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Abstract

The energy transfer rate and the time- and frequency-resolved fluorescence of molecular dimers is calculated. Spectral
diffusion and the time-dependent Stokes shift are incorporated using the Brownian oscillator model for the solvent. The
results generalize Forster's energy transfer theory to the case when the energy transfer and spectral diffusion rates are
comparable. Generalized rate equations for the excited state populations which contain time-dependent energy transfer rate
W (1) are derived. This rate is expressed in terms of the overlap of the time-dependent fluorescence spectrum of the donor
and the absorption spectrum of the acceptor.

1. Introduction

Ever since the pioneering works of Forster [ 1] and Dexter [2], intcrmolecular energy transfer has been the
subject of numerous theoretical and experimental studies [3-5]. In the Forster theory, the time evolution of
the excited stale populations of two molecules n,(#) (a =1, 2), coupled by an intermolecular dipole-dipole
interaction with a matrix clement v, is described by the simple rate equations: dnp/dr = —dny /dt = Wgn ().
Forster has shown that the energy transfer rate constant Wr can be expressed through the fluorescence lineshape
of the first (donor) molecule, fi(w), and the absorption lineshape of the second (acceptor), ax(w),
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where both lineshapes are normalized to a unit arca,
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Forster’s theory holds when intermolecular energy transfer is slow compared to vibrational and solvent relaxation
rates Wiep, Wi € Wiy, so that the donor’s nuclear degrees of freedom are fully relaxed in its excited electronic
state prior to the energy transfer process. The fluorescence is given by

[}‘_‘_")((u.r)=j},(w)nu(r). a=1,2, (1.2)

where the fluorescence lineshape f,(w) is time independent.

In this Letter, we calculate the fluorescence spectra and energy transfer in a molecular dimer, when the
transfer rate is comparable to or faster than the nuclear relaxation (solvent reorganization) rate. Recently
time-resolved fluorescence and nonlinear optical measurements in the photosynthetic reaction center and in the
antenna systems have raised many interesting issues related to the interpretation of coherent and incoherent
encrgy transfer and their spectroscopic signatures [ 6-8]. When the transfer rate is comparable to the relaxation
rate, the time evolution of the system cannot be described by ordinary rate equations, and we need to calculate
the two-time dipole correlation functions of the dimer. Moreover, in contrast to Forster’s limit, the fluorescence
lineshape does change with time due to spectral diffusion processes and may not be related to the excited
state population by the simple formula (1.2). By expanding the two-time dipole correlation functions of a
dimer perturbatively in the intermolecular interaction, we relate them to multi-time correlation functions of
the individual molecules. We then use the Brownian oscillator model [9] which allows us to evaluate the
necessary correlation functions for a solvent with an arbitrary spectral density, and derive explicit expressions
for the fluorescence spectrum. Finally, we show that at long times the energy transfer process can be described
by generalized rate equations with a time-dependent rate W(r), which reduces to Forster’s rate Wr when the
energy transfer is slow compared to the spectral diffusion timescale.

2. Correlation functions for optical response and energy transfer

We consider a molecular dimer whose Hamiltonian is given by
H(t) =Ho+V+ulE()B] + E*(1)B1]. (2.1)

Here Hy is the Hamiltonian of the noninteracting molecules, each assumed to be a two-level electronic system
with a ground state |g) and an excited state |e),

Hy=H" + H}"”. (2.2)
H([)”) = He(u)B:Ba + Hé‘UB”B:, a= ]’2 (23)
The operators B;S (B,), which create (annihilate) an electronic excitation, obey the Pauli commutation rules,

BuB; - B[;LBM = Oun I — zB;Ba)» (24)

where 6,5 is the Kroneker delta. The nuclear Hamiltonians an represent intramolecular and solven
here & the Kroneker delta. Th Jear Hamilt Hy" and H{" rep t intramolecular and solvent
degrees of the freedom. V represents the intermolecular coupling,

V=0(Bi B+ BiB), (2.5)

and the last term describes the interaction of the first molecule with an external electric field E(t).
The time-resolved fluorescence spectrum of molecule 2 induced by its coupling to molecule 1, which in turn
is excited optically is formally given by Refs. [10,11] (sce Appendix),

Ie(l,w) = 27w / dre' " Py(t,t - 1), (2.6)

— 0
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where

Py(r.1") = (B ({YBy(1)), () =Trl...e Ty Trie= /Ty, (2.7)

\

and B, (1) denotes the operators in the Heisenberg representation. To second order in © we obtain the following
relation between P, (1,1"') and P, (7,7'):

1 I
Pt 1) =" /dr /dT,')’Z(I,f/;T,T,)P](T,T/). (2.8)

A similar calculation for the first molecule results in

T v
Pt = / dr / dr'y (e, i T YE (7 VE(T). (2.9)
Here
Yo(1.1"7.7") = (BT B, (') B, (1) B} (7)), (2.10)
B”([) _ C‘H:‘u‘,B“Cf!ll")”\l - Cil/jﬂ"‘rcfilli"‘rB((’ a = ]7 2. (21 l)

The correlation function Py acts as an cffective external field inducing the fluorescence of the second molecule.
We have thus expressed the fluorescence signal of the second molecule to second order in intermolecular
coupling, in terms of the four-point correlations functions which determine the fluorescence spectra of the
individual molecules [9].

