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The calculation of linear and nonlinear optical response as well as nonadiabatic curve crossing
processes depends on the time evolution of the electronic coher@fiedmgonal elements of the
density matrix. Unlike their diagonal counterparts, the off-diagonal elements do not have an
obvious classical limit. A semiclassical approximation for the nonlinear optical response function,
which reveals the classical orbit structure underlying the electronic coherences between Born—
Oppenheimer surfaces, is developed. The resulting numerical propagation, which applies to
arbitrary anharmonic potentials, is based on integrating the time-dependentifigeroequation

using the semiclassical time evolution operator, Van Vleck propagator. Using the present formalism
it is possible to describe semiclassically multiphoton processes involving several
Born—Oppenheimer surfaces. €995 American Institute of Physics.

I. INTRODUCTION duces even extremely complicated quantum interferéhtle.
The nonlinear response functions, which are necessary
Nonlinear optical spectroscopy is a rapidly developingfor describing the nonlinear signal, are most conveniently
field that has allowed the study of properties of molecularcalculated by propagating the density matrix in Liouville
systems in ways that are not possible using lineaspace'® The density matrix has several advantages over the
techniques: Using carefully timed and tuned sequences ofwave function formalism: It is fully time ordered and is,
ultrashort laser pulses, one can study the evolution of a sysherefore, closely related to experiment. It further allows one
tem in microscopic molecular time scales. Photon echo angb more naturally treat mixed states at finite temperatures,
hole burning techniques allow the study of molecular inter-and to eliminate unnecessary bath degrees of freedom.
actions with their environment in the liquid or solid state, by  In this paper we combine the nonlinear response func-
completely eliminating inhomogeneous broaderfifg. tion formalism based on the evolution of the density matrix
When interactions of a chromophore with the environ-with semiclassical techniques and develop a new method for
ment are taken into account, the numerical calculation of thealculating the nonlinear polarization. Our method is capable
time evolution becomes a very hard problem. It cannot bef describing asymptotically the electronic coherences that
easily computed quantum mechanically, although there hagre greatly important in many spectroscopies, and allows the
recently been some interesting progress in that dire€tibn. classical interpretation of the dynamics of molecular systems
the nuclear degrees of freedom of the chromophore are apmder nonlinear potentials.
proximated as harmonic oscillators there are numerous meth- At the center of any semiclassical theory in the time
ods to calculate its time evolution, the nonlinear polariza-domain is the Van Vleck propagattr®® this is the asymp-
tions and optical susceptibilites. We can basicallytotic limit of the quantum propagator in coordinate represen-
distinguish two methodologies that attempt to address motation (time Green functiop (x|exd —iHt/A4]jx’) as #—0.
lecular systems with arbitrary potentials; first are the methThe Van Vleck propagator gives the probability amplitude to
ods based on the classical simulation of the nonlineago from positionx’ to x in time t. Asymptotically this tran-
respons€,and second those based on the approximate evalition matrix element can be written as the square root of the
ation of Feynman path integrdisThe former methods, use- classical probability for this event, times a phase given by
ful in the limit of strong dissipation and low resolution spec- the classical action accumulated along the orbit. Although
tra, have the strength of handling efficiently large number ofthis has been known for a long time, its practical implemen-
degrees of freedom and realistic interaction potentials. Theation has been very limited until recently. The numerical
methods based on Feynman path integrals are more rigoroe$fort involved in finding all classical orbits subject to two
and can handle high resolution and less damped dynamiagilue boundary conditions was the main obstacle. In order to
but have some strong limitations related to numerical conavoid this difficulty one can represent the Van Vieck formula
vergence of oscillatory integrals and intensive computer reusing the initial value representatiolfs.
quirements. Semiclassical techniques for the treatment of Finally we note that the present formalism can be ap-
molecular systems offer a middle ground between purelylied directly to curve crossing and nonadiabatic transitions.
classical molecular dynamics and “exact” Feynman paths. This problem is formally identical to the nonlinear response
They use classical orbits as a reference zero order path amdnction where the nonadiabatic coupling plays the role of
supplement it with the appropriate quantum phase that reprahe electric field. The nonadiabatisecond-ordérrate con-
stant is related to the linear response and the fourth-order
dCurrent address: Institute for Fundamental Chemistry, 34-4 TakanocorreCtion is related to the third-order reSpOi%bs'
Nishihiraki-cho, Sakyo-ku, Kyoto 606, Japan. In Sec. Il we introduce the nonlinar optical responses
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9328 M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization

using the density matrix formalism. The formal semiclassical We thus obtain

limit is presented in Sec. Il and a numerical implementation

based on a two-trajectory approximation is developed in Se@'?(t)=p?(—x), (7a)
IV. The theory is used for the calculation of the third order

response in Sec. V, and applied to a two-electronic state sys- Wt —1)

tem in Sec. VI. Finally in Sec. VII, we sketch the most gen- f dry p (1 OE(T) +hee. (7b)
eral multitrajectory implementation of the semiclassical re-
sponse function. i

2 rt T
P(Z)(t):(g) [* dn[ " om0 BB
Il. LIOUVILLE SPACE PATHWAYS FOR THE DENSITY

v ([ an e
Consider an ensemble of chromophores at equilibrium.
Before the interaction with the fiel&(t), the state of the X p? (71,720 E(11)E(7), (70

system is given by the thermal density matpf)(— ).
The time evolution of the chromophore interacting with the
field is given by the Liouville—Von Neuman equation

i\3t 3 L)
t)= 7 f, d7'3j7 dT2J7 dry

p(t)=—+TH p], & X (71,72, 73 D Er)E(7)E(7y) +hic.

3t t 7
- f dT3f def d’Tl

X3 (11,72, 73 ) E(11)E(12)E(5) +hec.  (7d)

whereH is the sum of the Hamiltonian of the isolated mo-
lecular systenH, and the dipole field—molecule interaction
— nE(1):

H=Ho—uE(1). 2

We assume that the interaction is weak enough for a
perturbation expansion of the density matrix on the field to
be valid, p=p@+p®+p@+ . . . 1 The equations for
the successive terms are then given by

The symbol h.c. stands for the Hermitian conjugate of
he previous expression. In Eq§) we have introduced the
Liouville space generating functions for the density matrix of
the nth order,p(™ , which are defined as follows

_ i (7, :t)=e Hoh 5 (7.)p(O(—oo)eHotl 8
p(O)(t):_%[Ho,p(O)]ZO, (3a) ( 1 ) M( 1)P ( ) | ( a)
i i P (11,1 ) =€ Mo 4 (1)) fu(7y) pO(— o)€M/,
P (0= 7 [Ho,p ™1+ 7 [HED),p" V], (30) (80)
2 Y — a—iHotlA ~ i
Solving the system of coupled equations, E&$allows P (1,5t =e ”40”’1#(71)9(0)(—"O)M(Tz)e'HO”hé8 )
c

the determination of the polarization of the chromophore
P(t). Direct substitution of the density matrix expansion

; At ; _(3(7' 75,73 t) =€ Mot L () () u(71)
then leads to the expansion of the polarization induced in the 1:72:73; MAT3) U T2) AT
chromophore: X p(0)(—o0)giHot/h, (8d)

P(t)=PO(t)+PD(t)+ P2 (t)+- - 4)
with
P™(t) =Tl '™ (1)].

The polarization density of a uniform distribution of We have made use of the Heisenberg representation of the
chromophores is simply obtained by multiplying tR€” by  transition dipole momenf(t):
N/V, the molar density of chromophores.

