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The quantum Fokker—Planck equation of Caldeira and Leggett is generalized to a multistate system
with anharmonic potentials and a coordinate dependent nonadiabatic coupling. A rigorous procedure
for calculating the dynamics of nonadiabatic transitions in condensed phases and their monitoring _
by femtosecond pump—probe spectroscopy is developed using this equation. Model calculatlons for
a harmonic system with various nonadiabatic coupling strengths and damping rates are presented
Nuclear wave packets in phase space related to electronic coherence are shown to provide an insight
into the mechanism of nonadiabatic transitions. The Green’s function expression for these wave
packets is used to explore possible algorithms for incorporating electronic dephasing i molecular

dynamics simulations of curve crossing processes.

I. INTRODUCTION

- Femtosecond nonlinear optical spectroscopies provide a
powerful tool for studying the dynamics of nonadiabatic
curve crossing’ and electron transfer processes.>™* A tremen-
dous insight has been gained by comparing %ualitative
arguments,’ quantltatlve analytical calculations,®® and nu-
merical studies®™!> with experiment. As far as theoretical
work goes, the fully quantum treatment poses some difficult
problems. Quantum nonadiabatic transitions, in the absence
of dissipation, can be studied by a wide variety of numerical
methods based on the wave function.’ ! When dissipation is
important, wave function-based methods are not practical
since the calculation requires the incorporation of many
nuclear degrees of freedom (a bath). Integrating out the bath
degrees of freedom can be performed using path
integral,'®~'® or projection operator' techniques. The path
integral approach is particularly powerful for systems with
harmonic potentials, where the necessary functional integra-
tions can be carried out and analytical expressions for den-
sity matrix elements may be derived.>?° Numerical evalua-
tion of the- path integrals using Monte Carlo methods is
possible.2?? This approach, however, is computationally: in-
tensive and its applicability is still limited. The projection
operator approach is applicable if an interaction between the
system and the bath is weak. It leads to an equation of mo-
tion for density matrix elements (the master equation), which
can be solved numerically.'>**~% The master equation ap-
proach requires the computation of the vibronic eigenstates,
which makes it difficult to apply to curve crossing in systems
such as alkali halides,??” where the potentials and nonadia-
batic couplings are complicated functions of nuclear coordi-
nates, and we need to incorporate many vibronic eigenstates.

An alternative, and perhaps more natural way to solve
the problem is using the phase space representation (instead
of eigenstate expansions) for the density matrix. Sparpagli-
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one, Yan, and Mukamel developed Green’s functron tech-
niques in phase space15 * and semiclassical equations of mo-
tion based on the Langevin equation to treat nonadiabatic
transitions in the weak coupling limit. For a single potent1a1
surface, the equatron of motion for phase space distribution
functions is known as the quantum Fokker—Planck
equation.”®~3 In this paper, we extend the quantum Fokker—
Planck equation to a multistate system with anharmonic po-
tentials and coordinate-dependent nonadiabatic coupling.
The multistate Fokker—Planck equation obtained by Garg
er al.® was limited to harmonic potentials with a constant
nonadiabatic coupling. The present equation provides a mi-
croscopic picture of nonadiabatic processes using nuclear
wave packets in phase space. Like thé master equation, this
approach is applicable only for weak coupling to the bath. In
Appendix A, we generalize this equation to a strong system—
bath coupling by introducing a hierarchy of kinetic
equations.>! > We then present a rigorous procedure for cal-
culating femtosecond pump—probe curve crossing spectros-
copy using reduced wave packets in phase space, where bath
degrees of freedom have been traced out. Previous theoreti-
cal treatments of this problem were based on the wave func-
tions and were limited to isolated molecules (no bath) and
further employed an approximate procedure for calculating
the absorption spectrum.>* We also use our results to exam-
ine possible semiclassical of molecular dynamics (MD)
simulations of curve crossing problems 35-40 The incorpora-
tion of dephasing effects in nonadiabatic transitions in MD is
usually phenomenological. Using the Green’s function of
electronic coherence, obtained from the quantum Fokker—
Planck equation, we can pinpoint the approximations made
in_ current procedures and establish a firm theoretical basis
for possible generalizations. Our procedure is illustrated by
model calculations._The. dynamrcs of nuclear wave packets
and its signature in the pump-probe spectrum are discussed.

The organization of this paper is as follows: the multi-
state Fokker—Planck equation is presented in Sec. II. In Sec.
I, we develop the procedure for calculating the pump—
probe spectrum. Numerical results for a harmonic system are
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presented in Sec. IV. The implications .of our results on mo-.

lecular dynamics simulations of nonadiabatic processes are
discussed in Sec. V.

II. THE MULTISTATE QUANTUM FOKKER-PLANCK
EQUATION

Consider a molecular system With several electronic
states |j) strongly coupled to a single primary nuclear coor-
dinate R. The Hamiltonian of the system is

P? : »
=537 + 2 2 NURNE, | (1)
ik ‘

where P is the conjugate momentum of R. The diagonal .

element U;;(R) is the potential surface of the jth electronic
surface, and the off-diagonal elements U;,(R) with j #k rep-
resent the nonadiabatic coupling between the jth and the kth
states. In addition, the primary nuclear coordinate is coupled
to a bath which is represented by a set of harmonic oscilla-
tors with frequencies w,, masses m,, ¢oordinate x,, and
momenta p,. The interaction between the primary nuclear
coordinate and the nth bath oscillator is assumed to be linear
with a coupling strength ¢, . The total Hamiiltonian is then

given by
H=H +H', ' . @)
where )
2 2 21 T
Pr m,w, | R \° :
'= + - :
w-3 e o) |0

All information about the bath which is required for a
reduced description of the system dynamics is contained in
its initial temperature and its spectral density

2
Jw)= (oz (

)[5(w w,)+ N otw,)]. @)

J(w) is related to the symmetric correlation function of a
collective bath coordinate (X= Sc¢,x,),'%*!

