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Abstract 

Nonlinear light scattering and four-wave mixing from N interacting quantum wires are calculated using Green function tech- 
niques. Size confinement results in discrete single- and two-photon resonances. The nonlinear signal per wire increases with N 
for small N, and saturates at large N. Effects of interactions within wires and among wires on the nonlinear signal and the 
coherence size are analyzed. The shapes of single-photon resonances for small N (quasi 1D) and for large N (quasi 2D) are 
compared. 

Nonlinear optical response of molecular assem- 
blies such as dye aggregates, crystals, and artificial 
structures such as organic superlattices [ l-3 ] is usu- 
ally interpreted using the Frenkel or the charge-trans- 
fer exciton model [ 4,5 ] ; a few reports have even sug- 
gested that excitons in anthracence crystal are of the 
Wannier type [ 6,7]. Exciton eigenstates in geomet- 
rically restricted systems have a discrete spectrum, 
and the oscillator strength is not evenly distributed 
among the eigenstates [ 8- 111. Some states carry a 
large oscillator strength that is proportional to the 

system size, and show cooperative spontaneous 
emission [ 12- 14 ] and size enhancement of the non- 
linear optical response [ 11,15,16 1. The conven- 
tional procedure for calculating the four-wave mix- 
ing (FWM) signal consists of two steps: first one 
calculates the third-order nonlinear susceptibility xc3) 
by solving the single- and the two-exciton eigenstates, 
and then the Maxwell equation is solved using the 

’ Present address: Department of Chemistry, Princeton Univer- 
sity, Princeton, NJ 08544, USA. 

calculated x . (3) Both steps are not straightforward for 
a molecular assembly with complex geometry. A non- 
local variation of the procedure was used by Ishihara 
and Cho to study the size dependence of the third or- 
der nonlinear optical response of molecular multilay- 

ers [ 171. 
Chernyak and Mukamel derived a Green function 

expression (GFE) for the third-order nonlinear op- 
tical response functions of molecular assemblies with 
arbitrary geometry [ 18 1. It incorporates the nonlocal 
properties of both xc3) and the internal field, and ex- 
presses the signal explicitly in terms of the single par- 
ticle Green functions that are related only to single 
exciton eigenstates. The GFE shows the existence of 
a coherence size which controls the magnitude of the 
cooperative nonlinear response [ 19 1. 

In this Letter, we apply the GFE to study the size 
scaling of the nonlinear light scattering and EWM of 
interacting chains of two-level molecules which form 
Frenkel excitons. The coherence size N,, defined as 
the number of wires that maximizes the nonlinear 
signal per wire, is calculated. The nonlinear light 
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scattering spectrum shows distinct two-photon reso- 
nances reflecting size confinement in the interwire 
direction. The magnitude of the two-photon reso- 
nance and the coherence size are both affected by the 
Coulomb interactions among molecules. The roles of 
intrawire and interwire interactions are examined 
separately. By varying the number of wires, we dem- 
onstrate how the spectra reflect the evolution of ID 
to 2D excitons. 

Consider a nanostructure made of N molecular 
wires of length A4 forming a two-dimensional MX N 
molecular lattice with lattice vectors a5 and ap, a 
being the lattice constant. Each molecule has two 
electronic levels with energy gap Q and transition di- 
pole moment p, but no permanent dipole moment. 

The Hamiltonian is 

Ill nl,m/I 

- $ p,,A.E(r,1, t) , (1) 

where I, p= 1, . . . . N denote position in the y direction 
and rn, n= 1, . . . . A4 denote the position along the x 
direction. N is small and we shall set A4 to infinity at 
the end of the calculation. The molecular positions 
are r,, = n& + ;iajj. B + and B are exciton creation and 
annihilation operators with commutation rules 

[En& B&l =&m~AI,( 1-2B,:L) . (2) 

The nearest neighbor coupling J,,l,mP has the form 

J n~,mp= -J(&,,+I +L,-,)&., 

-J’(&,+, +~A,,-lvnm, (3) 

where -J and -J’ are dipole-dipole coupling ma- 

trix elements along the x (intrawire) and y (inter- 
wire) directions, respectively. The last term in Eq. 
( 1) represents the interaction with a classical electro- 
magnetic field E, and the polarization operator of the 
nth molecules at the Ith chain is 

