zeroth field 
Green’s function 

Dzk2(r1 ,h,r2J2> 

=i-’ 
s 

~2 tAlk,,(rl,tl)ka,(r2,tz)exp(i~~~‘[Al 1. 
(5.15) 

Since the interaction of electromagnetic fields with the ma- 
terial polarization is proportional to the electronic charge, 
each additional Green’s function D(O) “,cL2 in the perturbative 
expressions for I+ gives an additional power of the square of 
the electronic charge. In fact, the expansion parameter for 
this perturbation theory is the fine structure constant 
a =e2/tic. In models like the one described by I$. (6.1)) 
one can use alternatively the square of the molecular dipole 
moment 1 p 1 2 as the formal expansion parameter. The sec- 
ond term is 

~~jL)I(r,f;rl,t,,r2,t2,r3,f3) = -ij dr; dt; dr;dt; c ((P-(rl,t,)P_(r2,tZ)P-(r3,t3)P+(r,t) 
al& 

X~-,,(ri,ti)P-a2(r~,t;)))~D~qh2(ri,ti,r;,f;). 

The third term (second order in the expansion parameter) is 

(5.16a) 

~dr,t;r~,tl ,r2,t2,r3,t3) =$ ‘I dr; dti dri dti drj dtj dri dti c 
al#...P4 

X @yb,Cri Ji ,ri ,ti> D&(r; ,tj ,ri,ti) +g s dri dti dri dti dr; dtj dri dti c 
ap...a4 

x D(O) (r’ t’ r’ t’) D(O) a,a3 1' 1, 3' 3 ,,,,(r~&r~J~>. (5.16b) 
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x 

as14 

t/ 
w3 f 

es2 t2 

a> 

rlti 2 +r t 

r2!2 - - r3t3 

cl 

rlh- 0 ;,‘:‘3 
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FIG. 2. Diagrammatic representation of the radiative corrections to the 
nonlinear response function Y (3). (a) The wavy line stands for the bare 
Green’s function D$,(rl,tl ,q, 2) i from J?q. (5.15), the circle stands for 
the bare vertex ((p,,(r,,tl)%(r2,tZ)...Pa,(r,,tn))),~. (b) The tree ap- 
proximation contribution 7. (c) The first order correction Y, by Eq. 
(5.16a). (d) and (e) The second order correction Y,, two terms in Eq. 
(5.16b). 

The diagrams corresponding to Eqs. (5.16) are presented 
in Fig. 2. 

VI. APPLICATION TO THE NONLINEAR RESPONSE 
OF CONFINED FRENKEL EXCITONS IN 
MOLECULAR ASSEMBLIES 

We consider an assembly of molecules with nonover- 
lapping charge distributions and an arbitrary geometry, 
described by the material Hamiltonian 

&nat= c i-4,&&+ mzn J&en+; c @:I’%. m In 
(6.la) 

&A which creates an excitation on the mth molecule, sat- 
isfies the bosonic commutation relations 

&?z,~~l =&,, (6.lb) 

and the polarization operator k(r) is 

&r> = C ii,(r>,P,(r> = Ip 1 pb-R,) (&+eL), 
m 

(6.1~) 
with 1 Jp(r)drl = 1. 

Here R, is the position of the. mth molecule. 
p(r-R,) its transition dipole density. In the dipole ap- 
proximation we simply set p(r-R,) =S(r-R,). 

Equation (6. la) describes a set of anharmonic oscilla- 
tors in the Heitler-London approximation. When the an- 
harmonicity constant g-+ + 03, the Hamiltonian excludes 
two excitations on the same molecule and thus describes an 
assembly of two-level molecules. For g < 0, the system can 
have two particle bound states known as biexcitons,2234 
which may lead to new resonances in the nonlinear re- 
sponse. 35 When the molecules form a 3D lattice, bound 
states exist when /g] >g,- J. In the case of a 2D lattice, 
bound states are formed for arbitrary value of g<O. 

To evaluate the nonlinear response function yc3) for 
this model in the tree approximation we use the path inte- 
gral representation for Eq. (5.14) to get 

~(3)(r,f;rl,tl,r2,t2,r3,t3) 

=lp/4nm~2m3 p(r--R,)p(rl--R,,>p(rl-Rm2) 

xdr3-Rm3)~%,m2m3F (6.2a) 

with 

Expectation values on the right-hand side of (6.2b) are taken with respect. to the action g&n by E+. (Cl ) correspo_n&g 
to the Hamiltonian (6. la) with the commutation relations (6. lb). The variables C, and C, stand for the operators C, and 
ez. When the expectation values are evaluated, we find only two surviving contributions 

97(3LWd+~(b) , (6.3a) 

with 

and 

The correlation functions [Eq. (6.3)] are evaluated in Appendix C. The result, in the frequency domain, has the form 
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dq dw2 do3 dri dr2 dr3 S(w,-q-w2--4 

with 

(6.4) 

~(3)(w,;rl ,q,r2,w2,r3;w3 I= c 
-- wnl ,m2,m3 

p(r--l,)p(rl-R,l)p(rz-RmZ)p(r3-Rm3)~~~lm~m3(W,;W1,~2,~3), (6.54 

and 

-s”$2pl,( %@1,@2,@3)=1~14 & n;,, CG,,~(w,)~,,,(-~3)c,~~m,(~~)c,~~rn,(~~~~~~~~~~~~+w,, 
(mj,oj) : 

+~~,(-W,)G,~m3(~3)~~~m,(-~~)~,,ml(-~l)~~~~,,( -~1-02))- (6.5b) 

Here, G is one particle Green’s function. The symbol Z perm implies the sum over six permutations of three pairs (I ,wr ), 
(m,mj) 

(m2,%), (m3,03). TO get Eq. (6.5) we used the material correlation function 

(~m(~l)+~rzn(~22)+)=f (~m(Tl>-Cn(T2).+), for 72>Tr 

and 

(6.6a) 

Gmn(m) = dT2 ei”“2-“)i(~,(7,)_C,(72>+). (6.6b) 

The Green’s function can be easily evaluated using the one particle eigenstates \Ir, with eigenvalues E&~,,T, =E,\II, . 
Here, 

*a= c ~,W~lW, n 
where ICI,> is the ground state of the material system. We then have 

(6.7) 

Gmn(m)= C 
Y3m>y&) 

a W--E +io * a 
F is a two particle scattering matrix 

(6.8a) 

