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The calculation of linear and nonlinear optical response as well as nonadiabatic curve crossing
processes depends on the time evolution of the electronic coherences~off-diagonal elements of the
density matrix!. Unlike their diagonal counterparts, the off-diagonal elements do not have an
obvious classical limit. A semiclassical approximation for the nonlinear optical response function,
which reveals the classical orbit structure underlying the electronic coherences between Born–
Oppenheimer surfaces, is developed. The resulting numerical propagation, which applies to
arbitrary anharmonic potentials, is based on integrating the time-dependent Schro¨dinger equation
using the semiclassical time evolution operator, Van Vleck propagator. Using the present formalism
it is possible to describe semiclassically multiphoton processes involving several
Born–Oppenheimer surfaces. ©1995 American Institute of Physics.
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I. INTRODUCTION

Nonlinear optical spectroscopy is a rapidly developin
field that has allowed the study of properties of molecu
systems in ways that are not possible using line
techniques.1–3 Using carefully timed and tuned sequences
ultrashort laser pulses, one can study the evolution of a s
tem in microscopic molecular time scales. Photon echo a
hole burning techniques allow the study of molecular inte
actions with their environment in the liquid or solid state, b
completely eliminating inhomogeneous broadening.4,5

When interactions of a chromophore with the enviro
ment are taken into account, the numerical calculation of
time evolution becomes a very hard problem. It cannot
easily computed quantum mechanically, although there
recently been some interesting progress in that direction.6 If
the nuclear degrees of freedom of the chromophore are
proximated as harmonic oscillators there are numerous m
ods to calculate its time evolution, the nonlinear polariz
tions and optical susceptibilities. We can basica
distinguish two methodologies that attempt to address m
lecular systems with arbitrary potentials; first are the me
ods based on the classical simulation of the nonline
response,7 and second those based on the approximate ev
ation of Feynman path integrals.8 The former methods, use
ful in the limit of strong dissipation and low resolution spe
tra, have the strength of handling efficiently large number
degrees of freedom and realistic interaction potentials. T
methods based on Feynman path integrals are more rigo
and can handle high resolution and less damped dynam
but have some strong limitations related to numerical co
vergence of oscillatory integrals and intensive computer
quirements. Semiclassical techniques for the treatment
molecular systems offer a middle ground between pur
classical molecular dynamics and ‘‘exact’’ Feynman path9

They use classical orbits as a reference zero order path
supplement it with the appropriate quantum phase that rep

a!Current address: Institute for Fundamental Chemistry, 34-4 Taka
Nishihiraki-cho, Sakyo-ku, Kyoto 606, Japan.
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duces even extremely complicated quantum interference.10,11

The nonlinear response functions, which are necessary
for describing the nonlinear signal, are most conveniently
calculated by propagating the density matrix in Liouville
space.4,5 The density matrix has several advantages over the
wave function formalism: It is fully time ordered and is,
therefore, closely related to experiment. It further allows one
to more naturally treat mixed states at finite temperatures
and to eliminate unnecessary bath degrees of freedom.

In this paper we combine the nonlinear response func-
tion formalism based on the evolution of the density matrix
with semiclassical techniques and develop a new method fo
calculating the nonlinear polarization. Our method is capable
of describing asymptotically the electronic coherences that
are greatly important in many spectroscopies, and allows the
classical interpretation of the dynamics of molecular systems
under nonlinear potentials.

At the center of any semiclassical theory in the time
domain is the Van Vleck propagator,12,13 this is the asymp-
totic limit of the quantum propagator in coordinate represen-
tation ~time Green function!, ^xuexp@2iHt/\#ux8& as \→0.
The Van Vleck propagator gives the probability amplitude to
go from positionx8 to x in time t. Asymptotically this tran-
sition matrix element can be written as the square root of the
classical probability for this event, times a phase given by
the classical action accumulated along the orbit. Although
this has been known for a long time, its practical implemen-
tation has been very limited until recently. The numerical
effort involved in finding all classical orbits subject to two
value boundary conditions was the main obstacle. In order to
avoid this difficulty one can represent the Van Vleck formula
using the initial value representations.14

Finally we note that the present formalism can be ap-
plied directly to curve crossing and nonadiabatic transitions.
This problem is formally identical to the nonlinear response
function where the nonadiabatic coupling plays the role of
the electric field. The nonadiabatic~second-order! rate con-
stant is related to the linear response and the fourth-orde
correction is related to the third-order response.15,16

In Sec. II we introduce the nonlinar optical responses
no-
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9328 M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
using the density matrix formalism. The formal semiclassica
limit is presented in Sec. III and a numerical implementatio
based on a two-trajectory approximation is developed in Se
IV. The theory is used for the calculation of the third orde
response in Sec. V, and applied to a two-electronic state sy
tem in Sec. VI. Finally in Sec. VII, we sketch the most gen
eral multitrajectory implementation of the semiclassical re
sponse function.

II. LIOUVILLE SPACE PATHWAYS FOR THE DENSITY
MATRIX

Consider an ensemble of chromophores at equilibrium
Before the interaction with the fieldE(t), the state of the
system is given by the thermal density matrixr (0)(2`).
The time evolution of the chromophore interacting with the
field is given by the Liouville–Von Neuman equation

ṙ~ t !52
i

\
@H,r#, ~1!

whereH is the sum of the Hamiltonian of the isolated mo-
lecular systemH0 and the dipole field–molecule interaction
2m̂E(t):

H5H02m̂E~ t !. ~2!

We assume that the interaction is weak enough for
perturbation expansion of the density matrix on the field t
be valid, r5r (0)1r (1)1r (2)1 • • • .1 The equations for
the successive terms are then given by

ṙ ~0!~ t !52
i

\
@H0 ,r

~0!#50, ~3a!

ṙ~n!~ t !52
i

\
@H0 ,r

~n!#1
i

\
@m̂E~ t !,r~n21!#. ~3b!

Solving the system of coupled equations, Eqs.~3! allows
the determination of the polarization of the chromophor
P(t). Direct substitution of the density matrix expansion
then leads to the expansion of the polarization induced in th
chromophore:

P~ t !5P~0!~ t !1P~1!~ t !1P~2!~ t !1••• ~4!

with

P~n!~ t !5Tr@m̂r~n!~ t !#. ~5!

The polarization density of a uniform distribution of
chromophores is simply obtained by multiplying theP(n) by
N/V, the molar density of chromophores.

The first term in the expansion@Eq. ~3a!# gives the time
evolution of the initial density matrix subjected to the unper
turbed Hamiltonian. Since the initial density matrix repre
sents the equilibrium state of the system,r (0) is time inde-
pendent. The succesive terms@Eq. ~3b!# can be solved by
iteration using the propagator for the unperturbed system
then

r~n!~ t !5S i\ D E
2`

t

dtn e
2 iH0~ t2tn!/\

3@m̂•E~tn!,r
~n21!~tn!#e

iH0~ t2tn!/\. ~6!
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We thus obtain

r~0!~ t !5r~0!~2`!, ~7a!

r~1!~ t !5S i\ D E
2`

t

dt1 r̄ ~1!~t1 ;t !E~t1!1h.c. ~7b!

r~2!~ t !5S i\ D 2E
2`

t

dt2E
2`

t2
dt1 r̄2

~2!~t1 ,t2 ;t !E~t1!E~t2!

1h.c.2S i\ D 2E
2`

t

dt2E
2`

t

dt1

3 r̄1
~2!~t1 ,t2 ;t !E~t1!E~t2!, ~7c!

r~3!~ t !5S i\ D 3E
2`

t

dt3E
2`

t3
dt2E

2`

t2
dt1

3 r̄2
~3!~t1 ,t2 ,t3 ;t !E~t1!E~t2!E~t3!1h.c.

1S i\ D 3E
2`

t

dt3E
2`

t

dt2E
2`

t2
dt1

3 r̄1
~3!~t1 ,t2 ,t3 ;t !E~t1!E~t2!E~t3!1h.c. ~7d!

The symbol h.c. stands for the Hermitian conjugate of
the previous expression. In Eqs.~7! we have introduced the
Liouville space generating functions for the density matrix of
thenth order,r̄k

(n) , which are defined as follows

r̄ ~1!~t1 ;t !5e2 iH0t/\m̂~t1!r
~0!~2`!eiH0t/\, ~8a!

r̄2
~2!~t1 ,t2 ;t !5e2 iH0t/\m̂~t2!m̂~t1!r

~0!~2`!eiH0t/\,
~8b!

r̄1
~2!~t1 ,t2 ;t !5e2 iH0t/\m̂~t1!r

~0!~2`!m̂~t2!e
iH0t/\,

~8c!

r̄2
~3!~t1 ,t2 ,t3 ;t !5e2 iH0t/\m̂~t3!m̂~t2!m̂~t1!

3r~0!~2`!eiH0t/\, ~8d!

r̄1
~3!~t1 ,t2 ,t3 ;t !5e2 iH0t/\m̂~t3!r

~0!~2`!m̂~t1!

3m̂~t2!e
2 iH0t/\. ~8e!

We have made use of the Heisenberg representation of th
transition dipole momentm̂(t):

m̂~ t !5eiH0t/\m̂ e2 iH0t/\. ~9!