)cos(wt),
(5)

where 8=1/kpT is the inverse temperature of the bath, and
the time evolution of X is determined by the pure bath
Hamiltonian [Eq. (3) with R=0]. If the spectral distribution
is given by J(w)=M{w/2m (the Ohmic distribution) and
the bath temperature is high (i.e., coth(Bhw/2)~2/Bhw), we
have XX(£)X +XX(£))=2M {8(¢#)/ B. This correlation func-
tion corresponds to the Gaussian-white noise Brownian os-
cillator. In this case, we obtain an equation of motion for the
reduced system density matrix p(#) (the quantum Fokker—
Planck equatlon) In an operator form, it reads?®

%’(X(t)X+XX(t))=ﬁf dw J(w)coth(ﬁzw

M
Hfﬁ(t)—;g R (1P0+— R") (1.
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©
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Here, P is the momentum operator, and we have defined for

.any two operators A and B,

Py A

AXB=AB-BA, ACB=AB+BA. %)

The symbol X stands for a commutator and O for an anti-
commutator. This equation of motion is valid only when the
followmg high temperature condition applies:*

Bhow <1, - (8)

where w, is a characteristic frequency of the system. When
this condition is not satisfied, the quantum Fokker—Planck
equation may yield unphysical results such as negative diag-
onal elements (R|p(z)|R)<0. The limitation [Eq. (8)] can be
relaxed if we consider a Gaussian—Markovian bath where
J(0)=M Loy 27(y*+ ©?).3 With the assumption of the
high temperature bath B#vy=1, this spectral density repre-
sents a Gaussian—Markovian noise where the symmetric cor-
relation function of the noise induced by the heat bath is
given by H(X()X+XX(2)y=2M{ exp(—yt)/B. Thus, { and
v correspond to the friction and the relaxation time of the
noise, respectively, The generalized equation of motion holds
in this case provided B%y<1 and is presented in Appendix A.
The important point is that now the restriction does not in-
volve the system frequencies (which can be small or large
compared to 8~), but only a high temperature requirement
with respect to the bath, which is much easier to meet. The
calculations presented below will, however, be limited to the
simpler Gaussian-white noise case.

-For the muitistate system [Eq. (1)], the density matrix
may be expanded in the electronic basis set as

pO=2 |iYpp(R.R";t){k]. (9)
.k

Here, p;x(R, R’ t) is expressed in the coordinate representa-
tion. Alternatively, we can switch to the Wigner (phase
space) representation

Wil PR 1) =5— dr ePrifp, k(R——r/Z R+ri2;1),
(10)
and the density matrix may then be written as
W(e)= 2w>kwkwwl (11)

By performing the Wigner transformation on Eq. (6)
with the Hamiltonian (1), the muliistate Fokker—Planck
equation assumes the form
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P
M3
X 2, [Xjm(P—P’ R)W,,,k(P JR;t)
m._

+X*L(P P'.R)W;n(P!,R;1)]+ Wi (P,R;1).

(12)

: = iPr\ - [- r
=—lf-—m dr exp(T) UU(R+E), (13)

and the Ornstein—Uhlenbeck operator which describes-

Brownian motion in momentum space is
M 0
B P
Note that the present equations hold even if U K(R) are time
dependent, as is the case, e.g., in optical spectroscopy. A
semiclassical approximation for these equations is given in
Appendix B.
It is possible to keep the den31ty matrix in the coordmate
representation and solve the equation of motion for

pix(R,R';t) [Eq. (6)). In that case, the equation is somewhat
stmpler since it is local in coordinate space. Nevertheless, the

rng% (p+ = (14)

Wigner representation has few advantages. First it allows us -

to compare the quantum density matrix directly with its clas-
sical counterpart. Second, using phase space " distribution
functions, we can further easily impose the necessary bound-

ary conditions (e.g., periodic or open boundary- conditions, .

where particles can move in and out of the system). This is
much more difficult in the coordinate representation (see
Ref. 29).

lil. IMPULSIVE PUMP-PROBE SPECTROSCOPY IN A
DISPLACED HARMONIC SYSTEM

Our equation of motion is not limited to a particular
functional form of the potentials and the coordinate depen-
dent nonadiabatic couplings. For simplicity, we apply it to a
harmonic system. We study a pump—probe experiment*! in a
four-level system denoted by g; e, e', and f (Fig. 1). The
electronic energy gaps between ge and ef are denoted by
@W,e and w,r (w,=w,ry), respectively. The potentials are
given by U;i(R) (j=g, e, e', and f ). We assume that only
the ¢ and e’ states are coupled by a coordinate independent
nonadiabatic coupling setting U,,/(R)=A.
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FIG. 1. Potential surfaces of the four level system.

