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The quantum Fokker-Planck equation of Caldeira and Leggett is generalized to a multistate system 
with anharmonic potentials and a coordinate dependent nonadiabatic coupling. A rigorous procedure 
for calculating the dynamics of nonadiabatic transitions in condensed phasesapd t+$ mon$oring _ 
by femtosecond pump-probe spectroscopy is developed using this equation. Model. calculations for 
a harmonic system with various nonadiabatic coupling strengthhs and damping rates are presented. _ 
Nuclear wave packets in phase space related to electronic coherence are shown to provide an insight 
into the mechanism of nonadiabatic transitions. The Green’s function expression for these wave 
packets is used tci exp_lore possible algorithms f6r incorporating electronic dephasing iti molecular 
dynamics simulations of curve crossing processes. 

.- i 
I. INTRODUCTION . 

Femtosecond nonlinear optical spectroscopies provide a 
powerful tool for studying the dynamics of nonadiabatic 
curve crossing’ and electron transfer processes.2-4 A tremen- 
dous insight has been gained by comparing yalitative 
arguments,5 quantitative analytical calculations,6- and nu- 
merical studiesg-‘5 with experiment. As far as theoretical 
work goes, the fully quantum treatment posessome difficult 
problems. Quantum nonadiabatic transitions, in the absence 
of dissipation, can be studied by a wide variety of numerical 
methods based on the wave function.g-14 When dissipation is 
important, wave function-based methods are not practical 
since the calculation requires the incorporation of many 
nuclear degrees of freedom (a bath). Integrating out the bath 
degrees of freedom can be performed using path 
integral,16-18 or projection operatorI techniques. The path 
integral approach is particularly powerful f6r systems with 
harmonic potentials, where the necessary functional integra- 
tions can be carried out and analytical expressions for den- 
sity matrix elements may be derived.‘**’ Numerical evalua- 
tion of the- path integrals using Monte Carlo methods is 
possible.*‘*** This approach, however, is computationally in- 
tensive and its applicability is still limited. The projection 
operator approach is applicable if an interaction between the 
system and the bath is weak. It leads to an equation of mo- 
tion for density matrix elements (the master equation), which 
can be solved numerically.‘5~23-25 The master equation ap- 
proach requires the computation of the vibronic eigenstates, 
which makes it difficult to gpply to curve crossing in systems 
such as alkali halides,‘6.” where the potentials and nonadia- 
batic couplings are complicated functions of nuclear coordi- 
nates, and we need to incorporate many vibronic eigenstates. 

An alternative, and perhaps more natural way to solve 
the problem is using the phase space representation (instead 
of eigenstate expansions) for the density matrix. Sparpagli- 
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one, Yan, and Mikamel devej_oped Green’s function tech- 
niques in ph&e space’5,24 ) . . . . . and semiclassical equations of mo- 
tion based on the Langevin equation to treat nonadiabatic 
transitions in the weak coupling limitI For a single potential 
surface, the equation of,motion for phase space distribution 
functions is known as the quantum Fokker-Planck 
equation.28-30 In this paper, we extend the quantum Fokker- 
Planck equation to a multistate system with anharmonic po- 
tentials and coordinate-dependent nonadiabatic coupling. 
The multistate Fokker-Planck equation obtained by Garg 
et ~1.~ was limited to harmonic potentials with a constant 
nonadiabatic coupling. The present equation provides a mi- 
croscopic picture of nonadiabatic processes using nuclear 
wave packets in phase space. Like the master equation, this 
approachsis applicable only for weak coupling to the bath. In 
Appendix A, we generalize this equation to a strong system- 
bath coupling by introducing a hierarchy of kinetic 
equations.31-33 We then present a rigorous procedure for cal- 
culating femtosecond pump-probe curve crossing spectros- 
copy using reduced ufave packets in phase space, where bath 
degrees of freedom have been traced out. Previous theoreti- 
cal treatments of this problem were based on the wave func- 
tions and were limited to isolated molecules (no bath) and 
further employed an approximate procedure for calcul&ng 
the absorption spectrum.34 We also use our results to exam- 
ine possible semiclassical of r@ecular dynamics (MD) 
simulations of curve crossing problems.35-40 The incorpora- 
tion of dephasing effects in nonadiabatic transitions in MD is 
usually phenom&logical. Using @e Green’s function of 
electronic coherence ; obtained from the quantum Fokker- 
Planck equation, we can pinpoint the approximations made 
in current procedures and establish a firm theoretical b@s 
for possible gene&izations. 0~ procedure is ill&ated by 
model calculatio.ns._I’he. dyn&n& of nuclear wave packets 
and its signature in the pump-probe spectrum are discussed. 

The organization of this paper is as follows: the multi- 
state Fokker-Planck equation is presented in Sec. II. In Sec. 
lI1, we develop the procedure for calculating the pump- 
probe spectrum. Numerical results for a harmonic system are 
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presented in Sec. IV. The implications .of our results on mo- 
lecular dynamics simulations of nonadiabatic processes are 
discussed in Sec. V. 