(6.8b) 

dw ’ 
Fmn(@)= G-Gmn(~‘)G,,,&+-w’). (6.8c) 

In Appendix D we extend this result beyond the tree approximation, introducing radiative corrections to Y(3) by a 
partial resummation of the infinite se@ (5.13). The result is, identical to JZq. (6.5b) except that the scattering matrix F 
is replaced by a renormalized matrix r. The expression for I’,I,,,(cB> in matrix notation is 

I=(w) =F(w){l- V(w>T(w))-1, (6.9a) 

with 

v,Qp,(W)=(2T)-31p12 m, mFm, m I dml dm2 da3 s drl dr2 Gntml 
, 9 9; 

(01)Gn~m;(W--W1)Gm2nf~(W2)Gm;n”(W-02) 

Xp(rl-Rm1)~(w’,rl,r2)~(r2-Rm2)Gm~m~(~-~’). 1 2 
(6.9b) 

Here, B is the chronologically ordered Green’s function of the electromagnetic field in the tree approximation, i.e., 

i)c(w,ri,r$ = 
s 

drl e’“(‘l-‘z’i-‘(k,(r,,ti)kL(r2,t2)), . (C.94 
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where the evolution on the right-hand side of Eq. (6.9~) is performed with respect to 5’$). f can alternatively be 
calculated by simply replacing G(o) in Eq. (6.8~) with the renormalized Green’s function G(o) [see Eq. (6.15a)] (the 
derivation is presented in Appendix F) .- 

fm,(o>=2gC[1-g~(w)l-‘)m,, (6.10a) 

fimn(@> = I g &m;(O’)dm,(O-W’). (6.1Ob) 

Finally, we express the nonlinear signal in terms of the external field. Following Ref. 28, we introduce the external 
electric field & and the polarization of the signal PT, which is related to the external polarization Pat and to the electric 
field in the nonlinear signal E” by means of the vacuum Green’s function 9 

E,,(r,o) = dr’ Y (r-r’,w)P,,,(r’,o), -(6.11a) 

and 

E(w) = C. 3 (r-R,,w)PS,(w), II 
:-- (6.11b) 

P”(r,w)= c p(r-R,)PS, 
n 

with 

(6.11~) 

3 (r,r’;w) = (2~) -3 
s 

m d3q eiqcrAr’) 9 (q,o), * (6.12a) 
-00 

Yfj(q,o) =a;;;c* a$$$ . ( ) (6.12b) 

Using Eq. (4.9~) and (5.10a) for the nonlinear response function L%’ (3), calculating the Green functions et in Eq. 
(5.10a) using the zeroth order effective action [Eq. (5.9b)] and combining with Eq. (5.12b) and definitions (6.11) we 
finally obtain after some straightforward calculations 

a =& doI dw2 dc+ drI dr2 dr3 ~S(O,-w~--wZ-W~) 

where 
(6.13a) 

R(3)(r~,;rl~1 r202 r303) = 2 , nm,z2 m3 ~(r-R,)p(r*-Rml)~(rz-R,z)P(r3-Rm3)R~~,m2m3t~~,~~,~p,~3), (6.13b) 
? 3 , 

and 

i nmlm2mj(W,;WI,W2,03)=11U14 C C C~~,I(W,)~,m,(-W3)Zlnf~m2(02)ijn”ml(W1)P,,,f~(wl+oz) 
perm n’,n” 
mj #Jj 

+~~,(W,)~~/m3(W3)~,,mZ(-02)~,,m,(-Ol)f~,,n(-0*-02)). (6.14) 

The renormalized Green’s function is Cpmol(o ) and @(w ) are the single molecule and cooperative 

~rn,w 
contributions to the self-energy, i.e., 

={Gto){l- I~12~(~>[G(o)+G*(-~)13-‘3mn, $%‘Cw> =fimn s dr dr’ p(r) * 9 (r-r’,w) * p(f), 
(6.15a) (6.15~) 

where the self-energy C# has the form 

4(o) =~mo’td +~b>, 
9”,,(~)=I~l-2~m.~(R,-R,,~).run[l-~nml. 

(6.15b) (6.15d) 
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This expression contains the effects of retardation, which 
enter in two ways. First, the matrix 4(w) changes G(w) to 
6(o). This reflects retardation of the one particle states 
which appears at the stage of solving Maxwell equations 
for the signal, but not in Pt3) itself, which only depends 
on G(w). Second, the matrix V(w) which renormalizes F. 
This reflects the radiative decay and energy shift of two- 
exciton states which appear in YC3) itself. This is the only 
place where retardation corr&tions to YC3) appear in the 
present theory. 

VII. RADlATlVE CORRECTIONS TO THE THIRD 
ORDER RESPONSE OF MOLECULAR 
NANOSTRUCTURES IN k SPACE: BIEXCITONS AND 
POLARITON DYNAMICS 

We consider a 2D lattice (monolayer) with the lattice 
parameter a. All lattice sites are occupied by two level 
molecules which have the same transition frequency a, 
and their transition dipole moment is taken to be perpen- 
dicular to the monolayer. 

For this geometry, we have a good quantum number, 
namely, the momentum in the plane of the monolayer in 
the first Brillouin zone” (with components k,, k,, taking 
values from -r/a to r/a). The one exciton eigenstates are 

q&z) =dkeRy (7.la) 

with eigenvalues 

Ek=&‘O,)+J(k); 

and 
(7.lb) 

J(k) = 1 Jmg’k’R~. 
m 

(ih) 

I 

We can also neglect in Eq. (6.9b) the self-energy of the 
Green’s function (6.9~). This can be rationalized as fol- 
lows: Strictly speaking, the biexciton decays to form two 
polaritons, but for the most part, these two polaritons are 
either excitonlike or photonlike and ‘only a small fraction 
of the polariton phase space has a significant mixing. The 
decay to two excitons is impossible as the biexciton is an 
eigenstate of the material Hamiltonian. Therefore, the da 
cay of biexcitons is determined to first order in the fine 
structure constant and results in an exciton and a photon. 
Fq. (6.9b) with b” given by (6.9~) describes the decay of 
biexcitons to form an exciton and a polariton. This implies 
that we have already neglected polariton effects for one of 
the particles. Neglecting polariton effects for the second 
particle, we substitute in (6.9b) for B 

@kj(w7 ,r2) = J d3q _ 
-3 etq(rl-r2)Bkj(co,q), 
(2T) 

(7.2a) 

(7.2b) 

where the indices i, j denote spatial components taking the 
values x, y, and z. We shall adopt the following definition 
of the spatial Fourier transform of an arbitrary function /! 