The first term in the expansidig. (3a)] gives the time n(t)=¢
evolution of the initial density matrix subjected to the unper-
turbed Hamiltonian. Since the initial density matrix repre- ~ Notice that the second integrals in E¢#c) and(7d) are
sents the equilibrium state of the systepf?) is time inde-  NOt time ordered. It is preferable to work with time-ordered
pendent. The succesive terrfigq. (3b)] can be solved by expressions that can be easily interpreted in terms of se-
iteration using the propagator for the unperturbed systenfluences of light pulses. We then recast Etg.and (7d) as

then
2
f|L_> ft d’Tn e*iHo(thn)/h (2) ( ) J deJ dTl 2 Qj(Terz;t)+h.C.
Cw i

PP (11,75, 7 ) =€ Mo 5 (1) p(O(— o) fi (1)

©) X fu(7,)e " Hot/h, (8¢

Hot/h o, @=iHot/h 9)

pM(t)=

X[ E(7p),p" P (7y) ] Mol =l (6) XE(71)E(72), (103

Downloaded-07-Mar-2001-to~128.151.176.18%: Fa&MstAiYSon Vel 02-Ne B3 Migh £ 998e-http://ojps.aip.orgljcpoljcpepyrts. html



M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization 9329

Two kinds of quantum interference show up in the non-
linear optical response function. The first is due to the bra
) and ket dynamics itself, several quantum paths contribute to
T their dynamics and the phase interference between the paths

create typical quantum effects. Second, because the total re-
) ...... T j ...... sponse functions consists of the sum of several bra—ket
propagations, or Feynman diagrams, an additional interfer-
ence pattern is created. Each of the Feynman diagrams, or
ways in which light pulses interact with the system at a cer-
tain order, have a completely different dynamical time evo-
lution. In the language used in previous paragraphs, several
of the generating functions contribute to the same dipole
expectation value. For example, the two generating func-
tions, p{® and p%?) make the second-order terpi? and
(/ e consequentlyP®. Their Feynman diagrams allow one to

@) o
P, (T, 70 P pr0

visualize the two ways in which two laser pulses interact via

1= the density matrix. In the case p§? both pulses act on the

Aﬁ ket side while in thg{? one pulse interacts on the ket and at
® o " o a different time a second pulse acts on the bra side of the
Pt Prastsnn Pnnn P65 density matrix. The sum of both generating functions pro-

vides the second kind of interference.
FIG. 1. Double-sided Feynman diagram for the two generating functions A fully quantum calculation Of, the generating functions
contributing to the density matrix terp® and p®. Top: Second-order ~€quires a simultaneous propagation of the bra and the ket. In
terms,Bottom: Third order terms. general, it is not easy to calculate the generating functions
exactly for realistic systems. However, sometimes the cou-
pling of the chromophore with an external bath makes the
3 system evolve in time classically. Semiclassical approaches
@ e i t 73 72 for the calculation of these quantities can then be both nu-
p(t)= % fﬁwdﬁﬁwdﬁ fﬁwdTl merically and physically very useful. Semiclassical equations
of motion for these generating functions were developed in
Ref. 15. The equations were derived by assuming that the
Liouville generating function has a Gaussian form in phase
space at all times. The equations describe the evolution in
terms of a single reference trajectory which represents both
XE(7)E(72)E(73). (10D the bra and the ket. The actual density matrix depends on the
t evolution in the vicinity of that trajectory. This information is

Now the time variables,7,,753 are ordered, i.e., tha , i
m<7,<75. The time-ordered form is obtained naturally carried out by the second moments of the wave packet in

when the Liouville equation for the density matrix is solved. Phase space. The generating functions may be obtained by

The operator); and R; contain the complete information running a set of classical trajectories launched in the region
j j

necessary for the calculation of the nonlinear response funé:—Overed by the initial density matriX. The path followed by
t

tions. These operators are defined in terms of the generatiﬁge, classical orbits are determined not only by the Hamil-
nian of the systentd,, but by the particular combination

functions introduced previously as o= o ) i )
of propagators implicit in the different generating functions

4
X Z ARJ'(Tl,Tz,Tg;t)_h.C.
ji=1

Qur,ma5t)=—pP (11, 7231), (118  in Egs.(8). A basic limitation of this procedure is the need to

- o 2) _ construct an effective reference Hamiltonian which should
Qa(71,7251) =p3 (71, 7231), (11b reproduce both the bra and the ket evolution. This can be
ﬁl(Tl,Tz,7'3§t):5(13)(7'2,73,7'1;t)7 (123 only (_10ne ngoro_usly for harmonic systems. The re_sultmg
A equations of motion are exact, e.g., for a two electronic level
Ro( 71,72, 73;0)=p (71,73, 72;1), (12b  system with harmonic potentials that differ in their equilib-
- —a) rium position and frequency. For harmonic models it is also
Ra(71,72,73;) = p17 (71,72, 7351), (129 possible to include dissipation by coupling to a harmonic
- bath® For anharmonic systems there is no general way to
Ry(71,72,73:0)=pS) (71,72, 73:0). (120 y g Y

construct this reference Hamiltonian and the procedure is,

Each of these terms constitutes a pathway for the propaherefore, limited to short times and small anharmonicities.
gation of the density matrix in Liouville spaéeand can be In this paper we develop a new semiclassical Green function
represented by a double-sided Feynman diag(gmg. 1). propagation scheme that overcomes the limitations of the
The generating functions contain all the dynamical informa+eference Hamiltonian approach and allows the asymptotic
tion of the system, but a given spectroscopic measurememiropagation of bra and ket in general anharmonic potentials.
selects only part of that information. The relevant classical orbits come in pairs, one for
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9330 M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization

TABLE |. Left and right operators for the third-order generating function Xt .
Ei(3)’ i=1,2. S:f ,':Z(Xt' ,Xt/)dt’. (15)
X
Zg=eto . i i The sum runs over all possible classical orbits satisfyin
D/ =g Mot 72/t [y g~ Ho(ra rallh [y g Ha(ra~ m)lh [y g iHors / . P / OILS S g
2= giHoms 1 [y iMoo )l [ giH ot 72/t the given boundary conditions ,x’ at the specific time.
7/t = e Holt=r9)lti [y o= 1Ho7s I When there is only one orbit in the sum then the semiclassi-

cal transition probability is identical to the classical, as is the
case for the harmonic oscillator. However, in general, there
will be more than one orbit in the sum, and in that case the

the time evolution of the ket and one for the bra. By retainingProbability amplitude will not be simply the sum of classical
the bra and ket time evolutions separately we obtain an imProbability amplitudes but, due to the phases, there will be

proved approximation that better mimics the original quan-an interference. Finally the factqr in the exponent is an
tum problem. integer known as the Morse indérot to be confused with

the dipole moment operatof). It was introduced by
Gutzwiller to extend the validity of Van Vleck’s original for-
11l. SEMICLASSICAL LIMIT OF THE LIOQUVILLE SPACE mula beyond caustics. The Morse index is normally calcu-
GENERATING FUNCTIONS lated by counting the number of timds; /dp’ goes through
zero along the orbit. Using the stability analysis summarized
All the fundamental spectroscopic observables can by Appendix A, this is also equivalent to detecting the num-
derived from p(”, and consequently from the operators per of times the stability matrix elemeM,; changes sign
Qj's Ry’s. Four-wave mixing spectroscopic meassurementgjong the orbit. The zero's counting procedure is applicable
directly probe the nonlinear respons@gs while the func-  when (¢?H/ap?)>0, which is generally the case. For other
tions Q;’s are related to three-wave spectroscopies. kinds of Hamiltonians a different procedure is followed for
In general it is not easy to calculate the generating funccalculating the Morse indeX. The semiclassical formula
tions exactly for realistic systems. However sometimes th¢eq. (14)] has been used to calculate the linear response of a

coupling of the chromophore with an external bath makes thenyltidimensional nonlinear system subject to an electromag-
system evolve in time more classically. Semiclassical apnetic field?°

proaches for the calculation of these quantities can then be  Generally the Hamiltoniaki, will be the sum over sev-

both numerically and physically very useful. eral Born—Oppenheimer surfaces corresponding to adiabatic
The passage to the asymptotic limit-0 is carried out  electronic statege;):

by writing Eqs(8) in the coordinate representation

Zre: Ho:z leHi(eil. (16)

I = [ e axx

X (X[ |p' O (—o0) [x; W(X{ | 7] %) - 13 Similarly the dipole moment operator is a sum over the
Both operators to the left and right of the initipf®)  dipole couplings between the different electronic stéfiersa
X(—0) are the time evolution operator for the initial density Molecule with no permament dipgle
matrix that yields theth generating function tath order at

time t. The formulas .for the left and right operators of the a=, e uij (e (17)
third-order term are given in Table I. Left and right operators i+
obviously depend om, the perturbation order, but we have
omitted this index from Eq(13) for the sake of simplicity. Using the above expressions for the Hamiltonian, the

The basic building block for semiclassics in the time dipole moment and the semiclassical Green function we de-
domain is the Van Vleck propagafdf*® rive formulas for the left—right propagator® | and 72 | as
lim (x,|exd —iHt/A]|x") the product of several Van Vleck propagators integrated over
o ! the intermediate nuclear coordinates:

o dp’[Y2 i i 2= | d d —iH; 7y 1%
~(2mih) 1/22 ——| expg - S(X X )— = ul|. (14 <X| 4 I|X|> X1yeeey Xk<X||e 1 |X1>
dx, h 2
Equation (14) is the asymptotic limit of the time- X(X1|Mi1,i2|X2>---<Xk—1|Mik,l,ik|Xk>

dependent Green function. From the correspondence prin-
ciple we know that the modulus square of this element is the
classical probability of going fronx’ to x; as#—0. The

