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Multidimensional off resonant spectroscopy of crystals using a train of optical pulses can be
effectively used to probe nuclear dynamics in solids. We predict a clear photon echo signal even in
the absence of inhomogeneous broadening. This technique may be used for studying phonon
dynamics in solids, in structurally frozen systems such as glasses, and in systems where the validity
of the concept of phonons is not equally well established, such as liquids and gases. With this
technique it is also possible to obtain information on the lifetime of phonons. We predict a long time
tail of the nonlinear signal proportional tot2n/5, wheren is the order of the response function
studied. ©1995 American Institute of Physics.
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I. INTRODUCTION

Nonlinear optical measurements may be conveniently
terpreted using nonlinear response functions a
susceptibilities.1 It is possible to compute the response fun
tions using multiple summations over the eigenstates of
material system, which include the energy levels and th
dipole matrix elements.2 It is also possible to include cou
pling to degrees of freedom of a thermal bath through rela
ation rates (T1 andT2 processes!. The tremendous success o
the optical Bloch equations in the interpretation of numero
nonlinear optical measurements involving simple few lev
systems demonstrates the utility of this approach. It is, ho
ever, very difficult to apply it to more complex many bod
systems such as neat liquids and semiconductors.3 The num-
ber of relevant states is very large and performing the m
tiple summations becomes an impossible task. In additi
the large number of terms in the sum over states make
hard to develop physical intuition. Attempts to map su
systems into an effective few level system, lumping all ma
body effects into frequency dependent non-Markovi
dephasing rates are of limited success.

An alternative approach is based on a quasiparticle r
resentation where the many-body system is mapped on
set of coupled anharmonic oscillators.4,5 This provides a
completely new framework for analyzing such spe
troscopies in terms of spectral densities,6,7 rather than phe-
nomenologicalT1 andT2 rates. It has been suggested that f
short time dynamics of atomic and molecular liquids, nucle
motions are described by a system of harmonic oscillat
with an electronic polarizability that depends on the nucle
configuration.8–10 Recently, Tanimura and Mukamel11

showed how nonlinear optical measurements can be use
test this conjecture. They further demonstrated how hig
order off resonant nonlinearities can shed light on the nat
of the spectral density obtained in optical Kerr measureme
and address its homogeneous and inhomogeneous char

a!Present address: Department of Physics and Astronomy, Vrije Univers
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Several measurements have subsequently been made in o
to test the predictions of this model.12,13

While the model provides many useful insights, its ap
plication to specific liquids is not straightforward. This re
quires addressing explicitly the nature of these oscillato
the underlying inhomogeneities, and their coupling to th
electronic polarizability, all of which are not readily avail-
able. In this article we calculate the off resonant response
a regular lattice of polarizable atoms with harmonic neare
neighbor interactions. This model allows a fully microscop
determination of the oscillators and their optical respons
The origin of the nonlinear optical response is the depe
dence of the electronic polarizability on the nuclear config
ration through the dipole-dipole coupling. Effects of anha
monicities and deviations from the regular lattice position
are taken into account by introducing a finite lifetime o
phonons. Unlike coherent anti-Stokes Raman spectrosco
~CARS! or optical Kerr measurements,6 the experimental
technique described here can distinguish between a st
distribution of oscillators frequencies~inhomogeneous
broadening! and the finite lifetime due to anharmonicities o
the coupling to a heat bath with very short correlation tim
~homogeneous broadening!. A simple semiclassical picture
for the process is obtained by employing the classical Lio
ville equation. We calculate the classical nonlinear respon
function which controls electronically off resonant multi
pulse experiments. We further discuss the possible div
gence of the nonlinear response at long times for anharmo
systems. We argue that the nonlinear response function
finite thanks to the ensemble averaging over initial cond
tions, which cancels possible divergences resulting from t
Lyapunov exponents.

II. THE MODEL

We start with the following Hamiltonian which describe
a collection of interacting atoms

HT5H1Helec, ~1!

with
eit
s.
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2366 J. A. Leegwater and S. Mukamel: Impulsive optical spectroscopy of phonons
H5(
i

pi
2

2m
1(

i, j

V~r i j !. ~2!