1 
A) =&IJ2 J a2 &ky(,k)eik’Rn. (7.3) 

Switching to the momentum domain, performing the 
integrations and summations in E!q. (6.14) and neglecting 
the real part of V(w j, we finally obtain for iC3) 

~‘3)tW~~;Wlkl,W2k2,W3k3)=l~14, c {&o,,k,)&(- W),k3)~(Wl,k,)i((WZ,k2)I=(W1+WZ,kl+k2) 
p- 

bj-,kj) 

++v-ws, -ks)&w3,k3)i*pr( --wr,-kJ+( --wZ,-kZ)f;*( --WI-aZ,-kl-k2)), 

(7.4a) 

fb,k) =i-yfo’ok;krlco k) 3 , , 

&w,k) = 
a+& 

@2-fi;+2 IP 1 2fi,+t@,k> ’ 

hM=2g I J a2 1 
1 

-1, 
1-g ~bo--nqwak-q 3 

#(w,k) =#““‘(w) +4%,k), 

~~~(o)=&~w J-- dIp[ (w2/c2~p(q>.ptq)--]q~ptq)12 14’P(S>12 - 
--m o=/c2 -q” 9” ’ 1 

(7.4b) 

(7.4d) 

(7.4e) 

(7.4f) 
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- &I+G#+ W2+G21z 1 
(743 

Note that 

#=( -w,k) =+@(w,k). (7.4h) 

Gl=2nml/a and G2=2rm2/a are reciprocal lattice vec- 
tors, ml, m2. are integer numbers. k, and k2 are the com- 
ponents of the momentum k in the first Brillouin zone, and 
p(q) is the continuous Fourier transform of p(r) [see Eq. 
(6.12a)] 

v(o,k)=i(2~)-21~12~ddq=~(~- &&ok-q) 

1 
X ‘). (+--nq-@+q)L (7.4i) 

The integral on the right-hand side of Eq. (7.4i) is over all 
possible final states. The decay of the biexciton with energy 
o and momentum k results in a photon with energy 
P-7 q + Z and momentum (q,qJ; and an exciton with en- 

ergy akWq and momentum k-q. The S function on the 
right-hand side of Eq: (7.4i) represents the energy conser- 
vation. 

The biexciton energy @g is determined from the equa- 
tion 

r--‘(Qk) =o. (7.5) 
Effects of radiative decay of two exciton states (in partic- 
ular biexcitons) in the nonlinear signal are contained in the 
function f’(o,k) [Eq. (7.4b)]. These effects are important 
for two-photon resonant measurements. Consider an exam- 
ple of a two photon nonlinear reflection in which a single 
monochromatic field with frequency wP, tangent compo- 
nent of the wave vector kp, and amplitude Ep is reflected 
off the surface. The relevant polarization is 

P(u&,)=I?(~)(O~~~)E~ ‘- ‘. 
aI c 

The reflected signal I is proportional to I P(wdc,) I 2. 

I 

Since typically the linear contribution ff(‘) is much stron- 
ger than kc3), .we have an intrinsic heterodyne detection. 
Omitting geometrical factors we obtain 

I,Re{~(‘)(~~~;~~~,-(Up-k~,W) 

XR(?*(qkp))ppl~. (7.6b) 

In the vicinity of the biexciton energy, 2wP~:wB, and when 
the biexciton resonance is well separated, i.e., IoB--201~) I 
is much larger than the radiative width of one-exciton and 
two-exciton states, both 2 from Eq. (7.4a) and I?(‘) are 
off-resonant and real, and we get for the signal in the vi- 
cinity of the biexciton resonance 

.ci - 

I.- I~~14ReCf(20p,2kp)).- I .. * ~. ,_ . . (7.&) 

To calculate the expression for i?’ iri this particular case we 
set w =2wP, k=2kp (kp is the m-plane component of the 
incident wave vector in Eq. (7.4b) and recast it in the form 

‘. 
_~ : : 

l?(o,k)=- 
1 

I?‘(2a+,,2kp) - V(2w;,2kp) ” 
(7.7a) 

Expanding the real part of the denominator of Eq. (7.7a) 
up to linear terms in 2wP-wB and making use of Eq. (7.5), 
we obtain the following expression for I’(w,k) in the vi- - - 
cinity of the biexciton resonance: 

,:- - 
.._....~ . . 

* -1 x Gqy--oB+~7~ ,I 7.5 

with the biexciton hfetime 7B .L_ .~ :rc< 
~~-‘(w,2kp) 

,._ _ 
--rB= 

a;i, -’ [.v(Ws,2kP) 1 -l, ‘/ 
r i: / co=og 

or taking into account (7.4d) and”(7:4e) :,s.e /- 
-*i;: a-__ 

a2 d”q 
rB= J 2Gw2 twB-nq-fi2kp-q)2 

d2p dp,2?rS(w,- ,/G;-fi&,) 
2n-# .~ .:.l .- 

?. -,, 
. : . 

- 17.8b) 
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(7.7b) 

~ (7.8a) 
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Substituting Eq. (7.7b) into (7.6~) we get for the nonlin- 
ear signal in the resonant case 

I- 
2w*--iilB 

wp-w&J2+TgZ * 
(7.9) 

We had derived Eq. (7.8b) for the biexciton radiative 
lifetime from the near resonance expression for the third 
order nonlinear response function. The same result can be 
obtained using the Fermi golden rule. Expressions for this 
lifetime for two dimensional structures were discussed in 
Ref. 36 for Hamiltonians depending on more parameters 
than Eq. (6. la). In the particular case of the Hamiltonian 
(6.la) the radiative lifetime of the biexciton 
rb-r,( I’Ja>2, where Fb is the biexciton size and r, is the 
single molecule radiative lifetime. This implies that the 
biexciton superradiant coherent size is lYb, and the one 
exciton coherence size is its wavelength A.. 

In conclusion, we note that transient grating experi- 
ments as well as two photon absorption measurements in 
molecular crystals have shown evidence for polariton, 
rather than exciton, transport.s18T’9 This is another signa- 
ture of retardation in the nonlinear susceptibilities. We can 
naturally account for polariton transport if we add some 
other degrees of freedom such as phonons or disorder. In 
the conventional approach we average Yc3) over these de- 
grees of freedom, and then calculate the field. By doing so, 
y(3) will depend on averages of products of G  factors 
which contain no retardation effects and will represent ex- 
citon (rather than polariton) transport and diffusion. We 
can naturally account for polar&on transport if we aban- 
don the conventional two-step procedure (first susceptibil- 
ities, then signals) and calculate the signal in one step, 
including retardation and material interactions simulta- 
neously in the joint space, we shall then average our prod- 
ucts of 6 Green functions which contain the polariton dis- 
persion. In order to recover these effects through Yc3) we 
need to incorporate retardation effects in Y(3) which, in 
this case, will be a tedious procedure. The expansion pa- 
