Photon echoes in impulsive optical spectroscopy of phonons
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Multidimensional off resonant spectroscopy of crystals using a train of optical pulses can be
effectively used to probe nuclear dynamics in solids. We predict a clear photon echo signal even in
the absence of inhomogeneous broadening. This technique may be used for studying phonon
dynamics in solids, in structurally frozen systems such as glasses, and in systems where the validity
of the concept of phonons is not equally well established, such as liquids and gases. With this
technique it is also possible to obtain information on the lifetime of phonons. We predict a long time
tail of the nonlinear signal proportional to ™°, wheren is the order of the response function
studied. ©1995 American Institute of Physics.

I. INTRODUCTION Several measurements have subsequently been made in order
to test the predictions of this mod&t!3

Nonlinear optical measurements may be conveniently in-  While the model provides many useful insights, its ap-
terpreted using nonlinear response functions anglication to specific liquids is not straightforward. This re-
susceptibilities. It is possible to compute the response func-quires addressing explicitly the nature of these oscillators,
tions using multiple summations over the eigenstates of théhe underlying inhomogeneities, and their coupling to the
material system, which include the energy levels and theiglectronic polarizability, all of which are not readily avail-
dipole matrix element$.lt is also possible to include cou- able. In this article we calculate the off resonant response of
pling to degrees of freedom of a thermal bath through relaxa regular lattice of polarizable atoms with harmonic nearest
ation rates T; andT, processes The tremendous success of nelghbqr m_teractlons. Thl_s model allows a fuII)_/ microscopic
the optical Bloch equations in the interpretation of numerougletermination of the oscillators and their optical response.
nonlinear optical measurements involving simple few levelThe origin of the nonlinear optical response is the depen-
systems demonstrates the utility of this approach. It is, howdence of the electronic polarizability on the nuclear configu-
ever, very difficult to apply it to more complex many body ration through the dipole-dipole coupling. Effects of anhar-
systems such as neat liquids and semicondudthe num- monicities and deviations from the regular lattice positions
ber of relevant states is very large and performing the mul@'€ taken into account by introducing a finite lifetime of
tiple summations becomes an impossible task. In additiorpgzgosns' UnI|It<'e (I:o'?erent antl-Stoken% Rhaman sp_ectr(zslcopy
the large number of terms in the sum over states makes ft .) or optical KeIr measureme S‘f € experimental

. L technique described here can distinguish between a static
hard to develop physical intuition. Attempts to map such ;= . 7" . 2
. . . distribution of oscillators frequenciesinhomogeneous

systems into an effective few level system, lumping all many;, . C L
bodv effects into frequency dependent non Markovianbroadenmg and the finite lifetime due to anharmonicities or

y 9 Y P the coupling to a heat bath with very short correlation time

dephasing rate_s are of "m'te.d Success. L (homogeneous broadening? simple semiclassical picture
An alternative approach is based on a quasiparticle repy

X , or the process is obtained by employing the classical Liou-
resentation where the many-body system is mapped onto @ye oquation. We calculate the classical nonlinear response

set of coupled anharmonic oscnlatdr%.Thls provides @  fnction which controls electronically off resonant multi-
completely new framework for analyzing such spec-pise experiments. We further discuss the possible diver-
troscopies in terms of spectral densifiésiather than phe- gence of the nonlinear response at long times for anharmonic
nomenologicall; andT, rates. It has been suggested that forgystems. We argue that the nonlinear response function is
short time dynamics of atomic and molecular liquids, nucleagipjte thanks to the ensemble averaging over initial condi-

motions are described by a system of harmonic oscillatorgons, which cancels possible divergences resulting from the
with an electronic polarizability that depends on the nucleai yapunov exponents.

configuratiorf™° Recently, Tanimura and Mukaniél

showed how nonlinear optical measurements can be used to
test this conjecture. They further demonstrated how higher
order off resonant nonlinearities can shed light on the naturg' THE MODEL

of the spectral density obtained in optical Kerr measurements e start with the following Hamiltonian which describes
and address its homogeneous and inhomogeneous charactggollection of interacting atoms

Hr=H+Hgp, 1)
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andT is a 3NX 3N matrix, with entriesT;, g,
_ P T
k,vy=2> expik-rja/ |0) . @)
j

|0) denotes the electronic ground state in which none of
the molecules is excited, anfk,») denotes the exciton
eigenstatesa;r'y is a boson operator that creates an exciton
on thejth molecule polarized in the direction (v=X,y,z).
Since the photon wave vector is very small compared with
typical lattice wave vectors, we have dropped the position
dependence of the electric field.

