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Time and frequency resolved luminescence spectroscopy of molecular and semiconductor nanostructures
provides a direct probe for exciton transport and relaxation. A microscopic Green function theory
which incorporates effects of inelastic scattering induced by exciton—phonon interactions, and elastic
scattering due to static disorder is developed.

1. Introduction

Effects of geometric confinement on optical properties of nanostructures are currently
drawing considerable attention [1, 2]. Molecular aggregates have a relatively simple
electronic state structure which can be described by the Frenkel exciton model. Since the
exciton bandwidth in molecular crystals is typically much smaller than the molecular
transition frequency, one can neglect interactions which do not conserve the number of
excitons (the Heitler-London approximation) [3], which greatly simplifies the theoretical
modeling. Exciton properties become more complicated if additional degrees of freedom
such as nuclear motions are taken into account. Since the number of phonons is not
conserved by exciton—phonon interaction, the dynamics of one-exciton states becomes a
genuine many-body problem. Another source of nontrivial exciton behavior is static disorder
which often exists in molecular aggregates due to the relatively weak intermolecular forces
[1, 2, 4].

The simplest optical measurement is linear absorption. This can be expressed in terms
of the expectation value of the electric field induced by the material polarization [5], and
the signal is proportional to the imaginary part of the linear optical susceptibility. This
measurement provides information about interactions of long-wave excitons with energies
close to the band edge, which are involved in the absorption, with nuclear motions and
disorder which affect the absorption lineshape.

The properties of short-wave excitons (with energies far from the band edge), including
exciton transport in momentum space due to exciton—phonon and exciton—disorder
scattering, can be studied using either nonlinear optical techniques [6 to 8] or incoherent
optical measurements such as time and frequency resolved luminescence [8, 9]. Nonlinear
optical measurements provide detailed information about excitons, in particular the
dynamics of multi-exciton states (reflecting the direct exciton—exciton interaction). Certain
techniques such as degenerate four-wave mixing [10], transient grating [11], and pump—probe
spectroscopy [5] can probe the exciton transport properties [6 to 8]. In incoherent optical
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measurements, we look for the signal with frequencies and wave vectors different from the
incident light, and exciton transport shows up without the participation of multi-exciton
states. The incoherent component of the signal can be expressed in terms of the expectation
value of the square of the electric field, whereas the expectation value of the electric field
is required for the coherent component.

A formal analogy between four-wave mixing and time and frequency resolved lumines-
cence has been established for the simple model of a single chromophore [12], and then
extended for excitonic nanostructures [8]. Recent upconversion femtosecond measurements
of spontaneous emission from GaAs quantum wells have raised some interesting theoretical
questions [13]. These include their classification as either “Rayleigh” or “luminescence”,
and the interplay of radiative decay, exciton scattering, and phonons. These problems have
much in common with the issue of Raman and fluorescence spectra of dye molecules and
molecular aggregates. A proper microscopic description of these effects should allow the
formulation of the problem using a combination of four-point correlation functions of the
dipole operator. These in turn may be evaluated using Green function techniques. In this
paper we present a theoretical study of the time and frequency resolved luminescence from
molecular nanostructures, paying particular attention to the signatures of exciton—phonon
interactions, disorder, and exciton transport in the time evolution of these spectra.

2. Correlation Function Expressions for Time and Frequency Resolved Luminescence

For the formal definition of the time-dependent emission spectrum we will use the rate of
change of the number of photons with a given wave vector k [5, 12],

d
Sk, 1) = @ () au(0)) 20

where k is the photon wave vector which determines the frequency of the signal and the
direction of observation. 4,, dj are the photon annihilation and creation operators. Other
definitions of the time-dependent spectrum which incorporate the detection explicitly, can
all be expressed by a proper convolution of (2.1) with frequency and time gate functions
[9]. We, therefore, use (2.1) as the primary definition which carries all necessary information
about the material system. We assume that the system is driven by an external field & (r, 7).

Applying the Maxwell equations, the signal in (2.1) can be expressed in terms of a
correlation function of the polarization [8],

Sy, t: k) = 2nw, J dr exp (iw.7) €, (kst + % kgt — ;) (2.2a)
with

G (kyty, kyts) = [ dry dryexp (—iky -y — iky - 1)) G (rly, Fal) (2.2b)
and

%p("ﬂp raly) = % [<ﬁ(”1, ty) F(rza )y + <F(72a t3) ﬁ("p IANE (2.2¢)

o, is the signal frequency and k, the projection of the emitted photon wave vector on the
system and we set i = 1. P(r, t) denotes the polarization operator in the Heisenberg picture,
evolving in time using the Hamiltonian with the external field present.
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When expanded to lowest order in the external field, the necessary dipole correlation
function assumes the form