II. THE MULTISTATE QUANTUM FOKKER-PLANCK 
EQUATION 

Consider a molecular system ‘with several electronic 
states lj) strongly coupled to a single primary nuclear coor- 
dinate R. The Hamiltonian of the system is 

ffs=g +c Iz WjkuqkL 
i k 

(1) 

where P is the conjugate momentum of R. The diagonal 
element Ujj(R) is the potential surface of the jth electronic 
surface, and the off-diagonal elements Ujk(R) with j #k rep- 
resent the nonadiabatic coupling between the jth and the kth 
states. In addition, the primary nuclear coordinate is coupled 
to a bath which is represented by a set-of harmonic oscilla- 
tors with frequencies w,, , masses m,, coordinate x,, and 
momenta p,, . The interaction between the primary nuclear 
coordinate and the nth bath oscillator is assumed to be linear 
with a coupling strength c,. The total Hamiltonian is then 
given by 

H=H,+H’, 

where 

H’=C p: I m;rnn 

[ 

2 

i 

CIIR 

n 2mn 
xn-- 

m,o, 

(2> 

2 11 ._ (3) 

All information about the bath which is required for a 
reduced description of the system dynamics is contained in 
its initial temperature and its spectral density 

J(W)wo~ n 4;:,. [a~-%j+~(~+%)l. i <I (4) 
II n 

J(w) is related to the symmetric correlation function of a 
collective bath coordinate (X= r”c,x,) ,*6,31 

; (X(r)X+XX(t))=fij- dw .T(-)coth( ~)cos~utj, 

(5) 
where P=lIk,T is the inverse temperature of the bath, and 
the time evolution of X. is determined by the pure bath 
Hamiltonian [Eq. (3) with R=O]. If the spectral distribution 
is given by J(o) =M[ti/2~ (the Ohmic distribution) and 
the bath temperature is high (i.e., coth(p2iw/2)+2/fi~)), we 
have gX(t)X+XX(t)) =2M5S(t)lP. This correlation func- 
tion corresponds to the Gaussian-white noise Brownian os- 
cillator. In this case, we obtain an equation of motion for the 
reduced system density matrix p(t) (the quantum Fokker- 
Planck equation). In an operator form, it reads’* 

(6) 

Here, p is the momentum operator, and we have defined for 
any two operators i and l?, 

A”&&j-jL, 6O&&j+ii. (7) 

The symbol X stands for a commutator and 0 for an anti- 
commutator. This equation of motion is valid only when the 
following high temperature condition applies:30 

ph@,~ 1, (8) 

where w, is a characteristic frequency of the system. When 
this condition is not satisfied, the quantum Fokker-Planck 
equation may yield unphysical results such as negative diag- 
onal elements (Rlij(t)lR)<O. The limitation [Eq. (8)] can be 
relaxed if we consider a Gaussian-Markovian bath where 
J(w)=Mywy”/2~(y2+02).32 With the assumption of the 
high temperature bath @z-l, this spectral density repre- 
sents a Gaussian-Markovian noise where the symmetric cor- 
relation function of the noise induced by the heat bath is 
given by $(X(t)X+ XX(t)) = 2M5 exp(- rt)/p. Thus, C and 
y correspond to the friction and the relaxation time of the 
noise, respectively. The generalized equation of motion holds 
in this case provided @ifll and is presented in Appendix A. 
The important point is that now the restriction does not in- 
volve the system frequencies (which can be small or large 
compared to p-l), but only a high temperature requirement 
with respect to the bath, which is much easier to meet. The 
calculations presented below will, however, be limited to the 
simpler Gaussian-white noise case. 

For the multistate system [Eq. (l)], the density matrix 
may be expanded in the electronic basis set as 

&t>=C !j)Pjk(R9R’;t)(fd- 
i,k 

(9) 

Here, pjk(R,R ’ ; t) is expressed in the coordinate representa- 
tion. Alternatively, we can switch to the Wigner (phase 
space) representation 

W,k(PvR;t)z& 
I 

m 

Jr eiPr’“pjk(R-r/2,R+r/2;t), 
--m 

(10) 

and the density matrix may then be written as 

k(t)=2 Ij)WjkiP,R;t)(kl. 
j,k 

ill) 

By performing the Wigner transformation on Eq. (6) 
with the Hamiltonian (l), the multistate Fokker-Planck 
equation assumes the form 
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f Wjk(P,R;t) 

- dP’ 
2Z -i & Wjk(P,R;t)-i 1 - 

2?Tfi 

xc [qn(P- P’,R) W&P’,R;t) 
m. 

+X~,(P-P’,R)Wj,(P.‘,R;t)~+rWjk(P,R;t). 

(12) 
Here ’ 

Xy(P,R)=i f:m dr exp(T)Uij(E-i), 

X$(P,R)=i/ym dr exp( $) Uij( E-g) 

=-i/m_ dr exp( 7) Gij( h+i), (13) 

and the Ornstein-Uhlenbeck operator which describes 
Brownian motion in momentum space is 

d Md 
rqap P+Fap. ( i (14) 

Note that the present equations hold even if Ujk(R) are time 
dependent, as is the case, e.g., in optical spectroscopy. A 
semiclassical approximation for these equations is given in 
Appendix B. 

It is possible to keep the density matrix in the coordinate 
representation and solve- the equation of motion for 
p.&?,E ’ ; t) CEq. (@I. In that case, the equation is somewhat 
simpler since it is local in coordinate space. Nevertheless, the 
Wigner representation has few advantages. First it allows us 
to compare the quantum density matrix directly with its clas- 
sical counterpart. Second, using phase spaces distribution 
functions, we can further easily impose the necessary bound- 
ary conditions (e.g., periodic or open boundary conditions, 
where particles can move in and out of the system). This is 
much more difficult in the coordinate representation (see 
Ref. 29). 

III. IMPULSIVE PUMP-PROBE SPECTROSCOPY IN A 
DISPLACED HARMONIC SYSTEM 

Our equation of motion is not limited to a particular 
functional form of the potentials and the coordinate depen- 
dent nonadiabatic couplings. For simplicity, we apply it to a 
harmonic system. We study a pump-probe experiment4r in a 
fo,ur-level system denoted by g, e, e’, and f (Fig. 1). The 
electronic energy gaps between ge and ef are denoted by 

and oef (wef= meff), respectively. The potentials are 
zzen by U,j(R) (j=g, e, e’, and f j. We assume that only 
the e and e’ states are coupled by a coordinate independent 
nonadiabatic coupling setting U,,!(R) =A. 