0 t =ttt Equation(6) depends parametrically on all nuclear coor-
dinatesr;; as well as on the optical frequenciesof the
various pulses. Under off resonant excitation the dependence

FIG. 1. Pulse sequence for an off resongftt) measurement. The system on frequency“) IS weak[see Eq.(28)], we thus do not men-

. . . . 15
interacts with two pairs of pulsds, together withk,, andk, together with  tlOn It explicitly.
k,, and the finak, pulse generates the signal. The wave vector of signal  We consider an experiment in whid(t) consists of a

follows from phase matchings= k;+ky —ky+ko—ko. train of N pulses which interact with the system through the
effective Hamiltonian Eq.(5). These pulses perturb the
nuclear motions. The response of the system is detected with

2 an additional off resonant probe pulsg(t) that converts the
H=> p_,+2 V(ri). (2)  huclear coherence into electronic polarization and generates
2m N i
i i<j the signal.

) ) o All optical properties of the system can be expressed
Herer;;=|r;—ry, is the distance between nucieindj, and using the expectation value of the electronic dipihes po-
V(r) is the interatomic interaction. The electronic degrees Ofarization) which controls the coupling with the radiation
freedom are modeled as Drude oscillators and the electroniga|q. This in turn may be expanded in powers of the incident

part of the Hamiltonian is given by field. The details have been given elsewhér&he formal
2 2y2 expression of the polarization is
Pia 0%, 1
Helec= > XZI +> 2| +§ > Xia Tap(rij)Xjg -
i i i#j,aB <P(t)>=2 <P(2j+1)(t)> , (8)
j=0

_2 Ea(ri 7t)Xia ) (3)

where P21 1)(1) represents the polarization induced by the
interaction withj pairs of pulses plus the detection pulse. We
where x;, denotes thew component of the 3-dimensional then have

coordinate representing the electronic degree of freedom, and "

Pyia is the corresponding momentuthE (1) is the time (P(3)(t)>:Ef(t)f dt;R®(t))EX(t—t,), 9)
dependent external electric field vector at particl&Ve will 0

assume that ,4(rj;) is the dipole-dipole interaction tensor % o
(PO(1)=Eq(D) f dt; f dtR®)(ty,t) EX(t—t,)
3r ij 'al’ ij.B8 1 0 0
Taﬁ(fij):r—5_5a,3r_3- (4) 5
ij ij XE“(t—t;—t,), (10
This form of the interaction is not essential, and the presenéind
theory applies to other forms as well. o o o
We shall calculate the response of this model to a train of P()(t)) = Ef(t)f dtlf dt, f dtsR7(t3,15,15)
short off resonant pulses with frequencies centered around 0 0 0
w. We single out the contribution in which each of the pulses XE2(t—t5) EX(t—tz—ty) EA(t—ta—t,—ty).
interacts twice(Fig. 1). The use of off resonant pulses en-
sures that the electronic degrees of freedom are of relevance (1)
only during the pulses. This allows us to adopt the followingWhen the pulses are very short compared with the relevant

effective nuclear Hamiltonian nuclear dynamics timescale, the¢h order optical signal in-
tegrated over time is given by
HEM=2 EXD)a(ry), (5) SN Do | R Dttt (12
1#] wheret; are now the intervals between consecutive pulses.
wherea is the electronic polarizability We have several time intervals at our disposal that can be
varied in order to obtain information on the system.