%p(rltla r2t2) = j‘ dr’l dT{l dr/Z dT{Z Rt(:Z)(rltla r2t2; r’lrlla VIZTIZ) éa(r/la 1/1) g(r’b T’Z) H (23)

where R{? is a response function which can be written in terms of four-point correlation
functions of polarization [8],

Réz)(n’ FUSPTy, FT,) = % {<T[ﬁk(rv 1) pL(V’, t) pL("u T4) pL("z: 231N
+ (T[Pp(r, ) P (v, 1) ﬁR("n ) ﬁk("b )
— {T[Pg(r, 1) P.(r,t) Puiry, 1)) Py(ry, 1)

— {T[Pg(r, 1) P (r,t) Pelry, 1y) P (ry 1)) + cct.
2.4)

Here P(r, t) denotes the polarization evolving in time in the interaction picture representing
the isolated system with no external field. In each term, the various P operators need to
be ordered using the following prescription: All P, are placed to the left of the equilibrium
density matrix and all Py are placed to the rigth. T is a time ordering operator which
rearranges the P, operators in a chronological order and the Py operators in the reverse
(antichronological) order.

3. Application to Nanostructures with Exciton—Phonon Interactions

We now calculate the time-dependent luminescence spectra from molecular assemblies with
exciton—phonon interaction. We consider a collection of interacting two-level molecules
which further interact with phonons, and the exciton—phonon interaction is taken to be
linear in the phonon operators. The matter Hamiltonian H,, is [3]

m*n mnl

ﬁnl = QZ é:ném + Z JmnéInBAn + Z anBInEn + Z anléjnén(l;; + [;I) . (3'13)

The first three terms represent the exciton and the phonon energy, and the fourth is the
exciton—phonon interaction. The sum over m and n in the fourth term includes diagonal
on-site coupling (n = m) as well as off-diagonal (n + m) coupling. Optical phonons usually
couple through the former terms, and acoustic phonons through the latter [3]. B, (B}) is
the exciton annihilation (creation) operator of the m-th two-level system, which changes
its excited state to the ground state. They satisfy the Pauli commutation relations

[B,, Bil = (1 — 2B.B,) 6, (3.1b)

Q,, is the excitation energy of the m-the molecule and J,,, the intermolecular coupling which
is responsible for exciton hopping.
The polarization operator P(r) for our model has the form [8]

Py =Y P, (3.2a)

P,#) = |ul p(r — R,) (B, + B}) (3.2b)
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with p representing the distribution of the transition dipole with
If pr)dr|l = 1. (3.2¢)

In the dipole approximation we set p(r) = d(r).

In the following we will assume that the system possesses translational symmetry, and
consider either infinite d-dimensional lattices with lattice constant a for d= 1, 2, or finite
d-dimensional lattices with size much smaller than the wavelength, and periodic boundary
conditions for d = 1,2, 3. We shall switch to momentum (k) space, using the following
convention. For an arbitrary function f we have for an infinite lattice

f(n) = <2i>d J d? kf(k) exp (ik - R,) (3.3a)
T

and for a lattice with N sites and periodic boundary conditions
. 1 ik-R
o = Y e R f (k). (3.3b)

In the momentum domain, the Hamiltonian assumes the form
A, = [ dq{e(q) B; B, + Q(q) by b}
+ [dgdpV(g.q — P 1By BB, + V*@q— P BiBbg-p}. (343
where £(g) is the exciton energy
e(g) = Q+ ) Jexp (ig- R,) (3.4b)

and
Vigq—p) =2 explig- (R, — R) —ip (R, — R)] Vi - (3.4¢)

Using nonequilibrium Green function techniques [8, 14] we have calculated the correlation
function (2.4) and recast the time-dependent spectrum in the form [8]

Sfl(wy t’ ks) = S?l(wsb t’ ks) + Sifl(wsi t’ ks) s (353)

where S§, is the coherent component of the signal which has the same frequency and wave
vector of the incident light and S, the incoherent component representing the time-dependent
spectrum. They are given by

d
S?l(wsa L ks) = /1427'5(1)55(,‘5 - kO) J‘zlw exp (—l({)t)
Y

w w w w
x G|l w, + — k. G*(ws—,ks>é” w5+—>é"*(ws——>
2 2 2 2

(3.5b)
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and

. do do’
Sy t: k) = §*2no, f e
2n 2m

« «w
x G (w'ky, wk; ) exp (—iwt) & <w’ + 5) &* <a)’ — 2) .
(3.5¢)
The one-exciton Green function is
1
G(w, k) = (3.6)

o — e(k) + i2(k) + il(k)/2’

I'(k) stands for the momentum-dependent exciton radiative and nonradiative decay rate
which controls its lifetime [15]. In two dimensions, the radiative part of I' (k) has the form [16]