FIG. 1. Potential surfaces of the four level system. 

The system is initially in the ground state. At time t=O, 
a pump pulse which couples the g and e states is applied, 
bringing the molecule to the e state. This primary coordinate 
R then moves in the U,, potential. As a result of the nona- 
diabatic coupling U,,, , some of the e state population trans- 
fers to e ‘. At t= 7, a probe pulse which couples only the e ’ 
and f states is applied, and the induced coherence between 
e’ and f is detected by the probe absorption. Thus; by ob- 
serving the probe absorption spectrum and its variation with 
7, we can monitor the vibrational motions in the e’ state. 

The coupling of our system with the laser field is given 
by 

HE=EdWNg)(el +le>(gl) 
+E,(r,t)(le’)(fl+If)(e’I), (15) 

where E,ir,t) and &(r,t) are the pump and the probe (test) 
pulses hi.& 

E,(r,t)=E,(t)exp(iklr-if&t)+c.c., 

ET(r,t)=E2(t)exp(ik$-ifi2t)+c.c.. (16) 
; 

The pulses are assumed to be resonant Oi =wes and 
&=w,lf and impulsive, i.e., 

E,(t)=&S(t), - E2(t)=026[t-T), (17) 

where Or and S2 are their areas and we take 0, = O,= 1. Since 
the pump is impulsive, the wave packet pee created initially 
in the e state has the same shape as the ground state equilib- 
rium density matrix. This allows us to eliminate the ground 
state from our calculations and the effect of the pump exci- 
tation can be simply taken into account by setting the initial 
condition in the e state as 

, (18) 

where Ug&R) is the ground state potential. Since nonadia- 
batic coupling exists only between the e and e’ states, we 
need to calculate the wave packets W,, , W,I,~, and W,,I 
(W,r,.is the Hermitian conjugate of Wee)) and we need not 
consider the f state until the probe pulse is applied. For 
harmonic potentials, the multistate quantum Fokker-Planck 
equation coincides with the semiclassical equation (see Ap- 
pendix B) and we have 
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& We,tP,R;t) 
= -(L,,-I’)W,,(P,R;t) 

-$W&P,R;tj- W&P,R;tjl, 
:. 

f W,r,dP,Rt) 

= -(L,,,, -r)W,I,r(P,R;tj 

+$w;,.(P,R;tj- W,,,(P,k;til, 

__ 
&-Ilr,,r(P:R;tj ..; . 

.._:, 

=-(L,,,-1‘)~=,,,(P,R;tj. ‘I 

’ .iA 
r.c*l.“. ,- 

-$W,;;,(P;R;tj- w,,,(P,R;t)], 

where 
. ..# . .: ..a ..,. :: 

.;i: 
l.ii_ .i- 

+f [Ujj(R)-Ukk(R)] (j,k=e,e’). 

(19) 

- 
I.’ 2.. 

cm 

Here, U,,(R) and U,,,,(R) are the.potential surfaces of the 
e and e ’ states, respectively, and A is their nonadiabatic cou- 
pling. 

Finally, at time t =r, the impulsive probe pulse which 
connects the e’ and f states js applied. The polarization in- 
duced by the third-order interaction with the external field 
with wave vector k,=-k, fk,+k, is given by 

dR. W;,,(P,R,rj, (21) 

2- ; 

., I 

_  
I .! 

where Wi,J P,R; t) satisfies the equation of motion 

i W&(P,R;tj=-(Lf~r-TjW~~,(P,R;tj. cm 

The impulsive probe interaction leads to the following 
initial condition: 

W~=,(P,R,T)=-~W,I,I(P,R,T). (23) 

The probe absorption spectrum is commonly detected by 
spectrally dispersing the transmitted probe, and the signal, 
measured as a function of the dispersed frequency 02, is 
given by’” 

s(0,)= -2 Im ~;(~2jPkZ(02j. . (24) 

Here, E2(w2) is the Fourier transform of the probe field am- 
plitude 

dt exp[i(c.02-w,rf)t]E2(t)r (25) 

and for the present impulsive probe case E,(e.~~)=const. 
Pk,( w2) is the Fourier transform of the pohuization 

dt exp[i(w,-m,rf)t]Pk2(t). 

In summary, the @robe absorption can be calculated by 
the following three steps: (1) calculate WEE’, W,f,r, and Wi,f 
by solving Eqs. (19) with the initial condition (18) between 
t=O and t=r, (2) calculate W$(P,R;t) using Eq. (22) with 
the initial condition (23). then trace it over P and R [Es. 
(2i)] to obtain P,,(t); (3) the absorption spectrum S(oJ is 
finally obtained u&g Eq:;(24) by performing Fouriertrans- 
form of P&),. 

s:. 
_. 

To obtain a clear picture in phase space ,for’the dynamics 
of h&adiabatic problem, we found it instructive to rearrange 
Eqs. (19) by formally eliminating the off-diagonal. elements 
W 1 

.5-e’, ,‘~.. 
.j 

: 
-. 2A2 

Re dr exp[-(L,,, -r)~t-7-~IWe,mb-) 
_. I- I 

2A2 
.I 

; 
+FRe ,’ dr exp[ -(L,,,-- rxt- T)]W~~,~(P,R;T) 

. . <‘I. (27) 
.?. . . ‘; .~ 

.I . 

;.W&,(P,R;tj= 67 expr-(L,,,-- rw ~)lW,etP,R;d ~. .-r /; : 
:&‘: .~_; 2A2 ~ -1 , 

- -+Re 
I 

d? exp[ - (L,,r - r)(t-7)]W,,,,(P,R;7j. 
0 
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Denoting the second and the third terms on the right-hand 
side of the abdve equations by K,, and Kerel, respectively, 
and taking the time derivatives of these terms, we can recast 
Eq. (27) in a form that is. local in time 

-$ W~,(P,R;t)=-(L,,-r)W~,(P,R;t)-K,,(P,R;t) 

+K,~,dP.,R;t), 

; W=,,,(P,R;t)=-(L,,,,-r)W,,,,(P,R;t) 

-tK,,(P.,R;t)-K,,,,(P,R;t); -~ 

5 K,,(P,R;t)= -(L,,, -T)K,,(P,R;t) 
(28) 

. 

