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The stationary nonlinear reflection and the time resolved four wave mixing signal from a 
molecular monolayer are calculated using Green function techniques. Cooperative resonant 
nonlinear response found in small aggregates suggests the existence of coherence size of order of 
optical wavelength. A new peak in the nonlinear reflection spectrum is predicted, which is 
missed by the local field approximation. For an infinite two dimensional molecular monolayer 
with transition dipole moments in the lattice plane, the momentum-dependent two exciton decay 
rate is found to be larger than the sum of the single exciton radiative decay rates, as predicted 
by the local field approximation. 

1. INTRODUCTION 

Studies of optical properties of confined Frenkel exci- 
tons in molecular nanostructures are currently drawing 
considerable interest. l-l4 These follow earlier developments 
in the investigation of Wannier excitons in semiconduc- 
tors.‘5-‘7 While the cooperative radiative decay of a single 
exciton is well studied, ‘l-l3 the radiative decay of exciton 
pairs is less understood. Pump probe experiments have 
been commonly used to monitor the one exciton to two 
exciton transition in semiconductor quantum wells. 18-21 
Such measurements were reported recently in molecular 
aggregates.4” Since during the delay period between the 
pump and the probe the system is in a single exciton state, 
this technique provides information on single exciton (but 
not two exciton) dynamics. On the other hand, time re- 
solved four wave mixing (FWM) has been used to study 
exciton-exciton interactions and two exciton dynamics in 
semiconductors. 22 These experim ents are commonly mod- 
eled using a simple nonlinear Landau-Ginzburg- 
Schriidinger equation, 23*24 which can be derived from the 
local field approximation (LFA) with some additional as- 
sumptions. This theory does not treat the radiative lifetime 
of two exciton states and does not provide full account for 
cooperative effects and exciton coherence size. 

optical wavelength, and is independent of the lattice size 
when it is much larger than the optical wavelength. We 
calculate the stationary. nonlinear reflection and find a new 
peak which is missing in the LFA and a simple three level 
model. We also calculate the time resolved FWM and 
show how it can be used to study two exciton dynamics. 
For our geometry, the two exciton decay rate is found to be 
1.76 times larger than the sum of single exciton decay 
rates, while the LFA predicts it to be equal. Conditions for 
the formation of nonradiative surface excitons are speci- 
fied. 

In Sec. II we summarize the GFE for third order non- 
linear response function. In Sec. III we apply the general 
formulas to a two dimensional monolayer and discuss the 
nonlinear cooperativity. We calculate and analyze the 
steady wave nonlinear spectrum in Sec. IV. The time do- 
main FWM signals are calculated and analyzed in Sec. V. 
Conclusions are given in Sec. VI. 

II. REAL SPACE GREEN FUNCTION EXPRESSION 
FOR FOUR WAVE MIXING 

Recently, Chernyak and Mukamel have derived a 
Green function expression (GFE) for the third order non- 
linear response function of an assembly of two level sys- 
tems with arbitrary geometry, which properly takes into 
account retardation and cooperative effects. They treated 
the electromagnetic field classically, and employed path 
integral techniques to show how the effects of quantum 
nature of electromagnetic field may be incorporated.12 In 
this paper we apply the GFE to study exciton cooperative 
effects in a molecular monolayer. We find that for resonant 
excitation, the nonlinear response function is proportional 
to the lattice size provided it is much smaller than the 

Consider an assembly of two level molecules with ar- 
bitrary geometry. We denote the position, the resonance 
frequency, and the transition dipole moment of molecule m 
by R,, a,, and pm. The Hamiltonian is”*‘2 

H= 2 f&,,B;B,+ 1 J,,B,fB,- d3ri%r) -6’ (r) 
m m#l s 

+Hmd+27r 
s 

d3rl$ (r) j2. (1) 

BL and B, are the exciton creation and annihilation op- 
erators for molecule m. They satisfy the commutation re- 
lations 

“‘Also at University of Rochester, Department of Physics, Rochester, 
New York 14627. 
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[B,,B,+l=(l-2B,+B,)6,,. (2) 

Jmn is the dipole-dipole interaction between molecules m 
and n. We will use the point dipole approximation in this 
paper, therefore 
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Jmn= (1 --s,,) 

R2,,(~~‘~Cln)2-3(~m,.iUm)(R,,.~~) 
X- RS , (3) 

mn 
where R,, - - R, - R, . We use the Heitler-London form of 
the dipokdipole interaction, which implies that the exci- 
ton bandwidth is small compared with the optical fre- 
quency. This is an excellent approximation for typical mo- 
lecular assemblies. The polarization operator is given by 

P(r)= c f’,,J(r--R,), 
m 

with 

(4) 

k=p,uL+B,f>. (5) 

Hmd is the Hamiltonian of radiation field. 9 (r) and 
6’ (r) are the transverse parts of the polarization and elec- 
tric displacement. 11Y12 