Notice that the second integrals in Eqs.~7c! and~7d! are
not time ordered. It is preferable to work with time-ordered
expressions that can be easily interpreted in terms of se
quences of light pulses. We then recast Eqs.~7c! and ~7d! as

r~2!~ t !5S i

\D 2

E
2`

t

dt2E
2`

t2
dt1F (

j51

2

Q̂j~t1 ,t2 ;t !1h.c.G
3E~t1!E~t2!, ~10a!
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9329M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
r~3!~ t !5S i

\D 3

E
2`

t

dt3E
2`

t3
dt2E

2`

t2
dt1

3F (
j51

4

R̂j~t1 ,t2 ,t3 ;t !2h.c.G
3E~t1!E~t2!E~t3!. ~10b!

Now the time variablest1 ,t2 ,t3 are ordered, i.e., that
t1<t2<t3 . The time-ordered form is obtained natural
when the Liouville equation for the density matrix is solve
The operatorsQ̂j and R̂j contain the complete information
necessary for the calculation of the nonlinear response fu
tions. These operators are defined in terms of the genera
functions introduced previously as

Q̂1~t1 ,t2 ;t !52 r̄1
~2!~t1 ,t2 ;t !, ~11a!

Q̂2~t1 ,t2 ;t !5 r̄2
~2!~t1 ,t2 ;t !, ~11b!

R̂1~t1 ,t2 ,t3 ;t !5 r̄1
~3!~t2 ,t3 ,t1 ;t !, ~12a!

R̂2~t1 ,t2 ,t3 ;t !5 r̄1
~3!~t1 ,t3 ,t2 ;t !, ~12b!

R̂3~t1 ,t2 ,t3 ;t !5 r̄1
~3!~t1 ,t2 ,t3 ;t !, ~12c!

R̂4~t1 ,t2 ,t3 ;t !5 r̄2
~3!~t1 ,t2 ,t3 ;t !. ~12d!

Each of these terms constitutes a pathway for the pro
gation of the density matrix in Liouville space,2 and can be
represented by a double-sided Feynman diagram~Fig. 1!.
The generating functions contain all the dynamical inform
tion of the system, but a given spectroscopic measurem
selects only part of that information.

FIG. 1. Double-sided Feynman diagram for the two generating functio
contributing to the density matrix termr (2) and r (3). Top: Second-order
terms,Bottom: Third order terms.
J. Chem. Phys., Vol. 102Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subjec
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Two kinds of quantum interference show up in the non-
linear optical response function. The first is due to the bra
and ket dynamics itself, several quantum paths contribute t
their dynamics and the phase interference between the pat
create typical quantum effects. Second, because the total r
sponse functions consists of the sum of several bra–ke
propagations, or Feynman diagrams, an additional interfe
ence pattern is created. Each of the Feynman diagrams,
ways in which light pulses interact with the system at a cer
tain order, have a completely different dynamical time evo-
lution. In the language used in previous paragraphs, sever
of the generating functions contribute to the same dipole
expectation value. For example, the two generating func
tions, r̄1

(2) and r̄2
(2) make the second-order termr (2) and

consequentlyP(2). Their Feynman diagrams allow one to
visualize the two ways in which two laser pulses interact via
the density matrix. In the case ofr̄2

(2) both pulses act on the
ket side while in ther̄1

(2) one pulse interacts on the ket and at
a different time a second pulse acts on the bra side of th
density matrix. The sum of both generating functions pro-
vides the second kind of interference.

A fully quantum calculation of the generating functions
requires a simultaneous propagation of the bra and the ket.
general, it is not easy to calculate the generating function
exactly for realistic systems. However, sometimes the cou
pling of the chromophore with an external bath makes the
system evolve in time classically. Semiclassical approache
for the calculation of these quantities can then be both nu
merically and physically very useful. Semiclassical equation
of motion for these generating functions were developed in
Ref. 15. The equations were derived by assuming that th
Liouville generating function has a Gaussian form in phase
space at all times. The equations describe the evolution i
terms of a single reference trajectory which represents bot
the bra and the ket. The actual density matrix depends on th
evolution in the vicinity of that trajectory. This information is
carried out by the second moments of the wave packet i
phase space. The generating functions may be obtained
running a set of classical trajectories launched in the regio
covered by the initial density matrix.17 The path followed by
the classical orbits are determined not only by the Hamil
tonian of the systemH0 , but by the particular combination
of propagators implicit in the different generating functions
in Eqs.~8!. A basic limitation of this procedure is the need to
construct an effective reference Hamiltonian which should
reproduce both the bra and the ket evolution. This can b
only done rigorously for harmonic systems. The resulting
equations of motion are exact, e.g., for a two electronic leve
system with harmonic potentials that differ in their equilib-
rium position and frequency. For harmonic models it is also
possible to include dissipation by coupling to a harmonic
bath.18 For anharmonic systems there is no general way t
construct this reference Hamiltonian and the procedure is
therefore, limited to short times and small anharmonicities
In this paper we develop a new semiclassical Green functio
propagation scheme that overcomes the limitations of th
reference Hamiltonian approach and allows the asymptoti
propagation of bra and ket in general anharmonic potentials
The relevant classical orbits come in pairs, one for

ns
, No. 23, 15 June 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



9330 M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
the time evolution of the ket and one for the bra. By retaini
the bra and ket time evolutions separately we obtain an
proved approximation that better mimics the original qua
tum problem.

III. SEMICLASSICAL LIMIT OF THE LIOUVILLE SPACE
GENERATING FUNCTIONS

All the fundamental spectroscopic observables can
derived from r (n), and consequently from the operato
Q̂j ’s R̂j ’s. Four-wave mixing spectroscopic meassureme
directly probe the nonlinear responsesRj ’s while the func-
tionsQj ’s are related to three-wave spectroscopies.

In general it is not easy to calculate the generating fun
tions exactly for realistic systems. However sometimes
coupling of the chromophore with an external bath makes
system evolve in time more classically. Semiclassical a
proaches for the calculation of these quantities can then
both numerically and physically very useful.

The passage to the asymptotic limit\→0 is carried out
by writing Eqs.~8! in the coordinate representation

^xl ur̄ i
~n!uxr&5E dxr8 dxl8^xl uÛi

l uxl8&

3^xl8ur
~0!~2`!uxr8&^xr8uÛi

r uxr& . ~13!

Both operators to the left and right of the initialr (0)

3(2`) are the time evolution operator for the initial densit
matrix that yields thei th generating function tonth order at
time t. The formulas for the left and right operators of th
third-order term are given in Table I. Left and right operato
obviously depend onn, the perturbation order, but we hav
omitted this index from Eq.~13! for the sake of simplicity.

The basic building block for semiclassics in the tim
domain is the Van Vleck propagator9,12,13

lim
\→0

^xtuexp@2 iHt /\#ux8&

'~2p i\!21/2( Udp8dxt
U1/2expF i\ S~xt ,x8!2

ip

2
mG . ~14!

Equation ~14! is the asymptotic limit of the time-
dependent Green function. From the correspondence p
ciple we know that the modulus square of this element is
classical probability of going fromx8 to xt as \→0. The
classical probability is given byudp8/dxtu ~see Appendix A!.
The phase factorS(xt ,x8) is the classical action accumulate
along the classical orbit launched atx8 and arriving atxt .
This action is easily calculated by integrating the Lagrang
of the system along the classical orbit:

TABLE I. Left and right operators for the third-order generating functio
r̄ i
(3) , i51,2.

Ûr
25eiH0t/\

Ûl
25e2 iH0(t2t3)/\m̂e2 iH0(t32t2)/\m̂e2 iH0(t22t1)/\m̂e2 iH0t1 /\

Ûr
15eiH0t1 /\m̂eiH0(t22t1)/\m̂eiH0(t2t2)/\

Ûl
15e2 iH0(t2t3)/\m̂e2 iH0t3 /\
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S5E
x8

xt
L~ ẋt8 ,xt8!dt8. ~15!

The sum runs over all possible classical orbits satisfying
the given boundary conditionsxt ,x8 at the specific timet.
When there is only one orbit in the sum then the semiclassi-
cal transition probability is identical to the classical, as is the
case for the harmonic oscillator. However, in general, there
will be more than one orbit in the sum, and in that case the
probability amplitude will not be simply the sum of classical
probability amplitudes but, due to the phases, there will be
an interference. Finally the factorm in the exponent is an
integer known as the Morse index~not to be confused with
the dipole moment operatorm̂). It was introduced by
Gutzwiller to extend the validity of Van Vleck’s original for-
mula beyond caustics.13 The Morse index is normally calcu-
lated by counting the number of timesdxt /dp8 goes through
zero along the orbit. Using the stability analysis summarized
in Appendix A, this is also equivalent to detecting the num-
ber of times the stability matrix elementM21 changes sign
along the orbit. The zero’s counting procedure is applicable
when (]2H/]p2).0, which is generally the case. For other
kinds of Hamiltonians a different procedure is followed for
calculating the Morse index.19 The semiclassical formula
@Eq. ~14!# has been used to calculate the linear response of a
multidimensional nonlinear system subject to an electromag-
netic field.20

Generally the HamiltonianH0 will be the sum over sev-
eral Born–Oppenheimer surfaces corresponding to adiabatic
electronic statesuei&:

H05(
i51

uei&Hi^ei u. ~16!

