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Closed-form expressions are derived for the nonlinear response function of a polyatomic molecule with two 
electronic states and linearly displaced harmonic potentials to arbitrary order in the radiation field. The underlying 
dynamics can be best visualized using wave packets in phase space. Using exact expressions for these wave 
packets, we discuss the possible factorization of the process into two parts representing a forward and a backward 
propagating wave packet. This factorization facilitates the description of sequential measurements, such as 
pumpprobe spectroscopy, in terms of a doorway wave packet prepared by the pump and a window prepared 
by the probe. We show that once a reduced description is adopted, where we trace over bath degrees of freedom, 
this factorization is possible only in certain limiting cases. 

I. Introduction 

The density matrix offers a natural and convenient means for 
calculating and interpreting ultrafast optical measurements.14 
This is well recognized for studies in the condensed phase, since 
it allows performing thermal averaging and developing a reduced 
description in which bath coordinates have been eliminated and 
replaced by dephasing processes. However, even for isolated 
molecules in the gas phase, the density matrix formulation has 
a lot to offer compared with wave function based calculations.~ 

The density matrix follows naturally the time ordering of the 
various interactions with the fields. In the Wigner representation, 
it can be used to construct a phase-space wave packet repre- 
sentation of the nonlinear response which provides a powerful 
framework for developing classical and semiclassical approxi- 
mations.2 The possibility of visualizing time domain spectroscopy 
in terms of wave packets in phase space is particularly valuable 
for sequential experiments such as pump-probe, transient grating, 
and impulsive Raman scattering conducted using well-separated 
laser pulsesbll Sequential experiments can be described in terms 
of overlap of two wave packets in phase space (thedoorway window 
picture).2J A full quantum treatment of these wave packets in 
the complete phase space (when all degrees of freedom are 
included) has been de~eloped.~ This level of description is 
restricted to small systems (e.g., pumpprobe spectroscopy of 
ICN in the gas p h a ~ e ) . ~  For larger systems and for spectroscopy 
in the condensed phase, we need to develop a reduced description 
in which only part of the phase space is treated explicitly and the 
remaining degrees of freedom are eliminated. Using a Langevin 
equation, Yan and Mukamel have calculated the wave packets 
for a multimode Brownian oscillator model.2 These calculations 
are limited by the Langevin equation which provides a semi- 
classical high-temperature approximation. We recently developed 
a theory for the nonlinear optical response of a multimode 
Brownian oscillator model which extends that theory in the 
following respects: First, by adopting a harmonic model for the 
bath degrees of freedom, we derived exact quantum expressions 
for the phase space wave packets which are valid at all tem- 
peratures and for the entire range of parameters. The solution 
was obtained using path integral techniques. Second, we 
calculated the response function to arbitrary order in the field so 
that we can describe processes higher than four-wave mixing. 
Third, we incorporated an arbitrary dependence of the transition 
dipole on nuclear coordinates (non-Condon effects). 

In this article, we use the exact solution of the multimode 
Brownian oscillator model to explore the applicability of the 
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doorway-window picture for sequential measurements. We show 
that once a reduced description is adopted, where we trace over 
bath degrees of freedom, this representation is possible only in 
certain limiting cases. 

11. Nuclear Response Function of a Multimode Harmonic 
System 

We consider a polyatomic molecule with two electronic states 
denoted g (the ground state) and e (the excited state) and with 
frequency wego. We assume that both ground- and excited-state 
potential surfaces are harmonic, with a displaced equilibrium 
position between the two states. We denote a nuclear mass, 
coordinate, harmonic frequency, and a dimensionless displacement 
of the potential for the sth optically active vibration by m,, q,, 
os, and Os, respectively. The Hamiltonian is then given by (see 
Figure 1) 

H =  Ig)H,(p,q)(gl+ le)H,(p,q)(el - W t )  (1) 
where 

The transition dipole operator Vis written as 

Here, we set p= Esccs, where ps is the dipole matrix element for 
the s th  mode. We assume that p, does not depend on nuclear 
coordinate (the Condon approximation). However, our discussion 
can be extended to the non-Condon case, which plays an important 
role for off-resonance laser e ~ c i t a t i o n . ~ ~ * ~ ~  The system is initially 
at equilibrium in the ground electronic state: 

(4) 

The optical response can be expressed in terms of the optical 

pg = 1s) (SI exp[-~H~l/Tr~exp[-(3H~l~ 
where (3 = l/k~T is the inverse temperature. 