The GFE for the linear polarization in the frequency 
domain is’* 

P;“(w,) = - c ri;; (w,) . EEt(o,), (6) 
m 

where Ezt is the external field, and the linear response 
function is 

~~~(O,)=PnClm[~~!nm(Ws)+~~(--Ws)l. (7) 

The Gm,(w) matrix represents the single particle Green 
function,‘2”3 

I 

r f 

&,m= (G(w) . Cl-$(m) - [G(w) +G*(--a> lF1)mn 
(8) 

where G(w) is the material Green’s function 

G,,(w) = (w-H&q),,‘, (9) 

and the matrix elements of Ho are 

U-4olmn=k%z,+Ji,z,. (10) 

7 is a small positive number which is set to v=O at the 
end. In the rotating wave approximation (RWA), Fq. (8) 
yields 

q&d = [W-@%4 ffqlr;;nl, (11) 
with IFff(w) being the effective Hamiltonian matrix 

ftb’) =%nhn,+J,,+&,,(w). (12) 

c#J~~(o) is the material self-energy matrix’2 resulting from 
the interaction with the transverse electric field. Its real 
part A,, represents a level shift (for n.= m this is the Lamb 
shift and for n#m this is the radiative correction to inter- 
molecular interactions). Its imaginary part Fmn represents 
radiative decay. The diagonal elements $I,,, diverge for the 
point dipole model. Their evaluation thus requires using a 
more realistic model in which the nth molecule is charac- 
terized by a polarization density p,( r- R,) with 
Jd3r p(r) = 1 [the point dipole limit is recovered when 
p,(r-R,) =S(r-R,)]. We then get 

Am(a) oh -irmrt(~)= J J 
dr dr’ pm(r-R,)p,(r’-R,)pm. 3:I (r-rr,ti) .pu,. (13) 

9’ is the Green function of the transverse electromagnetic field in vacuum 

Lffl bw)= J $& (l-T)exp(&.r)=-[ (ft)*+~~] exp[i(~‘c)rl+vv~e (14) 

It is possible to use the polarization density p,Jr -R,) (rather than the point dipole approximation) throughout.r2 In the 
present calculation, we shall only use it for evaluating the self energy. All other quantities will be evaluated using the point 
dipole approximation. 

For the third order polarization, we have’* 

Pk3’(@s) =-&t j- d@l j- da2 j- dm3 fG,--WI---wz-w) ,n,z,m, d~~,,,m,(o,;ol,w2,w3)E~~(~~)E~~~~2)E~~(~3), 
(15) 

with the nonlinear response function 

$3’ 
m~,rn~t+s;~l~~2~~3) = $, Cl~m,~rn,Clrn,[~~.,(0s)~,,,( -W3)~n,,m2(W2)~~,,,,(Ol)~n,n”(0, +02) 

(16) 
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Note that in this equation, the first single particle Green’s 
function is &’ instead of G [Eq. (8)], 

~~,,=(Cl-[G(o)+G*(--w)l y%~)3-‘*Gb)),,~ 
(17) 

where the G(o) matrix is given in Eq. (9). Equation (16) 
Reneralizes the result of Ref. 12 in which we assumed 
G’=G, which is justified in the RWA. ?;n~n,,(W1 +wZ) is 
the two exciton scattering matrix25 

~S;,,,,,(wl+W2)=-2[F-1(01+W*)]n,n”, 

~n’ndq+~2) 

i 
=- 

277 
dco’ ~n,n,,(~‘)~~;2’n,,(~1+~Z-~‘). 

(184 

(18b) 

Equations (15)-( 18) are derived in Ref. 12. We will refer 
to them as the Green’s function expression (GFE). 

An alternative way for calculating the nonlinear polar- 
ization is by using equations of motion. The Heisenberg 
equations of motion for the B,B+ operators are12 

W,z(t) 
dt- =-if&B,(t)4 c J,,[l--2B,+(t)B,(t)] 

n#m 

-f ; j-dt’ $&t-t’) 

X[B,(t’)+B,+(t’),l--2B,+(t)B,(t)l+, (19) 

where [ , ]+ is an anticommutator. &,(t-t’) is the Fou- 
rier transform of c$,, (CD). The temporal Fourier transform 
is defined as F(w)=Jdteia*F(t). 

The local field approximation (LFA) is equivalent to 
the factorization approximation2’ 

(Bit . ..B.B,,,+,...B,) 

=(Blf)...(B,+)(Bm+,)...(B,). (20) 

From Eqs. (19) and (20), we get the LFA result which is 
the identical to Eq. (16) except that the two exciton scat- 
tering matrix should be replaced by 

~~~,,(w*+W2)=-2(Wl+oz-2n)S,r,rr. (21) 

AS will be shown below, the LFA holds only when o, +w, 
is tuned off two exciton states. 

If we further assume that fi2,, (B,(t) ) and EC,Xt( t) are 
independent of m, i.e., a,=& (B,(t))=+(t), E,ft(t) 
= E(t) (uniform excitation of a homogeneous system), 
and neglect $,,( t- t’ ), we obtain the Landau-Ginzburg- 
Schri5dinger equation which has been used in the analysis 
of four wave mixing in semiconductor nanostructures,23 

d+ 
x=-i[fi+J(k=O)]$(t) 

+ip*Ee”t(t)(l-2jq(t) I*) 
+'LW=O) 1 g(t) 12$(t) (22) 

2 
d 

B 
5= 
s 
k 

/ 

FIG. 1. Momentum dependent single exciton radiative decay rate I’(k) 
[Eq. (25)]. Wq&z3. 

III. COOPERATIVE EFFECTS IN TWO EXCITON 
RESONANCES IN MOLECULAR MONOLAYERS 

We now apply these results to a two dimensional 
square molecular lattice with M lattice points. All mole- 
cules are assumed to have the same resonance frequency fi 
and the same transition dipole moment p. Tr:nslational 
invariance then implies that J,, , &,Jw), and G,,(w) de- 
pend on R, and R, only through R, - R, . We adopt the 
following convention for spatial Fourier transform: 

F(k) = c F(R,)exp( --&OR,), 
m 

(23) 

with the summation taken over all lattice points. 
Hereafter we will use the Markov approximation for 

the self-energy by setting 4 (k,w ) = C#J (k&I>. By doing so we 
replace the polariton dispersion by exciton dispersion.26 
This is usually justified except for k-w/c. The real part of 
the material self-energy $(k,CI) gives a radiative shift to 
J(k) . For a two dimensional molecular lattice in the dipole 
approximation for intermolecular interactions, and when 
k& 1 (k. = n/c), we can neglect the real part of 4 [which 
is in order of ( kg)*(p2/a3>] and obtain (see Appendix A) 

tj(k,Q) N --il?(k), (24) 

2?r 
Md=;;Z - 

@u2-(k$ >2- UC&@) (,u’ )* 

J/g--k” 

xe(ko-k), (25) 

l?(k) is the momentum dependent single exciton radiative 
decay rate. 8 (k. - k) is the Heavisive step function 

Note that l?(k) is always positive. We have denoted the 
projection of the vector p parallel and normal to the lattice 
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mG. 2. Configuration of four wave mixing from a molecular monolayer. 
c,, Q, and K~ are the incoming wave vectors, and K, is the signal. The 
corresponding projections on the plane are k, , k2, k, , and k,. 

plane by ~11 and p* , respectively. l?(k) as a function of k, 
and k,, for ,x= (,u/v*E) (Z+p) is displayed in Fig. I. Here 
a2 and ay^ are unit cell vectors. 

The external field in a general FWM experiment is [see 
Fig. (211 

ETt(w) = PI ETt(o)e’kj’Rn+ i Eyt*( -a)esrkjLRn. 
j=l 

(27) 
Substituting Eq. (27) into Eq. (6), we obtain for the linear 
polarization 

where 

f”‘(k,o)=-p&k,o)+iYC(-k,-co)]. (29) 

Here G(k,w) is the single particle Green function in mo- 
mentum space 

d’(k,w) 3 c &mn(co)e-‘k’Rmn 
R mn 

1 
=w--&J(k) +il-‘(k) +iq * (30) 

The last equality is the result of the RWA, and we denoted 
the spatial Fourier transforms of J,, and i?,,(o) by J(k) 
and F(k,o). 

We next calculate the third order nonlinear polariza- 
tion with wave vector ks-k2+k3 - kl . To that end we 
transform kC3) to momentum space 

ic3)( -k,-co,;--kl--wl,k2q,k3c03) 

= c expE --rk - CR,,--R,) I 
mlm2m3 

xexp[zk* Wm2 --R,)lexpE%* U&-WI 

Xri nmlm2m3(W.~;-W1,W2,W3)., (31) 

We then get 

P(~)(U ) =pi3)(o ),@s~Rn+* * - 3 

.,(a:, =i ,-:ml,- dti2 I da3 ,,,s+6,-.,-:3;’ 

Xfc3’( -ks-us;-kl--o,,k2wz,k303) 

. [E$t(ol)]*E~t(~2)Ee3”(~3), (33) 

where 

fc3)( -k,-co,;-kl-q,k2m2,k3m3) 

and 

Os;--kl--ol,kzwz,k3w3), (34) 

$3)(-b-a . s,--kl--wi,kzoz,k3ws)=~~~~[~(k,,o,>~(-k3,-W3)~!(k2,02)~.(-kl,-Ol)T(-kI+k2,-Wt+W2) 

+~(-k,,--w,)~(k3,W3)~*(-k2,--W2)2S(k1,01)~*(kl-k2,~~-W2)]. 
(35) 

Note that in momentum space, C? (k,o) =&(k,o) and we will replace &” by & everywhere. Here IZp denotes summation 
over all permutations of - kl -q ,k2c02,k3m3. Substituting Eqs. (34) and (35) into Eq. (33), the two exciton resonance 
is contained in 

h+km+w3) = --2/F(k2+k3,a2+a3), 

.~ 

(36) 

where 

F(k2+&3,coZ+co3) =i- c 
1 

d4 k co2+m3-2i2-J(k) +ir(k) -J(k,+k,-k) +zT(k,+k,-k) ’ (37) 
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F is responsible for cooperative two exciton effects in 
x n(3).25 Let us discuss a few limiting cases. 