Similarly the dipole moment operator is a sum over the
dipole couplings between the different electronic states~for a
molecule with no permament dipole!

m̂5(
iÞ j

uei&m̂ i j ^ej u. ~17!

Using the above expressions for the Hamiltonian, the
dipole moment and the semiclassical Green function we de-
rive formulas for the left–right propagatorsÛ i

l andÛ i
r as

the product of several Van Vleck propagators integrated over
the intermediate nuclear coordinates:

^xl uÛ i
l uxl8&5E dx1 ,...,dxk^xl ue2 iH i1

t1 /\ux1&

3^x1um̂ i1 ,i2
ux2&...̂ xk21um̂ i k21 ,i k

uxk&

3^xkue2 iH i k
tk /\uxl8&, ~18a!

^xr8uÛ i
r uxr&5E dx1 ,...,dxk^xr8ue

2 iH i1
t1 /\ux1&

3^x1um̂ i1 ,i2
ux2&...̂ xk21um̂ i k21 ,i k

uxk&

3^xkue2 iH i k
tk /\uxr&. ~18b!

n

2, No. 23, 15 June 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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The dipole operator couplings transform the generatin
functions into a sequential chain of propagators on differe
electronic surfacesi 1 ,i 2 ,....

In the Condon approximation, which will be used in this
article, the transition dipole moment is assumed to slow
vary with respect to the nuclear degrees of freedom. Then t
^xk21um̂ i , j uxk& elements are constant functions with respec
to the nuclear degrees of freedom. In this approximation w
will set all the m̂ i , j51. Integration of Eqs.~18! over the
intermediate positions gives essentially the propability am
plitude to go fromxl8 to xl when propagating fort1 on an
electronic state,t2 on another electronic state, etc. In the
non-Condon approximation the explicit coordinate depen
dence of the transition dipole moments can still be taken in
account by linearly expanding the dipole function about th
classical orbit running between initial and final positions.

The integration of Eqs.~18! are still very difficult be-
cause it involves the determination ofk classical orbits for
every xl8 ,xl pair and for every set of times. Moreover mo-
mentum is not necessarily preserved when passing from t
pathxl82xk to xk2xk21; all the orbits are disjointed in prin-
ciple ~Fig. 2!. However, in the asymptotic\→0 limit we can
calculate the integrals@Eqs. ~18a! and ~18b!# by stationary
phase. Doing so we obtain

^xl uÛ i
l uxl8&'~2p i\!21/2U ]2Sl

]xl]xl8
U1/2

3expF i\ Sl~xl ,xl8!2
ip

2
~m l1d l !G , ~19a!

^xr8uÛ i
r uxr&'~22p i\!21/2U ]2Sr

]xr]xr8
U1/2

3expF2
i

\
Sr~xr ,xr8!1

ip

2
~m r1d r !G , ~19b!

where the actionsSr(xr ,xr8) and Sl(xl ,xl8) are calculated
along the stationary paths going classically fromxl8 to xl on
the left and fromxr8 to xr on the right operators. Both sta-
tionary paths are sequences of classical orbits subject to
condition of momentum and position conservation whe
switching between electronic states. This condition is a dire
consequence of the last stationary phase approximatio
Then the left stationary path, for example, will start atxl8 , go
forward t1 in time, switch potential surface staying on the
same spot in phase space, and continues fort2 , etc. ... until
completing the sequence of evolution operators inÛi

l . The
indicesm r andm l are the sums of the right–left Morse indi-
ces along the classical segments in the stationary path~see
Fig. 1!. There are also additional phase shiftsd l ,d r that arise
from the stationary phase approximation and are a result
constructing the full semiclassical propagator from sever
shorter ones. We will deal in more detail with the determi
nation of thed index later. By convention the paths for the
left and right operators run forward in time. Looking back to
the expression for the generating functions, Eq.~13!, it is
straightforward to write down its semiclassical limit by sub
stituting the left–right propagators by Eqs.~19!.
J. Chem. Phys., Vol. 102Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject
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Our next concern would be how to evaluate this expres
sion in practice. The simplest possible approach is explaine
in Sec. IV. It is based on the Gaussian wave packe
method21,22and consists of expanding the classical dynamic
about a pair of classical orbits. We will then apply this
method to a two level chromophore in Sec. VI.

IV. SEMICLASSICAL EXPANSION OF THE
GENERATING FUNCTION

Given the semiclassical expressions for the left and righ
propagators@Eqs.~19!# it would seem that the only step nec-
essary for the determination of the generating functions is th
integration of Eq.~13!. For four-wave mixing experiments
we need to evaluate the third-order generating function
r̄ i
(3) i51,2,2 then

^xl ur̄ i
~3!uxr&

'
1

2p\ E dxr8 dxl8^xl8ur
~0!~2`!uxr8&uM21

l
M21

r u21/2

3expF i\ Sl~xl ,xl8!2
i

\
Sr~xr ,xr8!2

ip

2
~Dm1Dd!G ,

~20!

whereDm5m l2m r andDd5d l2d r .
The integration is carried out over all possible initial

position pairsxl8 ,xr8 . We have made use of the total stability
matrix along the left and right propagations,M l andMr , as
defined in Appendix A. The action functions have a compli-
cated dependence on initial and final positions mainly due t
the root search problem mentioned earlier; for every set o
initial–final conditions the appropriate initial momenta must
be determined in order to obtain the actions and phase shift
In general the calculation of this integral seems numerically
very challenging. Nevertheless, several approximations ca
be shown to give extraordinarily good results thanks to the
localization of the initial state. The function̂xl8ur

(0)

3(2`)uxr8& in the integrand is often nonzero only in a lim-
ited region of configuration space. This reduces the amoun
of computational effort. Moreover, if the initial state is local-
ized in a relatively small region, one can expand the classica
actions and dynamics about the center of the distribution. Le
us assume that the initial density matrix is Gaussian:

^xl8ur
~0!~2`!uxr8&5A2~a2g!

p

3exp@2a~xl8!22a~xr8!212gxl8xr8#.

~21!

For example, for a harmonic oscillation at equilibrium
the parametersa andg are given by

a5
mv

2\
coth~b\v!, ~22a!

g5
mv

2\ sinh~b\v!
, ~22b!
, No. 23, 15 June 1995¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9332 M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
whereb51/kT. If the initial density matrix is not Gaussian,
either because the electronic surface is not harmonic or
initial ensemble is not in equilibrium, one can always de
composer (0)(2`) as a sum over Gaussians localized i
configuration space.

The basic approximation for the two-orbit semiclassic
expansion is to assume that the dynamics of the bra and
ket can be approximated as a moving Gaussian along
classical orbit launched at the center of the initial densi
matrix. The center position of ther (0)(2`) is xl850,
xr850 and the average momentapl850, pr850. From this
single point two classical orbits (x̄l ,x̄r) depart and follow the
dynamics specified by the left and right time evolutions
Logically any other classical orbit whose initial condition
were taken in the nearby region of phase space would lead
a different classical path. Nevertheless for a short time it
valid to represent every orbit departing from arbitrary initia
positionsxl8 ,xr8 and momentapl8 ,pr8 and reachingxl ,xr by
expanding around the two orbits that initiate their dynamic
at the center of the initial density matrix~see Fig. 3!. Upon
linearization of the equations of motion along the guidin
orbits we write

pl' p̄l1M11
l pl81M12

l xl8 , ~23a!

xl' x̄l1M21
l pl81M22

l xl8 , ~23b!

pr' p̄r1M11
r pr81M12

r xr8 , ~24a!

xr' x̄r1M21
r pr81M22

r xr8 . ~24b!

The expansion coefficients are the elements of the to
stability matricesM l andMr , as defined in Appendix A.

The classical actions in Eq.~20! can also be expanded
about the two orbits, or guiding trajectories, thus providin

FIG. 2. Phase space diagram of two kinds of paths contributing to the left
right propagators: An arbitrary quantum path for the left~right! propagator
betweenx8,x ~dash line!, and the stationary ‘‘point’’~solid line! which is
simply a classically connected orbit joinningx8,x.
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an analytical dependence on the initial and final coordinate

Sl~xl ,xl8!'S̄l1 p̄l~xl2 x̄l !1
M11

l

2M21
l ~xl2 x̄l !

2

1
M22

l

2M21
l ~xl8!22

1

M21
l ~xl2 x̄l !xl8 , ~25a!

Sr~xr ,xr8!'S̄r1 p̄r~xr2 x̄r !1
M11

r

2M21
r ~xr2 x̄r !

2

1
M22

r

2M21
r ~xr8!22

1

M21
r ~xr2 x̄r !xr8 . ~25b!

The above expansions rely on the localization of the ini
tial state. Inserting them into Eq.~20! and performing the
integrations, the generating function transforms into a Gaus
ian quadrature

^xl ur̄ i
~3!uxr& '

h→oS ~a2g!

2p\2 detAD 1/2uM21
l
M21

r u21/2

3exp@k01
1
4B–A

21
–B#, ~26!

where

B5S 2
i

\M21
l ~xl2 x̄l !,

i

\M21
r ~xr2 x̄r ! D , ~27!