rameter for polariton effects was discussed by Knoester 
and Mukamel.2 

We further note that in this article we did not need or 
use the explicit form for the action of the material system 
S,,[B]. We have used path integrals primarily for book- 
keeping and for the systematic treatment of material and 
field interactions. Other applications may require a path 
integral approximation for the material evolution as well. 
This may be accomplished using geometric quantization as 
outlined in Appendix E. 

Another issue not addressed here is that, in general, 
the signal is related to the field density matrix dE rather 
than the field itself. Throughout this article, we have fac- 
torized the expectation values of products of field operators 
as 

(dE> = I W ) I 2. 

This factorization is expected to hold for strong coherent 
fields with a large number of photons. Otherwise, photon 
statistics may become important, and the present approach 
needs to be extended. 
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APPENDIX A: EXPANSION OF THE FIELD 
CORRELATION FUNCTIONS 

In this Appendix, we derive the expression for the non- 
linear response function Yt3) [Eqs. (5.10a) and (512b)] 
and show how to expand it in powers of the tine structure 
constant [Eqs. (5.13), (5.14), and (5.16)]. 

We first introduce the one-particle irreducible Green’s 
function r;4n,,...,aq(rl,tl,....r4,t4) by 

=i 
s 

dr; dt;* * *dri dti 

X(k,,(rl,tl)k_,;(r;,t;))...(kaq(r4,t4) 

x-L$r&~~))r&‘~ ,,..,= ,(r;,t; ,4X). 
4 

(Al) 

To express the signal to third order in the external 
polarization we have due to Eq. (4.9c) to evaluate the 
expectation value (k_(rl,tl)k-(r2,t2)k-(r3,~3)~+(r,f)). 
From the definition of the irreducible Green’s function and 
taking into account Eq. (3.1 la) for n=2, we get 

=((k_(rl,fl>k_(rz,tz)k_(r3,t3)k+(r,t))>. L42) 

Combining Eqs. (Al) and (A2) and taking into account 
Eq. (4.9d), we obtain 
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(k-(rl,tl)k_(rz,ta)k-(r3,t3)k+(r,t))=i 
s 

dr; dt; dr; dti dr; dtj dr’ dt’{(k-(rl,t,)k+(r;,t;).) 

x(k+(r~,t~>k+(r,t>)ru4__--(r;,~;,r~,t;,rj,tj,r’,t’)). (A3) 
From the analogous representation for the expectation value (k _ ( rl ,tl)k _ (r&k- (r3 ,t3)k _ (r,t) ) that is equal to 

zero due to.Eq. (4.9d), we get . 

(Ai(rl,tl)k-(r&k-(r3,t3)k-(r,t))-=iJ-dt; dridtidridtidr; dt’ dr’(k-(r,,tl)k+(ri,t;)) 

- X (k+(r:,t’)k - (A4) 

We thus get 

r’ <r;,t;,rG,t;,rj,t;,r’,t’) =O. (A5) 

Substituting Eq. (A5) into Eq. (A3) and using the nota- 
tion for the Green’s functions (5.1Ob) we fmally get Rq. 
(5.10a). 

In Sec. V we described a perturbation theory for cal- 
culating optical susceptibilities and expressed them using 
multitime correlation functions of electromagnetic field in 
the joint field and material phase space. The bare (zero 
order) Green’s functions corresponding to lines 
in diagrams of the perturbation theory are D(O), and 
the bare vertex of the 2nth order is determined by 
the irreducible material Green’s function 
((P,,(rl,tl)...P~2ntr2’2”, 2n t )))M. 

The classical limit of the electromagnetic field in this 
approach is obtained by using the tree approximation for 
the corresponding diagrammatic techniques, ‘where we 
take into account only diagrams containing no loops. For 
the two point Green’s function this means that we neglect 
nonlinear terms in the effective action. Thus using Eqs. 
(5.9) and the general relation Eq. (3.1 la), the self-energy 
for the one particle Green’s function (A-(rl,tl)A+ (r2,t2)) 
is i-“(P-(rt,ti)P+(r&)), and we immediately get for 
this Green’s function in the tree approximation the result 
of Ref. 28. 

To get Yc3) we evaluate the right-hand side of Eq. 
(5.12b) in the tree approximation where I’6 ---+ coin- 
cides with bare vertex, i.e., [see Eq. (5..7)] 

I 

On the other hand, we can evaluate the yc3), the non- 
linear response for a classical electromagnetic field, in a 
standard way, i.e., by introducing the interaction of the 
material system with the external transverse field J!& and 
evaluating the polarization P= (P) using the action 

S[Bl=S,,[B] + dtdr P(r,t)E,,,(r,t). (A7) 

In analogy with Sec. III we get 

P(r,t) = nzo. f I drt dtl* “dr, dt, 

. 
(P-(rl,tl)...P_(r,,t,))~=P. (-Qb) 

Using Eq. (A8b) we have 

(P-(r,,tl)~~~P-(r,,tn)P+(r,t))M 

=((P-(rl,tl)...P-(r,,t,)P+(r,t)))lw. (A91 
From Eq. (A8a), and taking into account Eq. (A9) we 
obtain 

= -i((P-(rl,tl)PB(r2,tz)P-(r3,t3)P+(r,t)))M. 
(AlO) 

Comparing Eqs. (A6) and (5.12b) with E . 
9 

(AlO) we see 
that in the tree approximation Yc3) =y” ). It is easy to 
.show that this result applies to higher order susceptibilities 
as well, and we have in the tree approximation Y(‘) 
=pcn). The susceptibilities yen) thus become constants 
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in a nonlinear theory of the electromagnetic field described 
by S,.&I]. By including in the perturbation theory dia- 
grams containing loops, we can systematically incorporate 
radiative corrections to the exact susceptibilities Y(‘). 

To get the first and the second order corrections to 
.Yc3), we expand Eq. (5.2) in powers of S&&4], evaluating 
the expectation values of products of variables A by means 
of the Wick theorem keeping the terms with one or two 
internal lines (Green’s functions I$$,). This procedure 
results in Eqs. (5.16). The diagrams corresponding to 
these terms are presented in Fig. 2. 

APPENDIX B: NONLINEAR RESPONSE FUNCTIONS 
AND GREEN’S FUNCTIONS OF THE 
ELECTROMAGNETIC FIELD 

In this appendix we derive Eqs. (5.12) which connect 
the nonlinear response functions Yen) to one particle irre- 
ducible Green’s functions of electromagnetic field. 

