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The third order nonlinear optical response of semiconductor quantum dots is calculated in the limit 
of weak exciton confinement. We treat exactly the nonlocal photon-exciton interaction using Green 
function techniques, without invoking the long wavelength approximation. This procedure provides 
a unified treatment of systems with arbitrary size compared with the optical wavelength. Geometric 
confinement gives rise to quantized polariton modes with a finite radiative lifetime. The variation of 
optical nonlinearities with size, and the role of local field effects are analyzed. 0 I994 American 
Institute of Physics. 

1. INTRODUCTION 

Studies of geometric confinement effects on optical 
properties of semiconductor nanostructures have mainly fo- 
cused on the quantization of the relevant elementary excita- 
tions (Wannier excitons or electron-hole pairs). An extensive 
effort has been devoted to characterizing the relation be- 
tween the optical response and exciton confinement in III-V 
or II-VI compounds,rS2 mainly because of practical device 
applications. The family of GaAs quantum wells (QW’s) 
provides by far the best examples of 2D-confined systems. In 
these materials, the Wannier exciton Bohr radius aa is typi- 
cally larger than the QW width which defines the confine- 
ment direction and strength, and the quantization of excitons 
has a preponderant effect on the optical response via the 
strong modification of the exciton wave function and oscil- 
lator strength. Typical values of Bohr radii and binding en- 
ergies for III-V, II-VI, and I-VII materials are summarized 
in Table I. 

Due to the dominance of strongly confined structures in 
mesoscopic spectroscopy, most studies have focused on this 
limit, where the interaction with the light field can be treated 
in the long wavelength approximation (LWA). The emphasis, 
then, has been put on calculating the material states,’ by 
neglecting the electromagnetic field degrees of freedom. This 
is reminiscent of atomic physics. Each atom can be viewed 
as a point dipole as far as the field is concerned, and polar- 
iton effects are completely neglected. This may be justified 
for systems such as GaAs-QW’s, where the direct electron- 
hole Coulomb interaction is small compared with the kinetic 
energy (which is increased by the confinement). Further- 
more, in these materials the dipole-dipole (electron-hole ex- 
change) interaction related to polariton formation which is 
much smaller than the Coulomb contribution, is negligible. 

The situation is very different, however, when the size of 
the system is much larger than the exciton Bohr radius, as is 
the case, for example, in I-VII compounds such as CuCl 
(see Table I) or a fortiori in organic materials where the 
excitations are strongly localized (Frenkel excitons). In this 
case the optical properties are related to the coherence asso- 
ciated with the exciton center of mass. Indeed, these materi- 
als are characterized by a small bulk Bohr radius a0 and an 
intrinsically large oscillator strength (which is inversely pro- 

portional to a:): f m&/rra& pcU being the interband- 
transition dipole moment. For strong confinement, the oscil- 
lator strength is no longer directly proportional to the volume 
of the system. The size dependence is more complex and 
enters via correlation between an electron and a hole charac- 
terized by a confined Bohr radius a, which can differ sub- 
stantially from its bulk value.” For example, in an ideal 
2D-QW the exciton Bohr radius is half of that in 3D, af 
= ao/2,3 which leads to a fourfold increase in the exciton 
binding energy Eiv = 4ER (E,=e”/2ao, e is the electron 
charge). On the other hand, if confinement is weak, a0 is not 
affected by the confinement, the -oscillator strength is simply 
proportional to the volume, and all interesting confinement 
effects are found in the coherence of the center of mass (CM) 
motion. In addition the effects of the dipole-dipole interac- 
tion (long wavelength longitudinal electromagnetic field) and 
radiative corrections due to the coupling with the transverse 
electromagnetic field, which are proportional to the oscillator 
strength, increase as the Bohr radius decreases. Furthermore, 
due to the large exciton binding energy (and small Bohr ra- 
dius), excitons can be treated as point interacting particles, 
pretty much the same as Frenkel excitons. 

The weak confinement limit is of great fundamental in- 
terest since it links confined and infinite systems through 
conjined poZariton modes (CPM). These are the eigenvalues 
of the nonlocal (in space and time) exciton equation (cf. 
Appendix E) which contains the retarded interaction with the 
transverse electromagnetic field through a self-energy. This 
self-energy adds a finite size-dependent radiative width to the 
quantized exciton levels. The procedure we employ in Ap- 
pendix D to calculate the CPM is valid provided size is 
larger than the exciton Bohr radius, and for infinite size it 
reproduces the well known bulk polariton dispersion. 

Polar&on effects have clear signatures in nonlinear opti- 
cal properties since they strongly renormalize the one and the 
two-exciton energies and oscillator strengths. The oscillator 
strength of each optically active exciton state, is proportional 
to the volume. This scaling law is exact as long as we can 
invoke the LWA and neglect the dipole-dipole interaction 
(i.e., local field effects). The possible increase of tbe magni- 
tude of the third order resonant nonlinear susceptibility of a 
microcrystallite has been suggested in Ref. 5. This enhance 
ment saturates for large radii and attains its maximum for 
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TABLE I. Bulk parameters for typical semiconductors. E, : Exciton binding 
energy. aa: Exciton Bohr radius. ALT : Longitudinal-transverse splitting as 
measured in the bulk. 

ER hev) a0 (4 AL7 (mev) 

(III-V) GaAs 4.2 120 0.075 
(II-VI) CdS 27 30 1.9 to 2.6 (A exciton) 
(I-WI) CuCl 190 7 5.5 

8. S. Koteles, Excifons, edited by V. M. Agranovich and A. A. Maradudin 
(North-Holland, Amsterdam, 1982). 

infinite volume if one uses the LWA and neglects local field 
corrections.6 

In this paper we calculate the linear and nonlinear (third 
order) optical response of large semiconductor quantum dots. 
We assume that the confinement size L is large compared 
with the exciton Bohr radius aa: L&q,. Our calculation is 
based on a two-band model using the effective mass approxi- 
mation. This approximation requires that the size be suffi- 
ciently large. 

We provide a rigorous self consistent treatment of the 
interaction with the electromagnetic field, without invoking 
the long wavelength approximation, and consequently our 
formulation holds all the way to the limit of infinite size. In 
practice, as the size is increased we need to incorporate a 
larger number of exciton states, and the calculation becomes 
more computationally intensive. We further show that the 
dipole-dipole interaction, which is usually neglected in the 
calculation of optical properties of semiconductor nanostruc- 
tures, is essential in order to calculate the exciton (or polar- 
iton) radiative-decay rates, as well as the correct exciton en- 
ergies. Our calculation interpolates between weakly confined 
nanostructures and infinite systems in which the polariton- 
radiative decay vanishes, and the dipole-dipole interaction 
gives rise to the splitting between longitudinal and transverse 
exciton states. 

Ishihara7 used a numerical algorithm to solve the 
coupled Schrijdinger and Maxwell equations based on a gen- 
eralization of a model proposed by Cho.* This procedure 
involves the numerical calculation of the expansion coeffi- 
cients of the electromagnetic field. Although these coeffi- 
cients contain all the relevant information on exciton dynam- 
ics such as radiative corrections and coherence effects, these 
are implicit in the numerical expansion, which makes it dif- 
ficult to interpret. 

The present calculation is based on a Green function 
representation of the exciton dynamics and incorporates the 
nonlocality of the electromagnetic field resulting in a self- 
consistent confined-polar&on picture. We apply the Green 
function formalism of Chemyak and Mukame? to a nonde- 
generate two-band semiconductor model. The relevant Green 
functions constitute the formal solutions of the linearized 
Heisenberg equations for the expectation values of the one 
and two electron-hole pair operators. We can thus describe 
the excitons as coupled anharmonic oscillators. In the weak 
exciton confinement limit, the two-exciton Green function 
coincides with the simple form obtained for the Frenkel- 
exciton model.g Due to the difference in the starting Hamil- 
toman, our results, derived along the same lines as in Ref. 9, 

differ slightly in form, in particular in the treatment of the 
exciton anharmonicities giving rise to nonlinearities. By fo- 
cusing on material operators with nonlocal retarded coupling 
to the electromagnetic field, we can pinpoint the polariton 
effects on the exciton Green function. Our procedure avoids 
the diverging terms which show up in a density matrix for- 
mulation. These divergencies cancel identically, but may 
pose some numerical difficulties. Our results show the im- 
portance of the size dependence of the radiative as well as 
nonradiative decay rates in the generation of optical nonlin- 
earities. We found a local maximum in the nonlinearity ver- 
sus size dependence whose position is determined by the 
relative magnitude of the exciton-exciton interaction and the 
decay rates. 