Pd=p(Bd+~,:). (4) 

In a nonlinear light scattering experiment the sys- 
tem interacts with an external monochromatic elec- 
tric field 

E(r, t)=Eexp(ik*r-iot)+c.c., (5) 

where C.C. denotes the complex conjugate. The scat- 

tered field E,( R, w ) is detected at position R far from 
the lattice with k: = k,, where k’ = oR/Rc is the out- 
going wavevector. The scattered signal expanded in 
powers of the incident field is 

I(w)= IE,,(E, 0) 12=N2[S,,(m) IE12 

where S,, and S,, are the linear and lowest-order 
nonlinear scattering coefficients per wire, 

S,,(w)=IE$;‘(R co)12/IE12N2, (7) 

S,,(w)=2Re[Eid)*(R, w)E,‘,3)(R, o)]/lE14N2. 

(8) 

Here the superscripts denote the order with respect 
to the incident field. For noninteracting wires 
(J’ =O), each wire scatters the field independently, 
E, is proportional to N, and S,, and S’,, are inde- 
pendent of N. 

Both E!i) and E,‘,3) contribute to the nonlinear 

scattering. Ez:) can be observed directly by a FWM 
measurement with heterodyne detection, where four 
waves with the same frequency w are incident on the 
system 

E(r, t)= i E,exp(ik;r-iot)+c.c. 
i=l 

(9) 

The first three waves generate the signal. The fourth 
wave with wavevector kex= k,,-- kh+ kjx is in the di- 
rection of the signal and serves as a local oscillator. 
The signal field with wavevector k4 to lowest order in 

the external field is 

E,(R, ws)= [Nyc3’( -w; w, -co, m).EIE2E3 + Ed] 

xexp(ioRlc), 

and the signal is given by 

(10) 

S FWM(ms)=2NRe(y(3).E,E;E3E;), (11) 

where yc3) is a fourth-rank tensor and will be speci- 
lied below. Assuming that El and E2 have the same 
phase, then by controlling the relative phase of E3 and 
Ed, one can measure the real and imaginary parts of 

Y . c3) If they are in phase then the signal is propor- 

tional to Re yc3’, whereas if the phase differed by xl 

2wegetImy’3’. 
We first consider the light scattering experiment. 

Following the Green function procedure of Refs. 
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[ 11,191, we obtain the linear and third-order nonlin- 
ear polarization in the rotating wave approximation 

(RWA), 

P,~(t)=(~~~)=Pn(k,)exp(ik,na-iot), (12a) 

Pj”(kx)= --P(PW C G.,(k, 01 exp(ikp) , 
u 

(12b) 

xG;,,,(kx> w)G-,,(L ~)Grp,(kx, co) 

xr,w42L 20) exp[ik,dp, +p2-p3b] > 

(12c) 

where PC’) and PC3) denote the linear and the third- 

order polarization (the second-order polarization 
vanishes since we assume that the molecules have no 
permanent dipole moment). 

The single-particle Green function G is 

GAp(kX, w) = ]o+iq-Q-J(k,) I$ , (13) 

where q is a nonradiative excitation decay rate which 
is assumed to be much larger than the radiative decay 
rate. J( k,) is an N by N matrix with elements 

Jl,(k,)= C J,i,,,exp[-ik,(n-m)al 
m+n 

=-2Jcos(k,u)&,-J’(&,+,+6~,,_,). (14) 

The scattering matrix Fin Eq. ( 12~) is given by 

I+,,(2k,, 2w)= -2[F(2k,, 20)]~-,’ , (Isa) 

F,,(2k,, 20) = $ 
I 

dk: do’ G,,(k:, w’) 

xG,,(2k,-k:, 2~0-13’) . (1Sb) 

When the J,,(k,) matrix (Eq. ( 14) ) is diagonalized, 
we find that the energy and wavefunction of the crth 
single-exciton eigenstate with momentum k, along x 
is 

e,(k,)=Q-22Jcos(k,a)-2J’cos[ax/(N+l)], 

a= 1, 2, . . . . N, (16) 

wadA a)= L wdA) ew(ik,w) , 
JM 

(17) 

with 

wn(~) = J &sin[A~~rr/(N+l)]. (18) 