A standard procedure for calculating the nonlinear op- 
tical properties of materials is by introducing nonlinear 
response functions. External sources which result in cre- 
ation of electromagnetic waves in the system can be de- 
scribed by the external polarization Pext . We can introduce 
another variable, namely, the external electric field E,, 
related to P,,, linearly by means of vacuum Green’s func- 
tion of electromagnetic field 9 [see Eq. (6.12)] (all for- 
mulas in this Appendix will be written in an operator 
form) 

E,,=pP,,. (Bl) 
Equation (B 1) is linear and does not contain any informa- 
tion about the material. The only reason for introducing 
Eext is that it is somewhat more convenient to express the 
optical signals in terms of E, (i.e., the electric field we 
would have had we created the wave with the same sources 
in vacuum) rather than in terms of the external polariza- 
tion. 

The expectation values of the transverse electric field 
& and the polarization. of the material are determined 
completely by Pext [or due to Eq. (B 1) by E,,tl and can be 
expanded in terms of the latter. These expansions lead to 
the response functions L??(n) introduced in Sec. IV and 
Rg; 

E1 = nzl ;@“‘(p,,,)“, (BW 

E1 = cl &$k,,)“. GQb) 

On the other hand, the transverse electric field is related to 
the total polarization in the system, which consists of the 
external polarization Pext and the polarization of the ma- 
terial, by means of the vacuum Green’s function of the 
electromagnetic field Y [see Eq. (6.12)] 

El =Y(P+P,,). (B3) 
Combining Eqs. (B2a) with (B3), we get the expansion of 
P in powers of Pat 

(B4) 
If we solve Eq. (B2a) iteratively, we get Pext expanded in 
powers of I? . Substituting this expansion into Eq. (B4) 
we obtain the expansion of the polarization in the material 
P in powers of transverse electric field EL ,l 

p= i ++)(E1 )“. 
n=l n. (B5) 

Our goal is to derive Eqs. (5.12) connecting the re- 
sponse functions Yen) to one particle irreducible Green 
function of the electromagnetic field FA [we will confine 
ourselves to systems with an inversion symmetry center, 
i.e., LYzn) =O]. 

We begin with the direct derivation of Eqs. (5.12a) 
and (512b). To that end, we expand the expectation value 
of the transverse electric field in the system & , in powers 
of external polarization Pat to third order in P,., . Keeping 
the first and the third order in P,,t terms in the expansion 
(3.7a) and taking into account Eq. (4.9c) for n =3, Eqs. 
(5. lOa), and (5. lob) we obtain the following expression in 
operator form: 

E1 =ptPat+i iSreT”,---(Ftp& 036) 

We can easily get from Eqs. (B6) and (B3) 

p=[91-(~et)-1]EL +;r=__-(*tPat)3: (B7) 

Since we are keeping the terms up to the third order in Pat, 
we can substitute EL instead of p”Pk, in the second term 
on the right-hand side of Eq. (B7) [this follows from Eq. 
(B6) after neglecting the nonlinear in Pext term].‘~We get 
finally 

P=(L?--!-(i+t)-l)E1 +$+---@ p. WI 

Comparing Eqs. (B8) and (B5) we get Eqs. (5.12a) and 
(5.12b). To prove Eq. (5.12~) we combine expansion 
(B5) with Eq. (B3) to get 

m 
(~-‘-~(“)E1 ,p,,+ c ’ 

n=* (2n+ l)! 
552”f” 

x (EL )2n+1. (B9) 

Making use of Eq. (5.12a) we recast Eq. (B9) in the form 

(BlOa) 
Putting Y (2n) =0 and using Eq. (4.9c) and the notation 
(5.2) and (5.1Ob) we recast Eq. (B2a) in the form 

El =@%t+ iJl (;;;;)! Dy-~~(P&p+l. 

(Blob) 
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FIG. 3. Typical nonzero tree diagram for a higher order Green’s function 
of the electromagnetic field Eq. (Blob). The lines stand for the exact two 
point Green’s functions, the vertices (hatched circles) are the one-particle 
irreducible Green’s functions I?. This diagram contains ten free lines and 
these correspond to D(‘“+‘) with n=4. 

To prove Eq. (5.12~) we shall compare Eqs. (B. 10a) and 
(B.lOb). First we observe that the coefficient Dy-??. _ in 
the expansion (B.lOb) is given by the sum of all diagrams 
with lines and vertices presented on Fig. 2, ‘and with one 
external line with external index + and 2n external lines 
with indices - . The one particle irreducible Green’s func- 
ths e,,..&* are defined in the following manner: 
ir”’ a,,...,cr2n is the” sum of all diagrams which cannot be cut by 
one line into two disconnected diagrams. Introducing IA 
we conclude that .D:2”_+.?. _ is the sum of all tree diagrams 
(i.e., diagrams without loops), with c ,,..., “2n as vertices, 
and exact Green’s functions D4 as .lines. Note that we 
have to sum over all Greek indices corresponding to inter- 
nal lines in the diagram. However, due to the fact that 
D --=0 and c ,,..., a, = 0 if a,=.**=a,=-, all the in- 
ternal indices are fixed: for internal lines we have Dap with 
a=-, p== +, for vertices l?tl ,..., “2m we have al 
=...- -am-,=-, am= +. A typical diagram is presented 
in Fig. 3. In other words, all lines stand for Green’s func- 
tions pt and vertices stand for I!. . . -+. On the other 
hand, if we solve Eq. (BlOa) iteratively, and expand EL in 
powers P,,, we can present the expansion coefficients in the 
form of the sum of the same tree diagrams with the only 
difference that the vertices are the response functions 
..Y(2nf*). Since expansion (B5) is unique, this completes 
the proof of Eq. (5.12). Equations (5.12) enable us to use 
a convenient Green’s function perturbation technique for 
evaluating the nonlinear response functions 9’(‘). 

The approach presented here shows clearly effects of 
cascading in the formation of higher order nonlinear opti- 
cal signals. As mentioned above, the nonlinear signal ex- 