In Sec. II we present the Hamiltonian, and the corre- 
sponding equations of motion for exciton operators are de- 
rived in Sec. III for the linear case, and in Sec. IV for the 
nonlinear case. We then apply the present formalism to a 
large semiconductor sphere in Sec. V. The analogous appli- 
cation to a thick film geometry is outlined in Appendix F. 

II. THE TWO-BAND HAMILTONIAN 

We consider a semiconductor with two nondegenerate 
bands, whose Hamiltonian can be expressed in the effective 
mass approximation, and in the multipolar form (without 
magnetic terms) as3T10 

where 

I;r,=c I dr T:(r) $& VzTa(r)+27r - drlP(r>[2 
a CL J 

+; c I dr dr’ ‘Pz(r)T$(r’) 
rr,P=e,h 

X V,,tr-r’)~p(r’)~n(r), 

i&= - 
I 

dr dr’ ~~~(r)~,‘(rj~(r~rOT(r-)~,(r’)~h(r’). 

(3) 
T’,‘(r) (U,(r)), with CY=~, h, is the creation (annihilation) 
operator for the quasiparticle cx (electron or hole). These op- 
erators satisfy the Fermi-anticommutation rules 

[*‘,(r);Tpf(r’)]+=SapS(r-8). (4) 
The polarization operator is, in the dipole approximation 

:~r>=I;,,{~:(r)?I’,f(r)+W,(r)WhCr)}, (5) 

and ,&;,, taken to be parallel to the z axis (see Appendix A) is 
the interband transition dipole moment calculated with Wan- 
nier functions. 9’ is the transverse part of .:,?? 
V,p(r-r’j=e,epllr-r’I is the Coulomb interaction between 
particles CP,/?, which is assumed to be identical to that of an 
infinite system (no dielectric effects). eU= +e is the electric 
charge of the particle cx In Eq. (l), we did not include intra- 
band transitions. Furthermore, we explicitly se;parated,_for 
clarity, the matter Hamiltonian into two parts, Ho and Heh, 
the latter being the electron-hole exchange interaction. 
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T(r-r’) is a simplified form of this exchange interaction (cf. 
Appendix A) obtained by expanding the Coulomb potential 
in multipoles 

,. 
T(r-r’)=ASRS(r-r’)+bLo.VrVi. &: (6) 

L. Belleguie and S. Mukamel: Excitons in semiconductor nanostructures 9721 

The polarization operator [Eq. (5)] as well as the linear and 
nonlinear optical properties of the system depend only on the 
diagonal operator with rl=r2. However, by introducing this 
extended set of operators we can derive simple closed equa- 
tions of motion. This is done in Appendix B. 

To calculate the linear response using a confined polar- 
iton picture, we first connect the matter variable P with the 
Maxwell field. Using the Heisenberg equation for D, we find 
that the electric field satisfies the Maxwell equation 

i 
1 .d2 

i 

2 

VAVA+ 7 z B(r,t)=4r f $ &r,t). (13) 

The formal solution of this linear equation is 

ASR is the short-range coupling.” The ’ symbol implies that 
the contribution arising from jr-r’1 <E is excluded, where E 
is small compared to the dimensions of the system. The 
electron-hole exchange interaction strength is a measure of 
the significance of polariton effects. It is worth noting that 
Heh is equivalent to the dipole-dipole interaction of the 
Frenkel-exciton model. This contribution becomes more im- 
portant in systems where the exciton Bohr radius a0 is of the 
order of the lattice constant a (e.g., CuCl where uo=7 A, 
a=5.4 A and the expectation value of ii,, on the fundamen- 
tal exciton state is of the order of 5.5 mev”). In strongly 
confined semiconductor nanostmctures (e.g., GaAs) this term 
is often neglected, since it is much smaller than the quantized 
kinetic energy.’ However, we shall concentrate here on 
weakly confined systems where @,,> and the kinetic energy 
are comparable (around 1% or 2% of the exciton binding 
energy lZR). 

The electromagnetic field is treated quantum mechani- 
cally, and we adopt the multipolar Hamiltonian in the Cou- 
lomb gauge. (Eventually, we shall make a semiclassical ap- 
proximation for the field, see Eq. (27).] Hnd is the field 
Hamiltonian 

kin,=& 
f 

dr[(V Xi(r))“+ (61(rj)21, (7) 

where the veztor potential field operator i and its conjugate 
momentum D satisfy the commutation rules 

[IY(r),ii(r’)]=47ri&(r-r’), 03) 

and s’ is the transverse Sfunction. These operators commute 
with all material operators. The retarded interaction with the 
transverse electromagnetic field is 

Bin,(t)=- 
I 

Jr &r).S(r,t), (9) 

and the average electric (Maxwell) field is related to the dis- 
placement operator b(r,t) by 

~(rltj~~(r,t)-4~~r,tj. (10) 

III. LINEAR OPTICAL PROPERTIES: CONFINED 
POLARITONS 

We start our study of the optical properties in the exci- 
tonic region by introducing the following set of binary 
electron-hole operators which represent the single-electron 
reduced density matrix of the system 

L 
P,2it)E~.t?(rl,tj~h(r22t), 

~~2(t)=yref(rl,t)~~(r2,t). 

Their expectation values are denoted 

Pdt)=&w). 

ill) 

(12) 

t 
k(r,t)=Eo(r,t)+ dt’ 

i I 
dr’.F(r,r’,t-t’j&r’,t’), 

-@a 
(14) 

where F(r,r’;t - t’) is the dyadic Green function defined by 

S(r,r’,tj= 
1 

dw Str,r’;q)eioltt, 

=iqlr-r’l (15) 

F(r,r’;q)={q2+VV.) m q= f. 

and E. is the external field. With these definitions, Eq. (B2) 
linearized to first order in E. becomes t 
S&r1,r2,t)P\y(t)- IS (1) dr3 Piq ,r3,t-t’)@cu{P33 -m 

X(t’)+P&)*(t’)}-J dq T(rl-r3)Pi\)(t) 

=~(r~-rdiL,~Wrl)9 (16) 

Zeh is the electron-hole Liouville operator [Eq. (B3)]. 
Tp=Y’-VV.l/lr-r’l is the transverse part of the Maxwell 
equation Green function (15). Hereafter we apply the rotat- 
ing wave approximation by neglecting Pi\)* in Eq. (16). The 
first-order polarization is related to the external field via the 
one-exciton Green function [kernel of Eq. (16)] 

f”,‘,‘(w)= I dr3 G,xcirl,r2;r3,r3,w)~,,.Eoir3,W). 
im 

Equation (17), together with Eqs. (14) which gives the scat- 
tered field outside the system, and Eq. (5) which connects the 
Maxwell equation source term with the matter variables, al- 
low us to calculate all linear optical properties of the system. 
The right-hand side of the linear equation (16) only depends 
on the center of mass coordinate R12=(m,rl+mhr2/M), 
M=m,+mh. 

So far we did not specify the geometry or size of the 
system, but hereafter we specialize to the weak confinement 
limit 

L/a+-- 1, (181 

where L is the smallest geometric dimension of the system 
and a0 the exciton Bohr radius in the bulk. In this limit the 
center of mass and relative motions of electron-hole pairs 
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are decoupled. A discussion of the different confinement re- 
gimes can be found in Refs. 12 and 13. The following deri- 
vation holds for all sizes larger than ao. This has important 
consequences since our expressions interpolate all the way 
from mesoscopic sizes (e.g., 40 A for CuCl) to the bulk, 
where they describe the formation of 3D polaritons. 