These results can be extended immediately 1o larger aggregates with an arbitrary number of molecules. We
then have

i 1
Pty =", /df /df'yn(t,f’;f.f’)Il%”(m/)*E,T(T’)En(r)]. (2.12)

n#En

These equations nced to be solved for P,(z,¢'), assuming that the correlations functions y, and the field
amplitudes £, arc known. For lincar aggregates, and assuming that the ficld couples to one molecule and that
the energy transfer occurs between nearest neighbors. we can solve these equations successively (first calculate
Py, then P, ctc.).

3. Application to the Brownian oscillator model

In what follows we describe the solvent effects using the Brownian oscillator model [9,12,13]. In this model,
nuclear motions that couple to the clectronic transition are modeled as harmonic modes whose equilibrium
positions are displaced between the two electronic states. The Hamiltonians Hé‘” and H{® assume the form

HE =" ol b b, (3.1)

J

/
J v 2 !

tay _ tay __ 1 (ar) (arhy 2 | (a) gla) ()= (a) (a) g (a)t g (a)
H, = W, 3 E w; (_d/ )T+ — E w; d/ (bj n—bj ) + E ; bj bj . (3.2)
J
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where (g’ is the clectronic transition frequency, w;“’, d;‘” are the frequency and the dimensionless displace-
ment of the jth oscillator. This model is closely related to the spin-Boson Hamiltonian used in the theory
of electron transfer | 14-16]. The existence of two collective solvent coordinates is similar to the problem of
multisite electron transfer (e.g. the superexchange problem) [17].

Using this model, we can calculate the necessary two- and four-point correlation functions. We then have
a(r—1") = (BB (1)) =cxp[—i(wep + A) (1 — 1) —g(t —1)], (3.3)
with

A=

Z d}"’_i-

J

(I

The function g(¢) is given by

r dw C(w)
gtr) = — — [l —cos(wt)] coth

>
27 w*

w
— 1[si — R 34
ZkBT) i[sin(wt) — wt) (3.4)

where C{w) is the spectral density associated with nuclear solvent and intramolecular dynamics,
Clw)=1> 0jd] 8w~ w) - 8w~ (3-5)
]
and ky is the Boltzmann constant.

The absorption and {luorescence lineshapes are given by the Fourier transform of the two-point correlation
function o (1),

alw) = /dr expli(w — we, — A1 —g(1)], (3.6)
flw) = /drcxp[i(w —wey - AL — g5 () ], (3.7)

The four-point correlation function y which determines the time-resolved fluorescence spectrum is given by

Yot 177y =exp [ ~Hwee + M) (1 =1+ 7 —7) — F(1,0;7,7) ], (3.8)
where
F(r.t:r. 7)) =g(t--71) fg(r/ -t 4t —1) +g(r —71) -g(t' —7) ~g(7'/ —1). (3.9)

In condensed phases it is possible to represent the solvent dynamics in terms of a continuous distribution
of oscillators. By changing the summation over oscillator modes in the above expressions to integration, and
assuming the following form for the spectral density of the oscillator system:

wA

-+ A-
onc finds in the high temperature limit, kg7 > A,

2

4 A '
glt) = <?|qsgn(1))(c”’+/lf|I). (3.11)
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where

A ) Y
£ =53 dolcoth (;—T’) ~ 20T, kT > A, (3.12)
7

The correlation function (3.3) determines the absorption and the relaxed tfluorescence spectra of a molecule.
In the case of the static (inhomogenecous, slow modulation) limit, 4 > A, the function g(¢) takes the form

gy =14, (3.13)

and the absorption and fluorescence lineshapes assume the Gaussian profiles,

20\ (W = weg — A)?

a(w) = (F) exp (—#) (3.14)
) 1/2 - i 2

f(cu)z(:;;> cXp <A(—w—;‘)—;“2—+~&> (3.15)

Thesc expressions show that the tluorescence maximum is shifted by 2A (the Stokes shift) to the red relative
to the absorption maximum [ {4].