pressed in terms of the external field or external polariza- 
tion is given by the sum of all tree diagrams with nonlinear 
response functions Y@) as vertices and one-particle 
Green’s functions pt as lines. Physically this means that 
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a> 

b) cl 

FIG. 4. Diagrammatic representation of contributions to the correlation 
functions (6.3). Lines with arrows stand for bare Green’s functions 
(CC’+) [with respect to quadratic action Eq. (C. lb)]. Vertices represent 
the nonquadratic part of action $k, from Rq. (Clc). The time 6 in the 
diagrams takes values on the Keldysh time loop (Ref. 33). (a) Ladder 
diagrams contributing to Rq. (6.3). (b) and (c) Diagrams containing 
loops and therefore equal to zero. Going along the paths EFE and ABC4 
along the directions of arrows we return to the beginning, to get zero. 

nonlinear polarization creates the electric field which in 
turn is involved in formation of the nonlinear polarization. 
Representation of the signal in terms of the tree diagrams 
in a convenient and clear way to classify all the contribu- 
tions to the nonlinear signal to a given order in the external 
field, expressed in terms of response functions Yen). 

APPENDIX c: NONLINEAR RESPONSE OF 
MOLECULAR ASSEMBLIES 

In this Appendix we evaluate the correlation functions 
(6.3) from Sec. VI. 

The expectation values in Eq. (6.3) are taken with 
respect to the action of the form 

S,,,[ c C] =s(O) [C ZI] +S’“’ [C q 9 mat f mat 7 9 

SEit[C,c]= Jdc[i; En(c) y 

(Cl4 

- ~~Gtwnt~) - m.+~mcncnm 
(Clb) 

@%~I = i j- d(; c ~!,c(J~(E,. n 
Here 6 denotes the time variable on the Keldysh time loop 
with the natural time ordering. For each value of the orig- 
inal time variable we have two values of 6 corresponding to 
the two parts of the loop,The variables C and @ stand for 
the quantum operators C and Et, and the first term in 
Eq. (C. lb) provides the commutation relations (6. lb). 

We will concentrate on evaluating .Y(‘); the procedure 
of evaluating Pcb) is identical. To evaluate the right-hand 
side of Eq. (6.3b) we expand the exp( i,!$&> factor in pow- 
ers of C and c, calculating the resulting expectation values 
with respect to Sg”,‘, using the Wick theorem. 
We tlrst observe that nonzero contrib!itions cannot 
contain loons, i.e., nroducts of the tvne 
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condition of all the correlators in the product being non- 
zero ~I(~;(*--(LI(LGI cannot be satisfied. Therefore, 
the nonzero contributions can have only the following 
types of coupling: the variables c in Eq. (6.3b) are coupled 
to the variable C belonging to the same vertex given by Eq. 
(C.lc), the variables C belonging to the vertex considered 
can be coupled to the variables C belonging to some other 
(but the same) vertex, etc. In diagrammatic techniques 
such contributions are usually denoted the ladder dia- 
grams. Ladder diagrams and examples of diagrams con- 
taining loops are presented in Fig. 4. After making this 
important observation we can switch to the f variables 
using ordinary time variables, and rewriting the .S$‘$ in the 
form 

I 

SZat[ C,C] = -g s m d7;r: [~+W--$%>I --cc n 

m xc+(de-W-g 
s 

dTc [P+(T) 

-gQT)]C+(7)CA7). 

n 

cc21 
We note that nonzero contributions do not contain the 
second term of Eq. (C.2). Actually, the c variables in Eq. 
(6.3b) can be coupled only to the C variables of the first 
term of Eq. (C.2) [due to Eq. (3.1 l)]. The c variables of 
this vertex can be coupled only to the C variables of the 
vertex of the same type, etc. We thus obtain the following 
expression for Y): 

-y(a) 
nm,m2m3(fJl,Wd = -i NzI J:, drl--.drN C.. (-26)N(~~,(tl)--Cj1(71)+)(~~~(tZ)-Cj;(71)+) 

il v-9 IN 

Since the time integration in Eq. (C.3) is performed 
from - ~4 to + CO, we can easily switch to the frequency 
domain. The free correlation function is on the right-hand 
side of Eq. (C.3) can be evaluated directly using the quan- 
tum mechanical representation of Sec. IV: Evaluating yt6) 
in the same manner, and combining all the contributions 
we finally obtain the expression for Y(3) in the frequency 
domain [see Eq: (6.5)]. 

APPENDIX D: BEYOND THE TREE APPROXIMATION 

In this appendix we derive the expression for the third 
order nonlinear response function near the biexciton reso- 
nance [Eqs. (6.9)]. 

As indicated in Sec. I, we cannot describe the effects of 
radiative decay of two exciton states in the nonlinear signal 
without taking into account the quantum nature of elec- 
tromagnetic field. The effects of radiative decay of two- 
exciton states are important near the two-photon reso- 
nance especially in the case when the spectrum of two- 
exciton states contains bound states (biexcitons). To see 
this we will use the simple model of interacting bosons 
introduced in Sec. VI and calculate the nonlinear suscep- 
tibility near the resonance with the bound two-particle 
state using the techniques developed in the previous sec- 
tions. 

To evaluate the susceptibility y(3) near the biexciton 
resonance we use the path integral representation (5:2) for 
the Green’s function [Eq. (5. lOa)] and perform the expan- 
sion of exp[iS&] [see Eq. (5.9a)] in powers of A. Note that 
due to Eq. (6.11~) and (5.7), each couple of variables k in 
the effective action gives an additional power of the param- 
eter [p 1 2 which is proportional to the fine structure con- 

I 

stant. Thus, the only reason we cannot confine ourselves to 
taking into account only the lowest order terms is that the 
coefficients in the expansion m. (5.7) ] which are the ma- 
terial correlation functions can contain large resonant fac- 