Herer i j5ur i2r j u, is the distance between nucleii and j , and
V(r ) is the interatomic interaction. The electronic degrees o
freedom are modeled as Drude oscillators and the electron
part of the Hamiltonian is given by

Helec5(
i

px,ia
2

2
1(

i

V2xia
2

2
1
1

2 (
iÞ j ,ab

xiaTab~r i j !xjb

2(
i

Ea~r i ,t !xia , ~3!

where xia denotes thea component of the 3-dimensional
coordinate representing the electronic degree of freedom, a
px,ia is the corresponding momentum.14 Ea(t) is the time
dependent external electric field vector at particlei . We will
assume thatTab(r i j ) is the dipole-dipole interaction tensor

Tab~r i j !5
3r i j ,ar i j ,b

r i j
5 2da,b

1

r i j
3 . ~4!

This form of the interaction is not essential, and the prese
theory applies to other forms as well.

We shall calculate the response of this model to a train
short off resonant pulses with frequencies centered arou
v. We single out the contribution in which each of the pulse
interacts twice~Fig. 1!. The use of off resonant pulses en-
sures that the electronic degrees of freedom are of relevan
only during the pulses. This allows us to adopt the followin
effective nuclear Hamiltonian

Helec
~eff!5(

iÞ j

En
2~ t !a~r i j !, ~5!

wherea is the electronic polarizability

a~r i j !5m2^k0 ,nu
1

V2v2T
1

1

2V2v2T
uk0 ,n&, ~6!

FIG. 1. Pulse sequence for an off resonantR(5) measurement. The system
interacts with two pairs of pulsesk0 together withk̃0 , andk1 together with
k̃1 , and the finalk2 pulse generates the signal. The wave vector of signa
follows from phase matchingks5k21k12 k̃11k02 k̃0 .
J. Chem. Phys., Vol. 102,Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject
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andT is a 3N33N matrix, with entriesTia, jb ,

uk,n&5(
j

exp~ ik•r j !aj ,n
† u0& . ~7!

u0& denotes the electronic ground state in which none
the molecules is excited, anduk,n& denotes the exciton
eigenstates,aj ,n

† is a boson operator that creates an excito
on the j th molecule polarized in then direction ~n5x,y,z).
Since the photon wave vector is very small compared wi
typical lattice wave vectors, we have dropped the positio
dependence of the electric field.

Equation~6! depends parametrically on all nuclear coor
dinatesr i j as well as on the optical frequenciesv of the
various pulses. Under off resonant excitation the dependen
on frequencyv is weak@see Eq.~28!#, we thus do not men-
tion it explicitly.15

We consider an experiment in whichE(t) consists of a
train ofN pulses which interact with the system through th
effective Hamiltonian Eq.~5!. These pulses perturb the
nuclear motions. The response of the system is detected w
an additional off resonant probe pulseEf(t) that converts the
nuclear coherence into electronic polarization and genera
the signal.

All optical properties of the system can be expresse
using the expectation value of the electronic dipole~the po-
larization! which controls the coupling with the radiation
field. This in turn may be expanded in powers of the inciden
field. The details have been given elsewhere.11 The formal
expression of the polarization is

^P~ t !&5(
j50

`

^P~2 j11!~ t !& , ~8!

whereP(2 j11)(t) represents the polarization induced by th
interaction withj pairs of pulses plus the detection pulse. W
then have

^P~3!~ t !&5Ef~ t !E
0

`

dt1R
~3!~ t1!E

2~ t2t1!, ~9!

^P~5!~ t !&5Ef~ t !E
0

`

dt1E
0

`

dt2R
~5!~ t2 ,t1!E

2~ t2t2!

3E2~ t2t12t2!, ~10!

and

^P~7!~ t !&5Ef~ t !E
0

`

dt1E
0

`

dt2 E
0

`

dt3R
~7!~ t3 ,t2 ,t1!

3E2~ t2t3!E
2~ t2t32t2!E

2~ t2t32t22t1!.

~11!

When the pulses are very short compared with the releva
nuclear dynamics timescale, thenth order optical signal in-
tegrated over timet is given by

S~2n11!}uR~2n11!~ tn ,. . .,t2 ,t1!u2 , ~12!

where t j are now the intervals between consecutive pulse
We have several time intervals at our disposal that can
varied in order to obtain information on the system.

To calculate the signal we introduce the following
notation.16 We define the classical Liouville operator

l
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2367J. A. Leegwater and S. Mukamel: Impulsive optical spectroscopy of phonons
L5$H,. . . % , ~13!

where$. . . , . . .% denotes the Poisson bracket

$A,B%5(
i

S ]A

]r i

]B

]pi
2

]B

]r i

]A

]pi
D , ~14!

and the interaction operator

â5$a,. . .%. ~15!