Only the CM motion is affected by the weak confine- 
ment and the relative electron-hole degrees of freedom do 
not depend on the long wavelength external field. We can 
then factorize the one-exciton amplitude as 

(p12(t))= iplq -r2>Wh2jexp 2 E,t , [ 1 (19) 

In Eq. (24), ~,,=e y- i(l?,+ r,,J is a complex quantity which 
contains the radiative width lYV of the exciton as well as the 
nonretarded width Ye. The form of the CM wave functions 
@JR) is discussed in the next sections and in Appendices D, 
E, and F. 

In the long wavelength approximation we assume that 
the field varies very slowly inside the sphere and define the 
linear polarizability a, as 

where cp, the relative motion wave function, is assumed to be 
identical to that of the bulk. We consider only the first IS 
level, so that cpt,(x) = (~-a;) ’ - *‘2e-x’a0. This is justified 
since the CM-kinetic energies are much smaller than the ex- 
citonic binding energy. Other states can be included if nec- 
essary. 

The one-exciton CM-Green function can be constructed 
from the solution of the one-exciton equation derived from 
Fq. (16) by integrating over the relative motion and neglect- 
ing the antiresonant part of the polarization, resulting in 

- 
I 

- dR’ T(R,R’;E,~~)~,(R’)=o, 

with the self-energy 

(20) 

~C(RR’;c)=~,,.:~R-R’;z/c)~,,, i21) 

where eex=E,- E, (Eg being the gap energy) is the bulk- 
exciton energy for zero CM momentum (i.e., optically active 
transverse state in an infinite crystal) and R the CM coordi- 
nate. The eigenvalue E,, is the single exciton energy which 
fully incorporates retardation effects. In Eq. (20). we have 
introduced the dipole moment dzU=p&I q,,(O) I2 -which is 
proportional to the experimentally measured longitudinal- 
transverse energy splitting in the bulk AL-r=4rd&,.3 We have 
included the dipole-dipole interaction part arising from the 
electron-hole exchange interaction as the longitudinal part 
of the polarization [see Eq. (6)]. 

The linear polarization can then be written in terms of 
the eigenvalues and eigenfunctions of Eq. (20) as 

1 - 
Pyg&)‘~ 

J 
dR Pi’&(R, w) 

= do)Eo(w), 06) 

where 

&=I/ dR e,(R) ‘. 

Equations (22) and (24) which contain all the necessary 
information on the confined exciton states depend on the 
following parameters: The exciton binding energy E, which 
is the natural energy scale, the exciton Bohr radius aa as the 
natural length scale, ALr which is a measure of the dipole 
moment ku, ynr a phenomenoiogical nonradiative decay 
rate, L the confined dimension of the system (radius Y?? in the 
case of a sphere), and %=melmh the ratio of the electron and 
hole effective masses. 

IV. THE THIRD-ORDER POLARIZATION 

P”)(R,w)=x &(R)Pl’)(o), 

where we have defined 

Pl”(wj=c ~~~,Eo,,(w), 
Y’ 

with the second rank tensor 

(23) 

The nonlinear optical properties are determined by 
higher order operators as described in Appendix B. We must 
take the expectation value of Eqs. (B2) and (B9) and close 
the hierarchy. We first make a semiclassical approximation 
by treating the electromagnetic field 2’ as a c number. We 
then have 

B4” =s LJC” 
VY w’ &p-g3 (24) 

and 
for all material operators A. The third-order equation for the 
exciton polarization is 
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.Xeh(rl ,r2,t)P\i)(t)= - ji,,- 
I 

dr3 Pi13)P::)*E1(r2,t)-~~u. dr, P$~‘P&‘*E’ 

+ v23)e34 “‘*(t)Q&2(t)- 
I I 

dr3 dr4(D24P~:)*(t)Q123k4(~)+~14p~~j~(~)Q~~~4(~)). (28) 

In Eq. (28) we have introduced the expectation value of the operator 

B,234(~)~~,2(~)~34(~), (2% 

which corresponds to the annihilation of two excitons. This satisfies the following equation [see Eq. (B9)]: 

.-%(rl ,r2,r3,c,t)Q 122)34(fl = 30-1 -r2LL .~~(r,,t)P:‘,)-tS(rg-r4)~,,.E’(r3,t)Pi~-~(rl-r4)ri(.cv.~‘(rl,t)P412). 

-6(r2Trg)liLo.E’(r2,t)Plid+ 6(rl-r2) dr5 D15Q$$4+ @r3-r4) dr5 hQ& I 

+ @rl-rJ dr5 %Q& I I 
i7.j -t &r2--r3> dr, &QM~. 

Here, Q is second order in the field. Equation (28) can be recast in an operator form 

(30) 

.5Te,l(t)P ‘3’(t)=~iicv.E’(t)P(1)*(t)P(1)(t)+~xP(1f*(t)Q(2)(t). (31) 

The first contribution in the rhs comes from Pauli exclusion. It prohibits the optical creation of the same particle (electron 
or hole) at the same place, prevents the filling of already populated optically active exciton states, and induces transitions to 
initially forbidden states. This is usually denoted phase space jlling (or band-filling effect).’ The second term comes from the 
Coulomb interaction between excitons. The relative magnitude of these two contributions depends on the material and 
confinement size. The latter is much larger in compounds which have a large exciton binding energy (compared with dephasing 
rate) and a confinement size much larger than the exciton Bohr radius. We shall address this point in detail in the next section. 

Equation (28), together with Eq<. (16) and (30) constitute a closed system which can be solved numerically. However, due 
to the large number (six) of continuous coordinates, an expansion in a basis set is preferable. 

with the aid of the Green functions of the one- and two-exciton equations of motion, the third-order polarization at 
frequency o, obtained as the formal solution of Eq. (31) is given by 

P@(w)=- 
.I- 

Jr3 dr4 dr5 Gexc(rl,r2;qrr4,w) do1 dm2 dm3 S(W-CO~-W~-W~) 

x[r;,,.E’(r4,W,)P:~‘*(o2)P~:‘(W3)+~~v.E’(r3,ol)P~~)*(W2)P~)(W3)l+ 
J 

dq dm2 S(w-~~-0,) 

In the same way, we define the two-exciton Green function 
(G?& as the formal solution of Eq. (30) 

C?\z2)34iwj=~ doI dco2J l& dr; 

>(S(o-ol-02)G2exc(ri;rl ,ol+02) 

X{8(r$-r~>,&,-Eo(r~ ,q)P:~‘,,(d 

+ cX(rl-r~j,ii.,,~E~(rf ,q)P\~\,(02)}. 

(33) 
We shall be interested in calculating the nonlinear scat- 

tered field outside the system 

Ei3)(r,aj= drl ~~r,rl;w)~L,,[P(l:)(o)+P(I:‘*(w)]. 

(341 

I- 

The evaluation of Pc3) requires the calculation of the 
two-exciton Green function. It is difficult to find an analyti- 
cal solution for a Hamiltonian as general as Eq. (1). Indeed, 
even in the bulk, no analytical solutions are known for the 
four interacting particle system, and we shall introduce an 
approximate procedure for computing G2e.c. Our goal is to 
investigate the nonlinearities of a confined system at very 
low exciton density, and point out their scaling with size and 
other intrinsic parameters. Our approximation for the two- 
exciton Green function in based on the following argument: 
The relative electron-hole motion which is dominated by 
short range Coulomb forces, couples to the short wavelength 
longitudinal electromagnetic field, whereas the CM motion is 
affected by the long range dipole-dipole (i.e., electron-hole 
exchange) interaction, as well as by the transverse electro- 
magnetic field. Therefore, if the short range Coulomb inter- 
action can be separated from the center of mass motion, as is 
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In Appendix C we show that, due to the small Bohr 
radius, we can invoke the point-dipole approximation for the 
exciton-exciton interaction, and neglect the correction due 
exchange between the same particles in the dipole-dipole 
interaction. This approximation, although rather crude, al- 
lows us to greatly simplify the problem for the following two 
reasons: (ij the interaction with the field becomes local, and 
may be evaluated at the exciton center of mass (hole and 
electron at the same site), and the nonlocality of the field 
enters through this CM variable and not through the relative 
motion: (ii) we can establish a direct correspondence with 
the Frenkel exciton model. We finally obtain 

Pi,;)& w.7) = 2 @v$WP~;‘(~,s), 
V‘S 

where 

(35) 

P$w,)= 
J‘ 

dw, do2 dug &co,-q-w2-w3) 

the case in an infinite system, we can concentrate on confine- 
ment effects on the CM alone (weak confinement). 