We next summarize some results of the Brownian oscillator model in the static limit, 4 > A. These will
be used in Section 4 for the description of the dimer fluorescence. The function F (3.8) is the sum of six
g-functions which depend on several time intervals. In the static limit the time intervals |t — /| ~ A™! and
|7 —7/| ~ 47" are much shorter than A~', and one can usc the expression (3.13) for the functions g(r — ')
and g(7 — 7). The function

=g(r— V47— +ett—n+g[(r—) — (' —t)—(r—7) ] —g[(t—T)+ (' =) ] gl (7~ )+ (7' =7 ]
(3.16)

can be expanded in the Taylor series in powers A(7 — ') and A(7' — 7),

/

Flrtsr ey =100 ) + 587 — 1) =200 — ) [ — e "D | 4 (0 — ) (7 — 7y T,
(3.17)

In the limit A(z — 7) > | the function F' takes the form
F(rotorn )y =100 - )y + 183 ¢ - )7 =2 - 1), (3.18)

and, hence, the four-point correlation function is factorized into the product ot the two-point correlation functions

y(t,t'r. ) =01~ No(r —71), (3.19)
ot 1)y =expl—ilwg — (1= 1) = L& (r= 1)) (3.20)
o(7 = 7) =exp | —i(we + M (7 —7) = L4 - 7)) (3.21)

Here the index f shows that the Fourier transform of the function (1) gives the relaxed fluorescence lineshape
(3.15). Substituting these expressions in (2.9}, we recover the Forster limit (1.2),

Ii(t,w) = flw)n(t), (3.22)
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where

n(t) = u’ / dr, /drg(r(rz)E*(T]+Tg)E(Tl) (3.23)

—

is the excited state population of the molecule driving by the external field.

4. Time- and frequency-resolved fluorescence at long times

We now assume that the characteristic intermolecular energy transfer rate, W, is much smaller than the
inhomogcneous linewidth 4, but can be comparable to the inverse solvent timescale A. In this case, we can
focus on the long-time behavior ('3(! + 1) > A~") of the correlation functions P,(t,t"). Because the main
contribution to the integrals in (2.8), (2.9) comes from the vicinity of |7 — 7/| ~ Af',Az"', they can be recast
as follows:

Pt —1) =07 /dr /dT/’)’z(I‘,l‘/,T,T/)PI(T,T—T/), (4.1)
l. X
P(tr—1) = /dr /dT'y](z.f’,r,r')E*(T)E(T'). (4.2)

Here we assume that the correlation functions yy2(t, ¢/, 7, 7') are given by the expressions (3.8) and (3.17).
In Eq. (4.2) we also assumed that the incident pulse is much shorter than W' and omitted 7 in the argument
t — 7 of the correlation {unction y;.

The excited state population of the first molecule is given by

RS !
m () = Pi(1,0) = /drl ar(ry) /dTE*(T+Tl/2)E(T~T|/2), (4.3)
where
a;('r):expl—i(wé;)+/\)7-~ [3_\?72]. (4.4)

The Fourier transform of the function ¢, (7),

7 - 27\ (w—wl) = A)°
a{w) = / dra (7)e"“" = ( ﬁ> exp _— 1, (4.5)
. 4 247

— X

is the absorption spectrum of the first molecule.
For a Gaussian incident field.

E(7) = Egexp (—i27 - k777), (4.6)
we find for the correlation function Py,

Pttty = filt.t —ym (1), (4.7)
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where

) r
20 27 12 ((lfwénlv)_/\l)z ' 26392
m(t) = uw Ej | —— ex — R dne K7,
() =pu O<_‘17+K3> P( 2& + 1) / n

— 00

it =1 =exp =i () (1~ 1) = 5B () (1 = 17,

5

A2
_ (D 1 I
wl(f)—wég */\1[1*2Ml(f)]+(9*wég —/\1)A:12+K2M1(1),

P

b1y = & (1 S M?U>> -
S A2 K2 '

My(1) =exp(—A11).

The Fourier transform of fy (¢, t '),

D .
. 2\ 2 [w—w(1)]?
‘ - d 3 SwT _ ,
it e) / Thtnme (1;{(:)) CXP( 263(1) )

23

(4.8)

4.9)

(4.10)

(4.11)

(4.12)

(4.13)

describes a time-dependent (non-cquilibrium) fluorescence spectrum of the first molecule, whose maximum

and width change with time.

Inserting (4.7) into (4.1) we can express the correlation function P, through the population of the first

molecule,

H

PQ(I,T*T’)= /df]fz([.f*I‘/ZII)W(Il)Il](h),

—

where

Frr—1n) =exp [ —iwa(r.1)) — $63(1, 1)) €],

wr(t.1) =wf — Al = 2Ma(r = 1))
12

5, A
) () — @0 — ] —=—2—Ms(1—1,).
s g '];15+b§(r]) (=0

5 s A3 s
b5(r,)y=4 |1 — ———=——M5(t—1 ,
) 2( A2+ b 2 ‘)>

M>(1) =exp (—Aa1).

f2 describes a time-dependent fluorescence spectrum of the second molecule, while

X

dw
W(t) =0?
(1) L/ZW

-0

ax(w) fi(w,t)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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represents the overlap of the absorption spectrum of the acceptor and the time-dependent fluorescence spectrum
of the donor. Eq. (4.20) is a simple generalization of Forster rate (Eq.(1.1)) to include the time-dependent
Stokes shift. For our model we find

) N\ [w1(1) — w2 — A3]?