The system is initially in the ground state. At time £=0,
a pump pulse which couples the g and e states is applied,
bringing the molecule to the e state. This primary coordinate
R then moves in the U,, potential. As a result of the nona-
diabatic coupling U,,, some of the e state population trans-
fers to e’. At t=r1, a probe pulse which couples only the e’
and f states is applied, and the induced coherence between
e' and f is detected by the probe absorption. Thus, by ob-
serving the probe absorption spectrum and its variation with
7, we can monitor the vibrational motions in the ¢’ state.
The coupling of our system with the laser field is given
by ‘ )

Hp=E(r,1)(|g){e|+]eXg])

+Ex(5,8)(Je' Y|+ |f)e" ], - (15)

where E(r,t) and ET(r t) are the pump and the probe (test)
pulses

E(r,t)=E(t)exp(ik r—id;r)+c.c,

E{(r,t)=E,(t)exp(ik,r— iQyt)+cc. (1(5:)
‘The pulses are assumed to be resonant O=w,, and
,=w,; and impulsive, i.e.,

Bi()=6,8(),  Ex(=6,8t—7, ' (17)

where 6 and 6, are their areas and we take 6,=6,=1. Since
the pump is impulsive, the wave packet p,, created initially
in the e state has the same shape as the ground state equilib-
rium density matrix. This allows us to eliminate the ground
state from our calculations and the effect of the pump exci-
tation can be simply taken into account by setting the initial

. condition in the e state as

. - R PZ
Wee(P,R;O)=exp[—,B( M +Ugg(R))] (18)

where U,,(R) is the ground state potential. Since nonadia-
batic coupling exists only between the ¢ and e’ states, we
need to calculate the wave packets W,,, W+, and W,
(W,,-is the Hermitian conjugate of W,,) and we need not
consider the f state until the probe pulse is applied. For
harmonic potentials, the multistate quantum Fokker—Planck
equation coincides with the semiclassical equation (see Ap-
pendix B) and we have

ust 1994
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7 W,.(P,R;t)

=—(Lee— F)We'e(P,R;t)

iA
S Were(PoR5t) = W (PR3D)],

3‘1_' WeIeI(P,R;t)

=_(Le’e’_r)we’e’(P’R;t) (19)

T
+l—ﬁ—[W¢,,(P,R;t)—Wee,(P,R;t)],

Wee(PRt) -

(Leel F)Weel(P R t)

ke

7 . : ‘
_'i_ﬁ—[Welél(P;R;t)_ Weev(P,R;t)],r

Lo = dU;{(R)  9Uw(R) K2
"M R 2 IR IR 9P

+5 UR=Uu®] Gh=ec). @)

Here, Uee(R) and U, r(R) are.the. potent1a1 surfaces of the
e and e’ states, respectlvely, and A is their nonadiabatic cou-
pling.

Finally, at time ¢=, the impulsive probe pulse which
connects the e’ and f states is applied. The polarization in-
duced by the third-order interaction with the external field
with wave vector k,=—k; $k1+k2‘ is given by

Y. Tanimura and S. Mukamel: Nonadiabatic wave packet dynamics

where W;, f(P,R;t) satisfies the equation of motion

Wi (P.R31)=—(Lgor — D)W, (P.R;1). (22)

at
The impulsive prbbe interaction leads to the following
initial condition:

Wo(P,R,7)=—iW,.1(P,R,T). (23)

The probe absorption spectium is commonly detected by
spectrally dispersing the transmitted probe, and the signal,
measured as a function of the dispersed frequency ,, is
given by42

S(w;)=—2 Im E(0,) Py (@) “(24)

Here, Ey(w,) is the Founer transform of the probe field am-
phtude

. 1 ®
”Ez(wz)=m j‘_mdl‘ C¥P[i(w2“we'f)t]E2(f), (25)

and for the present impulsive probe case E,(w,)=const.
P kz(wz) ‘is the Fourier transform of the polarization

i ©
“»sz(wz)=m f_w dt expli(wy— w,rp)t]Py, (1)
' (26)

‘In summary, the probe absorption can be calculated by
the following three steps: (1) calculate W,,, W,7,7, and W,
by solving Eqs. (19) with the initial condition (18) between
t=03and t=7; (2) calculate W e,(P R;t) using Eq: (22) with
the initial condition (23), then trace it over P and R [Eq.
(”1)] to obtain Py (1); (3) the absorption spectrum S(w,) is
ﬁnally obtained using Eq. (24) by pertormmg Founer trans-
form of Py, (®).

- ..To obtam a clear plcture in phase space for the dynanucs
of nonadlabatlc problem, we found it mstructlve to rearrange
Egs. (19) by formally eliminating the off- -diagonal elements

sz(t) f de dRW .(P,R,T), . (21 W,
ee’
]
| L A2 t
:97W;‘;'(P;R;t)=—(Lee—l")Wee(P,R§t)—'_ﬁTRej dr expl— (Lee, I‘)(t—r)]W“(PRT)
20 (1 o - :
+~f—i-§— Ref d‘frexp[—-(Lee,—I‘)(t——'r)]We,e,(P,R;T)
M d0 s : SR
. R . A2 pr ‘
B;-We}e:(P-,R;t)=—‘(Le,e, F)Wee(PRt)+ Ref drexp[ (Lee: I‘)(t T)]W”(PRT)

Frge

2A%

_ﬁj‘ Re f ar exp[d(Lee' -YF)(t—T)]We,e:(P,'R;'r). '
0. . c
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Denoting the second and the third terms on the. right-hand
side of the above equations by K,, and K.+, respectively,
and taking the time derivatives of these terms, we can recast
Eq. (27) in a form that is local in time-

a . -
5; Wee(P:R;t.)=_(Lee—F)Wee(P7R;t)—Kee(P’R;t)

+Ke’e’(PgR;t), 7
3 ‘ ’
E ‘Velel(P,R;t)=-(Lelel_'F)Welel(P,R;t)

+K,(P,R;t)—K,1,(P,R;t);
(28)

aJ
ey Kool P.R;t)=—=(Ler ~[)K,.(P,R;1)

- 9A? '
+ﬁ—2 W..(P,R;1),

a .
;‘; Ke'e'(E’R;t)= “"(Leel _r)Kelel(P,R;l')

2

+gi‘;:2— Welel(P,R;t).