-+$ We,(P,R;tj, 

; Ke,,,(p,R;t)=-(L,@,-I’)K,r,r(P,R;t) 

2A2 
+F We~e4PJW). 

r_ 

The kernel K,, represents the nonadiabatic transition Jlux 
density in phase space from e to e’, whereas K,t,t repre- 
sents the flux density for the reverse transition. If the fre- 
quencies of the harmonic potentials in the e and e ’ state are 
the same, we may evaluate the exponential kernel in Eq. (27) 
using path integrals.8 For anharmonic potentials, we need to 
solve the equations of motion numerically. Although Eqs. 
(19) are somewhat simpler than EQ. (28) (three vs four equa- 
tions), in this paper, we use the latter since K,, and K,r,t 
provide a unique visualization of the coordinate and momen- 
tum dependence of nonadiabatic transitions, as will be dem- 
onstrated in, Sec. V. 

IV. NUMERICAL CALCULATldNS 

Hereafter we use dimensionless coordinate and momen- 
tum defined by r= R I/- and p = P J1/Mfiw,, respec- 
tively, where o, is the ground state frequency. We assume 
the following harmonic potentials (see Fig. 2): 

n 
u&r>=- oA(r-d,)2-fimge, 

ZL 
2 Udr)=- mA(r-dd,)2, 2 

fi (29) 
Uff(r)=T L3B(r-df)2+hwerf. 

The parameters used are w,=lOOO cm-‘, a,=100 cm-‘, 
d, = -9.0, d, =7.0, and df= -2.0. Note that the frequency of 
the e’ and f potentials is not a,, but rather oB = d= 
= 333 cm-’ since we defined the dimensionless coordinate 
using 0,. We chose the initial temperature T=300 K, which 
satisfies the condition (8) for the higher frequency w, (i.e., 
@w,/2=0.38<1). The numerical integration of Eqs. (28) 
was performed by the fourth order Runge-Kutta method for 

r 

FIG. 2. Adiabatic potential surfaces U,, + u,re, 
t J(u,,+u,,,,)2-4(u,,u,,,,- &)‘for the strong nonadiabatic cou- 
pling (s&d Ii&) and the weak non&abatic coupIing (dashed line). The 
inset shows nonadiabatic potentials Cl,, and U,,,, and their difference 
(dashed line). 

finite difference expression of momentum and the coordinate 
space (we used 40X100 mesh for -7.5Cp~7.5 and 
- 19<r<19).29 We have used two values of the nonadiabatic 
coupling A=300 cm-l (weak) and A=1000 cm-’ (strong). 
We also used two values of the friction 5~25 cm-’ (weak) 
and g=500 cm-’ (strong). 

In the following, we show the wave packets W,,(p,r;t) 
and Wif,f(p,r;t>, the nonadiabatic transition fluxes 
K,,(p,r;t) and K,f,f(p,r;t) and the pump-probe spectra. 
The results are shown in four groups: (1) weak coupling and 
weak friction (Figs. 3-5); (2) strong coupling and weakfric- 
tion (Figs. 6-8); (3) weak couplitig and strong friction (Figs. 
9-l 1); (4) strong coupling and strong friction (Figs. 12- 14). 

Figure 3 shows the time evolution of the W,, and Were!. 
wave packets for a weak nonadiabatic coupling and weak 
friction. A Gaussian wave packet centered at r = -9 and p =O 
is created in the e state at time ,7=0. At ~0.05. ps [Fig. 
3(a)], the wave packet in the e state moves in the positive 
coordinate direction. We observe a small wave packet in the 
e ’ state at about the same position as the e state wave packet. 
The wave .packet in the e state then reaches [Fig. 3(b)] and 
passes [Fig. 3(c)] the curve crossing point (r=-4.9). Al- 
though we have used a coordinate independent nonadiabatic 
coupling, the transition mainly takes place in the vicinity of 
the curve. crossing point, and the e’ population .suddenly in: 
creases when the e wave packet passes the crossing point [in 
Fig. 3(c)]. This is because of the i[ U,,(r) - U,t,f (r)] factor 
in the Liouville operator (20) for W,,!. As can be seen from 
Eq. (1% We, and We e ts t. are highly oscillatory functions of 
time at positions far. from the curve crossing point, where the 
phase i[U,,(r)-U,l,f(r)] is large.Thus, W,l,l canbelarge 
only near the crossing point,,where the phase is small. After 
passing the crossing point, the transferred wave packet starts 
to move in the e’, state potential surface [Fig. 3(d)]. Since the 
frequency of thee ’ potential (333 cm-‘) is lower than that of 
the e state (100.0 cm-‘); the wave packet centered at r=O is 
broadened. In Fig. 3(e), we observe a second wave packet in 
the e ! state, centered at the same position of the wave packet 
in the e state (r=8). Each time the Ed state wave packet 
passes through the curve crossing point, a small wave packet 
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(a) T=O.O5 1 (b) yo.1 (c) 2=0.15 

(d),T=0.25 (e) T=O.45 (f) ~=0.65 

FIG. 3. The time evolution of the wave packet of the e and e’ states for a 
weak nonadiabatic coupling (A=30 cm-‘) and weak friction (g=25 cm-‘). 

is formed in the e’ state, and we thus observe three wave 
packets moving in the e ’ state in Fig. 3(f). 