(i) The local field approximation. 
In k space Eq. (21) becomes 

l?‘)(k2+k3,W2+@3) = -2(w2+w3-252). (38) 

I?(k,+k,,w,+w,) is now independent of M. Therefore, 
x’3’ is also independent of M, and shows no cooperative 
effects. 
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pr(k,o)=--;Im &(k,w). (41) 

The total single exciton density of states is, (w ) is given by 

ill = ---& Im c &k,w). 
k 

In Appendix B we show that the two exciton density of 
states with center of mass momentum k is proportional to 
the imaginary part of F(2k,2w) 

p2(k,w) = -$ Im P(2k,20). (43) 

Note that 

(ii) Off-resonance techniques. 
When ~2+03 is detuned far from any two exciton 

transition, we can neglect all J and I in Bq. (36). f then 
is identical to the LFA [Bq. (38)]. 

(iii) Resonant excitation of small aggregates 
For small aggregates compared with the optical wave- 

length, the energy splitting of single exciton states 
( ti,u2/a3M) is much larger than the radiative broadening 
I’(k=O) =My/2,13 where y= (4/3),u’(fl/~)~ is the radi- 
ative decay rate of isolated molecule. Let us assume w2 + w3 
is tuned on resonance with a particular two exciton state so 
that 

@~+03=2~+Jbo) +J(b+kj-W, 

and k, has dominant contribution in the summation of Xk 
in Bq. (18). We then get 

%,+k,,~z+d 

Pl(W)=2p2(0,2W) = -g Im F(0,20). (44) 

The FWM signal generated by the polarization 
Pk,(t) can be obtained by substituting Pls( t) into the Max- 
well equations.” The scattered field at position R is 

E,,(R,t) = - x s g ewiotY1 (R-R,,@) . P,(W) 
II 

c CT - c 3* (R--R,,&) . P,(f), (45) 

where is,~zj,+ij,, - Z, / is the central frequency of scat- 
tered signal. For R much larger than the wavelength and 
lattice size (the far field region), we have 

6J2 
-J(kz+k3-~)+iT(k,+k,--ko)l. (39) 

93) is now proportional to M, which is clear signature of 
cooperativity. 

(iv) Resonant excitation of an infinite monolayer. 
When the lattice size is much larger than the optical 

wavelength ;1, the energy splitting of single exciton states 
[order of p2/(a31w)] is much smaller than the radiative 
broadening I’(k) [order of p2/(a2d)]. We further tune 
m2+-m3 to be resonant with the two exciton band. The 
summation in Eq. (36) can then be replaced by an inte- 
gration 

,E (3) is independent of M, and cooperativity is lost. This is 
the natural thermodynamic limit of the present model. 

This analysis suggests the existence of a coherence size 
(order of an optical wavelength) within which molecules 
have cooperative contributions to fC3). In the LFA, 2(3) is 
always independent of M and the cooperativity in case (iii) 
is completely missed. The LFA therefore breaks down on 
resonance. Similar arguments were given in Ref. 8 for one 
dimensional aggregates. The present analysis generalizes 
these arguments to two dimensional nanostructures. It can 
also be easily applied to other geometries. 

(40) 

Using Eq. (32) we obtain the signal 

S= 1 E,,(W) 1 2 

M2c$[ (l-BB) $12 
CTz 

lR12c4 
IPks(t) 126k&ll /c. (47) 

Here ,C=IFL/Iu, and iI/ is the projection ofnR/R in the 
plane. The signal wave vector is li,= (6ic)R whose pro- 
jection in the plane is k,. Note that the signal is propor- 
tional to 1 pk,( t) 1 2. 

IV. STATIONARY NONLINEAR REFLECTION 

In a nonlinear reflection experiment, a single beam 
with wave vector K and frequency o is incident on the the 
monolayer. The polarization with wave vector k (the pro- 
jection of K in the plane) to third order in the external field 
is 

Pk(m) =,@‘)(k,w) .Eext 

+RC3)(kw;-k--o,kw,kw) . (Eext)*EeXtEeXt. 

(48) 
It will be instructive to relate the Green function in- 

troduced here to simple properties of the system. The den- 
sity of single exciton states with momentum k is 

The reflected signal S is (up to a proportionality factor) 

S@,o) = l&(m) 1 2=s,,(kd +S,Rtk,m), (49) 

J. Chem. Phys., Vol. 100, No. 4, 15 February 1994 

Y* (R-R,,@) N-S (l-I%)exp z *E (R--&R,) . 1 
(46) 
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__- I.,... 2 
-3 -2 -1 0 1 2 

IO - 0)/W 

-- 
.-3 

FIG. 3. Single exciton density of states of a two dimensional molecular 
monolayer calculated using Eq. (42). 

where SLR(k,o) and SNR(k,u) are the linear and nonlin- 
ear contributions to the reflection signal, 

SLR(k,m)=jf(l)(k,m) .Eext12, 

SN,(k,w)=2 Re{[f(‘)(k,o) ~Ee”‘]*~f(3)(kw;-k 

--w,kw,ko) + (Eat) *EextEext) + O(E6). 

(50) 

The nonlinear part corresponds to heterodyne detection of 
the signal where the linear reflection serves as the local 
oscillator.27 By substituting Eqs. (29) and (34) into Eq. 
(50) and invoking the RWA, we find (up to an overall 
proportionality factor) 

&R(b) =p41 ‘f&d 12, (51) 

f&R(k,w)=p61&k,W)14Re[&k,w)T(2k,2w)]. 
(52) 

We have performed numerical calculations for a two 
dimensional infinite square lattice with unit cell vectors ax^ 
and uj?, and kc=LI/c=2?r/( 1000~). All molecules have 
the same in-plane transition dipole moment 

p=$ w-l-j?. 
We further assume nearest neighbor interactions, so that 

J(k)=-TV[cos(k~)+cos(k,,a)]. (53) 

Here k is the two dimensional in plane momentum vector, 
and 4B’ is the exciton bandwidth, with 

-1.2’ f , I 
-2.2 -2.1 -2 -1.9 - 

(0 - 0)/W 

.8 

FIG. 4. The frequency dependent linear &a(O,w) (dash) and nonlinear 
5’~a(O,o) (solid) reflection signal [see Eq. (SO)]. Here we plot the neg- 
ative linear signal and normalize it to have the same height as the negative 
peak of the nonlinear signal. (A) is the result of LFA. (B) is the result of 
GFE formula. The vertical scale shows the relative magnitude of the 
signal. T’he nonlinear reflection signal from an anharmonic oscillator Eq. 
(55) with Q,-CI=J(k=O)= -2W, y=2lY(k=O), $=3.99/1, andg/B’ 
-0.001 coincides with the LFA curve [solid line in (A)]. 