><<Xk|e*iHik‘rk/fi|Xll>7 (183)

classical probability is given bydp’/dx,| (see Appendix A (x! v ir|xr>:f A, .o dXi(X | €M1/ x)
The phase factd®(x,,x’) is the classical action accumulated
along the classical orbit launched xt and arriving atx; . XX i i Xo) e Xk i %)
. DR . ) . . igiglR27 s ARk—1l Hip ;i 18K
This action is easily calculated by integrating the Lagrangian _
of the system along the classical orbit: X{x e MimkM|x). (18b)
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M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization 9331

The dipole operator couplings transform the generating  Our next concern would be how to evaluate this expres-
functions into a sequential chain of propagators on differension in practice. The simplest possible approach is explained
electronic surfaceg ,i,,.... in Sec. IV. It is based on the Gaussian wave packet

In the Condon approximation, which will be used in this method**?and consists of expanding the classical dynamics
article, the transition dipole moment is assumed to slowlyabout a pair of classical orbits. We will then apply this
vary with respect to the nuclear degrees of freedom. Then themethod to a two level chromophore in Sec. VI.
<Xk_1|/’.\Li’j|Xk> elements are constant functions with respect
to the nuclear degrees of freedom. In this approximation we
will set all the 4 ;= 1. Integration of Eqs(18) over the |,/ qe\yic| ASSICAL EXPANSION OF THE
m_termedlate positions gives essentially the propability aMGENERATING EUNCTION
plitude to go fromx, to x; when propagating for;, on an
electronic stater, on another electronic state, etc. In the  Given the semiclassical expressions for the left and right
non-Condon approximation the explicit coordinate depenpropagator$Eqgs.(19)] it would seem that the only step nec-
dence of the transition dipole moments can still be taken int@ssary for the determination of the generating functions is the
account by linearly expanding the dipole function about theintegration of Eq.(13). For four-wave mixing experiments
classical orbit running between initial and final positions. we need to evaluate the third-order generating functions

The integration of Eqs(18) are still very difficult be-  p(® i=1,22 then
cause it involves the determination kfclassical orbits for —3)
every x| ,x; pair and for every set of times. Moreover mo- (xilpi™Ixr)
mentum is not necessarily preserved when passing from the 1
pathx| —x to xc—xy_1; all the orbits are disjointed in prin- ~ 5 f dx dx{ (x{|p @ (—o0)|x! )| Ay 75| 12
ciple (Fig. 2). However, in the asymptotit— 0 limit we can ™
calculate the integralfEqgs. (189 and (18b)] by stationary i i i
phase. Doing so we obtain Xexp{% Si(x,%)— 7 S Xi)— 7(AM+A5) ,

112 (20)

whereAu=u— u, andA d=6,— 9, .

The integration is carried out over all possible initial
’ (199 position pairsx| ,x; . We have made use of the total stability
matrix along the left and right propagationsg;' and. 7', as
defined in Appendix A. The action functions have a compli-
cated dependence on initial and final positions mainly due to
the root search problem mentioned earlier; for every set of
initial—final conditions the appropriate initial momenta must
be determined in order to obtain the actions and phase shifts.
In general the calculation of this integral seems numerically
very challenging. Nevertheless, several approximations can
where the actionsS,(x,,x;) and S(x;,x/) are calculated be shown to give extraordinarily good results thanks to the
along the stationary paths going classically frgfnto x, on  localization of the initial state. The functioqx,|p®
the left and fromx; to x, on the right operators. Both sta- X(—c)|x/) in the integrand is often nonzero only in a lim-
tionary paths are sequences of classical orbits subject to thied region of configuration space. This reduces the amount
condition of momentum and position conservation whenof computational effort. Moreover, if the initial state is local-
switching between electronic states. This condition is a direcized in a relatively small region, one can expand the classical
consequence of the last stationary phase approximatiomctions and dynamics about the center of the distribution. Let
Then the left stationary path, for example, will starkat go  us assume that the initial density matrix is Gaussian:
forward 7, in time, switch potential surface staying on the
same spot in phase space, and continues-foretc. ... until (x[|p O (=) |x!)= 2(a—v)
completing the sequence of evolution operators;’dh The ' ™
indicesu, and w, are the sums of th_e right—left Morse indi- X exyf — a(X,’)z— a(x,’)2+2yx,’x,’].
ces along the classical segments in the stationary (szth
Fig. 1). There are also additional phase shiftss, that arise (21
from the stationary phase approximation and are a result of o axample, for a harmonic oscillation at equilibrium
constructing the fuII. semlcl'assmal propggator from sever.a{he parametera and y are given by
shorter ones. We will deal in more detail with the determi-

7S

YA i\ —1/2
7% ~(2mTih
a1 ) =i 2,

i L dm
Xex % S|(X| X )_ ?(IU/I+ 5|)

1/2

IS,

X IX;

(X7 {|xy=~(—2mih) 12

. (19b

i Rk
xexp{— 7 S X))+ 5 (et 6r)

nation of thes index later. By convention the paths for the Mw

left and right operators run forward in time. Looking backto ¢~ 27 CotBh®), (229
the expression for the generating functions, ELp), it is

straightforward to write down its semiclassical limit by sub- _ mw (22b
stituting the left—right propagators by Eq49). YT 2% sinh(Bhiw)’
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P an analytical dependence on the initial and final coordinates:
rbitrary Pa | | . oy v //élll v
AR e SIX X)) =S+ Py (X — X)) + s (X — X)) ?
........ 2./

My

1 _
+— 0 N2 _ _ ,
2./%21()(' ) '//ZZJ_(XI X|)X| ’ (256)

Stationary Path

/ ..... -_/\ ’ . _ _ L//Z;_l _
X S (X er)%Sr_Fpr(Xr_Xr)_*'2'///);1(Xr_xr)
' .////rzz 1 —
X X, Xy o e Xpo Xpq X n2_ . '
1 X2 2 Xn.t + 2 X;) '//Zrzl(xr X)X, - (25b)

FIG. 2. Phase space diagram of two kinds of paths contributing to the left or The above expansions rer on the localization of the ini-
right propagators: An arbitrary quantum path for the [efght) propagator tial state. Inserting them into Eq20) and performing the

betweenx’,x (dash ling, and the stationary “point(solid line) which is . . . h .
simply a classically connected orbit joinning,x. integrations, the generating function transforms into a Gauss-
ian quadrature

—0

h _
xlgPx) ~ | o2y D

1/2
erar T MR

wheregB=1/kT. If the initial density matrix is not Gaussian,
either because the electronic surface is not harmonic or the X exf kot 3B-A”1-B], (26)
initial ensemble is not in equilibrium, one can always de-

(0) ; : . where
composep'™’(—») as a sum over Gaussians localized in

configuration space. i _ i _
The basic approximation for the two-orbit semiclassical B=( - W'_(X'_X')’ W(Xr_xr))u (27)
expansion is to assume that the dynamics of the bra and the T2 et
ket can be approximated as a moving Gaussian along the i/,
classical orbit launched at the center of the initial density a— =1 -y
matrix. The center position of the(®(—x) is x/=0, A 2h My 28)
x; =0 and the average momenpg=0, p; =0. From this Mo |
single point two classical orbitx(,x,) depart and follow the Y a+t 2h. /5,

dynamics specified by the left and right time evolutions.

Logically any other classical orbit whose initial conditions i - — i i _ i,//g'll
were taken in the nearby region of phase space would lead to=7 (S—S)+ 7 Pi(}=X)) = 2 P (X =X) + I
a different classical path. Nevertheless for a short time it is el

valid to represent every orbit departing from arbitrary initial — AN _
positionsx| ,x;, and momenta, ,p, and reaching, ,x, by X (X =X)*— m(xr—xr)

expanding around the two orbits that initiate their dynamics
at the center of the initial density matrigee Fig. 3 Upon
linearization of the equations of motion along the guiding
orbits we write

i 7T
_?(M|+5|_,U~r_5r)- (29

Upon reduction of Eq(20) to Gaussian quadrature we
_ have not only expanded the actions quadraticaly about the
P~ P+ P+ X (233 two guiding trajectories but also assumed that the prefactor
to the exponent is constant over the entire domain. This is
_ A o certainly a good approximation for a narrow Gaussian. The
X=X+ 1Py + 730K (23D exponential function in Eq20) varies rapidly relative to the
prefactor which represents the classical probability. This
probability is also calculated along the two guiding orbits:

~0.+. 00+ X ’ g i i ili
PPt 2000+ 0Ks (243 7" and.Z' in the previous equations are the total stability
matrices along the guiding orbits for the right and left propa-
X~ X, . P+ ApX, (24 ~ 9ation, respectively.