To gain further insight into the nonadiabatic transition 
mechanism, we plotted K,,~ and K,I,I in Fig. 4. The magni- 
tude of K,, gives the differential flux (per unit volume in 
phase space) from e to e’ (and K,I,I for the reverse pro- 
cesses). At time tXI.05 ps [Fig. 4(a)], the transition is from 
e to e ’ and the reverse flux is negligible since the e ’ popu- 
lation [W,?,, in Fig. 3(a)] is very small. When the e wave 
packet approaches the curve crossing point [Figs. 4(b) and 
4(d)], K,, grows in the vicinity of the curve crossing posi- 
tion, where the nonadiabatic transition takes place. K, 1~ 1 also 
shows a small peak in Figs. 4(b) and 4(c), reflecting the 
reverse transition. Since K,, and Keter are coupled to W,, 
and Wet,1 their shape depends strongly on the profiles and 
magnitudes of W,, and W,l,t ~Thus, we expect to observe a 
peak in K,, at the same position where W,, is peaked. In 
addition to this peak corresponding to the W,, wave packet, 
we see a small peak at the crossing point in Figs. 4(d)-4(f). 
Since the W,r,l wave packet is broadened, we cannot ob- 
serve a clear peak in K,~,I in Figs. 4(d)-4(f) as we observed 
in K,, , and instead we see a small peak at the curve crossing 
point. To highlight the region where the nonadiabatic cou- 
pling takes place; we need to eliminate the influence of W,, 
or W,r,l. This will be .done at the end of this section for 
different nonadiabatic coupling and damping rates. 

The pump-probe spectra corresponding to Figs. 3 and 4 
are displayed in Fig. 5. Here, we set Awpw2-o,rp The 
motion of the e ’ wave packet is observed as a shift of the 
absorption peak. It is, however, difficult to separate the peaks 
corresponding to the second and the third wave packets ob- 
served in Figs. 3(d)-3(f) from the first peak in Fig. 5. since 
the spectrum only reflects the W,r,r wave packet in the co- 
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(a) 2=0.05 - (b) z=O.l (G) 2=0.15 

(d) ~=0.25 (e) 2=0.45 (f) i=O.65 

FIG. 4. The time evolution of the nonadiabatic transition flux density in 
phase space from e to e’ and from e.’ to e for the system of Fig. 3. 

: 
ordinate space, whereas Fig. 5 contains information on the 
coordinate as well as the momentum. The phase space dis- 
tribution thus provides a useful means for analyzing the 
spectrum. 

We next consider a strong nonadiabatic coupling and 
weak damping. Figure 6 shows the time evolution of W,, 
and W,l,l. In Fig. 6(a), the e wave packets move initially in 
the e potential surface. Due to the strong constant nonadia- 
batic coupling, we already observe the e’ wave packet at this 
early time. Once the e wave packet reaches the curve cross- 
ing point, most of it transfers to the e ’ state. The population 
of W,, then decreases, whereas W,l,r increases [Fig. 6(b) 
and 6(c)]. The transferred wave packet in the e’ state then 
moves in the e ’ potential surface [Fig: 6(d) and 6(e)]. Since 

FIG. 5. The impulsive pump-probe spectrum for the system of Fig. 3. 
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(a) z=O.O5 (b) ~=0.1 

(d) ~=0.25 (e) T=O.45 (f) ~=0.65 

FIG. 6. The time evolution of the wave packets for a strong nonadiabatic 
coupling (A=1000 cm-‘) and weak friction (g=25 cm-‘). 

most of the e wave packet is transferred to e’ when it passes 
the curve crossing point, then the second and the third wave 
packets of W,t,l appearing in Figs. 3(d) and 3(e) are hardly 
observed in Figs. 6(d) and 6(e). In Fig. 6(f), the e’ wave 

(a) 2=0.05 (b) z=O.l 

(d) ~=0.25 (e) T=O.45 (f) ~=0.65 

FIG. 7. The time evolution of the nonadiabatic transition flux density in 
phase space for the system of Fig. 6. 

FIG. 8. The impulsive pump-probe spectrum for the system of Fig. 6. 

packet again reaches the curve crossing point and it recrosses 
to the e state. The differential fluxes K,, and K,I,I are plot- 
ted in Fig. 7.’ In Figs. 7(a)-7(d), the peaks in K,, and Ker;l 
are higher than those in Fig. 6 corresponding to the stronger 
nonadiabatic coupling, but overall the wave packets are sir& 
lar. This indicates that the coordinate dependence of the 
nonadiabatic process does not vary strongly with the nona- 
diabatic coupling strength. However, the shapes of K,, [Figs. 
7(e) and 7(f)] are quite different from those in Fig. 4, since 
W,, is strongly perturbed. The corresponding pump-probe 
spectra are given in Fig. 8, where the e’ wave packet is 
clearly observed. Since it recrosses to e at ~0.7 ps, the 
height of the peak decreases at this time. 

We next consider the time evolution for strong damping 
and a weak nonadiabatic coupling. Since the motion is now 
considerably slower, we display the wave packets only at 
times t=O.lS, 0.25, and 0.45 ps. Due to the strong damping; 
the e wave packet quickly relaxes to the bottom of the po- 
tential, resulting in a Gaussian peak centered at r=7 and 
p =0 [Fig. 9(a)]. Since the shape of W,, is equilibrated after 
it reaches the bottom of the e potential, the transition from e 
to e’ does not show an oscillatory motion as observed in the 
weak danming case [Figs. 9(b) and 9(c)]. The transition be- 
tween e and e’ occurs near the crossing point (I-= -4.9) and 

(a) 2=0.15 (b) x=0.25 (c)2=0.45 

FIG. 9. The time evolution of the wave packets for a weak nonadiabatic 
coupling (A=300 cm-‘) and strong friction (l=SOO cm-‘). 
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(a) z=O.15 (b) ~=0.25 (a) 7=0.15 (b) ~=0.25 (c) 2=0.45 

FIG. 10. The time evolution of the nonadiabatic transition flux density in 
phase space for the system of Fig. 9. 