The kernel K,, represents the nonadiabatic transition flux
density in phase space from e to e’, whereas K,/ repre-
sents the flux density for the reverse transition. If the fre-
quencies of the harmonic potentials in the e and e’ state are
the same, we may evaluate the exponential kernel in Eq. (27)
using path integrals.® For anharmonic potentials, we need to
solve the equations of motion numerically. Although Egs.
{19) are somewhat simpler than Eq. (28) (three vs four equa-
tions), in this paper, we use the latter since K,, and K,/
provide a unique visualization of the coordinate and momen-
tum dependence of nonadiabatic transitions, as will be dem-
onstrated in Sec. V. :

IV. NUMERICAL CALCULATIONS

Hereafter we use dimensionless coordinate and momen-

tum defined by r=RVMw,/# and p=P1/M#tw,, respec-
tively, where w, is the ground state frequency. We assume
the following harmonic potentials (see Fig. 2):

A 2 A 2
Ugg(r)=§ wA(r_dg) —ﬁwgzw Uee(r)':é_ wA(r_‘de) s

A A (29)
Ue;e:(r)=5 (;I)BTZ, ) Uff(r)=5 G)B(r—df)2+ﬁ,coe,f.

The parameters used are w,=1000 em™!, @3=100 cm™!,

d,=-9.0,d,=7.0, and dy=-2.0. Note that the frequency of

the e’ and f potentials is not @p, but rather wg = Vdgw,
= 333 cm™! since we defined the dimensionless coordinate
using w4 . We chose the initial temperature 7=300 K, which
satisfies the condition (8) for the higher frequency wy (i.e.,
Bhw,/2=0.38<1). The numerical integration of Egs. (28)
was performed by the fourth order Runge~Kutta method for

3053

FIG. 2. Adiabatic surfaces u,. + Ugrer”
+ \/(U,,+ U,,z,)2—4(UeeU¢,ef—Ufe,)'for the strong nonadiabatic cou-
pling (solid line) and the weak nonadiabatic coupling (dashed line). The
inset shows nonadiabatic potentials U,, and U, and their difference
(dashed line). )

potential

finite difference expression of momentum and the coordinate
space (we used 40X100 mesh for —7.5<p<7.5 and
—19<r<19).?’ We have used two values of the nonadiabatic
coupling A=300 cm ™' (weak) and A=1000 cm™" (strong).
We also used two values of the friction {=25 cm™" (weak)
and {=500 cm™! (strong).

In the following, we show the wave packets W, .(p,r;t)
and W,r,(p,r;t), the nonadiabatic transition fluxes
K,(p,r;t) and K, ,(p,r;t) and the pump~probe spectra.
The results are shown in four groups: (1) weak coupling and
weak friction (Figs. 3-5); (2) strong coupling and weak fric-
tion (Figs. 6-8); (3) weak couplirig and strong friction (Figs.
9-11); (4) strong coupling and strong friction (Figs. 12—14).

Figure 3 shows the time evolution of the W,, and W/,
wave packets for a weak nonadiabatic coupling and weak
friction. A Gaussian wave packet centered at r=--9 and p=0
is created in the e state at time 7=0. At 7=0.05. ps [Fig.
3(a)], the wave packet in the e state moves in the positive
coordinate direction. We observe a small wave packet in the
e’ state at about the same position as the e state wave packet.
The wave ‘packet in the e state then reaches [Fig. 3(b)] and
passes [Fig. 3(c)] the curve crossing point (r=—4.9). Al-
though we have used a coordinate independent nonadiabatic
coupling, the transition mainly takes place in the vicinity of
the curve. crossing point, and the ¢’ population suddenly in-
creases when the e wave packet passes the crossing point [in
Fig. 3(c)]. This is because of the i[U, (r)— U, ;:(r)] factor
in the Liouville operator (20) for W,,+. As can be seen from
Eq. (19), W,, and W, are highly oscillatory functions of
time at positions far. from the curve crossing point, where the
phase i[U,.(r)— U, ()] is large: Thus, W+ can be large
only near the crossing point, where the phase is small. After
passing the crossing point, the transferred wave packet starts
to move in the e’ state potential surface [Fig. 3(d)]. Since the
frequency of the e’ potential (333 cm™") is lower than that of
the ¢ state (1000 cm™'); the wave packet centered at r=0 is
broadened. In Fig. 3(e), we observe a second wave packet in
the e’ state, centered at the same position of the wave packet
in the e state (r=8). Each time the e state wave packet

~ passes through the curve crossing point, a small wave packet
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(e) t=0.45 (f) ©=0.65

FIG. 3. The time evolution of the wave packet of the e and ¢’ states for a
weak nonadiabatic coupling (A=300 crn~?) and weak friction ({=25 cm~Y).

is formed in the e’ state, and we thus observe three wave
packets moving in the e’ state in Fig. 3(f). -