Equation(26) is simple to interpret and to implement.
All the information required to determine the generating

The expansion coefficients are the elements of the totdlunction is contained in the classical dynamics of two orbits
stability matrices 7' and. 7", as defined in Appendix A.  launched at the center of the initial density matrix. The gen-

The classical actions in E§20) can also be expanded erating function gives the time evolution of this initial den-
about the two orbits, or guiding trajectories, thus providingsity matrix under the left—right propagators. The pair of clas-
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sical orbits serve as a guiding phase space path for the,(t,,t t)=—Tr apP (t—t,—ty,t—ty;1)], (32b
dynamics of the density matrix; one orbit represents the

evolving bra and the other represents the ket. As a cons 2 .

quencegof the quadratic expangions of the classical dynamiSQZ( 2, ) =T P (- o=ty - t30)], (829
and actions, the generating function is a Gaussian function at

all times centered &t ,x, . This is precisely the limitation of Ra(ta,t2,t1)

this two-orbit implementation: The current expansions are

exact for harmonic potentials but only apply in general an- =T pt (t—ta—ty,t—tg,t—ta—t,—ts;t)], (320
harmonic systems for relatively short times. Later we will

analyze this method and its limitations with an example; weR,(t5,t,,t;)

will also describe a generalization of the semiclassical propa-

gation that is not restricted to short times. :Tr[ﬁﬂ3)(t—t3—t2—tl,t—t3,t—t3—t2;t)] (328

V. THE THIRD-ORDER RESPONSE FUNCTION Ra(ts,tz,t1)

So far we have introduced the semiclassical limit of the —_ _ . —3, ]
perturbative terms in the expansion of the density matrix for =Tapr (-t -ty =t U=t (320
a system interacting with an external electromagnetic field.
The generating functions previously calculated are an interRa(ts.t2,t1)
mediate step for the determination of a physical observable.
The trace of the dipole moment operator over the evolving  =Tr ups (t—tz3—t,—ty,t—t3—t,,t—t3;t)]. (329
density matrix yields the polarization of the chromophore
under the influence of the electric field. Now let us introduce  The time variables chosen for the response functions are
the response functior8®), s, s3):2 the time intervals between interactiopsather than the ac-

(0) (Y — T4 2 (0 _ tual interaction times. As we see in E¢32) the functionsJ,

PRO=Tup(—=)], (309 Q;, andR; are obtained through the tracing of the transition
dipole moment and the generating functions. The total third-
order response is the sum of four traces, each of them is
associated to a particular pathway in Liouville space symbol-
ized by the double-sided Feynman diagram, Fig. 1. The
semiclassical approximation to the tra¢és)s.(32)] can be
obtained by substituting the generating functions by the

PO (t)= J0+wdt1 SY(t)E(t—ty), (30b)

+ oo + oo
P@)(t)= J dt, J dty SP(ty,t)E(t—to—ty)
0 0

XE(t—tp), (300 semiclassical expression derived in the previous section, Eq.
o o o (26). Although in Sec. IV we derived the two-orbit semiclas-
3)(t)—f dtgf dtzf dt; S®(t3,15,1;) sical expansion of the third-order generating functions,

pt® in fact that formula equally applies to the second and
XE(t—tg—ty—t;)E(t—to,—t;)E(t—t,). linear order generating functions; the only change between
the three cases is the number and sequence of quantum
(300 propagators in/ 1 N | Consequently the recipe for de-
s(t,) is the linear response of the system which con-scribing the evolution of the classical orbits changes among
trols the linear optical measurement&®)(t;,t,) and the different generating functions due to the modification of
S®)(ty,t,,t5) are the second and third order nonlinear re-the time evolution operators for the density matrix.
sponse functions, respectively, which describe nonlinear op- The interpretation of the nonlinear response provides a
tical measurements. Comparison of equations E2.with  new physical insight into the dynamics. EadhR;, and
Egs.(7) and Egs.(10) determines the response functions in Q; depend on the time evolution of the density matrlx and in

terms of the generating functlorﬂ“) particular they look for the “survival probability”, , the
i probability of finding the system in the same region of con-
sty = (%> [J(ty) —c.c], (313 figuration space after the left—right propagation. For this rea-
son the semiclassical limit allows us to look at the guiding

orbits that carry the flux of quantum probability amplitude
z Qi(taty)+c.c., (31b) through phase space back tq the initial domaln z_;lnd unde_r-

stand the dynamical mechanism for correlations in compli-

cated nonlinear systems. Since the transition dipole moment

i) |3
( i is set to unity the traces Eq&2) are simply the traces of the

SP(ty,ty) =

3(ts,ty,t)= Z Ri(ts,t2,t1)—c.c.|, (310 generating functions; in the case of the third-order terms

where Rj(tl,tz,t3)=Jdx<x|5i(3>|x>, ji=1,...4, i=1.2.
J(t) =T ap P (t—ty;0)], (329 (33
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Using Eq.(26) then p
2(a— (Mo 1) | 12 -

#—0 9 r
x T 1/2 ’ k% . X'

All the quantities appearing in Eq34) are defined in
Appendix B. The “sign” function refers to the sign of the
dependent variablér; ends up depending only on the infor-
mation of the two guiding classical orbits.

It is possible to express the second- and third-ordeFIG. 3. Notation used in the two-orbit semiclassical expansion of the gen-
termsQJ- and Ri as muItipIe time correlation functions of the erating func'tions. So!id I.ines are Fhe central guiding orbits and the dash lines
transition dipole. By explicity Writing the generating func- are two arbitrary orbits in the neighborhood of the centep6t.

tions in terms of the quantum propagators, one visualizegally used linearization of the classical dynamics about a
them in terms of averages of physical quantities like the transingle orbit per propagator. Nonlinear effects in the dynamics
sition dipole moment require linearization about more than one offiEig. 4(b).

Qi(ty,t))=—((t—t) a(t) a(t—t,—t1)p¥(—)), (358  vI. APPLICATION TO A TWO ELECTRONIC LEVEL

A ~ SYSTEM
to,t) ={ () a(t—t) w(t—t,—t)p@(—o)), (350
Qultz: ) = (WA~ ) At~ e~ t)p T~ ) (350 After introducing the response function formalism and
Ri(ta,tz,t1) its semiclassical implementation we are ready to apply this

machinery to a test model. Let us consider a two electronic

ittt ) 2t — 1) 2 () 2t —ta—to—t.) 0
(n(t=ta— ) u(t—ta) (O u(t= 31— ty)p level molecular system with one nuclear degree of freedom

X (—)), (350 described by the following Hamiltonian
Ry(t3,t5,t7) Ho=h1(})|1){(1]+hy(x)[2)(2] — i1- E(1)[1)
= (AUt =t—ty—ty) At —tg) A(D) At —ta—t5) p© X(2] = kar E(V]2)(1]. (36
X (—20)) (350) x is the coordinate degree of freedom, e.g., an internuclear
' distance, ands;; the dipole transtion moment coupling the
Rs(t3,t5,t1) Born—Oppenheimer surfacég. In Eqg. (36) h; andh, are
A . A 0) the Hamiltonians for the two electronic surfaces. Although
=(ut=ts= -t u(t—ts— ) u(Hu(t—ts)p the tensor nature of the field—system interaction is clear we
X (—)), (359  Will not address it. For the sake of clarity we assume that the
field is aligned with the dipole moment of the chromophore,
Ra(ts ta,tq) we can then write in scalar notation the interaction as
= (fu(t) fu(t—t) fu(t —tg—tp) it — ty— t,— 1) p(© K ECD).
(MDAt (-t )ttt t)p For the two-level system considered here the lowest non-
X (—)). (35f)  linear term in the polarization is the third-order of(t) is

identically zero. Substitution of Eq.36) in Egs. (8¢) and

Equation (34) is exact for purely harmonic surfaces. ; for the | d i ributi
Since the semiclassical propagators and the stationary phag8ed) gives for the lower order nonlineéar contribution

approximation are exact in this case, this formula also ap-  p{¥(t)=e~M2(t=7)/fg=1h17s/%;5(0)( —o0)
plies for the calculation of the second-order respor@@es
When the potential surfaces are anharmonic, €4)
yields a good estimate of the dynamics up to the time when 5(3)(':):e—ihz(t—Ts)/ﬁe—ihl(fr3—Tz)/ﬁe—ihz(»rz—q—l)/ﬁ
the nonlinear dynamics starts to create multiple simultaneous 2 _ _
classical recurrences in the response functigps The re- X @ 171 /h (0)(— oo gihat/ft, (37b
currences inR; appear because at certain tirnghere are . . . .
. ) o . As explained in a previous section, under the Condon
classical paths that take amplitude from the initial density, o ) -
. . X . approximation the dipole transition moments are constant
matrix back to itself. This must happen simultaneously for

the left and right propagation. In the case of a harmonicWlth respect to nuclear motions and we g&f=1. Conse-

oscillator the dynami_cs is very §imp|e: O_nly one orbit on thetasLE I1. Explicit expressions for the left and right operators appearing in
left and one on the right can bring amplitude simultaneouslythe third-order response.
back to the initial density matrix creating a recurrefisee —
. . 9 — al a

Fig. 4@]. However, for anharmonic systems more than one /fr;e : _ . .