2 kgp® — (k- p)? — (kg — k) ()
a Vg — k2

s(k) = cko, and 0{k, — k) is the Heaviside step function,
Lk <k,

0; k>k.

k) = Ok, — k), (3.7a)

Ok, — k) = { (3.7b)

We have denoted the projection of the vector u parallel and normal to the lattice as u!

and p*. Note that I'(k) is always positive.
The self-energy (k) represents the exciton lifetime due to inelastic scattering?),

X(k)y=5[f(p, k) dp (3.8a)
with the scattering kernel (see (3.11))
fp.p)=2n1V(p.p — pI* (1L + NIQ@ — p)) dle(p) — e(p) + Q' — p)]
+ 2 |V(p,p — PP NIQ(p — p) 3le(p) — e(p) — 2p — p)],  (3.8b)
and N(Q) is the phonon occupation number,
N@®) = [exp (Q/kT) — 1]71. (3.8¢)

%2 is the two-exciton Green function calculated by assuming that excitons are free
bosons; it can be expressed in terms of the vertex function I’ [8],

gs(Z)(kaO’ COsks; Cl))
w w (03]
=Glwy+ — ko |G¥|wg — = ko ) G{ 0, + —, K
(o0 1) (o= G0 5)
W _
x G* <ws - E’ ks> Fs(kaO’ C()Sks; (,U) . (39)
Here k, is the projection of the incident field wave-vector on the system.

) We neglect the real parts of the self-energies Z(k) and I'(k).
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Equations (3.5) and (3.9) constitute our final Green function expression for the
time-dependent spectrum. Evaluating G and I, perturbatively in exciton—phonon coupling
we obtain for the irreducible vertex I,

[ (wokes rky; @) = [ dp dp g(p's ko3 wo) Z(p., p's g = 0, ) g ks, P ) (3.10a)
with
2(p, 40; Q) = 271V (go» 40 — P)I> (1 + N[Q(go — P))) 3[2 — e(p) — Q(q0 — P
+ 22V (p,p — qo)1> NIQ(p — q0)1 3[Q — e(p) + Qp — )]
(3.10b)
2.(gop: Q) = 2n\V(p.p — q)I> (1 + N[Qp — 7)) 8[Q, — &(p) + Qp — 4]
+ 21|V (q. q. — P)I* N[Q(g, — p)] Qs — &(p) — (g, — P)].
(3.10¢)

The functions g and g, can be interpreted as follows: |G(RQ, go)I* g(p. 40; Q) is the probability
to absorb a photon with the frequency £ and wave vector projection on the system 4o,
creating an exciton with momentum p, and creation or annihilation of a phonon to satisfy
momentum conservation; |G(Q, g)I* g,(qe p; Q) is a similar quantity which corresponds
to an emission of photon with frequency Q, and wave-vector projection k..

To clarify the physical significance of &, let us consider the single-exciton density matrix
in the momentum domain n(p, ¢, t), which is defined as

n(p.q.0) =Y, BLBy exp {ilp (R, — R) + 34 (R, + R} . (3.11a)

This satisfies the Boltzmann equation [6]

oY e

= (' @ P .t — fp.p)np" g 0] — T@)np.q.1). (3.11b)
 is the Green function of the Boltzmann equation
n(p,q.t) = {dp' 2(p.p'sq.t — to) nP', 4, to) (3.11¢)
where
dw )
Pp.piq) = 2, &P (—iwt) Z(p, p'; qw) . (3.11d)
T

Equations (3.5) to (3.10) describe the time-dependent luminescence spectra with exciton—
phonon interactions. Equations (3.1 1) imply that the incident light creates exciton population
in the exciton band, this population evolves due to exciton scattering by phonons following
the Boltzmann equation, and the time-dependent spectrum reflects the evolution of the
exciton population.

4. Time Resolved Luminescence from Disordered Aggregates

We next calculate the luminescence spectrum from a disordered molecular aggregate. The
Hamiltonian now has the form [3]

A.(q9) =Y Qg BB, + Y JuBLB, + H(@), (4.1)

m*n
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where ¢ represents a collection of additional coordinates which constitute static disorder.
H'(g) is the Hamiltonian of these additional degrees of freedom, and their interactions with
excitons are described by the g-dependence of the energies*) Q,(q). We adopt a model of
Gaussian diagonal disorder where the excitation energies Q, are distributed as follows:

Q. =2+U,. (4.2a)
The statistical properties of disorder are determined by the correlation function of U,
<Un>F = 07 <UmUn>F = O-Zémn 2 (42b)

where the subscript F denotes an average over the static disorder.
As in the phonon case, the luminescence spectrum is given by (3.5), but with modified
expressions for various Green functions. The one-exciton Green function G(w, k) is given

by [8]
1

Gl k)= ——— . (4.32)
o — e(k) — 2(w) + iF(K)2

The complex self-energy which is induced by disorder Z(w) satisfies the self-consistent
equation {17, 8]