A5S a2
iM22

l

2\M21
l 2g

2g a1
iM22

r

2\M21
r

D , ~28!

k05
i

\
~S̄l2S̄r !1

i

\
p̄l~xl2 x̄l !2

i

\
p̄r~xr2 x̄r !1

iM11
l

2\M21
l

3~xl2 x̄l !
22

iM11
r

2\M21
r ~xr2 x̄r !

2

2
ip

2
~m l1d l2m r2d r !. ~29!

Upon reduction of Eq.~20! to Gaussian quadrature we
have not only expanded the actions quadraticaly about th
two guiding trajectories but also assumed that the prefact
to the exponent is constant over the entire domain. This
certainly a good approximation for a narrow Gaussian. Th
exponential function in Eq.~20! varies rapidly relative to the
prefactor which represents the classical probability. Thi
probability is also calculated along the two guiding orbits
M r andM l in the previous equations are the total stability
matrices along the guiding orbits for the right and left propa
gation, respectively.

Equation~26! is simple to interpret and to implement.
All the information required to determine the generating
function is contained in the classical dynamics of two orbits
launched at the center of the initial density matrix. The gen
erating function gives the time evolution of this initial den-
sity matrix under the left–right propagators. The pair of clas

or
, No. 23, 15 June 1995¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9333M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
sical orbits serve as a guiding phase space path for
dynamics of the density matrix; one orbit represents th
evolving bra and the other represents the ket. As a con
quence of the quadratic expansions of the classical dynam
and actions, the generating function is a Gaussian function
all times centered atx̄l ,x̄r . This is precisely the limitation of
this two-orbit implementation: The current expansions a
exact for harmonic potentials but only apply in general a
harmonic systems for relatively short times. Later we wi
analyze this method and its limitations with an example; w
will also describe a generalization of the semiclassical prop
gation that is not restricted to short times.

V. THE THIRD-ORDER RESPONSE FUNCTION

So far we have introduced the semiclassical limit of th
perturbative terms in the expansion of the density matrix f
a system interacting with an external electromagnetic fie
The generating functions previously calculated are an inte
mediate step for the determination of a physical observab
The trace of the dipole moment operator over the evolvin
density matrix yields the polarization of the chromophor
under the influence of the electric field. Now let us introduc
the response functionsS(1),S(2),S(3):2

P~0!~ t !5Tr@m̂r~0!~2`!#, ~30a!

P~1!~ t !5E
0

1`

dt1 S
~1!~ t1!E~ t2t1!, ~30b!

P~2!~ t !5E
0

1`

dt2E
0

1`

dt1 S
~2!~ t2 ,t1!E~ t2t22t1!

3E~ t2t2!, ~30c!

P~3!~ t !5E
0

1`

dt3E
0

1`

dt2E
0

1`

dt1 S
~3!~ t3 ,t2 ,t1!

3E~ t2t32t22t1!E~ t2t22t1!E~ t2t1!.

~30d!

S(1)(t1) is the linear response of the system which con
trols the linear optical measurements.S(2)(t1 ,t2) and
S(3)(t1 ,t2 ,t3) are the second and third order nonlinear re
sponse functions, respectively, which describe nonlinear o
tical measurements. Comparison of equations Eqs.~30! with
Eqs. ~7! and Eqs.~10! determines the response functions i
terms of the generating functionsr̄k

(n) :

S~1!~ t1!5S i\ D @J~ t1!2c.c.#, ~31a!

S~2!~ t2 ,t1!5S i

\D 2F (
j51

2

Qj~ t2 ,t1!1c.c.G , ~31b!

S~3!~ t3 ,t2 ,t1!5S i

\D 3F (
j51

4

Rj~ t3 ,t2 ,t1!2c.c.G , ~31c!

where

J~ t1!5Tr@m̂r̄~1!~ t2t1 ;t !#, ~32a!
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Q1~ t2 ,t1!52Tr@m̂r̄1
~2!~ t2t22t1 ,t2t1 ;t !#, ~32b!

Q2~ t2 ,t1!5Tr@m̂r̄2
~2!~ t2t22t1 ,t2t1 ;t !#, ~32c!

R1~ t3 ,t2 ,t1!

5Tr@m̂r̄1
~3!~ t2t32t2 ,t2t3 ,t2t32t22t1 ;t !#, ~32d!

R2~ t3 ,t2 ,t1!

5Tr@m̂r̄1
~3!~ t2t32t22t1 ,t2t3 ,t2t32t2 ;t !#, ~32e!

R3~ t3 ,t2 ,t1!

5Tr@m̂r̄1
~3!~ t2t32t22t1 ,t2t32t2 ,t2t3 ;t !#, ~32f!

R4~ t3 ,t2 ,t1!

5Tr@m̂r̄2
~3!~ t2t32t22t1 ,t2t32t2 ,t2t3 ;t !#. ~32g!

The time variables chosen for the response functions are
the time intervals between interactionst i rather than the ac-
tual interaction times. As we see in Eqs.~32! the functionsJ,
Qj , andRj are obtained through the tracing of the transition
dipole moment and the generating functions. The total third-
order response is the sum of four traces, each of them is
associated to a particular pathway in Liouville space symbol-
ized by the double-sided Feynman diagram, Fig. 1. The
semiclassical approximation to the traces@Eqs.~32!# can be
obtained by substituting the generating functions by the
semiclassical expression derived in the previous section, Eq.
~26!. Although in Sec. IV we derived the two-orbit semiclas-
sical expansion of the third-order generating functions,
r̄ i
(3) , in fact that formula equally applies to the second and
linear order generating functions; the only change between
the three cases is the number and sequence of quantum
propagators inÛ i

r ,Û i
l . Consequently the recipe for de-

scribing the evolution of the classical orbits changes among
the different generating functions due to the modification of
the time evolution operators for the density matrix.

The interpretation of the nonlinear response provides a
new physical insight into the dynamics. EachJ, Rj , and
Qj depend on the time evolution of the density matrix and in
particular they look for the ‘‘survival probability’’, i.e., the
probability of finding the system in the same region of con-
figuration space after the left–right propagation. For this rea-
son the semiclassical limit allows us to look at the guiding
orbits that carry the flux of quantum probability amplitude
through phase space back to the initial domain and under-
stand the dynamical mechanism for correlations in compli-
cated nonlinear systems. Since the transition dipole moment
is set to unity the traces Eqs.~32! are simply the traces of the
generating functions; in the case of the third-order terms

Rj~ t1 ,t2 ,t3!5E dx^xur̄ i
~3!ux&, j51,...,4, i51,2.

~33!
No. 23, 15 June 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9334 M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
Using Eq.~26! then

lim
\→0

Rj~ t3 ,t2 ,t1!'A2~a2g!

p S sign ~M21
r
M21

l !

g D 1/2

3S p

k2
D 1/2expFk01 k1

2

4k2
G . ~34!

All the quantities appearing in Eq.~34! are defined in
Appendix B. The ‘‘sign’’ function refers to the sign of the
dependent variable.Rj ends up depending only on the infor
mation of the two guiding classical orbits.

It is possible to express the second- and third-ord
termsQj andRj as multiple time correlation functions of the
transition dipole. By explicity writing the generating func
tions in terms of the quantum propagators, one visuali
them in terms of averages of physical quantities like the tra
sition dipole moment

Q1~ t2 ,t1!52^m̂~ t2t2!m̂~ t !m̂~ t2t22t1!r
~0!~2`!&, ~35a!

Q2~ t2 ,t1!5^m̂~ t !m̂~ t2t2!m̂~ t2t22t1!r
~0!~2`!&, ~35b!

R1~ t3 ,t2 ,t1!

5^m̂~ t2t32t2!m̂~ t2t3!m̂~ t !m̂~ t2t32t22t1!r
~0!

3~2`!&, ~35c!

R2~ t3 ,t2 ,t1!

5^m̂~ t2t32t22t1!m̂~ t2t3!m̂~ t !m̂~ t2t32t2!r
~0!

3~2`!&, ~35d!

R3~ t3 ,t2 ,t1!

5^m̂~ t2t32t22t1!m̂~ t2t32t2!m̂~ t !m̂~ t2t3!r
~0!

3~2`!&, ~35e!

R4~ t3 ,t2 ,t1!

5^m̂~ t !m̂~ t2t3!m̂~ t2t32t2!m̂~ t2t32t22t1!r
~0!

3~2`!&. ~35f!

Equation ~34! is exact for purely harmonic surfaces
Since the semiclassical propagators and the stationary p
approximation are exact in this case, this formula also
plies for the calculation of the second-order responsesQj .

When the potential surfaces are anharmonic, Eq.~34!
yields a good estimate of the dynamics up to the time wh
the nonlinear dynamics starts to create multiple simultane
classical recurrences in the response functionsRj . The re-
currences inRj appear because at certain timet there are
classical paths that take amplitude from the initial dens
matrix back to itself. This must happen simultaneously f
the left and right propagation. In the case of a harmo
oscillator the dynamics is very simple: only one orbit on th
left and one on the right can bring amplitude simultaneou
back to the initial density matrix creating a recurrence@see
Fig. 4~a!#. However, for anharmonic systems more than o
pair of orbits can contribute at the same time to create
recurrence in the correlation functions. Therefore, by th
time, Eq. ~34! would not be valid because we have esse
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tially used linearization of the classical dynamics about a
single orbit per propagator. Nonlinear effects in the dynamics
require linearization about more than one orbit,20 Fig. 4~b!.