) . . . 7,2 = @ iha(t=13)lhg=ihy(r3= ) lhg=iha(rp= 1)k g=ihy 7y I
pair of orbits can contribute at the same time to create a !
recurrence in the correlation functions. Therefore, by that
time, Eq.(34) would not be valid because we have essen-

x @M1 /higiha(mo— 7))l gihy(t=7p)lh (373

k= ghams Hheiha(ry=mlhgiha(t=mlh
;41: e iha(t=rg)lhg—ihyrg /h
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guently the equations for the generating functipiggs.(37)]
are simply given by products of time evolution operators in

lower and upper electronic states.

7S |V
P B

7S, |1
IX] X4

(9282 |1/2

IX 01|

(S + 52)‘ 2
g ]

(413

In Table Il we have summarized the left and right opera-
tors, 72| and 7/ !, for this system that yield the third-order Sr=5,+5S,, (41b
response function from the time evolution of the initial den-

sity matrix.

= pat pp. (419

The terms that determine the third-order polarization via g (x x/) is the total action accumulated along a classi-

Eg. (30) can be also written as

Rj(tlytZatS):f dXJ dx/ dx; (x| 7i|x)
X (X[ O (=) X x| 7 |

ji=1,..4, i=1.2.

X),

@72{ and ?/: can be thought as the bra and ket time
evolution operators for the third order term. We have alread
pointed out that expressing these operators as a product
Van Vleck propagators, Eq14), unfortunately leads to the
generation of a “cascade” of orbits. In Sec. Ill we also in-

cal path going fronx; to x, preserving position and momen-
tum when passing from the electronic surface 2 tmdtice
that the orbits run foward in time The indexu (a total
Morse index is the sum of conjugate points found along the
two classical orbits in the path; and u,.
As important is the new phase shiftemerging from the
(38)  stationary phase approximation and due to the discontinuity
of the semiclassical propagation. This index arises when im-
posing the connectivity condition in the quantum paths join-
ing X, andx,. & can be calculated by using the stability
atrices of both classical fragmenkd(*) andM(? (see Ap-
pendix A). By definition

troduced the notion of calculating by stationary phase ap- dp; dp,
proximation the classical paths that take the system from dw. | = o dx’ |’ (42
initial to final position through the transtions between elec- 1 '
tronic levels. The final formula foR; [Eq. (34)] has a struc- dp, dp,
ture very similar to the Van Vleck propagator, H@4). ( ) = M<2>( ) : (43
As an example for the calculation of thindex let us dx dx,
calculate the explicit form ofx/| 772|x,). Substitution of the Then
Van Vleck formula gives
6=0 if MY/MY+MPIMEP=0 "
(K1721) = [ deati e )=t 5 x,) o=1 It MBMG+MEIME <0
(393
1 (9281 ‘1/2 5282 ‘1/2
= 2wifJ dxy IX[OX| | IX1 ;|
)
i i
xXexpg — #(Si+S)+ 5 (natp) |- (39b

The actions are calculated along the classical orbits join-
ing (X/,X1) and (q,x,) in times 73, t— 73, respectively.

The two classical orbits are disconnected because they come
from two separate roots to independent boundary conditions.
This poses a problem because the use of the propagator Eq. X
(39b) requires launching two separate manifolds of orbits:

one atx, with arbitrary momentum and another jat also (b)

with all possible values of initial momentum. However, as P
A—0 the main contribution to the integral E(B9b) is a

classically connected orbit, whereby momentum and position

are preserved when switching propagators. We reach this
conclusion by calculating the integral above by stationary

phase:

1/2

Sy

X! | 72| Y~ (—2mih) 12
(X | 751Xy = (—27rih) P,

X

FIG. 4. Phase space diagram showing the initial density matP¥ — =)
, (40 (shaded argaand the classical left and right guiding orbits. In céaeonly
one family of orbits serves as guide for the time evolution. In ¢agéwo

i Lo dm
xXexp = 2 Sr(x . X) + o (u+9)

families of orbits guide the dynamics creating a recurrence in the correlation

where we have made use of the following equalities function.
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Semiclassical -----
03¢ Quantum —
V(x
(%) ~
-
:& 0.1 :
K
£-0.1
02
V()
1 03
0.4 . .
0 2 4 P "
t, (au)
FIG. 7. Third order traceR, as a function oft; for fixed t;=0.59 and
t,=0.61(a.u).
10 - 0 5 10 (a..)

X 2

p
) ) ) ha(x)= 2 +De(1_exq_ae(x_xe)])2+Egeu (45b)
FIG. 5. Model two level system: The ground state is a harmonic potential, m

the excited state is a Morse potential. Both curves are drawn as a function of h —1 0=6.0 for th d h . il
an internuclear distance wherem=1, o= 6.0 for the ground state harmonic oscillator

andD.=50, x,=—1, ¢(=0.3086 for the first excited state
Morse potentialsee Fig. . The electronic energy difference
between the two surfacés,, leads to an overall oscillatory
This new stationary phase approximation is very impor-contribution to the traceR;, j=1,...,4. To better appreciate
tant because it avoids relaunching>amanifold of orbits at  the agreement between semiclassical and quantum results in
X1 to calculate the second semiclassical propagation. We cafe following figures we have made this constant factor zero.

then send a ray of orbits started gt with different initial The system starts at equilibrium in the harmonic state
momentum and let them go through the electronic surfacqith kT=10%4w; k being Boltzman's constant and using
change until they reach their final destinatiorxat atomic unitsz=1. In Figs. 6—9 we have plotted the four

We now present a numerical example of the semiclassitraces that constitute the third-order respo8Se as a func-
cal two-orbit method described and compare the semiclasstion of t;. The other two time variables andt, were fixed
cally calculated third-order nonlinear response with its quanto 0.59 and 0.61 a.u., respectively. The last time intetyal
tum counterpart, calculated using a standard numericalescribes the evolution of an electronic coherence between
algorithm. the ground and excited states and by letting it vary we see
Consider a two electronic level system with a harmonicthe agreement of the semiclassical two-orbit approximation
ground state and a Morse excited state. The Hamiltoniangith the quantum as a function of time. The quantum calcu-

hy,h; in Eqg. (36) are then given by lations were performed using a FFT—Feit—Fleck implemen-
> 4 tation of the Liouville—Von Neuman equatiiThe figures
hy(x)= L += mwx2, (459 Showa reaspnable agreemeR{;, R,, and R, happen to be
2m 2 better described by the two-path expansion tRan In all

cases the simple semiclassical approximation works almost

Semiclassical ----- 3 .
03 Quantum —— i Semiclassical -----
; Quantum —

Ry(&,tt)
R3(t39t2a t 1)

6 8

t, (au) t, 4(a.u.)

FIG. 6. Third order traceR, as a function oft; for fixed t;=0.59 and FIG. 8. Third order traceR; as a function oft; for fixed t;=0.59 and
t,=0.61(a.u). t,=0.61(a.u).
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0.4

Semiclassical -=---
0.3 Quantum ——

Ry(tyt5ty

-0.3 -

t, (au.)