tors. Each of these factors is due to some two exciton (i.e., 
biexciton) intermediate states in the spectral decomposi- 
tion of the material correlation functions in Eq. (5.7). 
Thus to first order in the fine structure constant we have to 
use only those terms in the expansion (5.7) that contain 
the maximum number of resonant factors or, in other 
words, the maximum number of two-exciton states in the 
spectral decomposition of material correlation functions 
(for the given number of the variables k). It is easy to see 
that these terms are given only by terms linear in S& in the 
expansion of exp (is&). Near resonance we get 

DL --+(rl,tl,r2,t2,r3,t3,r,t)- 

where the average of A variables in Eq. (D. 1) and below is 
with the zero-order effective action $$[A] [see Eqs. (5.9)]. 
Near resonance, substituting SiF’[A] from Eqs. (5.7) and 
(5.9) to (D. 1) , we can also replace the irreducible material 
correlation functions in Eq. (5.7) by ordinary ones [Eq. 
(3.6)] since the difference between them is of higher order 
in the fine structure constant. We can make further sim- 
plifications. On the one hand, we are interested in getting 
the maximum number of two exciton intermediate states in 
the spectral decomposition of material correlators in IQ. 
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(5.7). On the other hand, as we are interested in the effects 
of biexciton decay in 9 (3) but not the energy shift, we 
would not take into account intermediate states containing 
more than two excitons, as the energy of these states is 
higher than that of the biexciton. Consequently, we con- 
sider only one and two exciton states in the spectral de- 
composition of the material correlation functions. The next 
simplification comes since there are two kinds of two- 
photon resonant terms in the Green’s function (D. 1) : 
Terms resonant when a sum of two frequencies corm- 
sponding to incoming fields is close to the biexciton energy, 
and the resonant terms with this sum close to the biexciton 
energy taken with the opposite sign. This leads to the fol- 
lowing representation of D- _ _ + from Eq. (Dl) : 

D---,=D(+)- -?-0% + C’ WI 

where D(+’ and DC-) stand for the terms of the first and 
the second kind. 

We will concentrate on evaluating the Green’s function 
D’+‘_ +, De? _ + can be evaluated in a completely anal- 
ogous manner. It is convenient to switch back from sum- 
mation over Greek to latin indices in Eq. (5.7). Taking 
into account all the simplifications mentioned above, sub- 
stituting the expression for polarization [Eq. (6.lc)] into 
Eq. (5.7) we then use Wick’s theorem to calculate the 
expectation values of products of variables k in Eq. (Dl ). 
Keeping only terms containing the highest possible power 
of the resonant factor we get the following expression for 
Dt’_l _ + (see Fig 5) * . . 

I 

D(-+1+(rl,tl,r2,t2,r3,t3,1;t) =4+%, 

4= n$2iznjp12n;,~m2n ~dri**-dr~,~' drz.pn dr2,-l*.* 
s 

” d~~(fbA 6,zJ& . 
, , -c9 --m --oo 

X C {(L(rl,tl). 
pem 

(‘j Jj) 

DII=- nt2i2”[pjz’ c Jdri**.dr&,l’ drz,r dr~~_,~r2n-zd~~,_,... r dr1 
.: 

qr....m2, --m --m -02 -00 

I 

Here R, is the position of the mth molecule. The following 
procedure is straightforward. Making use of Eqs. (5.1Oa) 
and (5. lob) we can get from Eq. (D3) an expression for 
pt3) near the biexcitonic resonance. The material correla- 
tion functions on the right-hand side of Rq. (D3) involve 
only one particle and two.particle states and hence can be 

expressed in terms of one particle .scat@ring matrix T. 
Switching to the frequency domain and. using the similar to 
Eq. (D3) expression for the Green’s function Dkl-+, we 
get after straightforward calculations the resonant expres- 
s$on for the nonlinear response of $@(‘) [see Eq. (6.5) with 
r given by Eq. (6.9) instead of.r]. 
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FIG. 5. Double sided Feynman diagram representation of contributions to Eq. (D3). L+ is represented by diagrams (a) and (b), whereas Dn is given 
by (c) and (d). The left and the right lines denote the first and the second parts of the Keldysh loop. The wavy lines denote the (AA) correlation 
function. The solid lines stand for the material correlation function, the single and the double lines stand for one-exciton and two-exciton 
intermediate states. 

APPENDlX E: NONRETARDED RESPONSE FUNCTION 
OF AN ASSEMBLY OF TWO-LEVEL SYSTEMS 

We will apply the general results of this paper to the 
case when the material system is a set of neutral nonover- 
lapping two-level molecules.” For this case we take the 
material Hamiltonian in the Heitler-London form 

I&,,= c G,,&B,+ c J,n,&B,. (El) m m#n 
The first term in Eq. (El) is the Hamiltonian of noninter- 
acting two-level systems, the second term describes the 
Coulomb (dipol&ipole) interaction -in the Heitler- 
London approximation. The operators B, are the transi- 
tion operator of the mth two-level system, changing its 
excited state to the ground state. They satisfy the commu- 
tation relations 

[B,,Bt,,]=(l-2B;B,j&,r. 032) 

The polarization operator P(r) can be represented in the 
following form: 

b(r) = C !&I, 

.yc3) were calculated in Ref. 28 using a different 
method (solving the equations of motion for material op- 
erators in the external transverse field). Thus, in the tree 
approximation we can use the results of Ref. 28. 

m 

APPENDIX F: GREEN’S FUNCTION EXPRESSIONS 
(GFE) FOR THE NONLINEAR RESPONSE OF 
THE SYSTEM OF !NTERACTlNG BOSONS 

~~(rj=i~lp(r-R,)(~~+-~~), / I p(r)dr[. (E3j 

The classical:phase space of a two-level system is the 
two dimensional sphere S2 (it can be regarded also as one 
