Generalized sum rules for optical nonlinearities of many-electron systems
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Sum rules which connect spectral moments of linear and nonlinear optical susceptibilities of
nonrelativistic many-electron systems to their ground state properties are derived. These sum rules
provide a direct connection between chemical bonding and optical properties and may assist in
constructing tight-binding Hamiltonians for the effective modeling of electronic spectroscopy. In the
time-dependent Hartree—Fock approximation, the only relevant ground state information is the
Hartree—Fock ground stated reduced single-electron density matrik99® American Institute of
Physics.

I. INTRODUCTION We further propose a new family of sum rules which connect
nonlinear optical susceptibilities to ground state properties;

. Linear and_ nonlinear optlc.al spectra are most Comm9n|¥hese are of special interest for clarifying the mechanism of
interpreted using the electronic energy levels and the dlpolﬁhe nonlinear response and predicting its dependence on
matrix elements of the systehf.Consequently, their theo- chemical bonding

retical modeling requires an accurate calculation of the Sum rules based on higher-order moments generally

ground sFate as well as the Te'e"a”t excited staam connect optical properties to higher-order ground state re-
rules, which allow the calculation of some averaged global .o gensity matrices. The time-dependent Hartree—Fock
prOpeESS of_opt|cal spectra using a c0n3|d_erably reduce DHF) approximatiod has been successfully applied in
effort, prowd_e a powerful tool for the_analy5|s of complex studies of the nonlinear optical properties of many-electron
spectra. The simplest and th? most widely used sum rule '§ystem§.° Making use of the Hamilton’s form of the TDHF
known as the lThom?js—Flielche;Kur(or thfe hosmlla'Fﬁr equationt! we show that, within this approximation, all lin-
strength sum rule, and re gFes the sum of the oscillatorg,r 504 nonlinear sum rules can be expressed in terms of the
strengths of electronic transitions to the number of electronaround state single-electron reduced density makirepre-
; 8
in the systerf senting the Hartree—FodHF) ground staté®3 Since the
off-diagonal elements qj, reflect the bond order, the TDHF

% fa=N, (113 sum rules provide direct relations between optical and
_ _ , , chemical bonding properti¢é:1®
where the oscillator strength i, =(2m/e“%) Q,|u.l o Our derivation starts with the following Hamiltonian

and Qa being the transition deOIe and transition frequencyrepresenting a System driven by a uniform external fjﬂd}
andm ande are the electron mass and charge, respectively.

This remarkably simple sum rule can also be written interms — Hy=H— &#(7), 1.2
of the imaginary part of the linear susceptibilif*(w) (i.e., A
the absorption line shape whereH is the Hamiltonian of the unperturbed system and
. 9 is the system’s dipole operator. We next introduce the time-
J do 20 IM[xP(w)]= N (1.1p  domain optical response functio®&™(t,,....t;) obtained
0 2m 2m by expanding the expectation value of the polarization

Tl M 42
Sum rules which connect the higher-order moments of théP (P)=Trlu(7)p] in powers of the external field

absorption

1 0 0

» dw (P(M)=2 — f dtl---f dtaR™ (L th—1,..t1)
f z an[lm X(l)(w)] n . 0 0
° X A=ty = —ty) e E(T—t,). (1.3
to a hierarchy of ground state reduceihgle-electron, two-
electron, etd.density matrices can be derived as viell. Here u(7) is the dipole operator in the Heisenberg picture

Equationg1.1) hold for a system of electrons interacting and p is the system’s equilibrium density matrix. The argu-
with the potential of nuclei and with each other through thements of the response functioR§"™ are the time intervals
Coulomb interaction, and involves all transitioms [Eq. t,...,t, between successive interactions with the radiation
(1.13] or all frequencieso [Eq. (1.1b], including nonoptical field. Switching to the frequency domain and using the con-
(e.g., x-ray frequencies. In this paper, we derive sum rulesvention
for general tight-binding many-electron models which are
restricted to optical electronic transitions and, consequently,
could be much more useful in analyzing optical properties.

do .
f(7')=f Ee_"”f(w), (1.43
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we can relate the polarization and the external field in thelThe sum rules are obtained by expressing the short-time op-
frequency domain using the optical susceptibilitiestical response in terms of the frequency-domain optical sus-
x"(~ wg;w1,...,0,) defined as ceptibilities as well as in terms of ground-state properties.
The short-time optical response thus provides a bridge be-

1 (» do; > dwp . ! .