(54) 

The single exciton density of states PI(w) [Eq. (42)] for 
this geometry is displayed in Fig. 3. 

Before calculating the signal using the GFE, we con- 
sider first the local field approximation, [Eqs. (35) and 
(38)]. The linear SLR(O,W) (dash line) and the nonlinear 
SNR( 0,~) (solid line) reflection spectra are shown in panel 
(A) of Fig. 4. This is a typical spectrum for a three level 
system shown in Fig. 5 (B) . The negative peak represents 
bleaching of the ground state to one exciton state transi- 
tion. The positive component represents induced reflection 
caused by the one exciton to two exciton transitions. 

The LFA result can be reproduced by the following 
anharmonic oscillator model: 

H=&C+C+~ (C+-)2C2 
2 * (55) 

C and Cf are the Bose operators 

[C,@] =l, (56) 
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FIG. 5. (A) Energy level scheme of a molecular monolayer. The system 
has a ground state IO), M single exciton states 1 e), and M(M- I)/2 two 
exciton states Ifi. Due to momentum conservation, only one single ex- 
citon state, and those two exciton states with center of mass momentum 
2k need to be considered in a given nonlinear reflection experiment. For 
impulsive FWM, two single exciton states (with momenta k, and k,), and 
those two exciton states with center of mass momentum 2k2 need to be 
considered. (B) Level scheme for the anharmonic oscillator model 
Es. (55). 

and g.is a diagonal anharmonicity. The eigenstates that 
contribute to ,tc3) are the ground state (energy 0), the first 
excited state (energy a,), and the second excited state 
(energy 251c+g). The level scheme is shown in Fig. 5(B). 
The imaginary part of molecular self energy is taken to be 
Im #= -iy/2, and the polarization operator is 

kp(c+c+). (57) 

Using the GFE for finite g” and the RWA, we obtain the 
linear and nonlinear reflection signal (up to a proportion- 
ality factor) 

[$14 

~~R(~)=~~~1)~~)~2=10~~o+iy,2,5’ - (58) 

&R(a) =Re[ (f(1))*f(3)(a)] 

4g(2w-2aJ-g) Ip’ 1 6 
b=~co-flo+iy/2~4~ ~20--2floTg+iyIz* 

(59) 
To compare with the two dimensional monolayer, we 
chose Slc=n+J(k=O), y=2r(k=O). Taking p’=p, we 
find that &R(a) is equal to that of the monolayer. Taking 
g/V=O.OOl, the line shape of &R(o) coincides with that 
of the monolayer under the LFA [Fig. 4(A) solid line]. 
However, we have to take ~.‘=3.99~ to fit the intensity. 
Fitting the linear and nonlinear signal requires different 
values of parameter &‘. This shows that although the an- - .T~.. 
harmonic oscillator model can reproduce the linear and the 
nonlinear reflection spectrum in the LFA, it cannot ac- 
count for their relative magnitudes. 

We next consider the full GFE expression [Eq. (52) 
together with Eqs. (30), (36), and (37)]. The k summa- 
tion in Eq. (37) is replaced by an integral [Eq. (40)]. The 
result [shown in Fig. 4(B)] is qualitatively different from 
the LFA. .There is a new negative peak at the band edge. 
Obviously the real system has many two exciton states and 
cannot be represented by a three level model. The system 

!- 

I I I 
-2.2 -2.1 -2 -1.9 -1.8 

(0 - 0)/W 

FIG. 6. The two contributions to the nonlinear reflection signal JZq. (60). 
Shown is the 5rst term (dashj, the second term (dashdot), and their sum 
(solid). 

looks like a collection of M anharmonic oscillators with 
different damping rates, and cannot be represented by a 
single oscillator. In order to trace the origin of this addi- 
tional negative peak, we. rewrite Eq. (52) as 

‘44 Ww) I” 
%R&,o> =-- ,F(2k,2w) I 2 . Re Ww)Re WX2w) 

W6 I G(b) I 4 - lF(2k,2w) l 2 * Im GOw)Im FWGw). 

(60) 

Note that the second term is proportional to the product of 
single exciton density of states with momentum k and two 
exciton density of states with center of mass momentum 
2k. Choosing k=O, we plot in Fig. 6 the first and the 
second terms in the above equation (dash and dash-dot 
curves, respectively). Their sum yield SNR(k,w) and is dis- 
played in solid line.. From the figure with see that the ad- 
ditional negative peak is caused by the second term of Eq. 
(60). Figure 3 shows that iji(~)==-(2/?r)ImF(0,2w) 
increases sharply when w approaches the bandedge from 
the red side. This causes the additional negative peak at the 
bandedge. Therefore, this additional peak is caused by the 
sharp edge of two exciton density of states (with center of 
mass momentum 0) at the bandedge. The sharp edge of 
two exciton density of states is not a sufficient condition for 
the appearance of the additional peak. To demonstrate 
this, we will use a Kramers-Kronig representation for- the 
nonlinear response function2’ 

J. Chem. Phys., Vol. 100, No. 4, 15 Fetiruary 1994 
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



= F $ j- de’ j- de j- de” ic(~‘,~,~“) 

1 1 
X 

[ CD*-Elfir] q+02-e+jrl 

1 1 
X a,--- 12” i- i7j + -w3 - e” - iq 1 I +c’.c’. , (61) 

where c’.c’. denote sending Wi-, -ui,i= 1,2,3,s and then 
taking complex conjugation, and 

XPS(E’--H)Ppg]. (62) 

In Appendix C we calculate K(E’,&‘) for our model [E& 
(CWI. 