(36) 

and the subscripts d and x refer to the contributions arising 
from the Coulomb interaction and Pauli exclusion, respec- 
tively. A complete real space expression for ~$6’) is given in 
Appendix B. When expanded using the eigenfunctions [Eq. 
(24)] we obtain 

(38) 

v “,Y2,Yp4=” x I dR cCI:,(R)~~,(R)~‘v,(R)~Cr,4(R), 
(39) 

EO,, Y2 v3 = ‘!f dR glr~,(R)~Cr,,(R)rCI,3(R)Eo(R), i (40) 

c;;‘(+~ 
a-eEF’ 

(41) e 
I- ““2.“3~4(“)=~-G(~(,)v . 

0 
yIv2,qv4 

ur and g” are numerical constants given in Appendix C ob- 
tained by integrating the matrix elements over the relative 
motion.14 Gb2! is given by 

Gb2)(41v,v2= & .\ dw’ G;;)(w’)G$w-co’). 

@W 
Equations (35)-(41) constitute our final expression for 

the third order response, and form the basis for the subse- 
quent analysis. The nonlinear response contains two terms 
which reflect the contributions of the Coulomb interaction 
between excitons and of Pauli exclusion respectively. This 
differs from the result for the Frenkel-exciton model’ which 
contains only the Pauli exclusion contribution. This is a di- 
rect consequence of the exciton-exciton interaction term 
which exists in our Hamiltonian but is absent in the Frenkel- 
exciton model. 

V.. APPLICATION TO A LARGE SPHERE 

We consider a large semiconductor sphere with radius 
.%%,ao. We use parameters corresponding to CuCl which 
provides a beautiful example of a weakly confined nano- 
structure (cf. Table I). Using the symmetry, we decompose 
the Green function in spherical functions as described in Ap- 
pendices D and E. The dipole-dipole interaction is by far 
stronger than the pure radiative corrections. We then diago- 
nalize the exciton Hamiltonian by keeping only Ho-t Her,. 
Using this partial diagonalization, we can express the one- 
exciton Green function as 

G(“(o)=~ [ v)G~‘)(oj(~I, (43) 

where the states IV) are defined in Eq. (20). The observed 
signal is calculated from the electromagnetic field, given by 
Eq: (14). Far from the sphere, it has the following form: 

&r 
E(rj=Ea(r) + f(i,ij 7 , (44) 

where E,(r) is the incident field. The total cross section is 
related, by the optical theorem, to the forward scattering 
amplitudeI 

(45) 

e. is the direction of the incident field. i is the direction of 
observation. f is calculated in Appendix E. 

In Fig. 1, we plot the linear total-scattering cross section 
of a sphere of radius .5&,=40. We chose a relatively large 
radius in order to show a large number of levels and en- 
hanced radiative width (proportional to the oscillator 
strength). The figure shows the positions of the optically ac- 
tive states as well as their relative strength. The inset 
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(~-G’E, 

FIG. I. Total linear scattering cross sectioti’of a sphere of radius B&,=40. 
We have included a small nonradiative damping y,,= IO-‘E, (ER is the bulk 
cxciton binding energy). Inset: Linear total scattering cross section of a 
sphere of radius Y%,= 10. 

shows the linear spectrum of a 1 Oa,, sphere. When the radius 
is small (stronger confinement), the mixing between states 
induced by the dipole-dipole interaction (i.e. local field ef- 
fects) can be neglected, and the linear spectrum shows only 
s-exciton states (Z=O) whose energies, are approximately 
given by E,, = e,,+ ALT/3+fi2n”n2/2M.%2 and oscillator 
strengths j’,L~3%3/n2, n being the radial quantum number (n 
=1,2,3,...), When the size is increased and the spacings be- 
tween the quantized levels decrease, the local field effect 
becomes more important and gives rise to a strong mixing of 
s and d exciton levels (cf. Appendix Ej. Therefore, the stron- 
gest oscillator strength is no longer associated with the low- 
est exciton state. The maximum of the linear absorption is 
found at E=E,+A&~, and is connected to higher excited 
states. The importance of the local field is well known from 
the classical Mie theoly.15 For not too large radii, i.e., when 
C&Z=-.% still holds, the optical resonances of the sphere are 
determined by the following equation (for oj: 

j&,(L(w).m j& W4kdfi2-~+W2) jl+l(k-(o)& 

-k2 jz-,(k+(o)M =. 
+ j,+,(k,(ww9 ’ 

(46) 

obtained from Eq. (D9) by setting c-+. j, are the spherical 
Bessel functions of order 1. Here, X-+(w)‘=2M(fio-~,,)l~ 
and k-(w)“=k$--2MA&fi2. We shall see that Eq. (46) 
gives for large radius (but still small compared to the exter- 
nal wavelength) the well known Mie theory. When &--+~, 
the asymptotic properties of the Bessel functions 
(j’l(x)-isin(x-Z~/2)lx for X-W) give 

&A,-$&=0 (47) 

(4 
5 

L-&/L 
OO 

-' 
35 

K/a, 

FIG. 2. Panels a to d show the dimensionless exciton radiative decay rate 
r,,-rhJ((-yela,)3E,), as a function of 3Yq, for the four lowest exciton 
levels, respectively. The solid line is the exact radiative decay and the long 
dashed line has been calculated without dipole-dipole interaction. The short 
dash curve in panels a and c is the LWA (levels Z=O, n= 1, 2) without 
dipole-dipole .interaction. 

The scattered field in Mie theory, to first order in q.92, gives 
a pole in the total cross section of the form17 

1 
E(0)+2’ 

where only terms. with I= 1 contribute, and iw) is the bulk 
dielectric function” 

ALT E(0)=1+--. E,- 0 

Since k2,=fio- E,, , the identity between Eq. (46) with I= 1 
and the pole of Bq. (48) is evident. Therefore, there exists an 
intermediate range of sizes where the classical Mia theory 
holds. For smaller sizes, quantum confinement effects on the 
energy levels and wave functions are preponderant, and the 
complete description in terms of quantized exciton states is 
necessary. In the opposite limit, when the radius is compa- 
rable or larger than the wavelength, one cannot ignore polar- 
iton effects (c is finitej and again the full nonlocal descrip- 
tion (20) is required. 

In Fig. 2 we plot the radiative decay rate per unit vol- 
ume, i.e., the imaginary part of the exciton energy divided by 
(S&U,)~, of the four lowest exciton levels, using different 
approximations. The solid curve represents the exact calcu- 
lation while the long-dashed curve is obtained by neglecting 
the dipole-dipole interaction. The short-dashed curve in 
Figs. 2(a) and 2(C) is the LWA (levels 1 =O, n = 1,2) without 
dipole-dipole interaction. In this approximation the radiative 
decay rate is given by rnEm ~(c983/n2jS~~6 and the decay rate 
is simply proportional to the volume of the sphere. The non- 
1ocaI calculation without the local field effects, differs only. at 
large radii (330) since the interaction with the transverse 
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FIG. 3. (.a) Energy of the six lowest exciton levels (real part of the eJ. (b) 
The exact dimensionless radiative decay rate yeyexC, defined in Fig. 2. 

field is rather weak. The combined contribution of the 
longitudinalftransverse (i.e., local fieldfpure radiative cor- 
rections) results in a much stronger dependence on the radius 
(solid curves). It is interesting to compare the size depen- 
dence of the real and imaginary parts of the energy, shown in 
Fig. 3. Panel b shows the radiative decay rate, of the six 
lowest exciton levels. Their variation with size is to be com- 
pared with panel a which shows the real part of the exciton 
energy and its scaling with size. Inflection points in the 
damping rate curves correspond to level anticrossings of the 
real part of the energy. Similar results have been obtained in 
Ref. 16. 