Here ta( kx) and w,(A) are the eigenvalues and ei- 
genvectors of JnP( k,). Note that for nearest neighbor 
interaction u/o(A) does not depend on k,. Using these 
eigenvectors we obtain 

(19) 

FA,(O, 2w) = ; 

= f 5 vd~wx~)vp(~)vxPu) 

X({w-Q+i~+J’cos[cyn/(N+l)] 

+J’cos[@c/(N+1)]}2- (2J)2) -“‘. (20) 

Here the k: integration has been performed analyti- 
cally using the method of Section 5.3.1 of Ref. [ 201. 
The scattered field at position R in the far zone is [ 191 

x ew ( - &Au ) hhkir , (21) 

where k’ = w@/c is the signal wavevector, and ff = RI 

R. Substituting Eqs. ( 12) and (2 1) into Eqs. (7 ) and 
( 8 ), we finally obtain 

&n(o)= )E”‘(R w) 12/E2N2 SC , 

> (22) 

S,,(o)=2 Re[E&“’ ‘(R, w)E$‘(R, o)]/E2N2 

1; IGn(w)12 

Xexp(iwR/c) 1 (1 -&?)~P,(k,) 
1 

xG;(o)F,‘(O, 2~) 
>l 

N2, 

where 

(23) 
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GA(O) = 1 G,(kx=O, w) 

= C G;(k,=O, co). 
P 

(24) 

We have set k,, k,, k:, k;, to be zero since they are 
much smaller than the size of the Brillouin zone 1 /a. 

We now consider the FWM experiment. Setting 
kix, k,=O, i=l, 2, 3, 4, we obtain yC3’=yC3)[j- 
d(ff*$)]ji#, and 

xF,'(O, 2w)lN. (25) 

In all numerical calculations, we have set q= 1 meV. 

Fig. 1 a displays S,, ( o) (dashed line ) and the single- 
photon resonance of -S,,(o) (solid line) calcu- 
lated for J= 10 meV, J’ = 100 meV, N=4. The two 
positive resonances in SLR(u) coincide with the two 
negative resonances in &.,, ( w ). In general for N wires, 
there are tN* positive resonances in S,,(w) which 
coincide with the tN* single-photon resonance of 
J&(W), where N*=Nforeven Nand N*=N+ 1 for 
odd N. This reflects exciton confinement and inver- 
sion symmetry in the y direction [ 111. The reso- 

nance frequencies are equal to the single exciton 
energies c,(k,=O), a= 1, 3, . . . . N*- 1. States with 
even CY are antisymmetric in the y direction, carry no 
oscillator strength, and do not contribute to the sig- 

nal [lO,ll]. 
In addition to the two negative single-photon res- 

onances shown in Fig. 1 a, S,, (co) have three disper- 
sive features related to two-photon resonances, shown 

in Fig. 1 b by solid lines. They coincide with the three 
discrete positive resonances of Im yC3) (o; w, - w, w ), 

which are shown by dashed lines. These resonances 
come from the two-exciton states with zero center of 
mass momentum in the x direction. 

When N is small (quasi 1D ), single-photon reso- 

nances show up as negative peaks in S,,(o) (see Fig. 
1 a, solid line), while two-photon resonances give dis- 
persive features (see Fig. 1 b, solid line ). For large N, 
the single-photon resonances of S,, (o) become dis- 
persive as well. S,, is dispersive since it contains both 
the linear and the third-order scattered field. On the 
other hand, yC3) contains only Ei,3) and has absorp- 
tive resonances. Numerical results for S,,(o) near 
the single-photon resonance O=E, (k,=O) and var- 

(o-R)/lOOmeV 

1.05 1.1 1.15 1.2 1.25 
(w-fl)/lOOmeV 

Fig. I. (a) The linear scattering coefficient S=(w) (dashed line) 

and single-photon resonance of the nonlinear scattering coefti- 

cient -.SNR(~) (solid line) for a multiwire system with N=4, 

J= 10 meV, J’= 100 meV. The vertical scale shows the relative 

magnitude of -S,,. .S,_, is normalized to have the same height 

as -S,,. The ratio of S,, peaks in the upper and lower panels is 

318: 1. (b) The two-photon resonance of S,,(w) (solid line) 

and Im yC3) (w; w, --w, w) (dashed line). The vertical scale shows 

the relative magnitude of S,,. The unit is smaller than that of 

(a) by about six orders of magnitude. Im yC3) is normalized to 

the same height as S,,. The ratio of Im y(‘r peaks in the upper, 

middle and lower panels is 442 : 7 1: 1. 