dimensional complex projective space CP’). The space of 

In this appendix we derive Eqs. (6.10) for the two- 
exciton scattering matrix F;,(o) which is affected by the 

states is the two dimensional space of holomorphic sections quantum electromagnetic field. Together with Eq. (6.14) it 
of the twisted bundle a( 1) on CP’ (see Ref:‘37). The 
classical variables corresponding to operators i and bt are 

provides an expression for the nonlinear response function 
R with respect to the external field. 

Bx-iBy and P+iBy, respectively, where B = ( B”, By,B”) 
is a unit three dimensional vector on the phase space S’. 
The action S,,,[B] has the form 

X m$n J dt Jm,BI, a & 3 

B’ =(Bx,By,O) 

where Sg) is the multilevel action (for the mth two-level 
js(o) system), e m being the parallel transition along the canon- 

ical connection on the bundle 0( 1) with the curvature 
w-the canonical simplectic structure on S2 for spin l/2 

~=&ijkdBjAdBkBi, (E5) 

where ],u I p(r) is the polarization operator between the 
excited and the ground states of a molecule (see Ref. 3 for 
the microscopic expression). 
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In Sec. V we obtained a general procedure of evaluat- 
ing radiative corrections to the nonlinear response func- 
tions by integrating first over the material variables B to get 
the effective action which depends only on the field vari- 
ables A. In this appendix we adopt a different approach 
based on integrating over the vector potential first to get 
the effective action for the material vafiables. This ap- 
proach seems to be more appropriate for the material sysl 
tern described by Eqs. (6.1) due to the following reasons. 
Correlation functions of the material system can be evalu- 
ated exactly since the Hamiltonian (6,Ja) conserves the 

number of particles. If we neglect the terms in the effective 
material action which do not conserve the number of par- 
ticles (these terms are induced by interaction with trans- 
verse electromagnetic field), we can still obtain exact ex- 
pressions for the correlation functions of material 
variables, when the material system is described by the 
effective action. To perform the integration over the vector 
potential in Eq. (4.9a) it is convenient to introduce a funo 
tion vPext,Q] which depends on the generating fun&ion 
Q<r,t>, 

I 

~lIPext,Q1= ~~~~l~[Blexp(i~~rdtlP,,(r,t)~-(r,t)+~(r,t)~+(r,t)l) 

xexp i SC9 [ B] +S’~~)[CZ] + 
I( 

ma s 
dt dr(P+k- +P-k+) 

11 
. (Fl) 

. Combining Eq. (4.9a) with Eq. (Fl) we get 

El (r,t) = --i SWPemQl 
6Q(r,t> * Q=O 

The integration over the vector potential in Eq. (Fl ) can be performed exactly, and yields 

(F2) 

dt’ dt” dr’ dr”(Y+-(r”,t”;r’,t’)P-(r”,t”)P,,,(r’,t’) +LY++(r”,t”;r’,t’)Q(r”,t”)P+(r’,t’) 
I. 

+$9++(r”,t”;r’,t’)Q(r”,t’‘>P-(r’,t’)) dt’ dt” dr’ dr”( 9 + i (r”,t”;r’,t’) Q( r”,t”) 
,- 

1 
XP,,W,t’> +$J ++ ( r”,t”;r’,t’)Q(h,t!‘)Q(r’,t’))/. (F3) rr 

1 

We used in EL+’ (F3) -the following notation: 

UIBl>s(,m)= I ~[Blf[Blexp(i~~~‘lBl), ‘(F4) 

for an arbitrary function f[B] of material variables. 
S$‘[B] has the form 

sp [B] =sgf f 
s 

&’ dt” dr’ dr” [‘9 z _ (r”,t”;r’,t’) -_ 

XP-(r”,t”)P+(r’,t’) 

+&9++(r”,t”;r’,t’)P-(r”,t”)P-(r’,t’)], 

(F5) 

and the Green’s functions of the transverse field YaB have 
the form 

Yti(r”,t”;r’,t’) = (A,(r”,t”)Ap(r.‘,t’))Srad 

= ~3 [A]A,(r”,t”)AB(r’,t’) 
s- ,- ..” 

xexp(i$~ [A] ), - (W 

I 

and 
: - 

9 +-(r”,t”;r’,t’) = r”,r’;m)e -iw(t”-t’) 
, 

(F7) 
with Y (r”,r’;m) given by Eq: (6.12). Substittiting’ Eq. 
(F3) into Eq. (F2) we obtain 

where the external electric field Eext and the polarization P 
which genkates the signal are given by Eqs. (6.11 ),.-In the 
derivation of Eq. (F8) we made use of the relation 

dt’ dr’ E,,(r’,t’)P-(F,t’) I) kZ(); $3) 
(F9) 

The expansion of FIq. (F8) in powers of external field pxt 
has the form 
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f%‘,t) = nzo f j drlmdtl+ - *dr, dt, R@) 

X (rt;r&l ,...,rntn)Ee,,(rltl>E,,(rntn), WW 

R(“) (rt;rltl ,..., r,tn)=in(P+(r,t)P-(rl,tl)*** 

xp-(r,,t,))q. (FlOb) 

This result can be derived alternatively by adding a term 

- dr P(r,t) * E,,,(r,t) 

to the Hamiltonian, and expanding the density matrix in 
powers of Eext . 

We next apply the general formula (FlOb) for n = 3 to 
the case of the material system described by Eqs. (6.1) 
with the corresponding action given by Eqs. (Cl ) . 

It follows from Eq. (F5) and Eq. (6.1~) that the ef- 
fective action has corrections only in its quadratic part, 
S$) i e * *, 

e&l =$) +sp;\m WI) 
In Appendix C, the correlation function Eq. (FlOb) for 
n=3 was evaluated but the expectation value on the right- 
hand side of Eq. (FlOb) was taken with respect to Si2 
[see Eq. (6.2b)l. The response function Yc3) was ex- 
pressed in terms of the one-exciton Green’s function 

Gmn(t”,t’)=(cm(t”)+~n(r)-)~~~t. W12) 

If we neglect in S,, (‘I the terms which do not conserve the 
number of excitons [namely, the terms of the type 
C,(t’)C,(t”), en(t and the terms C,(t’)&(t”) 
for t’ > t”] we get for Eq. (FlO) with j=3 the same ex- 
pression in terms of the Green’s function G. However the 
expectation value in Eq. (B7) should be taken with respec: 
to the action S$) , i.e., we define a new Green’s function G 
by 

~mn(t”,t~)~(Cm(t~~)+~n(t~)~)~~~~. (F13) 

Evaluating the Green function Eq. (F 13 ) using Eq. (F5 > , 
and making use’of the results of Appendix C we obtain in 
the frequency domain 

Nrwpl ,wwwd 

= nm$2m3 p(r-R,)p(rl-R,,)p(rz-R,2) 

X~(r3-Rm3)~nm1m2m3(0,;01,02,~3). (F14) 

where &mlm2m, (ws;ol,w2,w3) is given in Eq. (6.14) with 
f-defined in Eq. (6.10). 
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