In the quantum mechanical case, the Poisson brackets
replaced by commutators. The system is initially in therm
equilibrium, and is characterized by the density matrix

req5
exp~2bH !

Tr exp~2bH !
. ~16!

From these definitions we find that

âreq52ba8req , ~17!

where

a8[$a,H%. ~18!

By treating the electronic HamiltonianHelec as a small per-
turbation on the system HamiltonianH, we find the formal
expressions for the response functions

R~3!~ t1!52b^a exp~Lt1!a8,req& , ~19!

R~5!~ t2 ,t1!52b^a exp~Lt2!â exp~Lt1!a8req&, ~20!

and

R~7!~ t3 ,t2 ,t1!52b^a exp~Lt3!â exp~Lt2!â

3exp~Lt1!a8req&. ~21!

The angular brackets denote the ensemble average over
tial positions and velocities of the particles. The opera
exp(Lt) propagates the system for a timet. To calculate it
explicitly, the nuclear equations of motion have to be solve

Alternatively we can recast these expressions in terms
correlation functions

R~3!52b^a~ t1!a8~0!req& , ~22!

R~5!52b^a~ t11t2!â~ t1!a8~0!req& , ~23!

R~7!52b^a~ t11t21t3!â~ t11t2!â~ t1!a8~0!req& , ~24!

where

a~ t !5exp~2Lt !a5a exp~Lt !. ~25!

In a quantum mechanical formulationa(t) is the operator
a in the Heisenberg picture.

The formal expressions derived above for the classi
response functions form the basis for the applications m
J. Chem. Phys., Vol. 102,Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subjec
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in this paper. The application to an FCC solid will be made
in the next section. At this point we shall consider a simpler
model of a single classical oscillator with a quadratic depen-
dence ofa on its coordinate, i.e.,

H5
1

2m
p21

mn2

2
q2, ~26!

and

a~q!5a0q
2 , ~27!

where

a05
Vm2

V22v2 . ~28!

HereV is the transition frequency of the isolated molecule,
andv is the central frequency of the applied field.

If a were linear inq then the model would have been
linear, and all nonlinear response functions would have van
ished. The quadratic dependence is the simplest nontrivia
form which has a nonlinear response. This model will help
us gain physical insight on the various response functions
Moreover it turns out that once certain approximations are
made, the response function of the FCC crystal will be ex-
pressed in terms of the response functions calculated for thi
simple model. We shall thus use the following results in the
next section. Using Eqs.~15!, ~18!, and ~27!, together with
the Hamiltonian~26! we obtain

a5a0q
2, ~29!

â52a0q
]

]p
, ~30!

a852a0qp. ~31!

The response functions can now be calculated using Eqs
~22!–~25! and the solution of the equations of motion for a
harmonic oscillator. We shall use the dimensionless time
variablet j[nt j and obtain

R~3!~t1!5
1

mn2
a0
2 sin~2t1! , ~32!

wheret15nt1 ,

R~5!~t2 ,t1!

5
a0
3

Abm3/2n3
F32 cos~2t122t2!2

5

2
cos~2t112t2!G ,

~33!

and
R~7!~t3 ,t2 ,t1!5
a0
4

bm2n4 F2sin~2t122t3!1
5

2
sin~2t112t3!2

3

2
sin~t11t212t3!23sin~3t11t212t3!

1sin~2t112t212t3!2
3

2
sin~t113t212t3!2

3

2
sin~3t113t212t3!13sin ~2t114t212t3!G . ~34!
No. 6, 8 February 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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2368 J. A. Leegwater and S. Mukamel: Impulsive optical spectroscopy of phonons
III. THIRD ORDER RESPONSE FUNCTION OF FCC
SOLIDS

We now apply the results of the previous section to
FCC solid. The nonlinearity is induced by the coupling of th
polarizability to the laser fields with the nuclear coordinat
as described byT. For the interaction between the nucle
and electronic degrees of freedom we use the dipole-dip
matrix T, where we assume an isotropic, harmonic intera
tion between a molecule and its nearest neighbors. We
note the deviation of a moleculei from its equilibrium posi-
tion by qi and expand perturbatively inqi . We then have

a5a11a2 , ~35!

where the first order term is

a15m2(
ia j

~“ iaTi j ,xx!qia , ~36!

and the electric fields are taken to be linearly polarized alo
thex-axis. For a centrosymmetric solid, such as a FCC so

(
j

“ iaTi j ,xx50, ~37!

and thereforea150. The lowest nonvanishing contribution i

a25m2(
ia jb

~“ ia“ jbTi j ,xx!qiaqjb . ~38!