We will now compare the nonlinear reflection signal 
from the monolayer with the prediction of a simple statis- 
tical model which uses the actual one particle and two 
particle density of states, but assumes that $1 transition 
dipoie matrix elements are identical, i.e., (e 1 PI 0) =p and 
(fl PI e) =p’ for all single exciton states { 1 e)) and two 
exciton states { 1 f)}. For this simple model we have 

where rq,( E’,E,E”) corresponds to the nonlinear resfionse of 
a two level system. Substituting pl( E) and pZ(e) by 
-(l/z-)Im G(O,e) and -( l/?r)ImF(O,e), using K from 
Eq. (63) to Eq. (61), performing the integration over E’, E 
and E”, and substituting ?(‘I from EIq. (61) in Eq. (50), 
we obtain the statistical nonlinear signal SNRs, 

(644 

(64b) 

4 t2 

s&&4 = Lco-$72+r~12 (a--EdWWU~)l, 
(64~) .- 

where Eo=a+J(k=O) and JYo=lY(k=O). ShRs contains 
the contribution of single exciton states { / e)) while S& 
contains the two exciton contribution { 1 f) ). To estimate 
these terms, we neglect effects of retardation in exciton 
scattering. Substituting G from Eq. (9) to Eq. (18b) we 
get in the resonant region E”,“t(t)=E~t(t+7)eiK1’Rn+E~t(t)e’K~’Rn+c.c. (68) 

(65) 

where 4 W is the bandwidth. For P’$-,Q we have 
s&%&S * Substituting Eq. (65) to Eq. (64)) we obtain 
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We consider the signal generated in the direction 
k,s2k2- kl . We further assume that both excitation 
pulses are short compared with the exciton radiative life- 
time l/l?(k), we therefore set k2=k3- and Eyt(o) 
=Ee3xt(W)~E~t,E~t(w)=Eelxte--ioT in Eq. (33), then 

16W2 
X (4W)-’ In (w-Eo)2 1 1 
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(66) 

We can see from Eq. (66) that there are two peaks (one 
negative and the other positive) in the frequency depen- 
dence of SNss(o) [just like Fig. 4(A)] with no additional 
peak. Therefore, not any system whose two exciton density 
of states has a sharp edge creates the additional peak in the 
nonlinear reflection spectrum. 

In contrast, if we use K( E’,+? ) for the real monolayer 
[Eq. ~(ClS)] to evaluate the nonlinear signal we obtain Eq. 
(60). Denoting the first and the second terms in the right- 
hand side of E!q. (60) by S# and S&T, and using Eq. 
(65), we have 

$g(o) 
4W(w-E,) 

w4w)Vb-Eo)2] * 
(67) 

Equations (66) and (67) show that although there are two 
peaks (one positive and the other negative) in the fre- 
quency dependence of both SNRs and S$$ , this dependence 
is quite different. The reason can be seen from Eq. (C15). 
The matrix elements of the polarization between one and 
two particle states of the real system are nonzero only for 
two exciton energy E with 1 E-2Eo I- ro, while for the 
statistical model they are assumed to be the same for all 
states. To get the exact frequency dependence of the signal 
with the additional peak, one should use the exact expres- 
sion for K [Eq. (ClS)] which gives the term S$$ in addi- 
tion to S& in the signal. Note that neglecting effects of 
retardation in the two exciton scattering matrix which is a 
good approximation for lo-Eel -Lyon jJ(k=w/c)--J(k 
=0) 1, does not imply that we neglect radiative decay ef- 
fects of two exciton states. This can be seen from Eq. 
(Cl 5) : the expression for K contains besides P(E) the term 

1 1 
E--E’-EO+irO ’ e--E’r-EO+iI’O’ 

which depends on the two exciton state energy E and con- 
tains the radiative damping rate ro. 

V. IMBULSlVE FOUR WAVE MIXING 

In this section, we apply the GFE to a time domain 
FWM experiment.22,23 Two laser pulses centered at times 
tl = -T and t2=,0 with frequencies Zr ,W, and wave vectors 
K~,K~ interact with the sample. The external field is 
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carry out the w2 and w3 integrations analytically, and per- 
form the Fourier transform with respect to o,, to obtain 
(up to a proportionality factor) 

PF’(t7) 2 s ’ ,,exp[-ji(~+J,-iiT,)(t+~)le(t+7) 

X s da1 
I-exp[ -i(q-&)(t+T)] 

%-a 

X 
exp(iqT) 

q-22n-2J2+2ir2 * %&,q), (69) 

where f&=2~+J,-i~,+J~+il?,. We have used Ji,l?i to 
denote J( ki) , l? (ki) , i= 1,2,s in the remaining of the paper. 
For comparison, in the LFA we have 

)P~3’(t,7>o)j2=4 
e-2r,Te-2rg 

* IDI2 
X 1 J~+il?~+Js-iir,-2(J2-ir2)e~Dt~2, 

(704 

[p$f)(t,q-(0) 12=16e-2rs%~-4r21rl 1 J2-ir2j2. k$! “, 
I I 

(7Ob) 
where D=J,+iI’,-2Jz+2iI’,+Js-jr,, ri=I’(ki), 
i=1,2,s, and to=t- 1~1. 

We performed numerical calculations using the same 
geometry of -Sec. IV. Since k2a(l, we approximate 
F(2k,,w,) in Eq. (69) by f‘(O,wl). The tiine integrated 
FWM signal is 

S(T)= dtlpi;‘(t,?-) 12. (71) 

Equation (69) hblds for both positive and negative delay 
times. Since the accessible eigenstates and the relevant dy- 
namics are very different for negative and for positive delay 
7, we will analyze them separately. 

First we consider positive delay (T> 0). Equations 
(69) and (70) give 

lPc)(t,~) 12=e-2rlrlP~3)(t,0) j2, J 
which yield 

(72) 

S(7) -exp[--2r1T]. (73) 

Therefore, from the measurement of S(T), we obtain the 
wave vector dependent single exciton radiative decay rate 
2r(k). 

This result can be understood using Fig. 7(A) which 
shows that the sample interacts with E$’ once creating a 
state 10) (k, I. Here I k,) = B< IO) is a single exciton 
eigenstate with momentum kl. Bk, Bkf are exciton cre- 
ation and annihilation operators in momentum space,6 

Bk= f z BmeFzkaRm, M-4 

(74b) 
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FIG. 7, Double-sided Feynman diagrams representing time domain four 
wave mixing for impulsive excitation and in the rotating-wave approxi- 
mation. The left and the right vertical lines represent the ket and the bra 
of the density-matrix, respectively, and the time runs from bottom to top. 
(A) positivedelay (T>O). (B) Negativedelay (7~0). IO), le), and If> 
denote ground state, single exciton states, and two exciton states (Fig. 5). 
Note that in (A), the right diagram is zero for a monolayer due to the 
momentum selection rule. 

Then the exciton decays radiatively with rate 21Y1. After a 
delay time r, the sample interacts twice with ET’ and gen- 
erates the ‘signal. Therefore, the signal is proportional to 
e-2rY Note that the right diagram of Fig. 7(A) contains 
a factor 

This is the usual contribution to the photon echo. How- 
ever, here it vanishes for k,#k,. 