FIG. 12 The time evolution of the wave packets for a strong nonadiabatic 
coupling (A= 1000 cm-*) and strong friction (c=500 cm-‘). 

we observe the wave packet in the e’ state [Fig. 9(a)]. The 
shape of We, is stationary and it acts as a source for the e ’ 
state. The transferred wave packet then relaxes toward the 
minimum of the e’ state potential r=6 [Figs. 9(b) and 9(c)]. 
K,, and K,t,l are shown-in Fig. 10. We observe a peak near ._. 
the crossing point (I-=-4.9). The shape of the distribution 
depends, however, on both coordinate and momentum. As 
can be seen from Fig. 10, the nonadiabatic transition can take 
place far from the crossing point if the momentum is large. 
The corresponding pump-probe spectrum is shown Fig. 11. 
We observe a slowly shifting peak corresponding to the mo- 
tion of the wave packet transferred to e ’ from e . 

time, where a large portion of the wave packet is transferred 
to e’ because of the strong nonadiabatic coupling. 

We have also fojlowed the time evolution of the spec- 
trally integrated probe absorption as a function of the damp- 
ing and nonadiabatic coupling strength 

dAo&Aw,;t), (30) 

Figure 12 shows the time evolution of the wave packet 
for strong damping and strong nonadiabatic coupling. In this 
case, the magnitude of the e’ wave packet qtCckly decreases 
compared with the weak nonadiabatic.coupling case pigs. 
12(a)-12(c)]. The spatial dependence of the nonadiabatic 
transition, however, does not seem to change, and the shape 
of W,l,r is similar to that of Fig. 9. This similarity is con- 
firmed by plotting K,, and K,r,f (Fig. 13) and comparing 
with Fig. IO.: This indicates that the geometry of the. nona- 
diabatic coupling is not affected by the damping strength. 
The pump-probe spectrum is shown in Fig. 14. The shape of 
the spectrum is similar to Fig. 11, except for the very early 

where 7 is the time delay between the pump and the probe. 
Figure 15 shows I(7) for a weak nonadiabatic coupling. 

All curves are oscillating with period T=0.18 ps correspond- 
ing to the e state vibration. These oscillatory features disap- 
pear at long time due to-the damping. The change in spectral 
intensity reflects the transition rate between e and e’. It is 
small for weak damping (5=25) and it increases at larger 
damping l= 100. It decreases again, however, if f becomes 
very large. This is reminiscent of the activation and diffusion 
regimes of chemical reactions.“3 

The strong nonadiabatic coupling case is displayed in 
Fig. 16. Here, we observe a decreased intensity at t=O.7 for 
weak damping 5=25 and 100 corresponding to the recross- 
ing from e ’ to e. The activation and diffusion regime-like 
features observed in Fig. 15 do not show up here because the 
changes of population due to wave’packets switching back 
and forth between e and e’ are very large. 

(a) 2=0.15 (b) 2=0.25 

FIG. 11. The impulsive pump-probe spectrum for the system of Fig. 9. 
FIG. 13. The time evolution of the nonadiabatic transition flux density in 
phase space for the system of Fig. 12. 
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FIG. 14. The impulsive pump-probe spectrum for the system of Fig. 12. 

The distribution of the differential fluxes K,, and K,I,I 
in phase space reflects the time evolution of the populations 
We, or WgR, as well as the intrinsic curve crossing rate. In 
order to separate these effects (approximately) and focus 
solely on the intrinsic rate, we found it helpful to define the 
following normalized fluxes: 

I 

T 

/f 

T 
Q‘w-I= d7 K,,(p,r;~~ d7 Wee(p,cd, 

0 0 

%ter(p,r)= lo’ d7 K,lel(p,r;T> /I’ dr Wcte,(p,r;T). 0’ 
(31) 

Here, T is an averaging time taken to be T=l ps. Figure 17 
shows. k&p, r), and I?,t,t(p,r) for the previous four cases 
(Figs. 3-14). f?,,(p,r) in Fig. 17(a) is peaked around r = -4 
and r = - 10, which coincide with the curve crossing points 
(“see Fig. 2). For keter(p,r)- of Fig. 17(a), we observe a ring- 
like structure in phase space. This can be rationalized using 
energy conservation. Consider a particle moving in ‘the e’ 
state which transfers from e at position r. ‘Energy conserva- 
tion implies that the particle should acquire a kinetic energy 
corresponding to the difference of the potential 
U, r cr (r) - U&r) . Thus, the momentum of the transferred e ’ 

Ic-- ~ i 

t 
_.---.--- _,_ _ .-_.___._.. .- 

FIG. 15. The time evohrtion of the integrated probe absorption spectrum for 
a weak nonadiabatic case for different frictions. 

FIG. 16. The time evolution of the integrated probe absorption spectrum for 
a strongVnonadiabatic case for different frictions. 

particle must be larger than 2 J2M[U,,,,(r) - U,,(r)]. As 
seen from the inset of Fig. 2, the difference 
Uef,~(r)-Uee(r) has the maximum at r=-7.6 and be- 
comes negative at r<- 10 and -5.2<r, and thus the distri- . butlon of K,~,I (p, r) shows a ring-like structure. In Fig. 
17(b), the peaks are higher than those in Fig. 17(a) because 
of the strong nonadiabatic coupling. The shape of the peaks 

(a) A=300,5=25 

(c)A=300,<=500 

(b)A=1000,<=25 

(d)A=lOOO, 5=500 
pet "'.- 

FIG. 17. Normalized fluxes for different nonadiabatic couplings and fric- 
tions. 
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is more complicated than those in Fig. 17(a), since the wave 
packets W,, and-W,, have substantially changed. 