<P(ws)>:E - ... tween optical and ground statehemica) properties of the
nont ). 2m —w 2 system. Expanding E@1.7) in a Taylor series with respect to
the (positive) time arguments, ,....t,, we obtain

§ _ K (M) —jmyt et mytng |:| my ~ |:| myr |:| Mo l5).
XX (= i1, 00) (03)... 4 (@), my..my (R (H)2p...(H) “'Pglgb)

1.4b . . .
. _ (.49 . Equation(1.93, together with Eq.(1.9b, constitute a
Comparing Egs(1.3) and(1.4) we obtain the general multi- family of generalized sum rules, each labeled by integers
dimensional Fourier transform relationship between opticah>0 andm,,...,m,. They relate the spectral moments to a

X2mw8(w1+ -+ w,— wg)

susceptibilities and response functions combination of commutators and the density matrix of the
= dawy » do system. In the remainder of this paper we apply the formal
R(“)(tn,tn_l,...t1)=f —_— f o expression(1.9) to various cases. In Sec. Il we consider a
~= 2T ~= 2T many-electron system and show how the sum rules are con-
X x ™ nected with a hierarchy of reduced electronic density matri-
ces. In Sec. Il we specialize to the time dependent Hartree—
X(~ws;01,...,0p) Fock (TDHF) approximation where the reduced single-
@ 101t (w3 w)ty= - —ig+ oty electron density matriy, is the only relevant ground state

property. Our results are summarized and discussed in Sec.
(15 V.

We next adopt the following notation. For an arbitrary op-||. SUM RULES FOR MANY-ELECTRON SYSTEMS

eratorA we introduce a superoperat@iso denoted as Liou- We consider a many-electron system described by the
ville space operatgorA, defined by its action on another op- Hamiltonian

eratorB - A
~a A a Hin=t+U—pun&(1), (2.13
AB=[A,B]. 16a _ _
- R with the hopping(transfej coupling
The superoperatdd corresponding to the Hamiltoniat is
knowp as the Lioqvillg operator. The Greens function of the f=2 tn‘qn‘éﬁéﬁ, (.10
Liouville operator is given by mn
f'f(t)=exmlz|t). (1.6b the Coulomb interaction
We also define thg.ex'pectation' value 9f an operatavith U= > UmikCaer &y, (2.19
respect to the equilibrium density matgixas mnkl
(A|Z)>ETr(fJA). (1.690  and the dipole operator
Using this notation, the nonlinear response function is given ﬁE_Z Mﬁﬁe%eﬁ. 2.1d
by? mn
RM(t,,th_1,...ty) The Hamiltonian is written using a general basis set of
. . o o single-electron state$abeled by latin indices with overbars
=(= )N (t) p s (t) ... p S (to) il p)- (1.7 represented by the electron creati@mnihilation) operators
At a_y 16
Equation(1.7) can be obtained using the Heisenberg picturecrﬁ(cm)- _ )
of quantum evolution In this section we use E¢1.9b to evaluate the moments
R KE{,‘l) . for some particular cases. This requires calculating
dQ(7)  ~ 4 Ut ("
= A(7)Q(7), (1.89  commutators of operatof&q. (1.63]. Ky ...m, the.n adopt
a form of a sum of terms proportional to
(Q(1)=(Q(7)|p). (1.8b (C:—H,...,c%k051,...,c;k|p) and can thus be written in terms
To derive the sum rules we first introduce the spectran the ground state reducdaelectron density matrices
moments of the optical susceptibilities. E(r;'fl) YYYYY o n ETHPES v 8 B B7). (22
KD (1) ymat e, do;...dw, We consider a class of models which satisfy
my..my,— (27T)n
~ A+A
= 7Cr Chys 2.3
XX(n)(_ws;wla"'vwn)wlml(wl—i_wz)mz.“ a Zn Hn non ( a
X(wi+ -+ wp)™. (1.93 [7,U]=0. (2.3
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Equation(2.3b holds, for example, for the following form  k(3) — 7y, (pLTLFE}) — Tr,(pRTWVTR), (2.80
for the Coulomb interaction commonly used in semiempir-
ical models® K3a=3 Tr(p®M i@t 1) — 3 Tr(pM pat@iVh)