To gain further insight into the nonadiabatic transition
mechanism, we plotted XK,, and K_+;+ in Fig. 4. The magni-

tude of K,, gives the differential flux (per unit volume in

phase space) from e to e’ (and K,/,r for the reverse pro-
cesses). At time r=0.05 ps [Fig. 4(a)], the transition is from
e to e’ and the reverse flux is negligible since the e’ popu-
lation [W,,» in Fig. 3(a)] is very small. When the e wave
packet approaches the curve crossing point [Figs. 4(b) and
4(d)], K,, grows in the vicinity of the curve crossing posi-
tion, where the nonadiabatic transition takes place. K, also
shows a small peak in Figs. 4(b) and 4(c), reflecting the
reverse transition. Since K, and K,,s are coupled to W,,
and W, their shape depends strongly on the profiles and
magnitudes of W,, and W,/ Thus, we expect to observe a
peak in K,, at the same position where W,, is peaked. In
addition to this peak corresponding to the W,, wave packet,
we see a small peak at the crossing point in Figs. 4(d)—4(f).
Since the W,r,» wave packet is broadened, we cannot ob-
serve a clear peak in K/, in Figs. 4(d)—4(f) as we observed
in K,,, and instead we see a small peak at the curve crossing
point. To highlight the region where the nonadiabatic cou-
pling takes place; we need to eliminate the influence of W,,
or W,r,r. This will be done at the end of this section for
different nonadiabatic coupling and damping rates.

The pump-—probe spectra corresponding to Figs. 3 and 4
are displayed in Fig. 5. Here, we set Aw,=w,—w,;. The
motion of the ¢’ wave. packet is observed as a shift of the
absorption peak. It is, however, difficult to separate the peaks
corresponding to the second and the third wave packets ob-
served in Figs. 3(d)-3(f) from the first peak in Fig. 5.since
the spectrum only reflects the W,,» wave packet in the co-

(a) 1=0.05 ~ (b) t=0.1

(@ 1=015.

(d) 1=0.25

(e) 1=0.45 (f) 1=0.65

FIG. 4. The time evolution of the nonadiabatic transition flux density in
phase space from e to e’ and from e’ to e for the system of Fig. 3.

ordinate space, whereas Fig. 5.contains information on the
coordinate as well as the momentum. The phase space dis-
tribution thus provides a useful means for analyzing the
spectrum. : v -
We next consider a strong nonadiabatic’ coupling and
weak damping. Figure 6 shows the time evolution of W,,
and W,,+. In Fig. 6(a), the e wave packets move initially in .
the e potential surface. Due to the strong constant nonadia-
batic coupling, we already observe the e’ wave packet at this
early time. Once the ¢ wave packet reaches the curve cross-
ing point, most of it transfers to the ¢’ state. The population
of W,, then decreases, whereas W, increases [Fig. 6(b)
and 6(c)]. The transferred wave packet in the e’ state then
moves in the e’ potential surface [Fig. 6(d) and 6(e)]. Since

FIG. 5. The impulsive pump—probe spectrum for the system of Fig. 3.
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(b) 1=0.1

(c) 1=0.15

(d) 1=0.25 (e) 1=0.45

FIG. 6. The time evolution of the wave packets for a strong nonadiabatic
coupling (A=1000 cm™") and weak friction ({=25 cm™Y).

most of the e wave packet is transferred to e’ when it passes
the curve crossing point, then the second and the third wave
packets of W, appearing in Figs. 3(d) and 3(e) are hardly
observed in Figs. 6(d) and 6(e). In Fig. 6(f), the ¢’ wave

(a) ©=0.05

®) =01  (c) 1=0.15

Kes (A

(d) 1=0.25

(e) 1=0.45 (f) 1=0.65

FIG. 7. The time evolution of the nonadiabatic transition flux density in
phase space for the system of Fig. 6. :
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packet again reaches the curve crossing point and it recrosses
to the e state. The differential fluxes K, and K, are plot-
ted in Fig. 7. In Figs. 7(a)-7(d), the peaks in K,, and K,
are higher than those in Fig. 6 corresponding to the stronger
nonadiabatic coupling, but overall the wave packets are simi-
lar. This indicates that the coordinate dependence of the
nonadiabatic process does not vary strongly with the noria-
diabatic coupling strength. However, the shapes of K, [Figs.
7(e) and 7(f)] are quite different from those in Fig. 4, since
W, is strongly perturbed. The corresponding pump—probe
spectra are given in Fig. 8, where the ¢’ wave packet is
clearly observed. Since it recrosses to e at 7=0.7 ps, the
height of the peak decreases at this time.

We next consider the time evolution for strong damping
and a weak nonadiabatic coupling. Since the motion is now
considerably slower, we display the wave packets only at
times #==0.15, 0.25, and 0.45 ps. Due to the strong dampiiig;
the e wave packet quickly relaxes to the bottom of the po-
tential, resulting in a Gaussian peak centered at r=7 and
p=0 [Fig. 9(a)]. Since the shape of W,, is equilibrated after
it reaches the bottom of the e poténtial, the transition from e
to e’ does not show an oscillatory motion as observed in the
weak damping case [Figs. 9(b) and 9(c)]. The transition be-
tween e and e’ occurs near the crossing point (r=—4.9) and

(@) t=0.15

(®) 1=025  (c) 1=0.45

FIG. 9. The time evolution of the wave packets for a weak nonadiabatic™

coupling (A=300 cm™") and strong friction (/=500 cm™).
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v(a) 1=0.15 (b) 1=0.25 (c) 1=0.45 (a) t=0.15 (b) 1=0.25 (c) 1=0.45

FIG. 12. The time evolution of the wave packets for a strong nonadiabatic

. - ~1 .. s e -1
FIG. 10. The time evolution of the nonadiabatic transition flux density in coupling (A=1000 cm™) and strong friction (£=500 cm ™).

phase space for the system of Fig. 9.

time, where a large portion of the wave packet is transferred
to e” because of the strong nonadiabatic coupling.