ious values of N are displayed in Fig. 2. The figure 
shows how the lineshape evolves from negative ab- 
sorptive resonance at 1D to a dispersive feature at 
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I I I 
-0 3 -0 2 -0.1 -2 2 -2.1 -2 

(w~R)/loomeV (o-n)/loomeV 

N=20 

-2.3 -2 2 -2 1 -2.3 -2.2 (w~rl)/100meV (w4)/lOOmeV 

1 

-2 

Fig. 2. The nonlinear scattering coefficient S,,(w) near the sin- 

gle-photon resonance W=C, (k,=O) for a multiwire system with 

J= 10 meV, J’= 100 meV and various values N. N= 00 corre- 

sponds to a two-dimensional lattice (quantum well). 

2D. 

The lowest frequency two-photon resonance of 
S,,(w) (solid line in upper panel of Fig. 1 b) for var- 

ious values of J and J’ is displayed in Fig. 3. The up- 
per panel shows that the two-photon resonance de- 
creases with J and at J=30 meV it disappears. The 
lower panel shows how the two-photon resonance in- 
creases with J’. This can be explained as follows: due 

to translational invariance in the x direction, the states 
contributing to the signal are single-exciton states with 

k,=O, which are discrete, and two-exciton states 
whose center of mass momentum in the x direction 
is zero, but with arbitrary relative momentum. These 
states form several distinct bands with bandwidth 

proportional to J (see Eq. ( 16) ). As J increases, the 
two-exciton bandwidth increases and the two-photon 
resonances vanish when neighboring two-exciton 
bands merge. On the other hand, the gap between 
neighbouring two-exciton bands is proportional to the 
interaction in the y direction J’, and as J’ increase, 
the two-photon resonance is enhanced. 

We next study the dependence of the signal on the 
number of wires. We denote the peak magnitude of 
the lowest frequency single-photon resonance of 
1 S,,(w) 1 (solid line in the upper panel of Fig. la) 

by AN. Note that AN = I S,, (co,,,) 1, with w, close but 

1 IL _=~=~=~:~_=;----~- L_! 
1.2 -1 1 -1 

(f,-R)/lOOmeV 

I I 

I I 
0.7 -0.6 -0.5 -0.4 

(w-R)/lOOmeV 

Fig. 3. The lowest frequency two-photon resonance of SNR(w) 

for a multiwire system with N= 4 (solid line in the upper pane1 

of Fig. 1 b. In the upper panel, J’ = 100 meV is fixed, J= 10 meV 

(solid line), 20 meV (dashed line), 30 meV (dash-dotted line). 

In the lower panel, J= 10 meV is fixed, J’=42 meV (solid line), 

46 meV (dashed line), 50 meV (dash-dotted line). 

2 I il, I 
I r- 

I , I 1 

0 20 40 60 80 100 

N 

Fig. 4. A, as a function of N. J’= 100 meV. From bottom to top, 

J=lO, -1OmeV. 

not equal to t,(k,=O). For interacting wires (J’=O), 
A, is independent of N. For interacting wires, A,,, is 
calculated numerically and is shown in Fig. 4. The 
figure illustrates how AN increases linearly with N for 
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small N, and becomes independent of N for large N. 
This behavior has been discussed earlier [ 15,17,19 1. 
The figure further shows that AN first reaches a max- 
imum, then attains a local minimum, and finally sat- 
urates. The interesting point is that when Jand J’ have 
opposite signs, AN shows an oscillatory dependence 
on N. 