=3, Untttentn. 2.4 —Tr(pWEGRDE) + 3 Try(p@ RI2EV()

o ) . -3 TR(p@ LAt MEV0) — Tr(pPT¥TV0) (2.8¢
We first consider sum rules based K ;. Making use

of Egs.(2.3) we obtain with
KV o=t Rl PN ]
o 0= " [, [tad. T[p) B = [ [fd] J= D) togis— g) oo
pq
=" (g Mg - 2.5 2.9
pag

For any orden of the response, these sum rules involve only!!l. APPLICATION TO THE TDHF APPROXIMATION:

the single-electron reduced density matrix and do not depenfHE SINGLE ELECTRON DENSITY MATRIX
on the Coulomb interaction. It has been shown in Ref. 11 that the TDHF equation can

Sum rules related to higher moments can be represent% viewed as Hamilton’s classical equation of motion on the
m(g compact form by adopting the fOHOV\ZLr)‘g notation. Let phase space# of all single Slater determinants which can
W™ be the space ok-electron statesoy, me.ng.-n  be described by single- electron reduced density matpges
= cﬁl...c‘:mkcf1 cn be a basis set in the corresponding satisfying the conditiorp3=p,. Each quantum operatd®

Liouville spaceL® Of operators acting iW®, and Ty be  then becomes a function on”, defined as the expectation
the trace inW®. We can associate with each operatorvalue ofQ with respect to the Slater determinant represented
AeL® a superoperatoA® acting inL®. To that end we by po. [The algebra of functions of/Z is generatedas an

define the superoperators corresponding to the basig@et associative algebyeby the functionsa, €. # which form a
basis set of a matrix Lie algebr& generated by operators

0-%?1{0-(5? ..... My Ny -y c mCr. For arbitrary functionée. 7 its value onpye. 7 is
K §(p0) Tr(§p0) .] The classical Hamiltonian corresponding to
:E s-ok L the quantum HamiltoniafEgs. (1.2)] which yields the
§=1 MM My My MMy g - My N TDHF equation, has the form
X He(n)=H—a&(n)=t+V—a&(n), (3.1a
=2 S o A A (2.69
p=1 p My MRy, Np g Mg - Ny with
The reduced density operatg@®’ e L are given by A
Tl’(p(k) kK 7)257 - (2.60) % mo'ma V:% an&m&n, [’«:§ /-Lma'm-
ml My, NNy my ..M ,Nq...ne .

(3.1b

Expressions fot,, V,,,, and g, in terms oftyy, Umni s
_ 2 U-p® 26 and u57 were given in Ref. 11. The Poisson bracket for any
- mnkl T iy i - (2.60 & me. 7 is determined by the commutator o# which is the

mn k I . . .
. _ algebra of single-electron reduced density matrices
We next consider the sum rules for the linear response.