Since an ideal solid is translationally invariant, it is useful
Fourier transform this to momentum (k… space

a25m0(
k

Xxxab~k!qkaq2kb , ~39!

wherek runs over the reciprocal lattice,

qka5(
i

eik•r iqia ~40!

and

Xxxab~k!5(
i j

ek•r i j“ i ,a“ i ,bTi j ,xx . ~41!

The operatorsâ2 anda28 follow from their defining relations
Eq. ~15! and Eq.~18! and are given by expressions similar t
Eqs. ~29!–~31!. While the trace of X is zero,
(aXaa(k)50, we still find a signal as we are interested
traces of higher orders, such as trX4(k).

The fifth order response function now becomes

R~5!~ t2 ,t1!5 (
k2k1k0 ,a

Xa2a
28
~k2!Xa1a

18
~k1!Xa0a

08
~k0!

3E dDr k0 ,a0E dvk0 ,a08Dr k2 ,a2

3
]

]vk2 ,a28
exp~Lt2!Dr k1 ,a1

]

]vk1 ,a18

3exp~Lt1!Dr k0 ,a0vk0 ,a08 ~42!
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with Dr k1 ,a1 is the Fourier transform, similar to Eq.~40! of
the deviations of the particles from their lattice sites at
t5t1 , and similarlyvk1 ,a18 is the Fourier transform of the

velocities. Higher order response functions can be written in
a similar way. Only the terms withk25k15k0 contribute for
a regular lattice when the applied fields have zero wave vec
tors. The contributions of the various oscillators then de
couple and we can use the results of the previous sectio
Strictly speaking, this decoupling is not rigorous, and we
have used the fact that the wave vectors are finite in selectin
a specific contribution to the nonlinear polarization through
phase matching~see Fig. 1!. Yet, for the response on a short
time scale, the wave vector dependence can be neglecte
The wave vector dependence can only show up on the tim
scale that a phonon requires to travel a distance of an optic
wavelength, which is typically of the order of a nanosecond
Here we are considering a much faster response, where t
typical time scale is the time it takes a phonon to move
across a single unit cell, which is of the order of a picosec
ond. Hence, as long as the fast response is considered, t
optical wave vectors can be safely set to zero.

As the relevant nonlinearity is quadratic in phonon co-
ordinates, each interaction with the applied field as describe
by a2 @Eq. ~39!# corresponds to a two phonon process. The
electric field wave vector is essentially zero, which implies
that after an excitation two phonons with opposite wave vec
tors are created. Setting the wave vectors of the applied field
to zero constitutes a considerable simplification, yet Eq.~42!
is still complicated as all the polarizations of the phonons
~transverse and longitudinal! have to be taken into account.
Since longitudinal and transverse phonons can have consi
erably different lifetimes and velocities it may be possible to
study only the contributions of the longitudinal phonons. The
sum over polarizations then collapses to a single term, an
Eq. ~42! can be evaluated resulting in

R~5!~ t2 ,t1!5b~bm!23/2E dnZ~5!~n!R~5!~nt2 ,nt1!,

~43!

and

R~7!~ t3 ,t2 ,t1!5b~bm!22E dnZ~7!~n!R~7!

3~nt3 ,nt2 ,nt1!, ~44!

where

Z~5!~n!5(
k

@Xk̂k̂~k!#3

4n3
d@n2n~k!#, ~45!

and

Z~7!~n!5(
k

@Xk̂k̂~k!#4

4n4
d@n2n~k!#, ~46!

with n(k) the angular velocity of the phonon of wave vector
k. The response functionsR(n) were given by Eqs.~32!–
~34!.
No. 6, 8 February 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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The functionZ(5)(n) for an isotropic FCC lattice with
nearest neighbor interactions is presented in Fig. 2. Since
small wave vectorsn}k and X(k)}k2, the function
Z(5)(n)}n5 in three dimensions.