We next analyze the temporal profile of the signal. 
JZqtiation (72) shdws that the signal does not depend on 
the delay time r, although its magnitude decreases expo- 
nentially. The temporal profile of the signal Pk,(f,7 -t 
+ 0) reflects the evolution of the density matrix element 
I k&2) Oq I, where 

I k,kd = B$B; IO). (75) 

In the absence of radiative damping, the signal is propor- 
tional to the probability of the two exciton state 1 k,k,) to 
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0.8 
N 
z= 
3 0.6 
1 

FIG. 8. The FWM signal j&(t,~ -+ +Oj 1’ @q. (69)] vs time t for 
k2=0.4k$(and various values of k, along x direction. From top to bottom 
k,/k,=O,O.W,0.4~,0.55f. Upper panel is the result of GFE. Lower panel 
is the result of LFA. The vertical line shows the relative magnitude of the 
signal. The rise time reflect exciton-exciton scattering, and the decay is 
radiative. 

be scattered into [ k,k,) G B< Bc ! 0), where ksz2kz- kl . 
To get a rough extimate of the scattering time; consider the 
LFA Eq. (70) and set I’,=O,i= 1,2,s. We see that the, sig- 
nal can show an oscillatory dependence on time. Starting at 
t=O, the signal increases and reaches its maximum at 
T=?r/(J,+J,-2JW2) ~-a rr(k2-k,)-2p-2. The rise time T 
is the scattering time from the state 1 k,k,) to 1 k,k,). In 
the presence of radiative damping, the radiative lifetime 
I’,-’ z a2p-2k&1 [see Eq. (25)] is much shorter than T, the 
two exciton state decays before it is fully scattered. 
1 Pk,( f,~ -. +O> I 2 for k2=0.4kay^ and various values of k, 
(&long x direction) are shown in Fig. 8. The signal in- 
creases initially due to scattering and then decays radia- 
tively. 

From Fig. 8 we see that the peak of the signal de- 
creases as kl increases and it eventually vanishes. The rea- 
son is as follow: as kl increases, k, = J-6 increases 
and finally when I k,l approach k,, I? (k,) + co [see Eq. 
(25)] and from Eq. (69) we see that Pif’(r,~) + 0. When 
I k,l > k. the signal vanishes identically. Therefore, when 
j2k2-kll > k. a surface nonradiative,[l?(k,) =0] exciton 
is created. 

We next turn to negative delays 7 CO. Figure 7(B) 
shows that the sample first interacts with Eyt twice creat- 
ing a two exciton states [ k2k2). Due to Pauli exclusion, the 
state 1 k2k2) is not an eigenstate. Then the two exciton state 
decays radiatively. After a delay time -T, the sample in- 

1 
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T 
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C l- 
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Gy%+ ---,---- -I-- 
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wr 

FIG. 9. Time integrated signal S(T) [Eq. (71)] as a function of delay 
time 1~1 for negative delays (T-CO). k,=0.59, /c,=O.32 Solid line--GFE 
formulas; dashed line-the LFA. 

teracts with ETt once, resulting in the signal. The signal 
therefore starts at time --7. The time integrated signal 
S( 7) Eq. (71) representing the decay of two ex&ton states 
is displayed in Fig. 9. The dashed line is the result of the 
LFA, which gives S(r) - exp ( -4r2 I 7 1) , and decays 
slower than the solid line (GFE result). If 1 k2k2) were a 
two exciton eigenstate, then we expect 

s(,-) _e-r’2’W I4 

0.5 I I I 1 
I I 

k&o 

FIG. 10. The momentum dependent two exciton radiative decay rate 
probed by FWM ~(*‘(k,,k,) as a function of k2 (along x direction) for 
k,=0.9 (along x direction). The solid (dash) line is the result of the GFE 
(LFA). The two curve has a constant ratio 1.76. 
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wt 0 
FIG. 11. The FWM signal intensity I&,( t, WT = -5) 1’ Q. (69) vs 
time to-t- IT]. k,=0.5k,$, k,=O.3&? Solid line is the result of GFE. 
Dash line is the result of LFA, which was reduced by a factor of 6.6. 

with decay rate rC2’(k2) which is independent on k, . How- 
ever, since 1 k2k2) is not a two exciton eigenstate due to 
Pauli exclusion, the time dependent is nonexponential. We 
therefore define the average two exciton decay rate as 

rC2’(k2 kl) = 
II 1 

-1 , m 4~~S(rvS(O) . 
0 

Our numerical calculations show that the dependence of 
rC2’(k2,kl) on k1 is weak, which suggests that I k,k,) is 
close to a two exciton eigenstate. y”‘(k2,kl) as a function 
of k2 for kl=0.9 (both k2 and kl are along x direction) is 
shown in Fig. 10. In the LFA, yc2’(kz,kl) is equal to the 
sum of the single exciton decay rates 4l? (k,) and is inde- 
pendent of kl, which implies that I k2k2) is a two exciton 
eigenstate. This is not the case for the GFE, where the two 
exciton decay is faster than the sum of single exciton decay 
rates. Their ratio is approximately a constant 1.76 (see Fig. 
10). 

Now we consider the temporal profile of the signal. 
Since it starts at time / 7 I, we define to= t- 17 I, and the 
LFA gives 

(77) 

which implies that the temporal profile of the signal does 
not change with delay time 7; although its magnitude de- 
creases exponentially. Numerical calculation of the GFE 
result Eq. (69) also shows that the temporal profile of the 
signal change very little with delay time 7 for 
-+2)(k2,kd ITI <2 ( i.e., 17 [ is smaller than twice the two 
exciton radiative lifetime). Figure 11 shows the temporal 

profile of the signal 1 Pkz’ ( fo, Wr = 5.) 1 2. The LFA curve 
has a similar line shape as the GFE except that the mag- 
nitude is larger by a factor of 6.6. 

VI. CONCLUSION 

In this article we have demonstrated a resonant coop- 
erativity of the nonlinear response for small aggregates. 
This cooperativity is lost when the size of aggregate is 
much larger than the optical wavelength. This suggests the 
existence of a coherence size of order of the optical wave- 
length within which the nonlinear optical response is co- 
operative. We found a new peak in the nonlinear reflection 
spectrum which cannot be accounted for by the LFA or a 
three level model. We showed that the new peak is caused 
by the sharp edge of two exciton density of states. How- 
ever, this edge is not a sufficient condition for observing 
this additional peak. We have shown how the time resolved 
FWM signal from a molecular monolayer can be used to 
probe the momentum-dependent two exciton decay rates. 
We found that the two exciton decay rate is larger than the 
sum of the single exciton decay rates, while the LFA pre- 
dicts them to be equal. The temporal profile of the impul- 
sive FWM (for positive time delays) reveals information 
about the scattering and radiative decay of two exciton 
states. Since the radiative lifetime is much shorter than the 
scattering time, the two exciton state decays radiatively 
before it is fully scattered. When I 2k2- kl I > k,, a nom-a- 
diative surface exciton is created. 

Our numerical calculations also show that neglecting 
the radiative damping in the two exciton scattering matrix 
r is a good approximation. The reason is that the exciton 
created has an energy width of I’( k=O), which is much 
larger than the energy bandwidth of radiative excitons 
J( k= n/c) --J( k= 0). Neglecting the radiative damping 
in 1; does not imply that we neglect effects of two exciton 
radiative decay. It simply assumes that the two particle 
states are polariton pairs which scatter as ordinary exci- 
tons. The radiative decay of two exciton states is incorpo- 
rated in the single particle Green function G. 

We have considered in this paper a two dimensional 
lattice. The application to a one dimensional lattice is 
straightforward. In that case, the projection of the wave 
vector on the lattice line is conserved, and ki, i= 1,2,3,s in 
Eq. (33) should denote the projection of K~, i= 1,2,3,s on 
the lattice line (rather than the plane). 