polarization 

P ( t )  = tr(Vp(t)) ( 5 )  
where p ( t )  is the density matrix which depends on the interaction 
between the driving field and the system. For sufficiently weak 
fields, the polarization may be expanded in powers of the electric 
field E ( t ) .  All even orders of the polarization vanish for the 
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Figure 1. Potential surfaces of the linearly displaced harmonic oscillator 
system. The lower state is denoted Jg), and the upper is le). The 
equilibrium coordinate displacement and the energy difference between 
two potentials are expressed by 0, and h ~ : ~ ,  respectively. 

present model. The odd order components are given by4 

~ R ~ 2 N - 1 ' ( t )  (6) 

(7) 

is the nonlinear response function with Q",(t) given in Appendix 
A. The response function contains 2m-1 terms R&?(t) 
denoted Liouville space paths. They come from taking 2N - 1 
commutators with the dipole operator in the evaluation of the 
density matrix. In each path, the system undergoes 2N - 1 
evolution periods denoted chronologically by t l ,  12, ..., t 2 , ~ .  The 
paths differ by which electronic density matrix element exists in 
each of these periods. Mathematically, we can represent the 
path by 2N - 1 indices cj (Le., a = {q)), which are chosen as 
follows: When the density matrix during the j th  period tj is in 
the state pss, pee, peg, and pge, we chose ti = -1, +1, +1, and -1, 
respectively. The summation in the above equation, E,, represents 
the sum for possible sign €1, €2, ..., t2N-I = f, which yields the 
necessary 22N-1 Liouville space paths. In practice, we need only 
half of the terms by choosing, say, with QN-I = +l. The others 
are simply their complex conjugates. As an example, let us 
consider the third-order polarization R3)(t) ( N  = 2). In this 
case, we need to consider four Liouville space paths. The double- 
sided Feynman diagrams representing these paths are displayed 
in Figure 2. They are listed in Table I together with the 
corresponding indices of €1, €2, and €3. For the response function, 
we then have 

€qc2c3(t3,t2,tl) = -iu:&,tI + 4 - &,(tI) - dzc3(t3) - 

Clt3[dlcz(t2) - dlc2('2 + t3) - &,(tl + t 2 )  + 

&*,(ti + t2 + t3)I (8) 

71 72 73 74 

Figure 2. Double-sided Feynman diagrams in fourth order. Here, we 
show a coordinate representation (not phase space) of the density matrix, 
and, in each figure, the line with L represents a time evolutions of a ket 
(a left-hand side) of the density matrix, whereas the line with R represents 
a bra (a right-hand side) of the density matrix. The complex conjugate 
paths of 1-4 which can be obtained by interchanging L and R, respectively, 
are not shown. 

TABLE I: Auxiliary Parameters q. The System Is Initially 
in gg, and We Set €0 = -. 

Liouville space path (Y 61 62 63 

1 + (eg) + (ee) + (eg) 
2 - (ge) + (eel + ( 4  
3 - (ge) - (gg) + (eo) 
4 + ( 4  - (gg) + (eg) 

These functions are expressed by the response phase function 

where 

and the antisymmetric and the symmetric position correlation 
functions of the ground equilibrium state for the sth mode are 
defined by 

1 = $4s(t)4s + 4s4s(t) )g = 

h mu - coth( -f ) cos(u,t) (1 1) 
msws 

and 

respectively. The response function contains all the information 
necessary for calculating the nonlinear polarization and the optical 
signal. 

111. Phase Space Wave Packets Determined by Using 
Forward Propagation 

A better insight on the physical significance of the response 
function can be obtained by representing it as a trace over a wave 
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packet. The wave packet is given by the density matrix p ( t )  in 
eq 5 expressed in the Wigner (phase space) representation. Each 
pathway has its own wave packet. Obviously, it carries more 
information than necessary for calculating the optical signal (since 
at theend we traceover it). Nevertheless, it reveals theunderlying 
dynamics behind the response function and the factors affecting 
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temperature 8. Denoting the backward wave packets by 
D,(p,q;t), then the response function can be expressed as 