Typical time-resolved response functions are graphed
Figs. 3 and 4. The time in Figs. 3–5 is expressed in terms
the Debye periodwD

21 which for organic crystals is of the
order of 50 fs. The most remarkable feature is the appeara
of an echo in the signal. This echo is entirely due to t
contribution of the first term in Eq.~33!. While the echo is
similar to the spin echo and the photon echo, there are so
notable differences. First, the word echo is to be taken lit
ally, since acoustic phonons are the excitations causing
Second, we find an echo even for a perfectly ordered cry
without additional inhomogeneous broadening. That we s
find an echo is due to the wave vector selection rules. O
narily only the k50 wave vector is excited. Here, as th
excitation is due to fluctuations in the dipole moments, t

FIG. 2. The density of states~solid! and the functionZ(5)(n) in arbitrary
units ~dashed! for a FCC solid. The frequency is expressed in terms of t
Debye frequency. For organic 231013 s21 crystals the Debye frequency is o
the order ofwD.

FIG. 3. A typical response as a function of time, without decay.
J. Chem. Phys., Vol. 102,Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subjec
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whole spectrum of wave vectors is excited with amplitude
proportional toX(k). As there are four interactions, the sig
nal depends onX4(k).

A unique property of echo experiments is that they ca
distinguish between different broadening processes. A co
monly used distinction is between broadening due to hom
geneous dephasing processes including the finite lifetime
the excitations, and pure dephasing~i.e., a frequency distri-
bution of excited oscillators!. In the echo presented in Fig. 3
only the distribution of frequencies was taken into accoun

In the derivation of Eq.~33! it was assumed that the
phonons have an infinite lifetime. While this is a good ap
proximation, there will always be small anharmonicities re
sulting in a finite lifetime. It is well known17 that the result-
ing lifetime is proportional ton25 for small frequenciesn,
which is of most interest for long times. For finite wave
vectors there is no simple expression for the phonon lifetim
and for simplicity we assume that it scales ascn25. While
the exact effect onR is hard to establish we will incorporate
it as a simple prefactor that only depends on the frequenc

R~5!~ t2 ,t1!5~bm!22E dnZ~5!~n!R~nt2 ,nt1!

3exp@2cn5~ t21t1!#. ~47!

A typical response function is given in Fig. 5. It is easy t
show that the echo signal has a long time tail and decays
R(t,t)}t21. For the seventh order response function w
have

R~7!~ t3 ,t2 ,t1!5~bm!22E dnZ~7!~n!R~nt3 ,nt2 ,nt1!

3exp@2cn5~ t31t21t1!#. ~48!

Now the echo signalR(t,0,t)}t27/5. An important use that
can be made of this experimental setup is to establish
lifetime of phonons in liquids, or perhaps even more fund
mentally: to establish the existence of phonons in liquid
The very existence of an echo could constitute a decis
point in this case. While computer simulations have demo
strated the existence of phonons in supercooled fluids,18 for
ordinary liquids the case is still open.

e

FIG. 4. Contour plot of the response functionR(5)(t2 ,t1) as function of the
two time variables. The echo signal can be clearly identified on the diagon
No. 6, 8 February 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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IV. WHY ARE THE RESPONSE FUNCTIONS FINITE AT
LONG TIMES?

The long-time behavior of linear response function
poses some interesting fundamental problems which ev
resulted in questioning their mere existence. The problem
that most dynamical systems are anharmonic, and the cla
cal equations of motion are nonlinear. It is well establishe
that chaotic behavior is expected under these circumstanc
the separation of two trajectories with small difference i
initial conditions will grow exponentially at long times. A
good measure of this divergence is provided by th
Lyapunov exponents. It has been argued that the respons
an external field, however small, should then diverge at lo
times.19 If that was the case, then formally the linear re
sponse functions should diverge as well. This contradicts o
common experience, since linear response functions ha
been computed and measured for numerous systems
found to be well behaved.

The expressions forR are more complicated than may
seem at first sight asâ is an operator. A major difference
between linear and nonlinear response is that it is not po
sible to eliminate the operatorsâ in the case of classical
nonlinear response. As there is a derivative in the operatorâ,
there is a possibility that the response function becomes v
large for Hamiltonians that have positive Lyapunov expo
nents. Each time we make a derivative, this is equivalent to
difference between two trajectories that are slightly pe
turbed. At first glance the potential for divergence is ther
fore much larger in the nonlinear response.