We next define a coherence number NC as the value 
of N which maximizes A,,,. This reflects the number 
of chains which maximizes the cooperative nonlinear 
response. NC as a function of J’ for various values of 
J is displayed in Fig. 5a. The figure shows that N, in- 

creases with increasing J’ and decreasing J. When J 
is zero, there are N discrete single-exciton states. It 
was shown in Ref. [ 19 ] that for a regular molecular 
lattice with periodic boundary conditions, and when 

o is on resonance with a single-exciton eigenstate, r 
increases linearly with the number of molecules, pro- 
vided the lattice size is small so that the eigenstates 

are well separated. r becomes independent of the 
number of molecules when the lattice size is so large 
that neighboring eigenstates overlap. The crossover 
size is determined by the condition that the separa- 
tion between eigenstates is equal to the linewidth. In 
our case, this implies 1 e, (0) - t2( 0) 1 z q, which gives 
NC - flq. As J is turned on, each eigenstate devel- 
ops into a band with bandwidth 4 1 JI , and the energy 
width changes to q+ 4 I Jj . Therefore NC is given ap- 
proximately JJ’/ (4 ( JI + q). This explains why NC 
increases with J’ and decreases with J. 

In Fig. 5b, we show how AjO increase with J’ for 
various values of J. Again we observe an oscillatory 
dependence of A,,, on J’ when J and J’ have opposite 
signs. This can be explained as follows: the single- 
photon resonance intensity increases with 1 E2 - 2Er 1, 
where Ez and E, are the energies of two-exciton and 
single-exciton eigenstates [ 15 1. In the following dis- 
cussion we assume that the two-exciton eigenstates 
are direct products of single-exciton states, and the 
two-exciton energy is equal to the sum of single-ex- 
citon energies. This is not strictly true due to the hard 
core exclusion of excitons, nevertheless it allows us 
to qualitatively explain the results. The single-exci- 
ton state of interest is 1 a= 1, k,= 0)) with energy 
E,=t,(k,=O)=-2J-2J’cos[1r/(N+l)]. The 
two-exciton states contributing to the signal are 
( a, k:) @3 I j3, -k:) (note that the center of mass 
momentum is zero), with 

L 
I I I 

J 
;/-- 

I - 

0 0.5 1 1.5 

i ‘lO,h,l I 

_’ 

i 

Fig. 5. (a) The coherence size NC as a function of J’. From top to 

bottom J=O, 1, 10 meV. (b) A,,, (30 wires) as a function of J’. 

J= I, 10, - 10 meV from bottom to top. 

E,=E,(~;)+E~(-k;)=-4Jcos(k:a) 

-2J’cos[cm/(N+l)]-2J’cos[jh/(N+l)]. 

Therefore 

E,-2E,=4J(1-cosk:a)+2J’{2cos[x/(N+1)] 

-cos[an/(N+l)]-cos[j?n/(N+l)]). (26) 
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If J, J’> 0, 1 E,- 2E1 ( increases with J’. This is why 
A3, grows with J’. If J-c 0 and J’> 0, for some k: val- 
ues ) Ez-2E, 1 increases with J’, while for other k: 

values ) EZ- 2Ei 1 decreases with J’. Therefore as J 

increases, some two-exciton energies move closer to 
twice the single-exciton energy, and thus reduce the 
single-photon resonance peak, while others move 
away from 2E, and increase this peak. This is why 
A,, is no longer a monotonic function of J’, and shows 
an oscillatory behavior (see Fig. 5b). 

In summary, we have calculated the linear and the 
nonlinear scattering signal from an assembly of N in- 
teractingquantum wires. For small N, the single-pho- 
ton resonance of S,.,,( o) is negative and absorptive 
reflecting the saturation of the single-exciton transi- 
tion, whereas the two-photon resonances of S,,(w) 
are dispersive. For large N, the single-photon reso- 
nances become dispersive as well. The two-photon 
resonances and the coherence size increase with in- 
terwire interaction J’ and decrease with intrawire J 

interaction. When J and J’ have opposite signs the 
nonlinear signal shows oscillatory dependence on N 
and J’. 

Finally in the present work we considered perfect 
periodic nanostructures. Effects of disorder in ge- 
ometry, defects, as well as coupling to nuclear mo- 
tions require a proper averaging of the product of 
Green functions and may result in additional inter- 
esting resonances. These can be carried out using dia- 
grammatic or semiclassical techniques [ 14,2 1 ] _ 
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