Figures 17(c) and 17(d) show the normalized fluxes for 
the strong damping cases. Since W,, and Wgg quickly lose 
their-momentum and are equilibrated, the shapes of K,,(p,r) 
and K,,,,(p, r) calculated from Eq. (3 1) are rather simple. In 
these figures, we see that the distribution of nonadiabatic 
coupling is a function both of the coordinate and the momen- 
tum. If the momentum is large, the nonadiabatic coupling 
can take place far from the curve crossing points r = -5 and 
r = - 10. This shows that it is not sufficient to discuss the 
nonadiabatic transitions in the coordinate space and it is es- 
sential to consider the momentum as well. In the next sec- 
tion, we explore the possibility of developing molecular dy- 
namics algorithms which make use of this observation. 

I 

-$w,,(P,R;r)=-(L,J)W,.(P,R;t)- 
I I 

dP’ dR’ 

V. APPLlCAdN OF NONADIABATIC GREEN’S 
FUNCTIONS TO MOLECULAR DYNAMICS 
SIMULATIONS 

In the present paper, we calculated phase space wave 
packets by solving equations of motions. This approach cor- 
rectly incorporates quantum coherence between the two elec- 
tronic states (e and e ‘). However, it is difficult to apply such 
a scheme in molecular dynamics simulations, where particle 
motions are governed by classical or semiclassical kinetic 
equations. In this section, we explore the possible use of the 
present results to construct effective molecular dynamics al- 
gorithms. 

By introducing Green’s functions corresponding to elec- 
tronic coherence,“4 we can rewrite the equations of motion 
(19) in the form 

*t 
dr G,,,,(P,R;P’,R’;t-r)W,,(P’,R’,r) 

0 

+I dP’I dR’I,’ dr G;,,(P,R;P’,R’;t-r)w&P’,R’,rj, 

(32) 

& W,,,,(P,R;t)=-(L,I,I-T)W,,,,(P,R;t)- f dP’1 dR’I: dr G,,,(P,R;P’,R’;t-r)W~,(P’,R’,r) 

+ j- dP’[. dR’I,’ dr G,s,,,(P,R;P’,R’;t-r)W,,,,(P’,R’,r), 

where the Green’s function is defined in phase space by 

G,,,(P,R;P’,R’;tj=(P,R]exp[-(L,,,-r)t]lP’,R’). 
(33) 

If the e and e’ state potentials are harmonic, and have the 
same frequency ( oA= wn), we can evaluate the Green’s 
function analytically. The result can be expressed as 

G,,,(P,R;P’,R’;t) 

' 2 ,- dx ( dx' exp[ i(px,'x"] : 
=(2di) 

I 
, 

where 2, is the high temperature (phw,el) and the Ohmic 
dissipation [r(w)=51 limit of the functions 8, given in Ap- 
pendix B of Ref. 8.44 

For general anharmonic potentials, we need to solve the 
equation of motion 

& G,,,(P,R;P’,R’;tj 

=-(L,,,-F)G,,,(P,R;P’,R’;t) 

with the initial condition 

i35) 

G,,,(P,R;P’,R’;O)= S(P- P’)G(R-R’). (36) 

In principle, once we obtain the Green’s functions, we can 
solve the problem without considering explicitly the off- 
diagonal elements W,,! . This formulation is, however, still 
not practical for molecular dynamics simulations since Eqs. 
(32) are integrodifferential equations and require W,, or 
W,f,l at different times. We therefore approximate the equa- 
tion of motion in the form 
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& W,,(P,R;t)=-(Lee--I’)W,,(P,R;t)-. dP’ 
I f 

dR’&,(P,R;P’,R’)W,,(P’,R’,t) 

9 I f dP’ dR’G~,,(P,R;P’,R’)W,,,I(P’,R’,tj, 

&W,.,,(P,R;tj=-(L,,~,-T)W~,~,(P.R;t)+ dP’ 
J I 

dR’G;,,(P,R;P’,R’)W,,(P’,R’,t) 

- dR’&,(P,R;P’,R.‘)We+,(P’,R’,t), (37) 

where the time averaged Green’s function is defined by 

&,(P,R;P~,R’)= f m d7 G,,,(P,R;P’,R’;r). (38) 
0 

If the damping is strong, this approximation should work 
well, since G decays rapidly with time.35-37 Equation (37) 
suggests that not only the. momentum, but also the position 
of the particle in the e state may change during the nonadia- 
batic transition. Tully and Preston proposed a molecular dy- 
namics scheme for nonadiabatic transitions,38 assuming that 
the position of the particle is the same before and the after 
the nonadiabatic transition. Equation (37) generalizes this 
procedure to include momentum changes as well. We can use 
the Green’s function to determine the position and the mo- 
mentum of the particle undergoing a nonadiabatic process. 
The particle is initially assumed to be in the e state. We can 
then calculate the dynamics of the particle using the follow- 
ing steps: (1) We use the Langevin equation which is equiva; 
lent to the classical Fokker-Planck equation 

i+li+& U,,(R)=f(t), 

_. 

(39) 

where the correlation of the noise is given by 
(f(t’)f(t))=ls(t)-t)lP. (2) While the particle is moving 
in the e state, its state changes from the position R’ and the 
momentum P’ in the e state to the position R and the mo- 
mentum P in the e’ state with hopping rate 
G,,g(P’,R’;P,R). The hopping process can be simulated 
using a Monte Carlo procedure. (3) Once the particle is in the 
e’ state, we solve the corresponding Langevin equation in 
the et state 

ii+lli+-& U,,,,(R)=f(t). (40) 

(4) The hopping from e’ to e can be calculated in a similar 
fashion. Once the particle returns to e, we then calculate its 
motion using Eq. (39). By repeating this procedure many 
times, we obtain the final distribution We, or We,,!. 