VI. APPLICATION TO A TWO ELECTRONIC LEVEL
SYSTEM

After introducing the response function formalism and
its semiclassical implementation we are ready to apply this
machinery to a test model. Let us consider a two electronic
level molecular system with one nuclear degree of freedom
described by the following Hamiltonian

H05h1~x!u1&^1u1h2~x!u2&^2u2m̂12•E~ t !u1&

3^2u2m̂21•E~ t !u2&^1u. ~36!

x is the coordinate degree of freedom, e.g., an internuclea
distance, andm i j the dipole transtion moment coupling the
Born–Oppenheimer surfacesi , j . In Eq. ~36! h1 andh2 are
the Hamiltonians for the two electronic surfaces. Although
the tensor nature of the field–system interaction is clear we
will not address it. For the sake of clarity we assume that the
field is aligned with the dipole moment of the chromophore,
we can then write in scalar notation the interaction as
m̂ i j E(t).

For the two-level system considered here the lowest non
linear term in the polarization is the third-order one.P2(t) is
identically zero. Substitution of Eq.~36! in Eqs. ~8e! and
~8d! gives for the lower order nonlinear contribution

r̄1
~3!~ t !5e2 ih2~ t2t3!/\e2 ih1t3 /\r~0!~2`!

3eih1t1 /\eih2~t22t1!/\eih1~ t2t2!/\, ~37a!

r̄2
~3!~ t !5e2 ih2~ t2t3!/\e2 ih1~t32t2!/\e2 ih2~t22t1!/\

3e2 ih1t1 /\r~0!~2`!eih1t/\. ~37b!

As explained in a previous section, under the Condon
approximation the dipole transition moments are constan
with respect to nuclear motions and we setm̂ i j51. Conse-

TABLE II. Explicit expressions for the left and right operators appearing in
the third-order response.

Ûr
25eih1t/\

Ûl
25e2 ih2(t2t3)/\e2 ih1(t32t2)/\e2 ih2(t22t1)/\e2 ih1t1 /\

Ûr
15eih1t1 /\eih2(t22t1)/\eih1(t2t2)/\

Ûl
15e2 ih2(t2t3)/\e2 ih1t3 /\

FIG. 3. Notation used in the two-orbit semiclassical expansion of the gen-
erating functions. Solid lines are the central guiding orbits and the dash line
are two arbitrary orbits in the neighborhood of the center ofr (0).
2, No. 23, 15 June 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9335M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
quently the equations for the generating functions@Eqs.~37!#
are simply given by products of time evolution operators
lower and upper electronic states.

In Table II we have summarized the left and right oper
tors, Û i

l andÛ i
r , for this system that yield the third-orde

response function from the time evolution of the initial de
sity matrix.

The terms that determine the third-order polarization v
Eq. ~30! can be also written as

Rj~ t1 ,t2 ,t3!5E dxE dxl8 dxr8^xuÛi
l uxl8&

3^xl8ur
~0!~2`!uxr8&^xr8uÛ i

r ux&,

j51,...4, i51,2. ~38!

Û i
r and Û i

l can be thought as the bra and ket tim
evolution operators for the third order term. We have alrea
pointed out that expressing these operators as a produc
Van Vleck propagators, Eq.~14!, unfortunately leads to the
generation of a ‘‘cascade’’ of orbits. In Sec. III we also in
troduced the notion of calculating by stationary phase a
proximation the classical paths that take the system fr
initial to final position through the transtions between ele
tronic levels. The final formula forRj @Eq. ~34!# has a struc-
ture very similar to the Van Vleck propagator, Eq.~14!.

As an example for the calculation of thed index let us
calculate the explicit form of̂xr8uÛr

2uxr&. Substitution of the
Van Vleck formula gives

^xr8uÛr
2uxr&5E dx1^xr8ue

ih1t3 /\ux1&^x1ueih2~ t2t3!/\uxr&

~39a!

'2
1

2p i\E dx1U ]2S1
]xr8]x1

U1/2U ]2S2
]x1]xr

U1/2

3expF2
i

\
~S11S2!1

ip

2
~m11m2!G . ~39b!

The actions are calculated along the classical orbits jo
ing (xr8 ,x1) and (x1 ,xr) in times t3 , t2t3 , respectively.
The two classical orbits are disconnected because they c
from two separate roots to independent boundary conditio
This poses a problem because the use of the propagator
~39b! requires launching two separate manifolds of orbi
one atxr8 with arbitrary momentum and another atx1 also
with all possible values of initial momentum. However, a
\→0 the main contribution to the integral Eq.~39b! is a
classically connected orbit, whereby momentum and posit
are preserved when switching propagators. We reach
conclusion by calculating the integral above by stationa
phase:

^xr8uÛr
2uxr&'~22p i\!21/2U ]2ST

]xr]xr8
U1/2

3expF2
i

\
ST~xr ,xr8!1

ip

2
~m1d!G , ~40!

where we have made use of the following equalities
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U ]2ST
]xr]xr8

U1/25U ]2S1
]xr8]x1

U1/2U ]2S2
]xr]x1

U1/2U]2~S11S2!

]x1
2 U1/2,

~41a!

ST5S11S2 , ~41b!

m5m11m2 . ~41c!

ST(xr ,xr8) is the total action accumulated along a class
cal path going fromxr8 to xr preserving position and momen-
tum when passing from the electronic surface 2 to 1~notice
that the orbits run foward in time!. The indexm ~a total
Morse index! is the sum of conjugate points found along th
two classical orbits in the pathm1 andm2 .

As important is the new phase shiftd emerging from the
stationary phase approximation and due to the discontinu
of the semiclassical propagation. This index arises when i
posing the connectivity condition in the quantum paths joi
ning xr8 and xr . d can be calculated by using the stability
matrices of both classical fragments,M (1) andM (2) ~see Ap-
pendix A!. By definition

S dp1dx1
D 5M ~1!S dpr8

dxr8
D , ~42!

S dprdxr
D 5M ~2!S dp1dx1

D . ~43!

Then

H d50 if M22
~1!/M21

~1!1M11
~2!/M21

~2!>0

d51 if M22
~1!/M21

~1!1M11
~2!/M21

~2!,0
. ~44!

FIG. 4. Phase space diagram showing the initial density matrixr (0)(2`)
~shaded area! and the classical left and right guiding orbits. In case~a! only
one family of orbits serves as guide for the time evolution. In case~b! two
families of orbits guide the dynamics creating a recurrence in the correlat
function.
, No. 23, 15 June 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9336 M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
This new stationary phase approximation is very impo
tant because it avoids relaunching anx-manifold of orbits at
x1 to calculate the second semiclassical propagation. We
then send a ray of orbits started atxr8 with different initial
momentum and let them go through the electronic surfa
change until they reach their final destination atx.

We now present a numerical example of the semiclas
cal two-orbit method described and compare the semicla
cally calculated third-order nonlinear response with its qua
tum counterpart, calculated using a standard numer
algorithm.

Consider a two electronic level system with a harmon
ground state and a Morse excited state. The Hamiltoni
h1 ,h2 in Eq. ~36! are then given by

h1~x!5
p2

2m
1
1

2
mv2x2, ~45a!

FIG. 5. Model two level system: The ground state is a harmonic potent
the excited state is a Morse potential. Both curves are drawn as a functio
an internuclear distancex.

FIG. 6. Third order traceR1 as a function oft3 for fixed t150.59 and
t250.61 ~a.u.!.
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h2~x!5
p2

2m
1De~12exp@2ae~x2xe!# !21Ege , ~45b!

wherem51,v56.0 for the ground state harmonic oscillator
andDe550, xe521, a050.3086 for the first excited state
Morse potential~see Fig. 5!. The electronic energy difference
between the two surfacesEge leads to an overall oscillatory
contribution to the tracesRj , j51,...,4. To better appreciate
the agreement between semiclassical and quantum results
the following figures we have made this constant factor zero

The system starts at equilibrium in the harmonic stat
with kT510\v; k being Boltzman’s constant and using
atomic units\51. In Figs. 6–9 we have plotted the four
traces that constitute the third-order responseS(3) as a func-
tion of t3 . The other two time variablest1 andt2 were fixed
to 0.59 and 0.61 a.u., respectively. The last time intervalt3
describes the evolution of an electronic coherence betwe
the ground and excited states and by letting it vary we se
the agreement of the semiclassical two-orbit approximatio
with the quantum as a function of time. The quantum calcu
lations were performed using a FFT–Feit–Fleck implemen
tation of the Liouville–Von Neuman equation.23 The figures
show a reasonable agreement;R1 , R4 , andR2 happen to be
better described by the two-path expansion thanR3 . In all
cases the simple semiclassical approximation works almo

al,
of

FIG. 7. Third order traceR2 as a function oft3 for fixed t150.59 and
t250.61 ~a.u.!.