The strong variation of the radiative decay rate with size, 
which may be clearly attributed to the dipole-dipole interac- 
tion (as seen, for example, Fig. 2) is due to the mixing of 
different states. Our numerical diagonalization does not al- 
low us to pinpoint which unperturbed quantized state corre- 
sponds to a particular radiative decay rate depicted in Fig. 2. 
However, we can provide a physical explanation for the bell- 
shaped r(B). The exciton$eld interaction-matrix element is 
proportional to 2 

(O[~~E~nh~)~3@'~ 2 jl(49) 4= ;. (50) 

The quantized exciton wave vectors are knl= K,l/.% which 
vanish when .B-+a for fixed quantum numbers n,l. There- 
fore, when .B increases, the optically active states (with a 
nonvanishing radiative decay) will have higher quantum 
numbers in order to keep a finite knl . For an infinite system, 
the selection rule knl = q corresponds to p1 --tco and knl finite 
[for large pz, knl= rr(n + Z/2)/93]. This shows the successive 
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resonant character of higher quantum states and explains the 
shape of Fig. 3(b). It should be noted also that the sum rule 
Z,,y,,=C=constant, should hold for each radius. In our cal- 
culation this was verified to within I%, and “C” slightly 
decreases for larger .@:. This is because the oscillator strength 
redistributes to higher quantum states 1= I ,3.-m which are not 
included in our truncated calculation. 

We shall now apply our expressions for the nonlinear 
response of a sphere, calculate a stationary pump-probe sig- 
nal, and study its scaling with size. We look for the resonant 
third-order polarization generated at probe frequency wr by 
the interaction with a pump field with frequency op. The 
signal field outside the sphere is given by Eq. (14). Since we 
expand the polarization in the external field, we can express 
the scattering of the incident fields in terms of a cross sec- 
tion, as discussed in Appendix E. The measured signal is the 
difference between the cross sections at the probe frequency 
with and without the pump 

CC 
I 

dR .c'~.~P(~)(R,w,). isO 
As indicated in Sec. IV, the nonlinear polarization has two 
contributions related to different physical processes, namely, 
phase space filling and Coulomb interactions. The former is 
proportional to g” [cf. Eq. (40)] and the latter to uX [cf. Eq. 
(39)]. As discussed in Ref. 6, the former is much smaller 
than the Coulomb contribution in the weak confinement 
limit, when the exciton binding energy is much larger than 
the damping parameters (as in CuCl). We shall therefore ne- 
glect the gX contribution to the third-order polarization in the 
following calculations. The present calculation does not hold 
for materials such as GaAs, where phase space filling is sig- 
nificant, and the calculation requires a much larger number 
of quantized levels. 

In our calculations, we have approximated the Coulomb 
matrix element by its diagonal value 

V 1: 
v1v2v3v4 V V,Y24,V342U4. (52) 

We have verified that the calculation with the complete ma- 
trix elements (39) gives a very small correction. The differ- 
ent matrix elements have the following scaling with size 
V,p.% -3; g”c~.B-~‘~; E,c&-~; JJ,,cc~~‘~ and ~p~3 (for 
small radii). 2, reflects the correction due to the pure re- 
tarded interaction. Using these matrix elements, the approxi- 
mation (52) and integrating Eq. (32) to calculate the cross 
section, we can show that at resonance, the third-order po- 
larization scales as 

P~3)~V,,,~~~~2~~FL,r~~~~3. (53) 

Therefore, the polarization per unit volume is independent on 
size in the limit of infinite radius, and the result has the 
proper thermodynamic limit. Calculating the nonlinear re- 
sponse using the density matrix as in Ref. 6 leads to an 
expression which contains two diverging contributions in 
P(3)/.B3 (when .Y$+~). These contributions interfere de- 
structively, yielding a size-independent x(3).18,19 Our present 
calculation gives directly the correct scaling since the whole 
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FIG. 4. Linear absorption cross section (upper panels) and pump-probe 
signal (lower panels) as a function of probe frequency and size. Frames a to 
d correspond to .%3aa=12, 20, 30, and 40. The pump frequency wP is 
resonant with the maximum of the linear spectrum for each case. The pump- 
probe signal curves are given relative to the (a) curve which was normalized 
to unity. The dimensionless detuning of the probe beam is defined as 
AU,-(fior- %)/En . The nonradiative damping parameter is yN= 10-“ER . 

nonlinear polarization arising from the Coulomb interaction 
is proportional to V,,d. The band-filling contribution contains 
no divergence, as was shown in Ref. 6. 

We shall now study the coherent enhancement of the 
third order polarization, defined as the increase of the non- 
linear response magnitude (at resonance) with the radius. It is 
mainly determined by the above scaling rules and in particu- 
lar it is proportional to the inverse of Coulomb matrix ele- 
ment V, as long as it is larger than the decay rate. When 
these two quantities become comparable, the enhancement is 
canceled. For small radii, V% y and the maximum of 8~ 
scales as ( jlV)-‘v’ly, where y is the total damping rate. 
When Vdy (i.e., for larger radius) we have 8o=y. ‘v”/y. 
Therefore, the maximum value is reached when V9y pro- 
vided y does not depend on &. However, our nonlocal pro- 
cedure includes the radiative decay which depends on .%, as 
seen on Fig. 2. Then, y= ynr+ ynd(.S), and the maximum of 
65 decreases when ynr=Gyrad (23). The model can be im- 
proved by incorporating a size dependent nonradiative damp- 
ing rate ynYnr, e.g., due to coupling with phonons or surface 
impurities~). In Fig. 4, we show 6a (lower panels) as a 
function of probe frequency and radius together with the lin- 
ear spectra (upper panels) for reference. All Sa have been 
normalized to the curve in panel a. The pump frequency is at 
the maximum of the linear spectrum. This corresponds to 
higher exciton levels as .% is increased. As discussed above, 
it converges towards E,=eex+ALT/3. We give a global per- 

, b7 

0 .-cl2 1 r; 

AWT 
0.04 - 

FIG. 5. Variation of the pump-probe spectrum with size. All parameters 
other than the sizes are identical to Fig. 4. Sizes SYuc vary from 12.5 to 
47.5 in increments of 4. 

spective of the same calculation in Fig. 5. Figure 6 shows the 
corresponding maximum of Sa as a function of size. The 
dashed curve was calculated by keeping the pump frequency 
at the lowest exciton state. The difference between the two 
curves is due to the redistribution of the oscillator strength 
among the higher exciton states, as B is increased. 