One of the main problems in the simulation of nonadia- 
batic transitions in the gas phase is how to maintain conser- 
vation of energy. This has been traditionally a test for various 
approximations. In the presence of a bath that can induce 

I 

electronic dephasing as well as relaxation, conservation of 
energy is no longer a pressing issue since the system can 
exchange energy with the bath. We believe that constructing 
a computational algorithm for a few degrees of freedom in 
the gas phase is the most demanding and difficult objective, 
both conceptually and computationally. The separation of 
time scales which exists in the presence of fast dephasing in 
condensed phases simplifies the description enormously 
since it is equivalent to assuming that the coherences are in 
steady states with the populations. This is when a master 
equation (for populations only) is most useful. 

In the limit of very fast dephasing, nuclear motions may 
be slow compared with the dephasing time and can be ig- 
nored. One can then use the classical Condon approximation 
in real space, and a fully classical description may hold. In 
the opposite extreme, an eigenstate representation may be 
more practical. It is for intermediate dephasing where the 
coordinate picture is useful yet we cannot quite make the 
static Condon approximation that the present scheme should 
become most adequate. This state of affairs is similar to the 
theoretical treatments of nonlinear optical spectroscopies8*42 
which are formally identical to curve crossing problems 
where the electric field plays the role of the nonadiabatic 
coupling. In the absence of dephasing, spectra show sharp 
lines, a full quantum description in necessary, and reduced 
semiclassical descriptions usually fail (except for harmonic 
systems). In the other extreme of broad line shapes (fast 
dephasing), a static, fully. classical, Condon description is 
appropriate. In the intermediate case, phenomena such as 
spectral diffusion and solvation effects may require a quan- 
tum formulation of the type presented here. 

In conclusion, the multistate Fokker-Planck equation 
provides a powerful means for the study of nonadiabatic 
transitions in condense phases. The present study had three 
main new points. First we generalized the conventional 
quantum Fokker-Planck equation to multistates system 
which can be applied to a system with anharmonic potentials 
and coordinate dependent nonadiabatic couplings. Second, 
we presented a rigorous procedure for calculating the pump- 
probe spectrum. Third, using the Green’s functions of the 
multistate Fokker-Planck equation, we explored possible al- 
gorithms for molecular dynamics simulations. Our numerical 
results demonstrate the interplay of the nonadiabatic cou- 
pling and electronic dephasing processes in curve crossing: 
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APPENDIX A: THE MULTISTATES FOKKER-PLANCK 
EQUATION FOR A GAUSSIAN-MARKOVIAN 
BATH 

We assume an Ohmic dissipation with the Lorentzian 
cutoff31 

In this case, one can obtain the equation of motion in the 
hierarchy form by generalizing procedure introduced by Tan- 
imura and Wolynes.3” For the nth member of hierarchy wyk, 
where j and k represent nonadiabatic states, the equation of 
motion is expressed as 

& WYJP,R;t)= -; & wg(P,R:tj-;- I $ ~,[Xjm(P-P’,R;tjW~k(P’,R;;j+X~k(P-P’,R)~~~(P’,R;tj] 
m 

+$ W;;‘(P,R;tj+nl;y P+=- Wyk-‘fP,R;t). 
.( i P JP 

The hieiarchy elements Wyk are defined by using ttie path integral. The equation of motion is derived by performing a timi 
derivative of these hierartihy elements. Physically, one can think of this hierarchy of equations as dealing with a set of Wigner 
functions, modeling the states of.th& system-with various numbers bf phonons excited in the bath. We’shall be interested only 
in the zeroth member of the hi&rchy W$ which is ideiitical to Wjk defined in Eq. (12). The other elemerits n #O are 
introduced fdr computational purposes. For deep hierarchy N y% w, , where w, is the characteristic frequency of the system 
such as the frequency of the harmonic potential, the above hierarchy can be terminated by 

.P_>. .:i 
,). - 

; W$P,R;t)= -;; W$P,R;t)-; 
J 

- dP’ 
G ~'~X,~(p~P'~R~t)w~~~P'~Rj~t)+X~~(~~~"~R)W~~~,~,~,~~~t)l 

m 

+~@&‘,R;i)+N~y( f’+f =-) W$-‘(p&t):’ .’ -L ” --I Ii ; .-:_I : ..(A3) 

Using. this hierarchal structure, we may deal with strong 
system-bath interactions. In the white noise limit +w, , we 
may terminate the hierarchy of Eqs. (A2) and (A3) by setting 
N=O, obtaining Eq. (12). Since we have assumed @Fl, 
the temperature requirement of the Gaussian-Mark&i% 
case DN. (A.21 and (A3)l 1 is e& stringent than the Gaussian- 
white case [Eq. (18)]. 

_ ~_~ 

APPENDIX B: ,4 SEMICLASSiCAL APPROXIMATION 
FOR THE MULTISTATE QUAtiTUM 
FOKKER-PLANCK EQUATION 

By taking the classical h-+0 limit of Eq. (12), we obtain 
the multistate Fokker-Planck equation in the semiclassical 
form 

& ~&VCt) 

dUjj(R) +dlJ,,(R) d 
d.R 1 I _ -- ..cVR dP 

r 

xWj,(P,R;t)-i C [Uji(R)Wmk(P;R;tj 
m 

._ 
- U,k(R) Wj,(P,R;t)]. I 031) 

This equation is exact if the potentials Ujj are the harmonic. 

r- ._, h. 

Note that a fully classical limit for the multistate system does 
not exist since the discrete electronic states are intrinsically 
quantum. Therefore, the present equation still contains the 
Planck constant. 
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