R:?"(t) = JdpJdq D~?o'(p,q;t) G,(p,q) (21) 

where 

with the corresponding wave packet 

S 

For this model, the wave packet is a complex Gaussian function 
in phase space 

and 

( q : ) g  = S,(O), (p:), -m:sJ(0) (16) 
and p and q represent a set of bJ) and {qrJ, respectively. Closed- 
form expressions for p,"(t), 4,"(r), and Pu(t) for 2N - l'th order 
are given in Appendix A. For the third-order response ( N  = 2), 
we have 

q:If2f3(r3,tZ,tl) = - i ~ l [ e l & l ( r l  + tz + t3) - 
elglf2(tz + 23) + f3dZf,(t3)1 (17) 

and 

p : ~ ~ ~ ~ ( t ~ , t , , t ~ )  = - im , [ ; l [ e l~+ l ( t l  + t2 + t 3 )  - 

e lgI f2 ( t2  + 23) + e&2fj(t3)1 (18) 

The functions p,"(t) and g,"(t) represent the contribution of the 
ath path to the average coordinate and momentum: 

U U 

The average coordinate and momentum are of course real, but 
the individual contributions p,"(t) and q;(t) are complex. 

IV. Phase Space Wave Packets Determined by Using 
Backward Propagation 

So far, we have considered Liouville wave packets calculated 
by starting with the initial equilibrium density matrix and 
propagating the density matrix forward in time (from the past 
to the future). However, it may be possible to define wave packets 
corresponding to backward propagation in time. This is done as 
follows: We write eq 5 in the Heisenberg picture 

P ( t )  = t r W )  P(0N (20) 
Calculating V(t)  can be carried out by starting with V(0) (which 
is the unit operator in the nuclear space for the present model) 
and then propagating it in reverse order (the tm-1 period is first, 
and the tl period is last). The initial state of the backward 
Liouville paths is a uniform distribution G(p,q;O) = 1. The final 
state, which was the initial equilibrium state in the forward case, 
is defined by an integration over p and q with the weight function 
G,(p,q), where G,(p,q) is the equilibrium state at the inverse 

Since the uniform initial state for Du(p,q;t) coincides with G,(p,q) 
at infinite temperature, we can evaluate the backward wave 
packets from eq 15 by simply setting 8 >> h cq and by replacing 

DFfc@,,q,;t) = 

f2N-1 with f K - j .  We thus obtain 

exp[iq,a:(t) + ipfi:(t) + c,*(t) + 0311 (24) 
The function DtPA(p,q;r) is a wave packet that starts at the interval 
t K  and ends at the interval f J .  In the present application, we 
always choose K = 2N - 1 and J = 0. The time-dependent 
parameters in this equation are given in Appendix B. As an 
example, for K = 3 and J = 0, we have 

a:)(2(l(t3,t2,tl) = [s[e3fis(t, + t,  + t3 )  - 
elfis(tz + ts) + e 1 M t 3 ) l  (25) 

and 

where 

and A, = S,(O) = coth(@ho,/2). 

V. Optical Signal as an Overlap of Wave Packets in Phse  
Space 

Many optical measurements are conducted using two well- 
separated pulses (or groups of pulses). Examples are p u m p  
probe, birefringence, transient grating spectroscopy, etc. In this 
case, the intuitive description of the process may be divided into 
two steps: The first pulse creates a doorway wave packet which 
then evolves in time. The second pulse creates another wave 
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packet, the window, which is related to the detection process. The 
signal is then given by the overlap of these two wave packets. To 
view the process in this intuitive manner, we need to break the 
description a t  some chosen point along the way, say fJ. We then 
create two wave packets: a forward wave packet which spans the 
timeperiodsfl,t2, ..., tJandis Jthorderin thefieldanda backward 
wave packet which spans the periods fJ+l, tJ+2, ..., fW-1 and is of 
order 2N- 1 - J. The response function is given by these overlap 
of the two wave packets in phase space, 

Gtflt,-l (4 ,... cl(”’;t,,t,-l’“’’fl) (30) 

This decomposition, which is only possible when using the density 
matrix in phase space, provides a powerful starting point for 
developing semiclassical approximations for time-domain nuclear 
spectroscopies. Obviously, the former expressions are special 
cases of this result with the choice J = 0 (eq 24) or J = 2N - 1 

We can break the theoretical description at  will at  any point 
(fJ) during the course of the time evolution (provided the laser 
fields do not overlap at  that point), and rigorously recast the 
response function in terms of an overlap of two wave packets. 
Applications of this representation were made to the bond breaking 
in the photodissociation of ICN as measured by pumpprobe 
spectroscopy5 and to spectra solvated dyes.3J2 Further appli- 
cations to other techniques such as multiple ultrafast trains of 
pulses?.* spectroscopy with phase-controlled laser?J3 coherent 
Raman, and grating spectroscopies should be most valuable. 