We have also followed the time evolution of the spec-
trally integrated probe absorption as a function of the damp-
ing and nonadiabatic coupling strength

we observe the wave packet in the e’ state [Fig. 9(a)]. The
shape of W,, is stationary and it acts as a source for the e’
state. The transferred wave packet then relaxes toward the
minimum of the e’ state potential »=0 [Figs. 9(b) and 9(c)].
K,, and K, are shown in Fig. 10. We observe a peak near
the crossing point (r=--4.9). The shape of the distribution (1= * dAw,S(Aw, 1),
depends, however, on both coordinate and momentum. As —r0 -
can be seen from Fig. 10, the nonadiabatic transition can take
place far from the crossing point if the momentum is large.
The corresponding pump—probe spectrum is shown Fig. 11.
‘We observe a slowly. shifting peak corresponding to the mo-
tion of the wave packet transferred to e’ from e.

Figure 12 shows the time evolution of the wave packet

(30)

where 7 is the time delay between the pump and the probe.

Figure 15 shows /(7) for a weak nonadiabatic coupling.
All curves are oscillating with period T=0.18 ps correspond-
ing to the e state vibration. These oscillatory features disap-
pear at long time due to the damping. The change in spectral

for strong damping and strong nonadiabatic coupling. In this intensity reflects the transition rate between e and e'. It is
case, the magnitude of the ¢’ wave packet quickly decreases Sl for weak damping (§=25) and it increases at larger
’ : L . . damping {=100. It decreases again, however, if { becomes
compared with the weak nonadiabatic_coupling case [Figs. ] This i .. £ th PR d diffusi
12(a)-12(c)]. The spatial dependence of the nonadiabatic ;/eel"y arge.f hs l.sc:numst.ce::t %t eact1yat10nap uston
transition, however, does not seem to change, and the shape gimes of chemt reactions. . .. .
of W1+ is similar to that of Fig. 9. This similarity is con- The strong nonadiabatic coupling case is displayed in
ﬁrme:i 1}, plotting K,, and K.+ (Fig 1'3) and comparing Fig. 16. Here, we observe a decreased intensity at ¢=0.7 for
with Fig. 10, This ,ingeicates the;lte the geometry of the nona- yveak damp,ingv £=25 and %00 corresp On.d ing' to the fecross-
diabatic C,Oil,lpli,l,lg is not affected by the damping strength. ing from e’ to e Thc_a activation and diffusion regime-like
The pump—probe spectrum is shown in Fig. 14. The shape of features observed in Fig. 15 do not show up here because the

the spectrum is similar to Fig. 11, except for the very early zﬁzn?’: ;hoie;:;zlél;ltéogngu:' ! ;:j;’gﬁ:ﬁ;:ts switching back
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5

4

)

gy 2 3

FIG. 14. The impulsive pump-probe spectrum for the system of Fig. 12.

The distribution of the differential fluxes K,, and K,/
in phase space reflects the time evolution of the populations
W, or W, , as well as the intrinsic curve crossing rate. In
order to separate these effects (approximately) and focus

solely on the intrinsic rate, we found it helpful to define the .,

following normalized fluxes:

_ T T -
Kee(psr)=f0 d7 K..(p,r;7) /J‘O dr W, (p,r;7),

B T T
Ke,e,(p,r)=f dr Korpr(pr;7) /J dr Woia(p,r;7).
0 : 0 . -
' (31)

Here, T is an averaging time taken to be T=1 ps. Figure 17
shows. K,,(p,r), and K,:,+(p,r) for the previous four cases
(Figs. 3-14). K, (p,r) in Fig. 17(a) is peaked around r=—4
and r=—10, which coincide with the curve crossing points
(see Fig. 2). For K, ,/(p,r) of Fig. 17(a), we observe a ring-
like structure in phase space. This can be rationalized using
energy conservation. Consider a particle moving in ‘the e’
state which transfers from ¢ at position r. Energy conserva-
tion implies that the particle should acquire a kinetic energy
corresponding to the difference of the potential
U,t'(r)—U,.(r). Thus, the momentum of the transferred ¢’

(%)

—— =25
------- £=100
- E=500
“ =~ 1000

0.0 0.2 04 0.6 Y 1.0

T (ps)

£fatan

FIG. 15. The time evolution of the integrated probe absorption spectrum for
a weak nonadiabatic case for different frictions.
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08

FIG. 16. The time evolution of the integrated probe absorption spectrum for
a strong_nonadiabatic case for different frictions.

particle must be larger than = V2M[ U, ,(r)—U,.(i)]. As
seen from the " inset of Fig. 2, the difference
U, ,(r)—U,/(r) has the maximum at r=—7.6 and be-
comes negative at r<\—10 and —5.2<<r, and thus the distri-
bution of E’erer(p,r) shows a ring-like structure. In Fig.
17(b), the peaks are higher than those in Fig. 17(a) because
of the strong nonadiabatic coupling. The shape of the peaks

(a) A=300, {=25  (b) A=1000, {=25

KE!

@
-
o
o
»

¢0 246

(d) A=1000, =500

FIG. 17. Normalized fluxes for different nonadiabatic couplings and fric-
tions.

Downloaded 07 Mar 2001 to 128.151.17d.18B6eme®bysh Mohrl 0d bNa: 40 18 Aagust @94 see http://ojps.aip.org/jcpol/jcpepyrts.html



3058

is more complicated than those in Fig. 17(a), since the wave

packets Wee and W, have substantially changed.