S(w) = o’ Jdk /——1—-—’——— (4.3b)
w — e(k) — Z(w) + il'(k)/2

[, in this case has two contributions,

F,=r®+ re, (4.42a)
with
F® ok, weke: @) = 207 |m 2(@o)l 5500 — o) (4.4b)
o + ilo(wo)
and
262 |[Im X (wo)| i

TF®woko, wky; © R st d C—— ) ] (T IR C I
" (@oko )= ot il (o) + itk + k)* D(wo) ( o) )

I'o(w) is the frequency-dependent exciton inverse lifetime [8, 16],
Fo(wo) = [ dp T(P)1G(p. wo)* {] dp' 1G(', wol?} 7, (4.5a)
and the diffusion coefficient D(w) is

de(p) Oe(p)
o(p) o)
It follows from (4.4) that the incoherent signal from a disordered aggregate has the same

frequency as the incidient light. The physical reason is that exciton scattering by static
disorder is elastic and conserves the exciton energy. Therefore, the frequency-dispersed

|G(p, wo)l* . (4.5b)

D(wy) = o |Im Z(wo)| Jdp

4y Off-diagonal disorder through the ¢ dependence of J,,, is not considered here.
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luminescence spectrum carries no information about exciton properties, and all the
information is contained in the time resolved signal Sy, (t, k;) [16],

dw
Sult k) = j2n Splw, t; k). (4.6)

Substituting (4.4a) into (3.5) and (3.9) we recast the incoherent signal in a form of two
contributions with a very different angular dependence. I'® gives a homogeneous back-
ground and I'{¥ is peaked in the direction opposite to the incident light (k, = —k,), which
is the signature of backscattering [18].

5. The Luminescence Spectrum and Spectral Diffusion

Finally we consider a system with both static disorder and exciton—phonon interactions.
Let us denote the eleastic (disorder-induced) and inelastic (phonon-induced) exciton
scattering rates by I', and I'; respectively. When I', < T;, the signal can be calculated in
the framwork of Section 3 by simply modifying the functions f, g, and g,. The situation is
different in the other extreme when I', > I'.. Though inelastic scattering is much weaker
than elastic, one cannot neglect it since it leads to the relaxation of the exciton energy
(spectral diffusion). The expression of Section 3 do not apply in this case since inelastic
scattering is strongly affected by elastic processes. Fast elastic scattering leads to exciton
transport in the energy space on the time scale longer than I'; ! [8]. Elastic scattering creates
a homogeneous exciton distribution n(p) on the energy shell,

n{p) = | de n(e) (e — &(p)) - (5.1)

On the time scale ~ I' 1, inelastic scattering by phonons is responsible for exciton transport
in energy space. The one-exciton Green function G still has the form of (4.3). The vertex
I, can be represented in the form of (4.4a) with [8]

TP (woky, wk,; 0) = a*p(w)) D(w,, wo; ®), (5.2a)
[0 hd V] s'ts

fS(C)(ka()a wsks; CU)
1262 |Im (o)

= 3 2 d(w, — wy) . (5.2b)
o + ilg(wg) + i (we) + ilky + k)* D(wg)
In (5.2b) p(w,) is the exciton density of states,
plw) = —21Im [ dp G(w, p). (5.3)

I pu(wo) is the decay rate of exciton population at the energy w, of the incident light due
to exciton—phonon scattering,

Ip() = f%i p(6) F(e, ), (5.4)

n(e) satisfies the master equation

Onte) _ st’p(g') [F(e, &) n(e) — F(¢, &) n(e)] — Iole) nle) (5.53)
ot 2n
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and @ is the Green function of the energy transport equation,
dg, ! ’
nie, t) = 2—,0(8)9(8, ¢;n(E,0). (5.5b)
T

The kernel F(s, &) represents exciton transport in energy space, i.¢., F (¢, £) is the probability
for an exciton to be scattered from energy € to ¢,

F(e, &) = 2no* [ dk dK' |G (e, K)* |G(&, k)
x VKK — B (1+ N — )8 — & + QK — k)
+\Vikk — K2 N — )8 — & — Qk — k)} . (5.6)

The contribution related to I'® (5.2b) describes backscattering, the signal has the same
frequency of the incident light and decays on the time scale of I'; ! due to the term Iy, (wo)
in the denominator. Physically this means that backscattering is connected with the phase
memory [18] which is destroyed by inelastic processes. The contribution related to I
(5.2a) forms a homogeneous angular distribution, and the time-dependent spectrum reflects
spectral diffusion due to exciton transport in the energy domain.
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