FIG. 8. Third order traceR3 as a function oft3 for fixed t150.59 and
t250.61 ~a.u.!.
, No. 23, 15 June 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9337M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
exactly at short times and it gets worse at longer times. A
mentioned before, expanding the dynamics about only tw
classical orbits takes the risk of neglecting contributions t
the correlation functions from classical paths that make
long excursion far from our guiding orbits. Nevertheless thi
method remains extremely useful for relatively short tim
dynamics; the difference in computational effort between th
quantum and the two-path semiclassical calculations is a
tonishing. The FFT calculation of theRj ’s took several hours
of CPU on a workstation while the semiclassical two-pat
took seconds on the same machine. One of the inconv
niences of the FFT method for this particular problem is th
necessity of propagating the density matrix using two pote
tial surfaces with very different coordinate intervals. In the
present example the harmonic potential is rather narrow
coordinates while the Morse potential is extended.

Using the semiclassical approximation it is also possib
to depict in phase space the classical path followed by th
density matrix for each of the termsR1 ,...,R4 . Each term
can be described using three pictures~see Figs. 10–13!: To
the upper left and lower right is shown the left and righ
guiding orbits, respectively, in phase space, in the lower le
the configuration space trajectory described by the dens
matrix is also plotted by interpolating the coordinate excu

FIG. 9. Third order traceR4 as a function oft3 for fixed t150.59 and
t250.61 ~a.u.!.

FIG. 10. Phase space portrait of the classical guiding orbits forR1.
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sion from the left and right classical orbits. When the density
matrix is represented in the coordinate representatio
(xl ,xr) it appears as if its time evolution follows a two-
dimensional space; it would seem ideal to obtain equation
of motion for the evolution in (xl ,xr) of the center of the
moving density matrix. However in reality this density ma-
trix is evolving in a four-dimensional space that contains the
left and right momenta as well. This is precisely what is
shown in Figs. 10–13; the left and right guiding orbits ex-
plore the classical dynamics of the density matrix in its full
dimensionality while the projection of the simultaneous left–
right positions gives the path described by the density matri
in the coordinate representation. For the current example
these paths obviously correspond to a regular integrable m
tion. We have used white circles and the labels a, b, c t
show the positions of the classical guiding orbits after the
t1 , t2 , andt3 propagations. Notice that the equations of mo-
tion change abruptly at timest1 and t2 , and so does the
structure of the classical guiding orbits. The right guiding
paths for the response functionsR1 , R2 , R3 are made of two
classical orbits, the first one running on the excited Morse
state and the second one on the ground harmonic potentia
On the other hand the left guiding path runs along the uppe
Morse potential. Both guiding paths classically describe an

FIG. 11. Phase space portrait of the classical guiding orbits forR2.

FIG. 12. Phase space portrait of the classical guiding orbits forR3.
, No. 23, 15 June 1995¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9338 M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
electronic coherence created by the three field interactio
In the remaining response functionR4 the three interactions
occur on the left-hand side of the density matrix~see Fig. 1!.
The phase space diagram ofR4 ~Fig. 13! then shows a left
guiding path with three classical orbits; the first one runnin
on the Morse potential, the second on the harmonic grou
state, and the third one again on the upper Morse. The rig
guiding orbit is simply a stationary point at the origin be
cause the lack of field interaction leaves the classical or
stationary at the minimum of the harmonic potential.

The phase space picture for the dynamics of the dens
matrix provides a quick and inexpensive way to visualiz
and predict the response functions. Since the nonlinear
sponse functions are given by the traces of the time evolv
density matrix, r̄1,2

(3) , only the configuration space region
along thexl5xr axis is important. When the density matrix
passes through this axis it is expected to give a recursion
the trace. Similarly, the amplitude of the trace should becom
negligible far from thexl5xr axis. There is a second impor-
tant factor for using classical phase space diagrams; if t
classical path (xl ,xr) crosses the diagonalxl5xr but the
momentum of either of the right–left orbits is too high the
the trace can be small. This is easily understandable: T
classical path in configuration space~left-bottom plot in Figs.
10–13! describes the motion of the center of the densi
matrix only, it does not tell us about the overall averag
momentum of the moving distribution. If the average mo
mentum of the density matrix is very high thenr̄1,2

(3) will
exhibit large fringes and its trace over thexl5xr may show
negligible results.

To explore the insight classical mechanics gives into th
nonlinear responses let us look at the termR4 for two differ-
ent sets of timest1 ,t2 , again as a function oft3 . In Fig. 14
the tracesR4 for t150.39, t251.6, andt150.59, t251.4 are
shown. In the case ofR4 the trace is determined by the left
orbit because the right orbit corresponds to the equilibriu
point on the harmonic potential. The classical paths plott
in the figure have three segments, one for each of thet i
propagations. The path of the first run makes a very sh
excursion around thexl50, pl50 point while for the second
run it is evident that the classical path described during t

FIG. 13. Phase space portrait of the classical guiding orbits forR4.
J. Chem. Phys., Vol. 102Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subjec
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t3 interval is much larger. The right orbit stays atxr50 ~the
harmonic stationary point!. Therefore only whenxl is also
equal to 0, at thepl axis, can the trace ofR4 be significant.
There are only two points per period where there is an inter
section between the Morse orbit and thepl axis, and in both
points the momentum of the guiding orbit is nonzero. As a
result the traces should be expected to be small; also th
higher the momentum at the crossing the smaller the trace
We can observe this effect in the plot, the run for the second
set of parameters is described by a guiding orbit which in-
tersects thexl50 condition with a very large momentum
~large or small momentum here means far or close to the
average initial momentum!.

In summary the two-orbit semiclassical approximation to
the propagation of the density matrix provides an efficient
way to visualize the regions of phase space explored by th
evolving distribution, and examine the left and the right sides
of the propagation separately. The diagrams in Figs. 10 to 1
show then the classical guiding orbits underlying the nonlin-
ear response contributionsR1 , R2 , R3 , andR4 . The paths in
configuration space (xl ,xr) ~lower-left! allow one to see
when to expect an increase in the trace of the nonlinear re
sponse. Similarly the phase space projections to the left an
right allow one to read the average momentum of the density
matrix as it crosses the diagonalxl5xr .

The numerical effort involved in the two-orbit semiclas-
sical calculation ofRj j51,...,4 isvery small. For this rea-
son it is rather easy to explore the behavior of the nonlinea
response functions in their multidimensional space
t1 ,t2 ,t3 . One of the advantages of the nonlinear optical re-
sponse is that these functions provide a unified picture fo
many different spectroscopic measurements. For example,
normal two-photon echo experiment is described by the
functionR2(t1,0,t3) wheret1 is the time difference between
the two light pulses andt3 the time interval between the last
pulse and the echo detection. Along thet15t3 direction it is
possible to eliminate the inhomogenous broadening that hin
ders the measurement of spectral lines in a normal linea
absorption spectra. Using our semiclassical expansion w
can now calculate with small numerical effortR2(t1,0,t3) as
a function of botht1 , t3 . Figure 15 shows a contour plot of
the absolute value of the nonlinear responseR2 for our har-
monic Morse model, we may as well call it the photon-echo
response, as a function oft1 andt3 . The time intervals range
from 0 to 6 a.u. Two clear kinds of recurrences emerge in the
response that we have labeledA andB. Departing from the
origin and following thet15t3 diagonal we first observed an
immediate decay of the traceR2 followed by a sequential
series of recurrences of typeB,A,B,etc. Each of the recur-
rences can be identified with particular classical paths tha
involve combinations of periods of motion in the Morse and
harmonic surfaces. The signal, which is an electronic coher
ence, will depend on a combination of motions on both sur-
faces. Let us first analyze recurrence typeA with the help of
the Feynman diagram shown at the bottom right of Fig. 15.
During the t1 interval, i.e., after the interaction with first
pulse, the bra side of the density matrix~right path! has been
excited to the upper Morse potential while the ket side~left!
remains in the ground harmonic. The contour plot shows tha
, No. 23, 15 June 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9339M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
for t350 and ast1 increases the response first decays a
then rebuilds in a series of typeA recurrences. The moment
when this happens for the first time coincides with the fir
period of motion of the right Morse orbit. Even if thet1
motion continues on forever, the left guiding orbit remain
stationary atxl50, pl50. This means that only when the
right orbit goes throughxr50 with small or zero momentum
there will be a recurrence ‘‘A’ ’ in the trace. The events ‘‘A’’
happen along thet350 axis periodically~at least fort1 from
0 to 6.0) due to the periodic motion of the moving densit
matrix along the Morse orbit. Similar argument applies alon
the t150 axis.

The same kind of recurrence typeA appears along the
t35t1 line, e.g., at the labelA location. The classical reason
for these recurrences is also easily found by looking at t
phase space portraits of the left and right guiding orbit
Every one of these recurrences is due to the combination
an integer number of periods along the Morse orbit by th
left and right guiding orbits. Because the Morse orbits hav
time to complete a full circuit in phase space they alway
bring the density matrix back to its departure position, thu
almost completely rebuilding the trace.