(eq 15). 

VI. Depbasing Processes and Reduced Wave Packets 

We shall now include relaxation of the optically active modes. 
This is commonly taken into account using the Langevin equation 

4 s  + Ts4s + =LAO (31) 

where h(f) is the delta correlated noise (Le., Cf(t)f( t?)  = 
Tb(r-f)/p). We note, however, that quantum coherence between 
the bath and the vibrational system may be important at  low 
temperatures. This effect cannot be taken into account by the 
classical Langevin equation, and therefore we explicitly introduce 
a microscopic model for a bath, which may represent optically 
inactive vibrational modes, phonons, solvent modes, etc. We 
assume that the optically active vibration is linearly coupled to 
an oscillator bath with the coordinates, the momentum, the mass, 
and the frequency of the kth bath oscillator for the sth mode and 
is given by 5, pi, mi, and w i ,  respectively. The multimode 
Brownian oscillators’ Hamiltonian is then expressed as 

(32) 

where H is given by eq 1. Using path integral techniques, we can 
trace over the bath degrees of freedom and obtain a reduced 
description using the system qs and ps coordinates alone.4 The 
final expression of the reduced forward wave packets is the same 
as eq 15. The only difference are the expressions of the correlation 
functions, which are now given by 

L 

R 

t ,  t 
Figure 3. Schematic expression of a time evolution of the system. In 
each figure, the solid lines represent a time evolution of a bra and a ket 
of the density matrix of the nuclear system, whereas the half-circles 
represent phonon absorption-emission proccsses. The reduced wave 
packets, eq 15 with eqs 33 and 34, involve multiphonon emission- 
absorption processes as shown in Figure 3a. The factorized wave packet, 
eq 30 with eqs 33 and 34, however, breaks the process into two segments 
and neglects correlations of photon interaction processes at time tJ ,  as 
shown in Figure 3b. 

and 

(34) 
with 

Although the wave packet here has the same form as the 
previous case of the isolated system without the bath, its physical 
significance is profoundly different. In the present case, the wave 
packet provides a reduced description of the system where the 
bath degrees of the freedom have been traced over, whereas the 
wave packets in the previous section represent a complete 
description of the system. To explain the limitation of this picture, 
it proves convenient to write the density matrix in the coordinate 
representations. We define p(q,q’) = tr,{p(q,q’;x,x)]. Equations 
14 and 23, etc., can be obtained by the Wigner transformation 

The time evolution of p(q,q’) involves multiphonon emission- 
absorption processes as shown in Figure 3a. In the reduced 
expression of the system, the phonon emitted by the bra (or ket) 
of the density matrix may be absorbed by ket (or bra). This is 
represented by the half-circle connecting the bra and the ket 
wave function of the system. As shown in Figure 3a, the system 
continuously interacts with the bath throughout the process. In 
eq 30, the wave packets are factorized at time t = t ~ .  Since the 
wave packets in the right-hand side eq 30 are in a reduced space, 
the process described by this factorized form neglects certain 
correlations between the system and bath (Figure 3b). This means 
that it is not generally possible to factorize the reduced wave 
packet. However, it may be possible to do so for some limiting 
cases. To find conditions for the factorization eq 30 to hold, we 
substituted eqs 15 and 24 into eq 30 and compared the terms in 
the exponent. We find that the following conditions need to be 



12600 The Journal of Physical Chemistry, Vol. 97, No. 48, 1993 Tanimura and Mukamel 

satisfied by eq 30 to hold: (i) sufficiently high temperature of 
the environment, Le., coth(haws/2) = 2/haws, and (ii) ohmic 

oscillator motion is overdamped. Under these conditions, the K-J-I>2m K-J 

correlation between the system and the bath is negligible and can 
be factorized. We may then apply the Langevin equation to m i l  /=2m 

K-J>2m K-J 
ay-ly-. ’ fJ+l (t) = E $ [  

eK-2mks( ‘K+l-l) - 
dissipation with strong damping, TS(w)= ys >> ws, so that the m=O I=Zm+1 

c K - 2 m f i s ( c  ‘K+l-/)l ( B 2 )  

describe the motion of the relaxation processes. Moreover, under 
these conditions the momentum may be dropped out of the 
description since it is always in equilibrium throughout the process. 
We can then replace the phase space integration JJdp dq by a 
simple integration over the coordinate alone, Jdq. This corre- 
sponds to the vibration using the Smoluchowski equation. If 
these conditions do not hold, we have to keep the bath degrees 