Figures 17(c) and 17(d) show the normalized fluxes for

the strong damping cases. Since W,, and W,, quickly lose
their momentum and are equilibrated, the shapes of K, .(p,r)
and K,+,+(p,r) calculated from Eq. (31) are rather simple. In
these figures, we see that the distribution of nonadiabatic

nntinn hath of tha sanrdinate and the momen.

M Faa
Luupuug iS a4 TUNncClion ooin o1 i€ Coordinait ang e UL

tum. If the momentum is large, the nonadiabatic couphng
can take place far from the curve crossing points r=—35 and
r=—10. This shows that it is not sufficient to discuss the
nonadiabatic transitions in the coordinate space and it is es-
sential to consider the momentum as well. In the next sec-
tion, we explore the possibility of developing molecular dy-
namics algorithms which make use of this observation.

o

Y. Tanimura and S. Mukamel: Nonadiabatic wave packet dynamics

V. APPLICATION OF NONADIABATIC GREEN’S
FUNCTIONS TO MOLECULAR DYNAMICS
SIMULATIONS

In the present paper, we calculated phase space wave
packets by solving equations of motions. This approach cor-
rectly incorporates quantum coherence between the two elec-
tronic states (e and e'). However, it is difficult to apply such
a scheme in molecular dynamics simulations, where particle

a SCACINC 1L IDOCLKal CYLalllnls SIRIGLAVELS, WAILAL paliiiv

motions are governed by classical or semiclassical kmetlc
equations. In this section, we explore the possible use of the
present results to construct eﬁectlve molecular dynamics al-
gorithms.

By introducing Green’s functlons corresponding to elec-
tronic coherence,>* we can rewrite the equations of motion
(19) in the form

o v
Wee(P,R;t)=—(Lee—-l")Wee(P,R;t)-f dP’f dR’f d7T Gar,1(P,R;P",R";t— )W, (P',R',7T)
0

t
+J dp'f dR’J dr GY, (P,R;P' ,R";t~ 1)W1 ..(P',R',7),
0

E WEIBI(P,R;t)= "‘(Leler

(32)

t ,
—F)We,e,(P,R;t)—j dP'f dR'J dr G, ,(P,R;P' R ;t— )W, (P',R',7)
0

f dp’ f dR’' f er* AP,R;P' R ;t— T)Werer(P ,R".7),

where the Green’s function is defined in phase space by

G (P,R:P"R";6)=(P,Rlexp[ — (Loer —T)f]|P',R").
(33)

If the e and e’ state potentials are harmonic, and have the
same frequency (w,=wp), we can evaluate the Green’s
function analytically. The result can be expressed as

G, .(P,R;P',R';t)
_ f 4 fd o i(Px+P'x")
ar)? | &) &8 P %

Xexp[ 3 (x,R,t;x" R’ 0)} B (34)
where =, is the high temperature (8fiw,<€1) and the Ohmic

d1851pat10n [Hw)=Z] limit of the functions 3, given in Ap-
pendix B of Ref. 8. “

For general anharmonic potentials, we need to solve the
equation of motion

% G, (P,R;P',R";t)

—'—(Le’e—F)Ge’e(P’R;P"R’;t) (35)

with the initial condition

G, .(P.R;P",R";0)=8(P~P')8(R—R"). (36)

In principle, once we obtain the Green’s functions, we can
solve the problem without considering explicitly the off-
diagonal elements W,,s. This formulation is, however, still
not practical for molecular dynamics simulations since Egs.
(32) are integrodifferential equations and require W,, or
W,:,+ at different times. We therefore approximate the equa-
tion of motion in the form

J. Chem. Phys., Vol. 101, No. 4, 15 August 1994 :
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a—tWee(P,R;t)=—-(Lee—l")Wee(P,R;t)—1j dP’f dR'G, ,(P,R;P" ,R'YW,,(P',R',1)
+f dp'f dR'GY, (P,R;P' .R")W,:+(P",R" 1),
5;Wc,e,(P,R;t);-—-(Le,e,—f)we,e,(P,k;mf dp'fdR'c';;j‘,e(P,R;P',R')Wee(é',R',t)
—f dp'f dR'G,_,,,(P,R;é',R')We,e,(P',R',t), ' (37)

where the time averaged Green’s function is defined by

ée,e(‘P,R;P’,R’)EJ dr G,.,(P,R;P'.R";7). (38)
. 0

If the damping is strong, this approximation should work
well, since G decays rapidly with time.>>-37 Equation (37)
suggests that not only the momentum, but also the position
of the particle in the e state may change during the nonadia-
batic transition. Tully and Preston proposed a molecular dy-
namics scheme for nonadiabatic tr::msitions,38
the position of the particle is the same before and the after
the nonadiabatic transition. Equation (37) generalizes this
procedure to include momentum changes as well. We can use
the Green’s function to determine the position and the mo-
mentum of the particle undergoing a nonadiabatic process.
The particle is initially assumed to be in the e state. We can
then calculate the dynamics of the particle using the follow-
ing steps: (1) We use the Langevin equation which is equiva-
lent to the classical Fokker—Planck equation

d -
R+§R+ U.(R)=(2), : (39)
where the correlation of the noise is given by
(f") f())=¢8(¢' —1)/ B. (2) While the particle is moving
in the e state, its state changes from the position R’ and the
momentum P’ in the e state to the position R and the mo-
mentum P in the e’ state with hopping rate
G,1.'(P',R';P,R). The hopping process can be simulated
using a Monte Carlo procedure. (3) Once the particle is in the
e’ state we solve the correspondmg Langevin equation in
the e’ state