Finally, the commonly used time domain response 
function R nm,m2m3(t3,t2,td defined as29 

P%) = Jam dtl Jam dt2 Joa dt3 ~nm,m2m3(t3,t2Jl) 

XE:;(t-trt2-t3)E;;(<-t2-t3) 

XE:;(t-t3), (78) 

is related to the frequency domain response function [Eq. 
(1511 by 
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R nmlm2mj(t3~t2~tl) #(k,w) = c #mne-‘k’R~~ 

=-& ~dq~dqj-dw3 

R mn 

1 

iol(fl+f,+f3)e-ioz(f~+f3)e-io3t3 =57 s 

co2 

Xe- 

d3ci d-ddq) wi 

xcri (79) 
x [p2- (p l q)2/d ’ M ; sqII ,k+b* 

P 
nmlmZm3(0s;W1,W2,W3), 

Here k is a two dimensional momentum vector in the first 
Brillouin zone, 2, denotes summation over reciprocal lat- 
tice, qn and q’ is the projection of q in the plane and 
normal to the plane. For an infinite lattice, &@,I ,k+b 
-+ (2s-/a)26(ql - k - b). Then wehave 

where w,=w,+wZ+w3 and Z$, denotes the sum over the 
six permutations of mlwl,m2wz,m3w3. The time domain 
response function may be useful in a variety of applications 
to ultrafast measurments. a 
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APPENDIX A: THE IMAGINARY PART OF THE 
MATERIAL SELF-ENERGY 

In this Appendix, we evaluate Im # in the dipole ap- 
proximation for the geometry specified in Sec. III. Substi- 
tuting Eq. (14) into Eq. (13), we have 

X [p2- (p*q)2/$]eiq’Rm;. (Al) 

The two dimensional spatial Fourier transform of 4,, is 

(A21 

O(W)=; ; s dd p(-k-b-d )p(k+b+$ 1 
W2/CZ 

X 
w2/cz- ($ )2-(k+b)2+iq 

p2- td’ * (k+W+$4 I2 
($ )2+(k+b)2 ’ (A3) 

Hereafter we will use the point dipole approximation, i.e., 
p(q) = 1. We further use the identity 

1 

(W/C) 2 - ( >2- (k+b)2+ir7 

1 
=PP 

(dc) 2 -(a’ j2- (k+b)’ 

-i?rs[ (w/c)~- (d )2- (k+b)2]. (A4) 

Here PP denote the principal part which contribute to the 
real part of +( k,w). The delta function in the above iden- 
tity contributes to the imaginary part of 4 (k,w ) . Therefore, 

2T 
Im #(k,o) = -2 c 

(w/c)~~~- [pcl” - (k+b)12- (,d >2[ (a/~)~- (k+b)2] 
f3[ (w/c>‘- (k+b)2]. ~LW 

b 

When w is on resonant, and (w/c)ag 1, only the b=O term 
survives in this equation. Making the Markov approxima- 
tion (w=a), we obtain Eq. (25). 

APPENDIX B: TWO EXCITON DENSlTY OF STATES 

In this Appendix, we derive an expression for the two 
exciton density of states with the center of mass momen- 
tum k. Since the system includes the material and the 
quantum electromagnetic field, its eigenstates are mixtures 
of excitons and photons (polaritons). The exact definition 
of the density of states is as follows. Let P be a projection 
operator projecting the space of states of the joint system 
onto the subspace of two exciton states with the center of 
mass momentum k and with no photons. Then the density 
of states pZ(k,o) is 

I 

pz(k,w) =-k Im Tr[P(w--H+iv)-“PI, (Bl) 

where h is the Hamiltonian of the joint system, and 

s 

+CO 
do p&w) =N2, 032) 

--m 
where Nz is the number of two exciton states with the 
center of mass momentum k. 

To evaluate the density of states p2(k,o), we consider 
the model of interacting bosons with the Hamiltonian 

&,,,=Q c @+ c J&tin+; 2 (t;)“e 
II m+n n 

U33) 
with the Bose commutation relations 
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[e;;e;] =s,,, 
and the polarization 

(B4) 

i(r)= Cjmpm(r-Rm), ~m(r>=Ipl(8m+~), 
m 

(B5) 

with 

1 j-drp(r)Id. 036) 

We get the expression for the density of states p,(k,w) for 
this model with 

.I 

fW 
do p,(k,w) =N. 037) 

-02 
Taking the. g-+ CO limit of pJk,w), we obtain p2(k,w). 
Note that due to the Pauli exclusion of excitons, the fol- 
lowing relation holds _ 

N*=N- 1. u38) 

We can see from Eqs. (B2)-(B8) that we have to be care- 
ful with the g-+ ~4 limit, since 

s 
+CO lim do ,+Uw># dm lim p,(k,w). 

&?-+a --m g-m 
(B9) 

We begin by introducing a basis set in the relevant 
subspace Ip) by 

IP)‘C,+Ck-,IW @lOI 

where I a) is the vacuum state with no bosons and pho- 
tons, and the operators Cr, are of the form 

cp=f ; e--iP’RG. 

The summation in Eq. (Bl 1) is over all lattice sites. Mak- 
ing use of Eq. (BlO) we can recast Eq. (Bl) for p,(k,w) in 
the form of a retarded Green function -I. 

p,(k,o) =$m 
s 

+a 
dt eior 

--m 

x c (j[Cp(t>Ck-p(t>,C~(o)Ckf_p(o)~)~ 
P 

0312) 

Evaluating the correlation function in the right-hand side 
of Eq. (B12) using the technique of Ref. 12, we obtain 

p,(k,o) = -LIm c 
I 

1 

P W  - Ek,p + jrk,p 

+gN-’ 2 

1 
9 

P (“-Ek,p+irk,p)- 

-1 

) 1 ’ 

(B13) 

where 

+,p=2fi+J(p) +J(k-p), 

rk,p=r(P) +r(k-P). 

Using the notation _t 
J’(ka) =k C. 

P 
arAgf+irk 

, ,P 

we can represent Eq. (Bl3) in the form 
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U314) 

(B15) 

u316) 

=-i Im NF(k,w)‘- 
i dF(k,w) 

1 -gF(k,w) ’ .dw 1 * 

U317) 
Taking the g+ CO limit, we obtain from Eq. (B17) 

pz(k,u) = -i Im NF(k,w) +f ln[F&,w) ] 
I I 

. 

u318) 
The first term in Eq. (B17) [or Eq. (B18)] is the density of 
states for noninteracting Bosons, and the second term is a 
correction due to interaction, which vanishes in the ther- 
modynamical N- CO limit. We finally get 

ps(k,w)=-zIm[F(k,o)]. CB19) 

The normalized two exciton density of states is then given 
by Eq. (43). Performing the integration over w in Eq. 
(B17) and Eq. (B18) and taking into account Eq. (B16), 
results in Eq. (B7) and Eq. (B8). The g- CO limit and the 
integration over w do not commute [Eq. j (B9 )]. The reason 
is that if rve first integrate over w, we take into account the 
pole in the second term of Eq. (B 17) at w rg (for large g) . 
But if we first set g+ CO, the pole goes to infinity and does 
not contribute. 