(6) To calculate the signal we introduce the following

—_ 2
al(lii)= k ,V + k ,V ’ . . . . .
() =pkorl G 07+ —q=goT [K0¥) notation'® We define the classical Liouville operator
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L={H,...}, (13) in this paper. The application to an FCC solid will be made
in the next section. At this point we shall consider a simpler

where{...., .. } denotes the Poisson bracket model of a single classical oscillator with a quadratic depen-
(A.B] 2 dA oB B JA 14 dence ofa on its coordinate, i.e.,
’ N : 5ri ﬁpl L;'ri &p, ’ 1 mV2
H=5, pz+7q2, (26)
and the interaction operator m
a={a,. . ). (15 and
In the quantum mechanical case, the Poisson brackets are a(q)=aoq®, (27

replaced by commutators. The system is initially in thermalynere
equilibrium, and is characterized by the density matrix 02
o
pe exp(— BH) _ (16) =gz 7 (28
Tr exp(— BH)

I . Here Q) is the transition frequency of the isolated molecule,
From these definitions we find that and w is the central frequency of the applied field.
ape=—Ba’peq, a7 If « were linear inq then the model would have been
linear, and all nonlinear response functions would have van-
ished. The quadratic dependence is the simplest nontrivial
a'={a,H}. (18 form which has a nonlinear response. This model will help
us gain physical insight on the various response functions.
Moreover it turns out that once certain approximations are
made, the response function of the FCC crystal will be ex-
pressed in terms of the response functions calculated for this
RO(t)=—B(a exp(Lty)a’,peq (19 simple model. We shall thus use the following results in the
R¥1t) =~ Bl XL XL, (20 o S U8 BG4S, 49, and 20 egeter i

where

By treating the electronic HamiltonialA . as a small per-
turbation on the system Hamiltonidth, we find the formal
expressions for the response functions

and

a=aod?, (29
R (t5,t5,t1)=— B(a exp(Ltz) @ exp(Lt,) a
R J
Xexp(Lty)a’ peg- (22) a=2anq o’ (30
The angular brackets denote the ensemble average over ini-
a’'=2apqp. (32)

tial positions and velocities of the particles. The operator

exp(Lt) propagates the system for a timeTo calculate it The response functions can now be calculated using Egs.

explicitly, the nuclear equations of motion have to be solved(22)—(25) and the solution of the equations of motion for a
Alternatively we can recast these expressions in terms dharmonic oscillator. We shall use the dimensionless time

correlation functions variable 7;= vt; and obtain
R®=—pB(a(ty)a’(0)peq (22 1,

R A7) = — ag sin(27y) , (32
R®=—p(a(t;+ty)a(ty)a’ (0)peg (23) my
RT=—Ba(ti+tr+ta)a(ti+t)a(t)a (O)peg . (24 WHETETI=PLL,
where SO (73,71)

a(t)=exp(—Lt)a=a exp(Lt). (25) ad 3 5
i ) ) =—|= 21— 21)— = 27+215) |,
In a quantum mechanical formulatian(t) is the operator \/Em3/2y3 2 cos27,~27)) 2 cos2m+27)

a in the Heisenberg picture.

The formal expressions derived above for the classical (33
response functions form the basis for the applications madand
, o . 5 3 .
.//2(7)( 7'3,7'2,'7'1): m _S|n(27'1_27'3)+§ S|r(27'1+ 27'3)_5 S|r(7'1+ '7'2+ 27'3)—3SIF(37'1+ 7'2+27'3)
: 3 . 3 . .
+S|n(27'l+ 27'2+ 273)_5 Sln(7'1+ 372+ 27'3)_5 Sln(37'l+ 372+ 27'3)"’35'” (27'1+ 47'2+ 2'7'3) . (34)
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Ill. THIRD ORDER RESPONSE FUNCTION OF FCC with Ary ,, is the Fourier transform, similar to E¢40) of
SOLIDS the deviations of the particles from their lattice sites at

We now apply the results of the previous section to a=t;, and similarlyvkl,ai is the Fourier transform of the
FCC solid. The nonlinearity is induced by the coupling of thevelocities. Higher order response functions can be written in
polarizability to the laser fields with the nuclear coordinatesa similar way. Only the terms witk, =k, =k, contribute for
as described by. For the interaction between the nuclear a regular lattice when the applied fields have zero wave vec-
and electronic degrees of freedom we use the dipole-dipoltors. The contributions of the various oscillators then de-
matrix T, where we assume an isotropic, harmonic interaccouple and we can use the results of the previous section.
tion between a molecule and its nearest neighbors. We détrictly speaking, this decoupling is not rigorous, and we
note the deviation of a molecuiegfrom its equilibrium posi- have used the fact that the wave vectors are finite in selecting
tion by g; and expand perturbatively igy . We then have a specific contribution to the nonlinear polarization through
phase matchingsee Fig. 1 Yet, for the response on a short

a=artag, B9 fime scale, the wave vector dependence can be neglected.
where the first order term is The wave vector dependence can only show up on the time
scale that a phonon requires to travel a distance of an optical

ar=u?Y (ViaTij x)ia s (36)  wavelength, which is typically of the order of a nanosecond.
iaj Here we are considering a much faster response, where the

and the electric fields are taken to be linearly polarized alon?pm&ll time scale is the time it takes a phonon to move