R+§‘R+ a erer(R)=f(1). (40)
(4) The hopping from e’ to e can be calculated in a similar
fashion. Once the particle returns to e, we then calculate its
motion using Eq.. (39). By repeating this procedure many
times, we obtain the final distribution W,, or W,,. :
One of the main problems in the simulation of nonadia-
batic transitions in the gas phase is how to maintain conser-
vation of energy. This has been traditionally a test for various
approximations. In the presence of a bath that can induce

assuming that

electronic dephasing as well as relaxation, conservation of
energy is no longer a pressing issue since the system can
exchange energy with the bath. We believe that constructing
a computational algorithm for a few degrees of freedom in
the gas phase is the most demanding and difficult objective,
both conceptually and computationally. The separation of

“time scales which exists in the presence of fast dephasing in

condensed phases simplifies the description enormously
since it is equivalent to assuming that the coherences are in
steady states with the populations. This is when a master

. equation (for populations only) is most useful.

In the limit of very fast dephasing, nuclear motions may
be slow compared with the dephasing time and can be ig-
nored. One can then use the classical Condon approximation
in real space, and a fully classical description may hold. In
the opposite extreme, an eigenstate representation may be
more practical. It is for intermediate dephasing where the
coordinate picture is useful yet we cannot quite make the
static Condon approximation that the present scheme should
become most adequate. This state of affairs is similar to the
theoretical treatments of nonlinear optical spectroscopies®*?
which are formally identical to curve crossing problems
where the electric field plays the role of the nonadiabatic
coupling. In the absence of dephasing, spectra show sharp

- lines, a full quantum description in necessary, and reduced

semiclassical descriptions usually fail (except for harmonic
systems). In the other extreme of broad line shapes (fast
dephasing), a static, fully. classical, Condon description ‘is
appropriate. In the intermediate case, phenomena such as
spectral diffusion and solvation effects may require a quan-
tum formulation of the type presented here.

In conclusion, the multistate Fokker—Planck equation
provides a powerful means for the study of nonadiabatic
transitions in condense phases. The present study had three
main new points. First we generalized the conventional
quantum Fokker—Planck equation to multistates system-
which can be applied to a system with anharmonic potentials
and coordinate dependent nonadiabatic couplings. Second,
we presented a rigorous procedure for calculating the pump—
probe spectrum. Third, using the Green’s functions of the
multistate Fokker—Planck equation, we explored possible al-
gorithms for molecular dynamics simulations. Our numerical
results demonstrate the interplay of the nonadiabatic cou-
pling and electronic dephasing processes in curve crossing.
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APPENDIX A: THE MULTISTATES FOKKER-PLANCK
EQUATION FOR A GAUSSIAN-MARKOVIAN :
BATH

Y. Tanimura and S. Mukamel: Nonadiabatic wavé packet dynamics

M? wy?

J(w )=§7m K : (A1)

In this case, one can obtain the equation of motion in the
hierarchy form by generalizing procedure introduced by Tan-
imura and Wolynes.>? For the nth member of hierarchy Wi

where j and k represent nonadiabatic states, the equation of

We assume an Ohmic dissipation with the Lorentzian T _
. motion is expressed as

cutoff’!

, 1 dP’ L L A
— Wi(P,R;t)= Y ER—VW’;k(P,R;t)—z f 57 Z,[ij(P—-P’,R;t)W;',,k(P",R;t)+X,’§k(P—P',R)W;.’m(P’,R;t)]
m

Wi (P, R: 1) +nly ~Y(P,R; t) (A2)

57|
P+ 55|V

The hierarchy elements W}, are defined by usmg the path integral. The equation of motion-is derived by performing a time
derivative of these hlerarchy elements. Physically, one can think of this hierarchy of equations as dealing with a set of Wigner
functions, modeling the states of the system with various numbers of phonons excited in the bath. We'shall be interested only
in the zeroth member of the hiéfarchy WO which is idesitical to W, defined in Eq. (12). The other elements n+0 are
introduced for computational purposes. For deep hierarchy Ny® w,., where w, is the characteristic frequency of the system

:9P

such as the frequency of the harmonic potential, the above hierarchy can be termmated by

- : .
—ij(lf,R;t)=~Mé-RijgP,R;t)—zJ 3 ﬁz[ jm(P~P",R;t)W, k(P Rt)+X k(P P'R)W (P Rt)]

M
+I‘Wk(PR t)+N§'y(P+ﬂ P)

Using . this h1erarcha1 structure we may deal with strong
system—bath interactions. In the white noise limit /> w,, we

may terminate the hierarchy of Egs. (A2) and (A3) by setting

N=0, obtaining Eq. (12). Since we have assumed Bhy=<l,
the temperature requirement of the Gaus31an—Markov1an
case [Egs. (A2) and (A3)] is less stringent than the Gaussian-
white case [Eq (18)].

APPENDIX B: A SEMICLASSICAL APPROXIMATION

FOR THE MULTISTATE QUANTUM
FOKKER—PLANCK EQUATION ’

By taking the classical Ai—0 hrmt of Eq. (12) we obtain
the multistate Fokker—Planck equation in the semiclassical
form

[P oo L[aUR) R G |
T IMAR 2| 4R - IR | 9P

Wia(P.R3t) =% 2 [Ujn(R) Wi PiR;1)
TR 4

~ Ui (RYW (P, R31)]. (@B1)

This equation is exact if the potentials U; are the harmonic.

Wy I(P R;1).

-y

)

-

Note that a fully classical limit for the multistate system does
not exist since the discrete electronic states are intrinsically
quantum. Therefore, the present equation st111 contains the
Planck constant
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