FIG. 9. Third order traceR, as a function oft; for fixed t;=0.59 and
,=0.61(a.u). FIG. 11. Phase space portrait of the classical guiding orbit&for

exactly at short times and it gets worse at longer times. Asiion from the left and right classical orbits. When the density
mentioned before, expanding the dynamics about only twenatrix is represented in the coordinate representation
classical orbits takes the risk of neglecting contributions tq(x, ,x,) it appears as if its time evolution follows a two-
the correlation functions from classical paths that make &imensional space; it would seem ideal to obtain equations
long excursion far from our guiding orbits. Nevertheless thisof motion for the evolution in X ,x,) of the center of the
method remains extremely useful for relatively short timemoving density matrix. However in reality this density ma-
dynamics; the difference in computational effort between therix is evolving in a four-dimensional space that contains the
quantum and the two-path semiclassical calculations is aseft and right momenta as well. This is precisely what is
tonishing. The FFT calculation of tHe,’s took several hours  shown in Figs. 10—13; the left and right guiding orbits ex-
of CPU on a workstation while the semiclassical two-pathplore the classical dynamics of the density matrix in its full
took seconds on the same machine. One of the inconvetimensionality while the projection of the simultaneous left—
niences of the FFT method for this particular problem is theright positions gives the path described by the density matrix
necessity of propagating the density matrix using two potenin the coordinate representation. For the current example,
tial surfaces with very different coordinate intervals. In thethese paths obviously correspond to a regular integrable mo-
present example the harmonic potential is rather narrow ifion. We have used white circles and the labels a, b, ¢ to
coordinates while the Morse potential is extended. show the positions of the classical guiding orbits after the
Using the semiclassical approximation it is also possible, , t,, andt, propagations. Notice that the equations of mo-
to depict in phase space the classical path followed by th@on change abruptly at time andt,, and so does the
density matrix for each of the tern®Ry,...,R4. Each term  structure of the classical guiding orbits. The right guiding
can be described using three pictufese Figs. 10-13To  paths for the response functioRs, R,, R; are made of two
the upper left and lower right is shown the left and rightclassical orbits, the first one running on the excited Morse
guiding orbits, respectively, in phase space, in the lower lefstate and the second one on the ground harmonic potential.
the configuration space trajectory described by the densitpn the other hand the left guiding path runs along the upper
matrix is also plotted by interpolating the coordinate excur-Morse potential. Both guiding paths classically describe an

FIG. 10. Phase space portrait of the classical guiding orbit&{or FIG. 12. Phase space portrait of the classical guiding orbit&for
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t5 interval is much larger. The right orbit staysxt=0 (the
harmonic stationary point Therefore only wherx, is also
equal to 0, at the, axis, can the trace d®, be significant.
There are only two points per period where there is an inter-
section between the Morse orbit and {heaxis, and in both
points the momentum of the guiding orbit is nonzero. As a
result the traces should be expected to be small; also the
higher the momentum at the crossing the smaller the trace.
We can observe this effect in the plot, the run for the second
set of parameters is described by a guiding orbit which in-
tersects thex;=0 condition with a very large momentum
(large or small momentum here means far or close to the
average initial momentum

In summary the two-orbit semiclassical approximation to
the propagation of the density matrix provides an efficient
FIG. 13. Phase space portrait of the classical guiding orbit&®for way to visualize the regions of phase space explored by the
evolving distribution, and examine the left and the right sides
of the propagation separately. The diagrams in Figs. 10 to 13

electronic coherence created by the three field interaction§how then the classical guiding orbits underlying the nonlin-
In the remaining response functidty, the three interactions €ar response contributioRy , R;, Rs, andR,. The paths in
occur on the left-hand side of the density matisee Fig. 1~ configuration spacex(,x,) (lower-lef) allow one to see
The phase space diagram Rf (Fig. 13 then shows a left When to expect an increase in the trace of the nonlinear re-
guiding path with three classical orbits; the first one runningsponse. Similarly the phase space projections to the left and
on the Morse potential, the second on the harmonic grounéight allow one to read the average momentum of the density
state, and the third one again on the upper Morse. The righnatrix as it crosses the diagonak=X; .
guiding orbit is simply a stationary point at the origin be- The numerical effort involved in the two-orbit semiclas-
cause the lack of field interaction leaves the classical orbisical calculation oR; j=1,...,4 isvery small. For this rea-
stationary at the minimum of the harmonic potential. son it is rather easy to explore the behavior of the nonlinear
The phase space picture for the dynamics of the densityesponse functions in their multidimensional space
matrix provides a quick and inexpensive way to visualizet;,t,,t3. One of the advantages of the nonlinear optical re-
and predict the response functions. Since the nonlinear response is that these functions provide a unified picture for
sponse functions are given by the traces of the time evolvethany different spectroscopic measurements. For example, a
density matrix,E(f’z), only the configuration space region normal two-photon echo experiment is described by the
along thex,=x, axis is important. When the density matrix function Ry(t1,0,t3) wheret, is the time difference between
passes through this axis it is expected to give a recursion ithe two light pulses ant; the time interval between the last
the trace. Similarly, the amplitude of the trace should becomgulse and the echo detection. Along the-t; direction it is
negligible far from thex,=x, axis. There is a second impor- possible to eliminate the inhomogenous broadening that hin-
tant factor for using classical phase space diagrams; if thders the measurement of spectral lines in a normal linear
classical path X, ,x,) crosses the diagonad=x, but the absorption spectra. Using our semiclassical expansion we
momentum of either of the right—left orbits is too high then can now calculate with small numerical eff@®(t;,0,t3) as
the trace can be small. This is easily understandable: Tha function of botht,, t;. Figure 15 shows a contour plot of
classical path in configuration spateft-bottom plot in Figs.  the absolute value of the nonlinear respoRsefor our har-
10-13 describes the motion of the center of the densitymonic Morse model, we may as well call it the photon-echo
matrix only, it does not tell us about the overall averageresponse, as a function tfandt;. The time intervals range
momentum of the moving distribution. If the average mo-from 0 to 6 a.u. Two clear kinds of recurrences emerge in the

mentum of the density matrix is very high the?fz) will response that we have labeladand B. Departing from the
exhibit large fringes and its trace over the=x, may show origin and following thet;=t5 diagonal we first observed an
negligible results. immediate decay of the trade, followed by a sequential

To explore the insight classical mechanics gives into theseries of recurrences of tyfg® A,B,etc. Each of the recur-
nonlinear responses let us look at the tdypfor two differ-  rences can be identified with particular classical paths that
ent sets of times; ,t,, again as a function df;. In Fig. 14  involve combinations of periods of motion in the Morse and
the traceRR, fort;=0.39,t,=1.6, andt;=0.59,t,=1.4 are  harmonic surfaces. The signal, which is an electronic coher-
shown. In the case d®, the trace is determined by the left ence, will depend on a combination of motions on both sur-
orbit because the right orbit corresponds to the equilibriunfaces. Let us first analyze recurrence typevith the help of
point on the harmonic potential. The classical paths plottedhe Feynman diagram shown at the bottom right of Fig. 15.
in the figure have three segments, one for each oftthe During thet, interval, i.e., after the interaction with first
propagations. The path of the first run makes a very shonpulse, the bra side of the density mattiight path has been
excursion around the =0, p,=0 point while for the second excited to the upper Morse potential while the ket Silé¢ét)
run it is evident that the classical path described during theemains in the ground harmonic. The contour plot shows that

Downloaded-07-Mar-2001-to~128.151.176.18%: Fa&MstiiYSon Vel 02-Ne B3 dWigh 1 988e-http://ojps.aip.org/jcpoljcpepyrts. html



M. A. Sepulveda and S. Mukamel: Molecular nonlinear optical polarization 9339

p ) 'p<°> Abs R(t;,0,t)

Ry (tt,t1)
0.4

0.3
0.2
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03 FIG. 15. Contour plot of the nonlinear resporiRgfor a two photon echo
04 L . . , . . . measurement.

t3 (a.u.)

FIG. 14. Comparison of two runs fdR,(ts,t,,t;) for fixed t;,t, as a
function oft;. In the upper two diagrams the phase space pictyex() of  tremely high in the right orbit. The second intersection hap-
Epe.c'ass'ca'.pam described by the left propagation can be compared witho o ater one full period of the harmonic oscillator in the
eir respective correlation functiomiy, . A ; . i
right orbit, and in this case the average momentum of the
density matrix is zergsame as the initial valyeOnly at this
moment is there a full revival of the trace. If the dynamics
for t;=0 and ast; increases the response first decays and@ontinue for longets, i.e., along the horizontal line in the
then rebuilds in a series of typk recurrences. The moment R, contour plot, we see another couple of identical recur-
when this happens for the first time coincides with the firstrences of typ&8 which are again due to a combination of one
period of motion of the right Morse orbit. Even if the  full harmonic and half Morse periods.
motion continues on forever, the left guiding orbit remains  The classical analysis identifies recurrendegurely as-
stationary atx;=0, p;=0. This means that only when the sociated with the dynamics on the Morse excited potential.
right orbit goes througl, =0 with small or zero momentum This is precisely what is to be expected for a photoabsorption
there will be a recurrence A" in the trace. The events “A”  measurement and the trace R§ along thet;=0 or t;=0
happen along the;=0 axis periodically(at least fort; from  axis is exactly that. Along the diagongl=t; we have not
0 to 6.0) due to the periodic motion of the moving densityonly the information about the linear absorption spectrum
matrix along the Morse orbit. Similar argument applies aIOHQrecurrence typé\) but also a new kind of recurren(ﬁ@/pe
thet; =0 axis. B) which is associated to a combination of dynamics in both
The same kind of recurrence type appears along the e upper and lower electronic states.
t;=t, line, e.g., at the labeA location. The classical reason As a corollary to this analysis we reiterate that this

for these recurrences is also easily found by looking at thgjmpje interpretation holds for the relatively short time scale
phase space portraits of the left and right guiding Orblts'shown in Fig. 15. For longer times the effect of the nonlinear