Additional important properties of such systems can be 
treated using the same formalism. For example it would be 
essential to incorporate the size dependence of the nonradi- 
ative decay channels due, e.g., to coupling with con- 

FIG. 6. Maximum of the pump-probe signal SC as a function of size. The 
full curve is calculated with the pump frequency as in Fig. 4. For the dashed 
curve, wP is equal to the energy of the lowest exciton state for each size. The 
nonradiative damping is y,,r= 10m4E,. 
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fined phonons. The scaling behavior of such decay is ex- 
pected to be very different than the radiative one because of 
the phonon quantization volume, which is the quantum dot 
itself. We have neglected as in Ref. 9 the feedback induced 
by the third-order polarization on the linear polarization 
leading to a nonlinear Maxwell equation. This nonlinear lo- 
cal effect can give rise to bistability and is also expected to 
strongly depend on size. 
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APPENDIX A: DERIVATION OF THE DIPOLE-DIPOLE 
INTERACTION 

In this Appendix, we derive the dipole-dipole approxi- 
mation for the electron-hole exctange interaction. The origi- 
nal electron-hole exchange part Heh of the Hamiltonian (1)” 

geh= - 
I 

dr dr’ ?\Iref(r)Wh+(r’)V(r-r’)9!,(r’)Ph(t), 

(Al) 
can be rewritten by expanding the operators Uz and ?Ir, in 
terms of Wannier functions 

Y:(r) = C wz(r-I)q+ , (A21 

where LZ: is the creation operator of an electron (a=e) hole 
(cu=h) at site 1, as 

I%,= - c c<dtd14c13 dr dr’ w,“(r-ll) 
1, -1, 

Xwz(r’--liJ ,,S, ~ w&r’-l.Q)wu(r-13). (A3r 

Here, w&-l) is the conduction-band Wannier function at 
site I and w, (r-l’) the valence-band Wannier function at site 
I’. Due to the localization of the Wannier functions only the 
combinations I, = I, and I, = I, survive in Eq. (A3). In the 
same way, the integrations over r and r’ are restricted to the 
extension of the Wannier functions near the sites Z 1 ; I,. We 
then have 

&I,= - 2 c;d;dl,c12 
I 

67 dd w,*( T)w,( T) 
11.12 

e2 
x111-12+T-T’1 ~WhCW~ 

We now separate the sum over I, .I2 into two contribu- 
tions; a short range interaction with I1 =Z2, and a second 
term with ail the other contributions 1 1 # Z2, 

ILR= c c,:d,,c,2d$ 
I 

d7d71 w~(7)w,(~j 
[I#'2 

e2 
XIll-,,+ 7- 7’1 %w)WC(~)~ (‘44) 

with 

A,,= dT db w;(T)w,( T) 
e2 

~ w:(+)w,(+). 1 ,T- 7’ [ 
(A% 

We expand the integral in Eq. (A4) in multipoles, bearing in 
mind that 1 1 # Z2 and that the Wannier functions are strongly 
localized. The first two terms vanish by charge neutrality and 
the first nonzero term is 

n 
P’cu * PcrJ 
111-1:; -3 

tiLA1-12))2 
14 -1215 

3 Z,#Z,, L46) 

6 k=e I d+r w:t$Fd4. (A7j 

In the continuous form we then obtain the dipole-dipole 
interaction Hamiltonian (3). 

APPENDIX B: EQUATIONS OF MOTION FOR b AND ii 

We detail,jn this_Appendix, the equations of motion for 
the operators P and Q. The Heisenberg equation of motion 

aepljed to f12(t! pith the Hamiltonian (l), gives (we denote 
[A,B],=AB+BA): 
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Here, a,= 1, u,~= - 1, and the operator se, is defined by 

The two-point density 

A,trl,r2,tj=W,+trl,t)~,tr2,,t), 

033) 

034) 

satisfies the following equation of motion (taking a=e): 

a 62 
ifi jt &irl ,r2,fj = - - (V~,-Vft)~,~r,,r,,t)+~cu~{[~~z(t),EL(rl,~jl+-[~~~(~),EI(P2,~)l+} 2m e 

+&(f> I 6 T(r2-r3’3)ij33tt)-~12(t) dr3 Tiq--3)~~3(t)+ c I CT, 
I 

Jr3CV(rI-rd 
ol=e,h 

- ~(r2-r3>l~~(rdL(r3 ,r3 ,tW,tr2). tW 

The operat?r equation (B2) needs to be linearized in order to derive a closed equation for the expectation values of the relevant 
operators, P and ii,P. 

If the density of excited particles is sufficiently high, one has to keep these two equations and find a proper factorization 
procedure for the expectation value of ri,P, as is done for example in the time-dependent Hartree-Fock procedure.22 Since we 
are interested only in nonlinearities up to third order, and the system is-subject to transitions from zero-exciton states to one- 
and two-exciton states, we shall introduce a new operator representing two-exciton quasiparticles 

which appears in ECq. (B2) in the term that contains ui,. We could as well use the equation of motion for the operator A,, 
however. for the present case of strongly bound states, it is advantageous to work with this variable instead of the density of 
electrons and holes.as 

In order to calculate the third-order nonlinearities, we need consider only the space spanned by the zero, one and two 
exciton states. The time-dependent wave function can then be expanded as 

+ J drl dr2 dr3 dr4 slraurctrlrr2rr3,r4,~)~~tr~)i~~~ir2)~,(r3)f~~\Ir,+(r4)lO)+~~~ 

~IIjrg(tj)+l~~(t))+I~2(t))+... . (B7) 

When calculating the expectation value of pi,Peh using this state, only states up to ]fi2(t)) contribute at third order. Further- 
more, since the Hamiltonian does not allow the separate creation of electrons or holes [i.e., the density of electrons (or holes) 
is equal to the exciton density], we can use the identity 

6Ar3,rd@d.t)= 
I 

dr4 ~~4V)b3412itL 038) 

which allows us to consider the operator b instead of A,. The advantage of working with 6 instead of 6 is that it enables us 
to point out the transitions from one- to two-exciton states. Hereafter we introduce the abbreviated notation 

V12=V(rl-r2), D12=T(r1-r2). 

The equation of motion for b is 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



L. Belleguie and S. Mukamel: Excitons in semiconductor nanostructures 

+ &r3-r4) 
I 

Jr5 D&1255+ 8r,-r4) 
I 

,. 
drs DlsQ3255+ &r2-+> drs D2561455 

drs(V,5-V25+V3,-V4,)rin(r5,r5)~1234- drdLAr2,r,)D25 J‘ 

(B9) 

where we have defined 
2 

S2(r,,r2,r3,r4,t)=ih g+&-- Of,+ 
e 

+V(r,-r4)-V(rl-r3)-V(r2-t$+V(r,--r4)+V(r2-r3j. @ 10) 
Equations (B2), (B8), and (B9) form the basis for the following calculations. 

Since our Hamiltonian does not contain relaxation (in particular pure dephasing), we can write18 

(F’&=(F’){& (Bll) 

and get a closed equation for the third-order component P,,(t) and second order Q * 123s=(Q,234>. Note that the exchange 
among the same particles (fermions) is correctly included in the equation of motion for Q. The above equations are valid for 
an arbitrary size and geometry. Our Hamiltonian uses the effective mass approximation which assumes that the system size is 
much larger than the lattice constant.13 

Since it is straightforward to calculate the one-exciton Green function in the weak confinement limit, we shall express the 
two-exciton Green function in terms of this Green function. We first write G2 exe in the form 

G’2’=G~2’+ G$+G@) (B12) 

When the ground state is the vacuum of excitons, the solution of Eq. (B 12) gives the true two-exciton states, and only ladder 
diagrams contribute to the expansion. The operator V contains the Coulomb as well as the dipole-dipole interaction. For the 
continuous part of the spectrum (weakly interacting excitons and no bound excitons) we search for an approximate function for 
the zero-order Green function. We assume the following form: 

G~2’=~~.~@“G”’ (B13) 

where G(‘j is the solution of E$. (16), and ~‘5 assures the proper antisymmetrization between fermions of the same species. 
Note that G!‘) contains the radiative corrections in the one-exciton level. 

Using these definitions and Eq. (32), we finally obtain 
r 

P’3)(R,w)= J Jwl dti2 dw3 S(O--01-W2--3)~3)(R,01,W2,03j, (B 14) 

where 

.Ri3)(R,ti, .02,03)=gX 
J ~RI =2 dR, G?R,RI ,4G”)(R, ,R,, - w~)*G(~)(R~ .R3,~3)ficvEO(RI ,q)&, 

.Eo(R~~~z)~;,,.Eo(R~.~,W,) 

+uX dR1 I‘ ***dR, G(‘)(R,R,,w~G~‘~(R,,R~,-~~)*~(R~;R~,~,+w~) ” 
XG’1’(R1_,R4,WI)G(1).(R2,R5,W2)r;L,,.E~(R4,ol)~,,.Eo(R5,O2>1;,,.EO(R3,03). 