Within the Brownian oscillator model we thus obtained explicit expressions (4.7), (4.14) for the time-
dependent fluorescence spectra of both molecules to second order in the intermolecular coupling.

Finally we show how our results generalize Forster’s theory to the case of non-equilibrium energy transfer,
by introducing a time-dependent rate. A time-dependent rate has been used in the definition of the analogues
problem of electron transfer in Refs. [18-20]. Setting ¢ = ¢/ in Eq. (4.14), we find for the population of the
second molecule,

!
m(r) = P(1,0) = / dry W) m (). (4.22)
—00
Hence, the fluorescence spectrum of the acceptor can be rewritten in the form

XD I3

bhlw,t) = /dre‘“’&(r,r): /dt. fz(t,tl)ﬁnz(t]). (4.23)
B 1

— X — o0

The excited state populations can be obtained as the solution of the following set of the equations:

%nzm - Wty (1), (4.24)
d
Em(t):l(t)fW(t)nl(t), (4.25)

where 7(t) is the overlap of the spectrum of the incident Gaussian field and the absorption spectrum of the
first molecule,

27 \'? (Q —wl) — Ap)? 2
l(r)=quz< 5 ) exp [ — - e, (4.26)
O\ &+ K 2048 + &2)

These expressions generalize Forster’s formula (1.2) to the case of hot (unrelaxed) fluorescence. In the limit
At > 1 the function M, (t) — 0, and we recover Forster’s rate equations with the Forster rate Wg = W(t — 00).
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Appendix A

In the Appendix we derive the basic expressions for the correlation functions (2.8) and (2.9) to second
order in the external field. The time-resolved fluorescence spectrum of molecule 2 induced by its coupling to
molecule 1, which in turn is excited by an external electromagnetic field is formally given by Refs. [10,11],
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o 1
de do’ w'e !
2mi 27 (6 — w — 10) (e + 0 — w +i0)

— 2

Pe+ o' 0. (A.1)

Ie(t,w) =27w

Here

Prle+w.w)=

|

/ drdt’ exp {i[(e + )t — ']} Pa(1.1") (A.2)

is the double Fourier transform of the correlation function (Eq. (2.7))

If the temporal evolution of the spectrum is slow (typical timescale longer than the inverse linewidth) one
can evaluate the integral (A.1) over € by only taking into account the contribution in the pole € = w +i0. We
then find

do’ . T
Ir(t, w) %277'(1)/ 2w e ' Pw+ o, w) =27w / dre“"Py(t,t — 1), (A.3)
T
-0

—oC

where 7 =1 — t’. This is an ideal spectrum. The actual observed spectrum may be calculated by convoluting
I (1, w) with spectral and temporal gate functions related to the detection device [21].

To evaluate the correlation function P;(¢t, t') we use the Keldysh representation [22,23] for non-equilibrium
correlations functions. P2 (¢, t') is a chronologically ordered averaged value on the Keldysh loop that goes from
the t = —oo to the f = +o¢ and back,

Py (11" = (Tel BY (1) Ba(n) ). (A4)

Here the indexes (+) and (—) indicate that the time argument lies on the positive (from —oo to +oc) or
negative (from +oc to —oc) branches of the Keldysh loop. Expanding Eq. (A.6) to second order in the
external field, we find

Pg(l,l’)=}1: /dT /dT/K(t.t/;T.T')E*(T')E(T). (A.5)
K(t,t';7,7') = ({TBi(7)B; ()1 [TB)B (1)), (A.6)

where the overbar in B, (1) denotes the time evolution with respect to the free dimer Hamiltonian,
B,(1) = oitHo #Vy1 g —iCHy4 11 (AT)
a — . .

T and T stand for anti-chronological and chronological time ordering, respectively. Expanding the correlation
function K(t, t'; 7. 77) to second order in intermolecular coupling v, we obtain

1(([.1‘/',’)',’7")=L‘2 /dl; dl’z]‘2([,[/;f],[2)F1([|.T2;T,T,). (Ag)
where
Fa(t,1"7,7") = ([TB(7) B, (1) [TBu(1) B} (T)]), (A9)

=y, (.1 7.0 — T8 — 1) (A.10)
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and
yo(t, 177"y = (B, (7)) B} ('YB,(t)BS (7)), (A.11)
B, (1) =M1 B e " = g e miH (g 21 2 (A.12)
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