The previous sections were based on the nonlinear
sponse of a collection of harmonic oscillators with a nonlin
ear interaction with the field. In particular it was found tha
the response is bounded even though there is the possib
of divergence due to positive Lyapunov exponents.19,20 In
this section we argue that for an integrable system the fo
time response function is bounded butonly because of the
thermal averaging.We shall consider an integrable system a
then explicit expressions can be obtained. Calculations

FIG. 5. The diagonal response functionR(5)(t,t) taking into account the
finite lifetime of phonons as described in the text, Eq.~47!. We have used
c50.1 here~solid!. For comparison, also the response without decay
presented~dashed!.
J. Chem. Phys., Vol. 102,Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subjec
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chaotic systems are much harder to perform but we believ
that the same argument will hold there as well.

As a model we study the quartic potential

H5H01E~ t !r , ~49!

whereE(t) is the time dependent external field and

H05
p2

2
1r 4. ~50!

While this Hamiltonian corresponds to a one dimen
sional oscillator and is therefore integrable, the actual action
angle variables are not simply related to the original degree
of freedom. We find

H05S 3a

4
I D 4/3 ~51!

with I the action anda is a numerical constant

a5F8A2pE
0

1

~12x4!21/2dxG21

.46.598. ~52!

In terms of the action angle variables, the solution of th
equations of motion are

p~ t !5p~u01 u̇t,I 0!, r ~ t !5r ~u01 u̇t,I 0!. ~53!

HereI 0 andu0 are the initial values. Explicit expressions for
the functionsp(. , .) andr (. , .) can be given in terms of
elliptic functions, but they are most conveniently calculated
by numerically solving the equations of motion. The solu
tions are periodic, with period

FIG. 6. The nonlinear response functionR(t3,0,t1) for the quartic potential.
In this figure t353. In ~a! the response is presented for a fixed energy
(E51). No echo appears, and the signal grows linearly in time. In~b! the
response is graphed at temperatureT51. A clear echo signal appears at
t1.3, for other times the signal decays rapidly. Notice the difference in
scales on they-axis.
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T52pS dH0

dI D 21

5
2p

a
H0
1/4. ~54!

The response functions follow from the expressions of S
II, Eq. ~24!. After a straightforward, yet quite lengthy calcu
lation we obtain
J. Chem. Phys., Vol. 102Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subje
ec.
-

R~3!5b^v1v0& ~55!

R~5!~ t2 ,t1!5b3/2K v2E Fv1v0S 12 2bED1~r 11v1t1!r 0
3G L

~56!

and
R~7!~ t3 ,t2 ,t1!5b2^v3v2v1v0&2 K v3v2H S b

E
1

1

E2D Fv1v02
1~r 11v1t1!r 0

3G J L 1 K v3E2 Fv2v12
1~r 21v2t2!r 1

3GFv0S 122bED
1t1r 0

3G L 1 K v3
4E2 ~v2r 12r 2v12v2v1t2!r 0

3L 1 K v3E2 v1S 122bED S v2v02
1@r 21v2~ t11t2!# D r 03L

1 K v3
4E2 ~r 11v1t1!3r 0

2@v2r 02r 2v02v2v0~ t11t2!#L , ~57!
i-

,

d

ive
where ^. . .& denotes the average over the equilibrium en
semble ofr 0 andv0 ,

^. . .&5E dr0E dv0 exp~2bH0!. . . ~58!

and r 15r (t1 ;r 0 ,v0), r 25r (t11t2 ;r 0 ,v0), r 35r (t11t2
1t3;r 0,v0), and thev ’s are defined similarly. The most re-
markable feature of Eqs.~56! and~57! is that in principle the
response can become unbounded, and may grow linea
with time. That this growth is linear is due to the fact that w
have taken an integrable model; for chaotic systems th
growth will be exponential. In Fig. 6~a! we present the re-
sponse functionR for one particular energy. Indeed we find a
signal that is increasing without bounds in time. This beha
ior changes dramatically when we perform the thermal ave
aging, as demonstrated in Fig. 6~b!. The signal dephases rap-
idly since the oscillation periodT, Eq. ~54! depends on the
initial energy. We believe that this dephasing applies to no
integrable systems as well. The nonlinear optical response
much more sensitive to chaotic behavior than the linear r
sponse. The design of nonlinear optical measurements t
will provide a direct probe for Lyapunov exponents remain
a fascinating open question.
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