In Fig. 16 we depict the classical guiding orbits for th
recurrence labeledB. During the time intervalt1 the dynam-
ics moves along thet350 axis and we observe the initial
decay of the trace, by the end of half-period in the Mors
orbit of the right guiding path the density matrix has move
along thexr axis ~botton-left diagram! away from the impor-
tant diagonalxl5xr . As we mentioned, only when the guid-
ing path crosses this diagonal the trace builds up once mo
During the t3 propagation the right orbit describes a ful
period of motion in the harmonic potential while the lef
orbit moves on the Morse excited state for half a period. A
a result there are two intersections of (xl ,xr) with the diag-
onal. The first fails to produce a recurrence in the respon
because the average momentum of the distribution is e

FIG. 14. Comparison of two runs forR4(t3 ,t2 ,t1) for fixed t1 ,t2 as a
function of t3 . In the upper two diagrams the phase space picture (pl ,xl) of
the classical path described by the left propagation can be compared w
their respective correlation functionsR4 .
J. Chem. Phys., Vol. 102Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject
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tremely high in the right orbit. The second intersection hap
pens after one full period of the harmonic oscillator in the
right orbit, and in this case the average momentum of th
density matrix is zero~same as the initial value!. Only at this
moment is there a full revival of the trace. If the dynamics
continue for longert3 , i.e., along the horizontal line in the
R2 contour plot, we see another couple of identical recur
rences of typeB which are again due to a combination of one
full harmonic and half Morse periods.

The classical analysis identifies recurrencesA purely as-
sociated with the dynamics on the Morse excited potentia
This is precisely what is to be expected for a photoabsorptio
measurement and the trace ofR2 along thet150 or t350
axis is exactly that. Along the diagonalt15t3 we have not
only the information about the linear absorption spectrum
~recurrence typeA! but also a new kind of recurrence~type
B! which is associated to a combination of dynamics in both
the upper and lower electronic states.

As a corollary to this analysis we reiterate that this
simple interpretation holds for the relatively short time scale
shown in Fig. 15. For longer times the effect of the nonlinea
dynamics in the Morse potential increases and a simple two
orbit expansion is not sufficient to describe the semiclassica
dynamics. In that time domain one has to use a semiclassic
implementation that makes use of the full dynamics in phas
space, expanding the evolution of the density matrix along
multiple classical orbits. In the following section we de-
scribed such a method. However it is important to emphasiz
that the two-orbit expansion is much more powerful than one
may think superficially; a possible alternative would be to
expand the upper Morse potential quadratically and approx
mate it with another harmonic potential. This approximation
is equivalent in our two-orbit picture to having guiding orbits
that move on two harmonic surfaces; unfortunately the fre
quencies seen by the evolving orbits is always constant du
to the global harmonic approximation to the potential. On the
other hand our two-orbit approximation adjusts the fre-
quency of the upper harmonic ‘‘fit’’ constantly, making it
larger in the asymptotic side of the Morse potential and
shorter close to its steep wall.

ith

FIG. 15. Contour plot of the nonlinear responseR2 for a two photon echo
measurement.
, No. 23, 15 June 1995¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9340 M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
VII. MULTIPLE PATH SEMICLASSICAL EXPANSION
OF THE NONLINEAR RESPONSE FUNCTION

The multiple path semiclassical expansion of the nonl
ear response is based on the ‘‘cellular dynamics’’ meth
applied for the semiclassical propagation of Gaussian w
packets in general potentials.20,24,25

We first write the quantum propagators for the ket a
bra Ûl and Ûr in an initial value representation using
mixed coordinate-momentum representation. For instan
the left propagator can be written as

^x2uÛl ux1&sc'E dp2^x2up2&^p2uÛl ux1&, ~46a!

5~4p2i\2!21/2E dp1uM11
l u1/2

3expF i\ Sl~x1 ,p1!1
i

\
pt~x22xt!2

ip

2
fG . ~46b!

In going from Eq.~46a! to Eq.~46b! we have substituted
the element of matrix̂p2uÛl ux1& by its semiclassical limit;
the variable of integrations have also been changed using
classical stability matrix.Sl(x1 ,p1) is the classical action
accumulated along the left propagation that is launched
x1 ,p1 . xt ,pt are the position and momentum of the classic
orbit after time t5(t1 ,t2 ,t3) of propagation; they are also
functions of the initial conditionsx1 ,p1 . The phase factor
f, as explained in Ref. 25, accounts for the phase sh
across caustics in the mixedp-x representation

f5m l1d l1
1
2sgn~2M11

l
M21

l !, ~47!

wherem l is the total Morse index for the left path andd l the
additional phase shift. A similar expression for the rig
propagator can be written in terms of an integral over init
momentum.

Propagators of the form@Eq. ~46a!# easily allow one to
recast the expression for the generating functions as an i
gral over initial momentum and position. In the case of t
third-order generating functions

^xl ur̄ i
~3!uxr&'E dx1 dx2^xl uÛl ux1&sc

3^x1ur~0!~2`!ux2&^x2uÛr uxr&sc, ~48!

where the semiclassical propagators are now integrals o
initial momentum:

^xl uÛl ux1&sc5~4p2i\2!21/2E dp1uM11
l u1/2

3expF i\ Sl~x1 ,p1!1
i

\
pt
l~xl2xt

l !2
ip

2
f l G ,
~49a!
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^x2uÛr uxr&sc5~24p2i\2!21/2E dp2uM11
r u1/2

3expF2
i

\
Sr~x2 ,p2!2

i

\
pt
r~xr2xt

r !

1
ip

2
f r G . ~49b!

Due to the previous transformations the generating func
tion can be expressed as a four-dimensional integral over t
full phase space of initial conditions, both for the bra and th
ket spaces.

In Sec. IV we showed how under certain circunstance
the dynamics in the propagator could be expanded about
single pair of trajectories, one for the bra and one for the ke
This is equivalent to expanding the integrand of Eq.~48!
about a single point in the phase space of initial conditions
The point chosen in the two-orbit expansion was logically
the average position and momentum of the initial densit
matrix. On the other hand, now we can go one step furthe
with the initial phase space representation it is possible t
reduce the four-dimensional integration to an approximat
sum over a set of grid points in (p1 ,x1 ,p2 ,x2) space. From
each point in such a grid depart pairs of classical orbit
which can be used for the local expansion of the integral@Eq.
~48!# in exactly the same way as in the two-orbit implemen
tation presented in Sec. IV.

A convenient way to transform the semiclassical expres
sion for r̄ i

(3) to a sum over grid points in initial phase space
is the insertion of a sum of localized states, Gaussians,
phase space. Consider the following representation of unit

(
i1

exp@2b1~p12pi1!
2#'1, ~50a!

(
i2

exp@2b2~x12xi2!
2#'1, ~50b!

(
i3

exp@2b3~p22pi3!
2#'1, ~50c!

(
i4

exp@2b4~x22xi4!
2#'1. ~50d!

The widths of the Gaussians,b i , and the centers
xi2,xi4,pi1,pi3 can be chosen to make the sums as close
unity as desired. The set of points (pi1,xi2,pi3,xi4) define a
grid in the phase space of initial conditions. Inserting the
four sums in Eq.~48! then leads to a fourfold sum of inte-
grals, however each of the integrands now are functions th
decay very rapidly away from the center of the grid~pro-
vided that theb ’s are sufficiently large!. Then a quadratic
expansion of the actions (Sl ,Sr), as performed in Sec. IV
about the grid point and the pair of classical orbits departin
from it, reduces the integration problem to a simple Gaussia
quadrature:
, No. 23, 15 June 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9341M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
^xl ur̄ i
~3!uxr&'S h

2p\ D 2A2~a2g!

p (
i1 ,...,i4

uM11
l
M11

r u1/2

3exp@u01
1
4u1–û2

21
–u1#. ~51!

The constanth is a normalization factor that insures th
sum over Gaussians inserted in Eq.~48! to be approximately
unity in phase space. Obviously the sum runs over all
grid points, each point in the grid is actually a couple
classical orbits. In practice it is not always neccesary to
sert unity as a sum over Gaussian in both coordinate
momenta, in the same case only a grid in coordinate will
sufficient and in other cases a grid in momenta space sho
be enough. For example, when the initial density matrix
very compact in configuration space (a large and high den-
sity of states! then the dynamics of the system can be clea
expanded only about the average position ofr (0). However,
a narrow initial state in coordinates implies very broad d
tribution of initial momenta; for this reason we cannot car
on the semiclassical propagation too far in time by expan
ing the dynamics only about the average momentum of
initial state, many pairs of orbits at different initial momen
l

b
u
s
i
t
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are necessary. This is precisely our case, we will insert only
two sums over Gaussians@Eqs. ~50a! and ~50c!# which ex-
pand the initial momenta in a grid of points, then the coeffi-
cientsu take the following form

u052a~ x̄r8!22a~ x̄l8!212g x̄r8x̄l82
ip

2
~f l2f r !

1
i

\
~S̄l2S̄r !1

i

\
p̄l~xl2 x̄l !2

i

\
p̄r~xr2 x̄r !, ~52!

u15S i

\
M11

l ~xl2 x̄l !

22a x̄l812g x̄r82
i

\
pi18 1

i

\
M12

l ~xl2 x̄l !

i

\
M11

r ~xr2 x̄r !

22a x̄r812g x̄l82
i

\
pi38 1

i

\
M12

r ~xr2 x̄r !