Every one of these recurrences is due to the combination cH(ynamics in the Morse potential increases and a simple two-

Er]lt 'Q;Zgﬁr r?tunsj?deirn Ofoﬁsi;';)d;eaclggget?:eh:gf;%ﬁ)'hf%;b?mn expansion is not sufficient to describe the semiclassical
) gnt g 9 ST dynamics. In that time domain one has to use a semiclassical
time to complete a full circuit in phase space they always . o
. . : . 2 Implementation that makes use of the full dynamics in phase
bring the density matrix back to its departure position, thus : ; : .
.- space, expanding the evolution of the density matrix along

almost completely rebuilding the trace.

In Fig. 16 we depict the classical guiding orbits for the mu_ltiple classical orbits. In the fo_lloyving section we de_-
recurrence labeleB. During the time intervat, the dynam- scribed such a method. Howgver it is important to emphasize
ics moves along thé;=0 axis and we observe the initial that the two-orbit expansion is much more powerful than one
decay of the trace, by the end of half-period in the Morse®Y think superficially; a p055|_ble alterna}tlve would be to-
orbit of the right guiding path the density matrix has moved€XPand the upper Morse potential quadratically and approxi-
along thex, axis (botton-left diagramaway from the impor- Mate it with another harmonic potential. This approximation
tant diagonak,; =X, . As we mentioned, only when the guid- S €quivalentin our two-orbit picture to having guiding orbits
ing path crosses this diagonal the trace builds up once moréat move on two harmonic surfaces; unfortunately the fre-
During the t; propagation the right orbit describes a full quencies seen by the evolving orbits is always constant due
period of motion in the harmonic potential while the left to the global harmonic approximation to the potential. On the
orbit moves on the Morse excited state for half a period. Agther hand our two-orbit approximation adjusts the fre-
a result there are two intersections aof (x,) with the diag- quency of the upper harmonic “fit" constantly, making it
onal. The first fails to produce a recurrence in the responskrger in the asymptotic side of the Morse potential and
because the average momentum of the distribution is exshorter close to its steep wall.
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VII. MULTIPLE PATH SEMICLASSICAL EXPANSION

OF THE NONLINEAR RESPONSE FUNCTION <x2|%r|xr>sc=(—4wziﬁ2)’1’2f dp,|. 254"
The multiple path semiclassical expansion of the nonlin- i i
ear response is based on the “cellular dynamics” method xexr{— 7 Si(Xo,p2) — 7 P (X —X{)
applied for the semiclassical propagation of Gaussian wave
packets in general potentig$242° i
We first write the quantum propagators for the ket and + 2 b1 |- (49b)

bra 72, and 74, in an initial value representation using a
mixed coordinate-momentum representation. For instance, Due to the previous transformations the generating func-

the left propagator can be written as tion can be expressed as a four-dimensional integral over the
full phase space of initial conditions, both for the bra and the
. . ket spaces.
<X2|?4I|X1>sc%f dpa(Xa| P2)(P2l 7 [X1), (463 In Sec. IV we showed how under certain circunstances

the dynamics in the propagator could be expanded about a
single pair of trajectories, one for the bra and one for the ket.
:(4W2iﬁ2)71/2f dpy|. 7,12 This is equivalenf[ to expanding the integr_ar_m_;l of E4f3_)_
about a single point in the phase space of initial conditions.
i i i The point chosen in the two-orbit expansion was logically,
Xexr{g Sl(Xl-leg pt(xz—xt)—7 bl (46b) the average position and momentum of the initial density
matrix. On the other hand, now we can go one step further;
with the initial phase space representation it is possible to
In going from Eq.(463 to Eq.(46b) we have substituted reduce the four-dimensional integration to an approximate
the element of matriXp,|7/|x,) by its semiclassical limit; sum over a set of grid points irp{,X;,p»,X,) space. From
the variable of integrations have also been changed using theach point in such a grid depart pairs of classical orbits
classical stability matrixS(x4,p1) is the classical action which can be used for the local expansion of the inteldEgl
accumulated along the left propagation that is launched a#8)] in exactly the same way as in the two-orbit implemen-
X1,P1- X¢,P; are the position and momentum of the classicaltation presented in Sec. IV.
orbit after timet=(t,t,,t3) of propagation; they are also A convenient way to transform the semiclassical expres-
functions of the initial conditions,,p;. The phase factor sion forﬁi@ to a sum over grid points in initial phase space
¢, as explained in Ref. 25, accounts for the phase shift§s the insertion of a sum of localized states, Gaussians, in

across caustics in the mixq@x representation phase space. Consider the following representation of unity:
_ 1, _ //‘| |
G=p+ 6+ 3SQN( — 2117 51), (47) > exd - Bi(p1— pi,)’1~1, (509
i

whereu, is the total Morse index for the left path addthe
additional phase shift. A similar expression for the right B 2
propagator can be written in terms of an integral over initial 2 Xl — Ba(X1=Xi) "1~ 1, (500
momentum. '2

Propagators of the forrfEq. (4639] easily allow one to
recast the expression for the generating functions as an inte- > exq — 8(p,— Pia)z]*l, (500

gral over initial momentum and position. In the case of the

i3
third-order generating functions

i 2 exl — Ba(xp—x;, )2 ]~1. (500
rlp¥ )= [ ey ol 2 2
><<X1|P(O)(—°°)|Xz><xz|’24r|Xr>sc, (48) The widths of the Gaussiansg;, and the centers

Xi.,X; ,Pi.,Pi. can be chosen to make the sums as close to
2 4 1 3

. . . unity as desired. The set of pointpig,xi ,Pi..X; ) define a
where the semiclassical propagators are now integrals over. °. " 2' 713" 4 ,
initial momentum: grid in the phase space of initial conditions. Inserting the
four sums in Eq(48) then leads to a fourfold sum of inte-
grals, however each of the integrands now are functions that
<X||‘7A4||X1>sc=(4772iﬁ2)71/2f dpy|. 7 V2 d_ecay very rapidly away _fr_om the center of the g(im‘o-_
vided that theB'’s are sufficiently large Then a quadratic
i i i expansion of the actionsS(,S;), as performed in Sec. IV
xex;{% Si(X1,p1)+ 7 Py(X — X)) — > &, about the grid point and the pair of classical orbits departing
from it, reduces the integration problem to a simple Gaussian
(493 quadrature:
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_ 7 \%2 [2(a—7y) | are necessary. This is precisely our case, we will insert only
(x| PP %)~ 5 ﬁ> Y |V two sums over Gaussiafg&gs. (508 and (500] which ex-
i1,y pand the initial momenta in a grid of points, then the coeffi-
x extf o+ %01'52_1' 0,]. (51) cients 6 take the following form

The constanty is a hormalization factor that insures the — — ., 7
sum over Gaussians inserted in E4g) to be approximately fo=—a(X;)"— a(x))"+2yX; X = > (= é1)
unity in phase space. Obviously the sum runs over all the
grid points, each point in the grid is actually a couple of
classical orbits. In practice it is not always neccesary to in-
sert unity as a sum over Gaussian in both coordinate and
momenta, in the same case only a grid in coordinate will be i .
sufficient and in other cases a grid in momenta space should g-r%ln(xl —X)
be enough. For example, when the initial density matrix is . )
very compact in configuration space (arge and high den- 5 T —_ vV v
sity of stateythen the dynamics of the system can be clearly 2+ 27% = 7 Pyt e PadXim )
expanded only about the average positiop@. However, 0= i ’
a narrow initial state in coordinates implies very broad dis- %.,//Z’n(xr—ir)
tribution of initial momenta; for this reason we cannot carry
on the semiclassical propagation too far in time by expand-

o (S§=8)F 2 BN—X)— 3 Bi(X— %), (52

i [ —
% pi,3+ %'///’rlz(xr —X)

ing the dynamics only about the average momentum of the T 2aX T 2yX —
initial state, many pairs of orbits at different initial momenta (53
i y/ | | Yy | y | O 0
ﬁl+ ﬁ(, /511-///521 ﬁb//éllg/ézz
i i
) ﬁ.//z'll.//z'zz a+ %./z'lz///é'zz 0 -y
0 0 33_ ﬁ/%al//zrzj_ - E/%Z&l///rzz
i i
0 - - E//Jrll//zrzz a— ﬁ//érlz//zrzz

Most of the notation used is already obvious. From everysimple two-orbit one because more orbits are required, but
“cell” or grid point depart two classical orbits with initial should allow the propagation of the dynamics for a very long
conditions pil,i( ,pi3,>?r’), wherep;, andp;,_ vary along the time (high resolution in the spectra of eigenvalues
2D grid and the initial positions] andx; are the average Our description of the cellular implementation is the
positions of the density matrix. After the classical propaga-mOSt general description for an arbitrary initial density ma-
tion, the phase space location of the cell &,& ,p. X)) trix; in some cases it will be required to expand the dynamics

H 1 sMraafnr) - . . . . .