5, K - D l m  K-J 

msws2 m=O /=2m+ I 
(t) =-[ eK-2mMs( ‘K+I-l)  - b:x.(“lv..&+l 

K-J-l>2m K-J 

eK-2mMs(&m ‘K+l-/)l ( B 3 )  
m= I 

of freedom in our description and cannot make the factorization 
in the reduced space. [:As K-D2m K-J 

c ~ ~ K - l v 4 1 + l  (t) = -[ €K-2mkr( ‘K+l-l) - 
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Appendix A Forward Wave Packets 

The Kth-order forward wave packets are given by Ms( ?K+I-l) - eK-2mMs(&m fK+l-l)lz (B4) 
1=2m+l m=l 

Gf,,t,,...t,(PS,qs;t) ( K )  = 2;; 1 d x e x p [ - l  (Ps )g(% )g 2(4 ,2 ) ,  x and 
(K-J-1)/2 (qr - q ; I 8 2 ~ J K ( t ) ) ~  - - 1 (P, - p:‘”28-,fK(t))2 + c l , t 2 , . . , t p ]  - cK,tK-l (...( t I + p  = -iw:g ‘K-2mtK-2m - 

m=O 
2(P,2) ,  

(K-J-1)/2 (K-J-l)/2 (K-J-1)/2 

‘K+2-2mEK+2-2k 
m= + I  

K+2-2m 
T &  where dK-1.tK--2ml(tK-2m) - 

m=O 
D 2 m  K K+3-2m 

[dK+I-utK-u( ‘K+I-l) - dK+,-utK-u( ‘K+I-l) - 
1=2k /=2k 

K+1>2m K+3-2m K+2-2m 

&ut 1-1-2 ( ‘K+l-l) + dK-ueK-l-u( ‘K+I-l)l (B5) 

q;I+(Zv-*K(f) = -i&l [ ~ 2 m + l g ~ t ~ + ~ (  C ‘ 1 ) -  
m=O 1=2m+l 

m= 1 €2*1gbf-2ml(2 1=2m t/)l (‘42) 1=2k-1 P 2  -1 

m=l  e 2 - 1 5 t , l ( ~  1=2m t / ) l  (‘43) 

D 2 m  K Appendix C: Alternative Form of Response Phase Function 
Ps s s  t2m+1g1.tm1( ‘ 1 ) -  We first introduce -*I+Zv.,tK(f) = -im 5-l [ 

m=0 1=2m+l 

(C1)  
K+1>2m SA‘) Ms(t )  = - 

SSO) 
and 

(K-l)/2 (K-1)/2 

QI,,,,,... = -iUig C €2m+l t2m+l -  d2m+l tb ( t2 j+ l )  - ~ i ( t )  E 1 - m s w , ~ X d t / x s ( t ?  = 
m=O m=O 

W,2TS(W) 
cos(wt) ( C 2 )  

(K+1)/2 (K-1)/2 2m-2 2m-1 mdw 

m=k+l =2 b 2 k  
& e2m-1E2k-1 [dut2-l(& ‘ 1 )  - d2k:,,t~-,(c ‘ 1 )  - Jk (w,z - w2)2 + w2?,2(w) 

2m-2 2m-1 Equation 10 can be rewritten as 

&(t)  = *iX,[t - Xdt’M,’(t?] + du-1t2k-1( 4 )  + du-lf2k-2( c 4)l (‘44) 
b2k-1 P2k-1 

and A:&d”xdt”M,(r’? ( C 3 )  

(A5) where we put Asz = 2Xsm~s2Ss(0)/h.  

M i ( ? )  = Ms(t) ,  then 

g’:(t) = *iX,[t - xdt’M,(t?] + 

At high temperatures (haw, << l),  we have As2 = 2As/ah and 
(q,2), = SS(O), (P,2) ,  = -M2gs(0) 

Note that we set €0 = -. 
Appendix B Backward Wave Packets 

The Kth-order backward wave packets are given by 3& d t ~ ~ d f ” M S ( t ’ l )  ( C 4 )  
Df~~K- l ,~ . , , t~ l (P~ ,qs ; t )  WJ) = exp[iq s s  atK”K-l*”’*tJ*l (t) + Bh 
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