The self-energy r has the following expansion: 

(B15) 

T(R;R’,wj=6(R-R’)+uXG;2)(R;R’,w)+u”2 
J 

.dR1 Gf’(R;R,,w)G;‘)(R,;R’,w)+..., @W 
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and 

Gb2)(R-R’ ,-,,) = -i-w , , 2is- I 
dw’ G(‘)(R,R’,o’) 

XG(‘)(R,R’,o-o’j. (B17) 

Recasting this in the eigenfunction basis, we obtain Eq. (42). 

APPENDIX C: POINT INTERACTION APPROXIMATION 
FOR THE COULOMB AND DIPOLE-DIPOLE 
TERMS 

The direct and exchange interaction matrix elements can 
be written as 

c,y2,“3v4= -e2 4 dr,f drh drhr $;,tR,h)@,(bhd 

1 X(re~~t)~lsjrerh) - -t -!-- -!-- 
y,,r Yhh’ rsh’ 

In this Appendix we derive the nonlocal exciton eigen- 
value equation for a sphere in the weak confinement limit, 
and show how quantized polariton modes are obtained. The 
link with bulk polaritons is established. 

The equation of motion for the exciton center of mass, 
including dipole-dipole interactions as well as radiative cor- 
rections, can be written as 

vd =g ~1?2.?3~4 I Jr, dr,l drh drhd h++J12 

XjJlv,(Re),rlj12iPls(rehj2~~s(relhr)2 

where R~,=(~n,ri+m,,rj)/(m,fmh); rij’ij=ri-rj. It can be 
shown14 that the elichange part of the Coulomb interaction is 
much larger than the direct contribution. In fact the direct 
part vanishes identically in the bulk and we shall ignore it. 
The exchange term vanishes unless the exciton CM’s are at 
the same site (overlap of the functions (p>. V” can then be 
factorized into two independent integrals 

vxy,Y2,Y3v4= -2 I dR ~~,(R)~~,(R)~,,(R)~,(R) 

x I u’xl dx2 dx3 f(xl ,%,x3), 

- 
s 

dR’ Z(R,R’;E,/~)~,,(R’)=O, ml) 

(C2) with the self-energy 

~:(R,R~;~)=&,. ,YlR-R’;:Ic)&. . (D2j 
The eigenvalues of this equation eV give the exciton- 
polariton quantized energies. For a finite system, they con- 
tain a Lamb shift and an imaginary correction related to fi- 
nite sample size. Let us first discuss an infinite system. 
Equation (Dl) can be solved directly by looking for plane 
wave solutions 

f)(r) = eik’=. (D3) 
The solution is straightforward and immediately leads to the 
polariton dispersion 

(q”-k2) fiw-eex- $ 
( 

k” =4rr(d~,q2-d,uid,ujkikj), 
1 

(D4) 
267~a; 

ZZ- 
ER 3 dR cCI~,(R)~~2(R)ICI,1(R)~CI,4(R). 

(C3) 
Finally, the Coulomb exchange interaction between two ex- 
citons will be written as 

V(RIR~;R~R~)~V~GR,R~R~R~. (C4) 

with Ri representing the exciton center of mass. u.’ is explic- 
itly given by a%26V/3ER. Proceeding along the same way, 
we can approximate the Pauli exclusion contribution as in 
Eq. (40) [or Eq. (B15)] and obtain gX= -7~m/2ai”. We 
have thus reduced the many coordinate interaction to a point 
interaction among the CM. The evaluation of the exchange 
correction to the dipole-dipole interaction in terms of center 

where i,j are the Cartesian coordinates. It is well known that 
polaritons in an infinite homogenous system are stable {no 
imaginary part of the eigenvalues3,24). 

In the case of a finite sphere, we can choose the z^ axis 
along the dipole moment and express the product z^ q+(R) on a 
vectorial basis of the form 

&,k(R)=C ~~k&‘kdR)r 
klme 

~klm~(R)=jl+.(k’)Y~l+,(~! 
iJW 

j, are the spherical Bessel functions and Yrl+B the vector 
spherical harmonics.” k is the eigenvalue to be determined. 
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of mass alone leaves a nonlocal operator as can be seen from 
Eq. (B9). We shall however neglect this term since it is pro- 
portional to 

2 g g 
-if (.%3/a~)T~ALr (.?%/a0j5’ (C5) 

where i is a numerical dimensionless parameter, and ALT the 
longitudinal-transverse splitting in the bulk. In most semi- 
conductors the ratio ERlA, is very large (almost 40 in 
CuCl), which justifies this approximation. 

APPENDIX D: THE DIPOLE-DIPOLE iNTERACTiON 
AND RADIATIVE CORRECTIONS FOR A 
SPHERE 
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values. Introducing the functions (D5) in E$. (D6), we find 
that the expansion holds provided one of the following con- 
ditions is met: 

The quantum numbers lmc are given by 131, -1~rn~l and 
e=O,+ 1. The angular functions Yyl+.(i) constitute the basis 
of the subgroups of the operator 181, where 1 is the angular 
momentum operator. It is important to note that due to the 
dipole-dipole interaction, I is no longer a good quantum 
number. This is of paramount importance for the scaling de- 
pendence with size. Substituting expression (D5) in EXq. 
(Dl), we obtain a set of equations for the unknown quantities 
cklm6, which is equivalent to the scalar eigenvalue equation 
(Dl) (X=kZm&) 

P7) 

k2=(Ao-A,j21Wi2. 08) 
These two equalities define the polar&on solutions for each 
o. There exist then only three possible k values, k, and k, for 
the first, and k3 for the second equation. We further have the 
following conditions: = [i 

fi= 
c* hw- e,,+ 2M v”R s,, 

A i 

J z+1 
ck, ,lm, - I = - - 1 ck, ,lm, 19 1- 

1 
Gk3,1m,-l= d-- - CR3 ,zm, 1 7 1+1 

which show the transverse (solutions k1,2) or longitudinal 
(solution k3j character of the solutions since they assure 
V-&n$(r)=O or V&,,$(r)=O. The final system determin- 
ing the coefficients (together with the boundary conditions) 
for the states (lm, E= + 1) is 

- 
I 

dr' Z(R,R';-id) p*(R')=O. 1 iD6) 
This system is diagonal in Z,m. Furthermore, the subgroups 
E=O and E= + 1 are not connected. The states 1mO are trans- 
verse in the sense that V&@)=O. The subspaces lm, 
E= 2 1 contain both transverse and longitudinal components. 

This equation allows us to establish the link with the 
infinite size limit, since the boundary conditions occur only 
at the end of the calculation, when one determines the eigen- 

I jr+lCkls) jz+ lb%.% d& \ 

jz-,(k,-% jl- l(W@ 1 jl-,(k33%) -- 
1+1 da, 

1+1 z+ 1 
lr+ *C4,k,j + 7 zz+l(q>kd fz+ l(qvW + l - fl+l(q,k2j Tl+,i4,k3j-ZE+I(q.k.lj 

\ kf-q2 k2,-q’ 
x-:-q’ 

I 

039) 

where not convenient for computing the Green function since the 
expressions in Appendix D depend on complex arguments. 
Therefore, we shall expand all the wave functions in a com- 
plete set of eigenfunctions. 

We first expand Eq. (D6) in the basis set of the operator 
V2 

The eigenvalues mnlrna of the coupled excitonf field system 
are then obtained when the determinant of Eq. (D9) vanishes. 
For each quantum number IZm) there exists an infinite series 
of discrete complex values knlm as discussed in Ref. 16. 