Along the two classical orbits launched at each cell we alsdn 1ts _fuII fogr-d|m_e_n_5|0nal g_rld. . .
calculate the total stability matrices”' and. /7. Finally if the initial density matrix is not Gaussian it is

The final formula for the generating function has thusalways possible to expand it as a sum over Gaussians and
been recast as a sum over two-orbit expansions per grid then apply the procedure outlined here to each element of the

point). Each classical orbit in the chosen grid carries infor-GaUSSIan basis.
mation about its immediate neighborhood. Having a set of
orbits started on different points of the initial phase spaceV“'- CONCLUSIONS

allows one to describe nonlinear dynamics because the clas- |n this work we have demonstrated that electronic coher-
sical orbits are free to wander in phase space, each one fadnt processes taking place in molecules under the influence
lowing its own dynamics. This is in contrast with the two- of multiple short laser pulses do have a classical analog. The
orbit approximation used in a previous section, in which byclassical picture consists of a pair of classical orbits that
expanding the actions and final position and momentunguide the time evolution of the density matrix and that at
about the central guiding paths one restricted the dynamics tappropriate times switch potential surfaces. The principal ap-
a limited region of phase space. The cellular implementatiomplication made here is the description of nonlinear optical
described here is numerically more expensive than theesponses in terms of classical orbits for general systems.
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C\assical Orbit

dR(0) ----- §o R(®).P(®)
i ROPO) ‘

(@

M(2)

R(t).P(t)

R(t,).P(t) Rty ). P(t,)
__________ ‘9
3 S
= dR(t,)
R().P(t)

dP(O)

i R(0),P(0)

b)

FIG. 16. Type B recurrence.

FIG. 17. Initial and final variations alon@) single orbit, andb) multiply
connected classical orbit for the semiclassical Liouville propagator.
However, there are formal similarities between the problem
presented here and the curve-crossing mechanism of inelastic
scattering first addressed by Landau—Zenner during the earlyere to the dissipative case seems promising.
1930's2® They were concerned with the semiclassical esti-
mate for the inelastic curve crossing in scattering processeg,ckKNOWLEDGMENTS
The Landau—Zenner formula can be connected to our linear . _ _
response function. Therefore it is possible to develop ways to The support of the Nathhal Science Fgundatlon and the
improve on the Landau—Zenner expression by using highee\lr Force Office of Scientific Research is gratefully ac-
order nonlinear response functiotfs. knowledged.
Because our approach is carried out directly in the time
domain, the semiclassical mechanism for switching betwee APPENDIX A: STABILITY ANALYSIS
electronic states is well defined. The time-domain formalism

: : : : Few notions from classical Hamiltonian mechanics are
and the perturbation expansion allows a simple yet rlgorou%:rucial to understand semiclassics. We start with Hamilton'’s
description of the surface crossing mechanism. Moreove :

r X X ) i I
the generation of a single semiclassical propagator for thgquatlons of motion associated with the Hamiltonkan

chain of Van Vleck operators provides a powerful tool for : dH,

evaluating the complex time evolution operators of the gen- ~ TR

erating functions. The use of semiclassical tools in the theory (A1)
of nonlinear optical response appears to be very powerful. R— ﬂ

Thanks to the classical orbits it is possible to visualize and oP -

understand in its full four-dimensional phase space the dy-

namics of the density matrix and the effect of the field inter-A set. of |n|t_|al cond|.t|ons,P.(O),R(O.), spemﬂes a unique
. . classical trajectory via the time derivativegqg. (Al)], if a
actions on the motions of the molecular system.

. .__.solution of the differential equations for that particular initial
The formalism presented does not contemplate dissipa- : . . .
. ; value exists. The behavior of the solution with respect to
tion. A future expansion of the current work would be to

small variations of the initial conditions defines the stability

include some of the recent advances in the microscopic dedf the classical orbit. Linearization of Hamilton's equations

scription of dissipation into our semiclassical dynamics. Theabout the known solution determines t@nodromyor sta-

incorporation of dissipation in the nonlinear response is im—biIit matrix:
portant for the interpretation of condensed phase spectra. For y '
harmonic systems, exactly solvable models for the time evo- dP(t) dP(0)
lution _of an electronic cqherence with dissipaztgi’or? based on dR(t) = dRrR(0))"
the spin Boson Hamiltonian have been us®d It is pos- _ o .
sible to derive reduced equations of motion such as the non-  The time derivatives for the elements of mati; are
linear Fokker—Planck equation for anharmonic systemsPbtained from Eqs(Al) as

_Grossmﬁn?‘j ?ad recenltly impler?entled the “cellular dlyr;am- . ( (PH,19P?)  (8*H,/9PdR)
ics” method for a nonlinear molecular system coupled to a =l 5 5 )
harmonic bath. The dissipation mechanism follows the (9"H1/0PIR)  (9°H1/9R)
Caldeira—Leggéf formalism and applies for single potential Figure 17a) shows a classical orbit and illustrates the

surface. Application of the semiclassical formalism presentedneaning of the variableslR,dP. Obviously the stability

(A2)

(A3)
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equations[Egs. (A3)] must be integrated numerically to- APPENDIX B: COEFFICIENTS FOR THE TWO-PATH
gether with the equations of motidiq. (Al)]. SEMICLASSICAL EXPANSION OF THE

The stability matrixM is very useful because it contains THIRD-ORDER RESPONSE
all the information required to calculate the semiclassical
propagation. For example, the usual Van Vleck propagator
(R(0)|R(t)) goes asymptotically as the square of the classig= (2%. Zy,a—i. /o) (2h Wy +i 75,
cal probabilty to go fronRR(0) to R(t) times a phase. Since

The coefficients used in E¢34) are defined as follows:

the initial position is specified and only the initial momentum _4ﬁ2~%r21~//4|2172' (B1)
is unknown then this probability can be determined as the Cor /| g i
ratio dP(0)/dR(t) keepingdR(0) constant. In other words, k,=—— I (ﬁr” — Kll—) — 2—y+ W
<R(O)|R(t)>~|M21|fll2 2h ,//421 ,,/%21 g 2hg//Z21

qu let us imagine a cla_lssical path that f_ollows a se- 2ak ///lzl_i///lzz
guencial set of propagationj&ig. 17b)]: the orbit starts at t—, (B2)
R(0),P(0) and evolves under Hamiltonid#, for time t,, 21971
then it continues under a different Hamiltoniady,, for time P ; //Ill i/
t,, etc., up to thenth step wherR(t,—1),P(t,—4) is finally  k,=—(p,—p,)— Xt X
mapped ontoR(t,),P(t,) by the equations of motion of h h. 2o h
H,. This unusual classical path is the o/mie required for the (2ah. 25 +i M)

7|R(ty)), Egs. v X|
(19). This quantity also goes asymptotically as the square 9h- 7
root of a classical propability, the probability of ending up (ah Myy—i Moy _ 2y _
somewhere aroundR(t,) when the classical orbit started + i Xr— — (X X), (B3)
aroundR(0). Since the initial position is well specified we 9h- 9
can calculate the probability as the rati®(0)/dR(t). Now | ///11 i/
this ratio needs to be calculated differently than before beky= h(S, S,)+ ﬁ(x,pr X|py)+ ? X2
2h. /// 2h. 5,

cause the time evolution from initial to final position has
followed several different sets of equations of motion. 29X, %

Let us define the stability matricéd () associated with + g
each of the classical segments of the full path connecting
R(0) andR(t,). Then 2ah Moy +i My,

T 2ng N
(dp(t‘)> _ (i)(dp(til))_ (A4) 2ot My—i My
dR(ti) dR(tifl) W X? (B4)
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