APPENDIX. c: THE KRAMERS-KRONIG 
REPRESENTATION OF fc3) 

In this Appendix we derive an expression for the non- 
linear response function 2(3) *in terms of an integral over 
energies of-intermediate states [Eqs. (61) and (ClS)]. For 
simplicity we take the incident beams to be perpendicular 
to the ‘monolayer (homogeneous excitation). In this case 
we can start with the standard sum over states formula for 
the nonlinear response (see, e.g., Ref. 28) 

= 5 ~cpo~aCPC~m’ [ol-~b+i~co~+w2~r +ir] I 9 c 

1 1 
X 

ws-ea+jrl + --w3-e,--ir] ) 1 
+c’.c’. . (Cl) 

Here O,a,b,c stand for eigenstates (0 denotes the ground 
state) of the joint material-tfield system, P/j are the matrix 
elements of the polarization operator P. We work at zero 
temperature. Note that the-summation in Eq. (Cl) is over 
the eigenstates of the material system only,28 therefore this 
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a=4 +, of two time axis). That means that for each variable 0 we 
introduce a set of variable Oca), a= 1,2,3,4: a=1,3 corre- 
spond to time varying from - CQ to + CO, and a=2,4 to 
time varying from + CXJ -t - 00. The path integral represen- 
tation of Rq. (C6) has the form 

ci,IP(t,,r;ct,>P<t*,~(tl) IO) 
a=1 \-J 

FIG. 12. Fourfold time loop for calculation of the correlation function in 
Eqs. (C6) and (C8), 01 denotes the component of the loop. 

formula gives the nonlinear susceptibility kc3) when the 
electromagnetic field treated classically. c’.c’. denotes 
sending wi+ - wi, i=1,2,3,s and then taking a complex 
conjugate. Introducing the quantity K(E’,E,E”) [see Rq. 
(6211 

Kk’,&?=(2d3 a~c&f&&,$(~~-~bj 
I , 

we can recast Rq. (Cl) in the form Rq. (61) with 
K(E’,E,E”) from Rq. (C2). To evaluate Rq. (C2) using 
Green functions, we present Eq. (C2) in the form 

K(E’,E,&‘) = j-1 j-1 J;: dq dq dq 

x~o~~.(T~+T~+T33)Ij~T*+T2)~~T,)Ijto~ 10) 

X exp ( ie’7, + ifq + ie”T3). (C3) 
Here j(r) is the polarization operator in the Heisenberg 
picture. In our case 

P(O,=P=, c (B,+B,+) (C4) 
n 

or for the boson model [see Eq. (B3)] it is given by 

fi=p c w,+c,+). (C5) n 
We will perform the calculation for the boson model taking 
the limit g+ 00 in the end. Introducing the four point cor- 
relation function G(u~,w~,w~,GJ~) in the frequency domain 

(ol~<t,>~(t,>~~t,>~(tl) IO> 

= j- 2 -** j- 2 27d(W~+W~--w3---wz+) 

XG(~l,‘%,%,d, ((33 
we obtain from Eq. (C3) 

K(E’,E,E”) =G(E’,e-E’,E-E”,E”). (C7) 
To evaluate the correlation function in E!q. (C6) we 

will use. its path integral representation. To that end we 
introduce a time loop consisting of four time axis as it is 
shown in Fig. 12 (note that the Keldysh time loop consists 

=(ij'4'(t4)~(3)(t3)B(2)(t2)~(*)(tl))~. (C8) 

The expectation value on the right-hand side of Rq. (C8) is 
taken with respect to the action 

j= i (-l)a+lp), S(a)=S[A(a),c(a),~(a)], 
a=1 

(C9) 
where S[A,C,a is the action of the material system of 
interacting bosons described in Appendix B [Eq. (B3)- 
(B6)] coupled to the transverse electromagnetic field (see 
Ref. 12). The path integral is over the variables 
A(a’,C’a’,~a’; a=1,2,3,4. Pea’(t) has the form 

W(t)=p x [dna'(t)+q$(t)]. (Cl01 
n 

Switching to the effective action in the same manner as 
was done in Ref. 12 for the Keldysh time loop, we can 
recast Eq. (CS) in the form 

col~tt,>~tt,>P(t,,~cr,> IO> 

= ~'4'(t4)Ij(3)(t3)~(2)(t2)~(1)(tl) 
( 

xexp[t aiI T JTI dt(-1)” 

xpOf+a)c(a)&a) it n n n 1, S$’ (Cll) 
where 5’::) is the quadratic part of the effective action. The 
two point correlation functions with respect to S’$$ in the 
RWA have the form -j(C’a’(t”)~(8)(t’))= s do d2k 

m n z;; ~~ exp[ -iw(t”-t’) 
+zk* (Et,-- %) leaks 

(Cl21 

$+(k,W)=O for a<P, 

t??ao(k,w j = 
1 

w-Cl--J(k) +iT(k) 

1 
-w-Cl--J(k) --d?(k) for a>/?, 

n 1 
Gaa(k@j =w-a--Jtk) +irtk) for a= L3, 

&,,(k,w) = - 
1 

co-a--J(k) -X’(k) for a=2,4. (C13) 
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Here and below we write ( * * *) instead of ( * * *)Q. 
Expanding the exponent in Eq. (Cl l), and using the Wick theorem and some analytical properties of the Green 

functions in Eq. (C12), we obtain 

+ Ltl X-igJL s dr; -**dT;; c ~d,:)tr;)~~~(t~,>(d,:‘t,;,~~~tt,,, t?l”‘.?L 

Switching to the frequency and momentum domain, 
substituting the Green functions [JZq. (C12) J and making 
use of Eqs. (C6) and (C7), and taking the limit g+ CO, we 
obtain 

K(E’,E,E”)=Ko(E’,E,E”) +K2f(E’,E,E”) +Kint(E’,E,E”), 

(C15a) 

1 6qu4r; 1 

K”=-(E’-Eo)2+I-$ - (,qo)2+rp), 
(C15b) 

167&r; 1 
K2f=-(e’-Eo)2+r~ ’ (&t-B0)2+ri 

1 63-/z4r; 
XQE”+E’--E) - (E,-Eo)2+ri 

1 
(e-&-Eo)2+r~ S(E”--E’)9 (C15c) 

1 

I 

1 
(E”--Eo)2+r; ~--&-Eo+ilTo 

1 1 
. -+c.c. +-Eff--EO+irO F(E) 1 , (C15d) 

where IIo=fi+J(k=O), I’“=r(k=O) and F(E) =F(k 
=O,E). This formula was obtained starting with Eq. (Cl ), 
where the a,b,c summations run over IO), { le)}, and 
{If)} (Fig. 5). ~~ corresponds to the choice a={le)}, 
c= IO), b={ I e)) and represents the nonlinear response of 
a two level system coupled to photons. ~~ f corresponds to 
process with c= { 1 f)} for the case of noninteracting exci- 
tons. Therefore, the contributions of K~ and ~~~ to $3) 
cancel since they give ft3) =0 of free polaritons, and only 
the Kint term contributes to jjc3). 
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