. . . -across a single unit cell, which is of the order of a picosec-
the x-axis. For a centrosymmetric solid, such as a FCC soli . .
ond. Hence, as long as the fast response is considered, the

E V. T =0 37 optical wave vectors can be gafe]y set to zero.
= Tl i) As the relevant nonlinearity is quadratic in phonon co-
! ordinates, each interaction with the applied field as described
and thereforey; =0. The lowest nonvanishing contribution is by «, [Eq. (39)] corresponds to a two phonon process. The
electric field wave vector is essentially zero, which implies
_MZZ (ViaVigTij x0ialjp - (38) that after an excitation two phonons with opposite wave vec-
iajB tors are created. Setting the wave vectors of the applied fields
to zero constitutes a considerable simplification, yet(&g)
is still complicated as all the polarizations of the phonons
(transverse and longitudinahave to be taken into account.
Since longitudinal and transverse phonons can have consid-

Since an ideal solid is translationally invariant, it is useful to.
Fourier transform this to momentunk) space

5= 1102 Xxap(K)Uicall ks » (39 erably different lifetimes and velocities it may be possible to
k study only the contributions of the longitudinal phonons. The
wherek runs over the reciprocal lattice, sum over polarizations then collapses to a single term, and
Eq. (42) can be evaluated resulting in
=2 e*Tig, (40
i RO(ty,ty)=B(Bm) f dvZ® (1) 729 (vt5,vty),

and (43

Xxxaﬁ(k)zz ek.rijVi,zszi,,BTij,xx . (41) and

i]

The operatorsr, anda} follow from their defining relations R(Y)(tsytz,t1)=,8(ﬁm)’2J’ dvz D (v). 727
Eqg. (15 and Eq.(18) and are given by expressions similar to
Egs. (29—(31). While the trace of X is zero, X(vtg, v, vty), (44)

2 X.o(K)=0, we still find a signal as we are interested in
traces of higher orders, such aXfi(k).
The fifth order response function now becomes

where

2=, XK 5[v v(k)], (45)
R(S)(tZ!tl): z Xazaé(kZ)Xalai(kl)Xaoaé(kO) k
Kokqkg and
Xf dArko‘aof deola'Arkz‘az
° 2=, KWL 6[v v(k)], (46)
k
X exp(Ltz)Arkl'al—
Nicy ) Ny with »(k) the angular velocity of the phonon of wave vector
k. The response functiongZ™ were given by Eqs(32)—
X exp(Lty) ATy aoVicy al 42 (s, P 9 y Eqs(32)
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FIG. 4. Contour plot of the response functiBf)(t,,t;) as function of the
two time variables. The echo signal can be clearly identified on the diagonal.

FIG. 2. The density of statesolid) and the functiorz®)(v) in arbitrary
units (dashed for a FCC solid. The frequency is expressed in terms of the
Debye frequency. For organic10'® s ! crystals the Debye frequency is of

the order ofwp. whole spectrum of wave vectors is excited with amplitudes

proportional toX (k). As there are four interactions, the sig-
nal depends oX*(k).

. . . . . A unigue property of echo experiments is that they can
(5)

The fupcﬂon; (v) fpr an Isotropic FC.:C I.att|ce W'th distinguish between different broadening processes. A com-
nearest neighbor interactions is present%d in Fig. 2. S_lnce f%only used distinction is between broadening due to homo-
S’(‘Q;"‘” wag/g VheCtorj.ka _and X(k)yck®, the function geneous dephasing processes including the finite lifetime of
z (T”)"F”I n three Ilmt(ajnsmns. ‘ i hed .the excitations, and pure dephasifig., a frequency distri-