D ,

~53!
û25S b11
i

2\
M11

l
M21

l i

2\
M11

l
M22

l 0 0

i

2\
M11

l
M22

l a1
i

2\
M12

l
M22

l 0 2g

0 0 b32
i

2\
M11

r
M21

r 2
i

2\
M11

r
M22

r

0 2g 2
i

2\
M11

r
M22

r a2
i

2\
M12

r
M22

r

D . ~54!
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Most of the notation used is already obvious. From eve
‘‘cell’’ or grid point depart two classical orbits with initial
conditions (pi1,x̄l8 ,pi3,x̄r8), wherepi1 andpi3 vary along the

2D grid and the initial positionsx̄l8 and x̄r8 are the average
positions of the density matrix. After the classical propag
tion, the phase space location of the cell is (p̄l ,x̄l ,p̄r ,x̄r).
Along the two classical orbits launched at each cell we a
calculate the total stability matricesM l andMr .

The final formula for the generating function has thu
been recast as a sum over two-orbit expansions~one per grid
point!. Each classical orbit in the chosen grid carries info
mation about its immediate neighborhood. Having a set
orbits started on different points of the initial phase spa
allows one to describe nonlinear dynamics because the c
sical orbits are free to wander in phase space, each one
lowing its own dynamics. This is in contrast with the two
orbit approximation used in a previous section, in which
expanding the actions and final position and moment
about the central guiding paths one restricted the dynamic
a limited region of phase space. The cellular implementat
described here is numerically more expensive than
ry
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simple two-orbit one because more orbits are required, bu
should allow the propagation of the dynamics for a very long
time ~high resolution in the spectra of eigenvalues!.

Our description of the cellular implementation is the
most general description for an arbitrary initial density ma-
trix; in some cases it will be required to expand the dynamics
in its full four-dimensional grid.

Finally if the initial density matrix is not Gaussian it is
always possible to expand it as a sum over Gaussians an
then apply the procedure outlined here to each element of th
Gaussian basis.

VIII. CONCLUSIONS

In this work we have demonstrated that electronic coher-
ent processes taking place in molecules under the influenc
of multiple short laser pulses do have a classical analog. Th
classical picture consists of a pair of classical orbits that
guide the time evolution of the density matrix and that at
appropriate times switch potential surfaces. The principal ap
plication made here is the description of nonlinear optical
responses in terms of classical orbits for general systems
, No. 23, 15 June 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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However, there are formal similarities between the proble
presented here and the curve-crossing mechanism of inela
scattering first addressed by Landau–Zenner during the e
1930’s.26 They were concerned with the semiclassical es
mate for the inelastic curve crossing in scattering proces
The Landau–Zenner formula can be connected to our lin
response function. Therefore it is possible to develop ways
improve on the Landau–Zenner expression by using hig
order nonlinear response functions.16

Because our approach is carried out directly in the tim
domain, the semiclassical mechanism for switching betwe
electronic states is well defined. The time-domain formalis
and the perturbation expansion allows a simple yet rigoro
description of the surface crossing mechanism. Moreov
the generation of a single semiclassical propagator for
chain of Van Vleck operators provides a powerful tool fo
evaluating the complex time evolution operators of the ge
erating functions. The use of semiclassical tools in the the
of nonlinear optical response appears to be very power
Thanks to the classical orbits it is possible to visualize a
understand in its full four-dimensional phase space the
namics of the density matrix and the effect of the field inte
actions on the motions of the molecular system.

The formalism presented does not contemplate dissi
tion. A future expansion of the current work would be
include some of the recent advances in the microscopic
scription of dissipation into our semiclassical dynamics. T
incorporation of dissipation in the nonlinear response is i
portant for the interpretation of condensed phase spectra.
harmonic systems, exactly solvable models for the time e
lution of an electronic coherence with dissipation based
the spin Boson Hamiltonian have been used.18,27–29It is pos-
sible to derive reduced equations of motion such as the n
linear Fokker–Planck equation for anharmonic system
Grossmann30 had recently implemented the ‘‘cellular dynam
ics’’ method for a nonlinear molecular system coupled to
harmonic bath. The dissipation mechanism follows t
Caldeira–Legget27 formalism and applies for single potentia
surface. Application of the semiclassical formalism presen

FIG. 16. Type B recurrence.
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here to the dissipative case seems promising.
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APPENDIX A: STABILITY ANALYSIS

Few notions from classical Hamiltonian mechanics are
crucial to understand semiclassics. We start with Hamilton’s
equations of motion associated with the HamiltonianH1:

Ṗ52
]H1

]R
,

~A1!

Ṙ5
]H1

]P
.

A set of initial conditions,P(0),R(0), specifies a unique
classical trajectory via the time derivatives@Eq. ~A1!#, if a
solution of the differential equations for that particular initial
value exists. The behavior of the solution with respect to
small variations of the initial conditions defines the stability
of the classical orbit. Linearization of Hamilton’s equations
about the known solution determines themonodromyor sta-
bility matrix:

S dP~ t !

dR~ t !
D 5M S dP~0!

dR~0!
D . ~A2!

The time derivatives for the elements of matrixMi j are
obtained from Eqs.~A1! as

Ṁ5S ~]2H1 /]P
2! ~]2H1 /]P]R!

~]2H1 /]P]R! ~]2H1 /]R
2!

DM . ~A3!

Figure 17~a! shows a classical orbit and illustrates the
meaning of the variablesdR,dP. Obviously the stability

FIG. 17. Initial and final variations along~a! single orbit, and~b! multiply
connected classical orbit for the semiclassical Liouville propagator.
2, No. 23, 15 June 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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9343M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization
equations@Eqs. ~A3!# must be integrated numerically to-
gether with the equations of motion@Eq. ~A1!#.

The stability matrixM is very useful because it contains
all the information required to calculate the semiclassic
propagation. For example, the usual Van Vleck propaga
^R(0)uR(t)& goes asymptotically as the square of the class
cal probabilty to go fromR(0) toR(t) times a phase. Since
the initial position is specified and only the initial momentum
is unknown then this probability can be determined as t
ratio dP(0)/dR(t) keepingdR(0) constant. In other words,
^R(0)uR(t)&;uM21u21/2.

Now let us imagine a classical path that follows a se
quencial set of propagations@Fig. 17~b!#: the orbit starts at
R(0),P(0) and evolves under HamiltonianH1 for time t1 ,
then it continues under a different Hamiltonian,H2 , for time
t2 , etc., up to thenth step whenR(tn21),P(tn21) is finally
mapped ontoR(tn),P(tn) by the equations of motion of
Hn . This unusual classical path is the one required for th
calculation of the elements of matrix^R(0)uUl

i uR(tn)&, Eqs.
~19!. This quantity also goes asymptotically as the squa
root of a classical propability, the probability of ending up
somewhere aroundR(tn) when the classical orbit started
aroundR(0). Since the initial position is well specified we
can calculate the probability as the ratiodP(0)/dR(t). Now
this ratio needs to be calculated differently than before b
cause the time evolution from initial to final position ha
followed several different sets of equations of motion.

Let us define the stability matricesM ( i ) associated with
each of the classical segments of the full path connecti
R(0) andR(tn). Then

S dP~ t i !

dR~ t i !
D 5M ~ i !S dP~ t i21!

dR~ t i21!
D . ~A4!

Each of the matricesM ( i ) is calculated by solving the
equations of motion of the stability matrix under Hamil
tonianHi .

The relationship between variations of the initial cond
tions R(0),P(0) and the final pointR(tn),P(tn) along the
classical path of interest can be easily expressed in terms
the stability matrix for the whole sequential processM, eas-
ily shown to be

M5M ~n!
•M ~n21!

•••M ~1!. ~A5!

Finally the matrix element of̂ Rtn
uÛl

i uR0& goes as
;uM21u21/2 when \→0. The same applies for the right-
hand side operatoruÛr

i &.
Whether we consider the Van Vleck or the sequenti

propagator there is always the possibility of having sever
classical paths connecting initial and final conditions. In th
case, the total amplitude will be a sum over the classic
probabilities of each event.

In this Appendix we have focused on the classical pro
ability part of the transition moment and not on its phase. A
\→0 on top of theuM21u21/2 factor there is a phase given
by the classical action accumulated along the orbit. This w
discussed in Sec. VI.
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APPENDIX B: COEFFICIENTS FOR THE TWO-PATH
SEMICLASSICAL EXPANSION OF THE
THIRD-ORDER RESPONSE

The coefficients used in Eq.~34! are defined as follows:

g5~2\M21
l a2 iM22

l !~2\M21
r a1 iM22

r !

24\2M21
r
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l g2, ~B1!
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celona, 1983!, p. 374.

27A. O. Caldeira and A. J. Leggett, Physica A121, 587 ~1983!.
28H. Grabert, P. Schramm, and G. L. Ingold, Phys. Rep.168, 115 ~1988!.
29M. Sparpaglione and S. Mukamel, J. Chem. Phys.88, 3263~1988!; Y. Hu
and S. Mukamel,ibid. 91, 6973~1989!.

30F. Grossmann, J. Chem. Phys.~to be published!.
2, No. 23, 15 June 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html