The link to an infinite system is easily established if we 
note that the integrations in Eq. (D6) give automatically a 
diagonal matrix in k, and we recover the same dispersion 
relation [Eqs. (.D7), (D8) as in Eq. (D4)]. The onIy difference 
between the two is the basis chosen to expand the fields 
(Cartesian+plane waves in the former case and vector- 
spherical functions in the latter). 

(El) 

d- 
2 jz(4izX) xnzir)= 7 $- jz+ I(K,I) ’ x = i-l.%, 

where the quantum numbers are 120, -I=%m+l and 
n=1,2,... . The boundary conditions 

WI 
determines the parameter K,,[ via the equation APPENDIX E: EIGENFUNCTION EXPANSION OF THE 

EXCITON EQUATION FOR A SPHERE 

Following Appendix D, we introduce here an alternate 
treatment of Eq. (Dl) which was used in the calculations of 
Sec. V. Indeed, the form of the solutions obtained above is 

j2t6J=09 iE3) 
and the one-exciton energies (without dipole-dipole inter- 
action) are 
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2 
Eo = E + in~mh Kill 

Ill ex (m,+m~,j2 (.%Yuo)2’ 
@4 hw-Ex-~ Ahh,(.e%,~)=O, 

A’ 

Using this basis set and the transformation discussed in Ap- where 
pendix D (Z=Z+ E), we can recast the eigenvalue equation 
(Dl) as an infinite system (XX’=nlmt-j Axxr(.%,w)=df, dr’ S~r.r’;w)px,(r’), 

w I 

%JL+~‘GI+E~~~+ 1) 
+ ci m2 9 1 ~(K,~[+g-Ci;2)(K;;ll+s’-K,21+.) .5=-d, 

cj=q.%. 

In the above equations 231 and Rlmpm’= &~Smrn~ . .._ 
since the angular functions YyL+.(i) are orthonormal. The 
dipole-dipole interaction-Hamiltonian matrix elements are 
given by taking the limit 440 in Eq. (E6) 

Adip-dip + 
4rd;u&,r & E-E’ 

= 
-4Td2 \k 2’k-t~ 

c” 21+1 2 
KnJl+~‘(K,,,~+a~- ‘&+,) 

E# E’ 

A remarkable feature is that Adip-dip does not depend on 
size. It cannot be neglected for symmetry reasons as was 
suggested in Ref. 26. The only parameter which may justify 
the neglect of the dipole-dipole interaction is the relative 
magnitude of iI and d&. For CuCl, 4rrdz,=0.025 and 
q,(B=lO)^-0.015 (in 3D exciton Rydberg units) which 
shows the importance of this contribution in large spheres. In 
our calculations we start with the eigenvectors of this Hamil- 
tOrliZ%Il, and express A’ =A - Adip-dip Via L3.U Unitq’ traIlSfOr- 

mation. The exciton-exciton interaction matrix elements are 
also. calculated in this basis. The details have been discussed 
previously in Ref. 14. 

In the numerical calculations we use the following for- 
mula for the eigenvalues 

e,,=e,+X.(e,j, @3) 
where e v are the eigenvalues of fi= Ho + Heh and the self- 
energy operator is 

(E7) 

Q is the projection operator on the complementary space of 
{v}, and H, contains the radiative corrections. Here, we have 
made the Markov approximation, but this can be relaxed by 
calculating the exact eigenvalues. 

The resulting eigenfunctions and eigenvalues are used in 
Sec. V to construct the one-exciton Green function (24). 

The total cross section (45) can now.be calculated from 

f(w)= C {al,Y~l(ijAi+cl,Y~~(F)}, 
Bl,m 

(ElO) 

where the coefficients are defined by 

r i 

1 z+1 
%L=L1 21+ 1 -------A f nlm,l nlm,l --A f 

21+ 1 nlm,-I nlm,-1 
I 

chn= crza 1 bh@fnlm,O 

A dm+= i9 W 
42-14 I+ !$q 

21f 1 

jl+,(c@j G@# ‘Q+e x 

The f’s are the coefficients of the calculated linear 
fnonlinear polarization expressed in the Yr[+ B basis. 

APPENDIX F: APPLICATION TO A THICK FILM 

In this Appendix we briefly show how the present for- 
malism can be applied to a thick film (i.e., a large quantum 
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well!. We consider a quantum well whose width L is much 
larger than the exciton Bohr radius (us), and let z be the 
coordinate along the growth direction. In this case, the exci- 
ton wave function can be written 

&,,,n(l)=e’kIf’Rf(z) R=(x,y), (W 

with the boundary conditions $(z= 0) = @(z = L) = 0, and 

1 
.f$z)=\/z F c~,~ sin(k,z) k,=n?rlL (JQ) 

The nonlocal operator in two dimensions is (qr 
= \q -X,,,q=w/c) 12 

Z(r,r’;q)= dkll 
(2T)” 

&l~Reiq,lz-z’l 

(F3j 
The equation- of motion for the exciton reduces to (0~2~1) 

1 6?i%‘Rfk,,(z) = - 2iaq fi.(q2+VV.j~eitTR 
L 

s 

L 
x dz’ ei4z-~‘lfk,,(z~), (E4) 

0 

where 6 = (fi&g’,,)lcu-ki( (Y = fi”/2M). By integrating Eq. 
(F4) on both sides with sin(k,z), we obtain a linear system 
for the coefficients ckf, ,n. Let us assume, for simplicity, that 
bI;. From the solutions c4 ,n we can express, by a resum- 
mation of the infinite series, the one-exciton Green function 
in a compact form 

G~~~(Z,Z’,~‘kllj= (k:-k;j ’ ’ c kz-ql k, m sin(kiZ<) I I 

XSin(ki(l-Z>))+C 
h’(z)h’(z’) 

i- l--X? ’ 

(F5) 
kj=ki(kll ,,j are the con.ned exciton polariton wave vectors, 
given by the solutions of the equation 

and 

x2= c 6:(k,,) 
n=Zp-j1+1)/2,pz=I fiw-.&Oq) ’ 

h’(z)=- c 
Mk$ 

sin(k,z). 
n=2p-llf1)/2 rz.w-E,bJq) 

We have defined the following quantities: 
2 2 

E,=E,,,+~(k~+k,2j+ tqy$jI 
I n 

,g$j= Kq,( 1 +eiqr)li- kn 
(42-k,2). 

Alternatively, we can write GiiL in the following form: 

G:;:(z,z’,d$= c 
ml’ 

sinjk,z)H~~‘,(O,kll)sinik,lz’), 

u-3 

which is more suitable for numerical evaluations. The prin- 
cipal contribution comes from the diagonal elements of the 
Green function. Near a particular pole E, , we can write 

G:;:(z,z’,ti,k,lj= c sin(k,z) 
n=2p-ll~l)/2 

1 

XAo-E,(o,k,,)-Zn(W,k,l) 

where 8, is given by 

wJdq)= &k,,) 
1 -&in’ 

t%q) ’ 
~-Cz4k$ 

sin(k,z’), 

(Ff4 

(F9j 

This expression for the diagonal element is exact. At this 
point we make the following approximations: We only keep 
the diagonal part and neglect the energy dependence of E, 
and 2,. Equation (F8) contains the exact poles of the sys- 
tem, determined by the equation 

(FlO) 

Our approximation is certainly justified as long as we are 
close to the one-exciton resonance. 

The approximate expression for the scattering matrix is 
then 

V 
l‘,..,,r ( o . kn) = 

1 - V@,%,k,,) NN, 
N,N’={n,n’}, 

(Fll) 

where 

I 
I 

=Vn,n2:n3n4 dk’ x 
o-a%,,(k’)-.&jkil-k’)’ 

V n1”2;“3”4 

s 

L 
= v”lL 

0 
dz sin(k,,z)sin(k,2zjsin(k,3z)sin(k,4z) 

and 

~‘12(kll)r,E,(kll)+~n(E,(kl,),k,,j, 0712) 

where, as above C, contains the radiative corrections. With 
these definitions, Eq. (32) may be used to calculate the non- 
linear response. 
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