Fi éplcad téllm%lres'o Ve rsspor;se gnc’uons arz 9rapnea i ,tion of excited oscillatoys In the echo presented in Fig. 3
gs. 5 and 4. The 'grlne In FIgs. -5 IS éxpressed In terms o nly the distribution of frequencies was taken into account.
the Debye periodvy = which for organic crystals is of the In the derivation of Eq.(33) it was assumed that the

order of 50 fs. The most remarkable feature is the appearan(iﬁ]Onons have an infinite lifetime. While this is a good ap-

of an ec_ho in the s_|gnal. Th_|s echo is ef_‘“re'y due tq theproximation, there will always be small anharmonicities re-
contribution of the first term in Eq.33). While the echo is

imil h . h d the ph ho. th sulting in a finite lifetime. It is well knowH that the result-
simifar to .t € spin echo an the photon echo, there are S.Omﬁg lifetime is proportional tov™° for small frequencies,
notable differences. First, the word echo is to be taken liter:

v, si e oh h Y .~ which is of most interest for long times. For finite wave
ally, since acoustic phonons are the excitations causing e o there is no simple expression for the phonon lifetime

Second, we find an echo even for a perfectly ordered crystadnd for simplicity we assume that it scalescs 5. While
without additional inhomogeneous broadening. That we stlllthe exact effect onz is hard to establish we will incorporate

flnd_ an echo is due to the wave vector s_electlon rules. Ordig oo o simple prefactor that only depends on the frequency
narily only thek=0 wave vector is excited. Here, as the

excitation is due to fluctuations in the dipole moments, the R(S)(tz,t1)=(ﬂm)’2f AvZS (v) 2 vty vty)

X exd —crd(ty+1ty)]. (47)
osp (TTTTTTTITEITTTTTITETTL] A typical response function is given in Fig. 5. It is easy to
C t; = 30 ] show that the echo signal has a long time tail and decays as
C ] R(t,t)xt~1. For the seventh order response function we
0.25 - 7] have
:; 0 R(7>(t3,t2,t1)=(,8m)‘zf dvzZ(v).22(vt3,vt,, vty)
& L
N X exd —cvi(tg+t+ty)]. (48)
-0.25 -1 . .
- 1 Now the echo signaR(t,0,t)t~"/>. An important use that
r ] can be made of this experimental setup is to establish the
T T T lifetime of phonons in liquids, or perhaps even more funda-
0 10 20 30 40 50 mentally: to establish the existence of phonons in liquids.

The very existence of an echo could constitute a decisive
point in this case. While computer simulations have demon-
strated the existence of phonons in supercooled fifidis:

FIG. 3. A typical response as a function of time, without decay. ordinary liquids the case is still open.
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chaotic systems are much harder to perform but we believe
that the same argument will hold there as well.
As a model we study the quartic potential

TIIII

P
L
o £ o H=Ho+E(r, (49
I 1 . H
= Y N .": :': whereE(t) is the time dependent external field and
ey !
< i _p2 4
v Ho—_+r . (50)
(VI 2
1]

While this Hamiltonian corresponds to a one dimen-
sional oscillator and is therefore integrable, the actual action-
| angle variables are not simply related to the original degrees
2 4 6 of freedom. We find

t
3a 4/3

Ho=| | (51)
FIG. 5. The diagonal response functi®$®)(t,t) taking into account the
finite lifetime of phonons as described in the text, E4i7). We have used  wjith | the action andy is a numerical constant
c=0.1 here(solid). For comparison, also the response without decay is
presenteddashed 1 -1

a= sﬁwJ (1—x*"Y4dx| =46.598. (52

0

IV. WHY ARE THE RESPONSE FUNCTIONS FINITE AT . . .
In terms of the action angle variables, the solution of the

LONG TIMES? . .
equations of motion are
The long-time behavior of linear response functions . .
poses some interesting fundamental problems which even P(1)=p(fo+6t,15), r(t)=r(6o+ 6t,lo). (53

resulted in quest!omng their mere eX|stence_. The problem 'IS-JereIo and 6, are the initial values. Explicit expressions for
that most dynamical systems are anharmonic, and the classthe functionsp(. , .) andr(. , .) can be given in terms of
cal equations of motion are nonlinear. It is well eStab“Shedel_liptiC functions, but they are most conveniently calculated

that chaotic behavior is expected under these circumstanceﬁy numerically solving the equations of motion. The solu-
the separation of two trajectories with small difference intions are periodic, with period '

initial conditions will grow exponentially at long times. A
good measure of this divergence is provided by the
Lyapunov exponents. It has been argued that the response to
an external field, however small, should then diverge at long
times?® If that was the case, then formally the linear re- 40k |
sponse functions should diverge as well. This contradicts our (2)
common experience, since linear response functions have

N 201 .
been computed and measured for numerous systems and ;
found to be well behaved. &£
. . = 0
The expressions foR are more complicated than may
seem at first sight a& is an operator. A major difference _sok

between linear and nonlinear response is that it is not pos- | | |
sible to eliminate the operatom® in the case of classical
nonlinear response. As there is a derivative in the opergtor
there is a possibility that the response function becomes very
large for Hamiltonians that have positive Lyapunov expo-
nents. Each time we make a derivative, this is equivalent to a
difference between two trajectories that are slightly per-
turbed. At first glance the potential for divergence is there-
fore much larger in the nonlinear response.

The previous sections were based on the nonlinear re-
sponse of a collection of harmonic oscillators with a nonlin- t
ear interaction with the field. In particular it was found that
the response is bounded even though there is the possibility
of divergence due to positive Lyapunov exponéﬁt@. In FIG. 6. The nonlinear response functiBiit;,0,t,) for the quartic potential.
this section we argue that for an integrable system the foulp this figuret;=3. In (a) the response is presented for a fixed energy
time response function is bounded arily because of the (E=1): No echo appears, and the signal grows linearly in timebjrthe

. . . response is graphed at temperatlirel. A clear echo signal appears at
thermal averagingWe shall consider an integrable system as; —3 for other times the signal decays rapidly. Notice the difference in
then explicit expressions can be obtained. Calculations foscales on thg-axis.

R(t;,0,t,)
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dHo\ "t 27 R® = B(v 55
TZZW( dlo) = Ho" (54 Aloawo) 9
. . R(S)(tz-tl)253/2<2 Ulvo(E —BE +(r1+01t1)r8}
The response functions follow from the expressions of Sec. E 2
Il, Eq. (24). After a straightforward, yet quite lengthy calcu- (56)
lation we obtain and
|
ﬁ 1 [ 25X %0) U3 | U2V 1
R(7)(t3,t2,t1)=B2(v3v2v1v0)—<v3v2 ETER T+(|’1+U1t1)f8 = T+(r2+vzt2)ri vo| 5~ BE
U3 U3 1 UoUg
+tlrg > + <@(U2rl_rzvl_vzvlt2)rg> +<? Ul(E_BE) (T+[r2+vz(tl+t2)] rg>
U3
+<@("1+01t1)3r3[02r0_rzvo_vzvo(t1+t2)]> ' (57)

where (. ..) denotes the average over the equilibrium en-which is financially supported by the Nederlandse Organi-
semble ofrg anduvg, satie voor Wetenschappelijk Onderzo@kWoO).

<. . >:J droj dUO eXF(_BHo). . (58)
LUltrafast Phenomena IXedited by G. A. Mourou, A. H. Zewail, P. F.

and ro=r(ty;;ro,vg), ro=r(ty+ty;ro,vg), rz=r(t;+t, Barbara, and W. H. KnoxSpringer, Berlin, 1994

. , . - 2N. BloembergenNonlinear Optics(Benjamin, New York, 1965
+13;r0,00), and thev’s are defined similarly. The most re- 3H. Haug and S. W. KochQuantum Theory of the Optical and Electronic

markable feature of Eq$56) and(57) is that in principle the Properties of Semiconductor@Norld Scientific, Singapore, 1990S.
response can become unbounded, and may grow linearlySchmitt-Rink, D. S. Chemla, and D. B. Miller, Adv. Phya8, 89 (1989.

with time. That this gI’OWth is linear is due to the fact that we *S. Mukamel,Principles of Nonlinear Optical Spectrosco@xford, New
. . . . York, 1995.
have taken an integrable model; for chaotic systems this; 5 Leegwater and S. Mukamel, J. Chem. PHL, 7388 (1994,

growth will be exponential. In Fig. (8 we present the re-  ém. cho, G. R. Fleming, and S. Mukamel, J. Chem. P19@:5314(1993;
sponse functiofr for one particular energy. Indeed we find a M. Cho, S. J. Rosenthal, N. F. Scherer, L. D. Ziegler, and G. R. Fleming,

: o . . - : __ibid. 96, 5033(1992.
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