Noting that by symmetryx™(—w)=—x'Y(w)], all even mo- (&9 =i[&7]. (3.2a
ments vanish identically

We further introduce) e L@ by

This definition can be extended to arbitrary functions a4f
KM=0, n=0,1,2,.... (2.79  making use of the property

K{ gives the oscillator strength sum ruf&q. (2.5 for (&, =& 71} 2+ 7l &, 7o) (3.2b
n=1]. The next nanovanishing sum rule is, therefore, . ) ]
We shall use the Heisenberg pictyrehich appears very

K =Try(p MMM + Try(p 2T HE D). (2.70  similar for the quantum and classical, i.e., TDHF cades
erive the TDHF sum rules{The classical analog of the
chrodinger—Liouville picture is based on following the evo-

lution of pe. -

Proceeding in the same way we obtain the complete th
set of sum rules related to third momentsy&?

KR - Ta U - ToGEROER0), 288 .
K= Try(pMET2F) — 2 Try(pWpI VTR (Q(m)=Q[p(n)], i T—[t+2V(P)— (T)m.pl,
+Tr(pPTT@0) -2 Try(p@ LIWI@0), (2.89  whereV(p)=3 VmnTr(poy) or - This constitutes the stan-

@ - 3 @ dard form of the TDHF equatignin this case an operat@
Ki%=KiT,  Ke=KG3h, (2.89  pecomes a distributiofa function in phase space). Equa-
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tions (1.8) apply here as well with the following differences: we get
the superoperatoA acting in the space of distributions is

defined as K§Y=—({t™,{t,H}}[po)-
Aés—i{,&,é}, (3.3 Eval_uating the right-hand side of this equation we finally
- . obtain
and (B|py) for any distributionB denotes its value on a (1) Tofr3 A AR
reduced density matrig,: K" =Tr{[t+2V(po) U1, pol}
+2 TH[E, pol V[T, pol)}- (3.79

(Blpo)=B(po)- (3.9

In addition, p should be replaced by, denoting the HF
ground state reduced density matfthe stationary point of
the TDHF equation

Since the classical and the quantum Liouville equations  K{3,=A,3+B, (3.89
are formally identical, the TDHF sum rules have the form of 3)
Egs.(1.9), except that the superoperators are defined by Eq. K201=Aus,
(3.3, the operatoy on right-hand side of Eq1.9b should K@ —K® K3 —K® (3.80
be understood as a distributigbe., a function on #), and 012702l TH1020 I '
(Blpo) for a distributionB denotes its value gie. , and K Hs=3A13+ 3B+ 3A,,+Ag;. (3.80)
po is the HF ground state density matfisee Eq(3.4)].

We next evaluate Eq(1.9b, for a few cases. In the

In analogy with the above derivation we have calculated
the complete set of sum rules representing the third moments
of the third order response:

K =2A13+2B+A,,, (3.8b

Here we have introduce the notation:

TDHF caseK (Y . has contributions of the form A=Tr{[po, t 0 I[T+2V(po), 111}
(Gay-Ta)P0)=Pay- - Pay (359 +2 Tr{[po, V(Y o)}, (3.93
where B=Tr([ po,t M ][t",1?)]), (3.9b

PP ~ i) ined i
pa={Galpo)=Tr(Gapo). (3.5p  andt?’ were defined in Eq(2.9).
We shall consider systems satisfying E¢&.3). In the v DISCUSSION

TDHF approximation this implies ) ) _
In this paper we have introduced generalized sum rules

for the optical response of many-electron systems. In each
order of nonlinear response we obtain a family of sum rules,
nal he moments of linear rption, which con-
The TDHF sum rules related 16§ ,, have the same form 22 099US to the moments of linear absorption, which co
PeeCt the response functions to ground state properties. These

as the exact ones. The only difference is that the ground-sta : . . ) .

; . : . .~ rélations generally involve detailed ground state information
single-electron reduced density matrix on the right-hand S'd%x ressed in terms of a hierarchy of reduced density matrices
of Egs. (2.5 is now the HF(rather than the exactensity P y Y

. (i.e., single electron, two electron, three electron,)ettle
matrix. .
. . have shown that at each order the response there is one sum
We next derive the lowest higher-order sum rules for . .
. . . rule [Eg. (2.5] which only depends on the single-electron
n=1, 3 which are different for the quantum and classical d duced densi ;
cases. We find ground-state reduced density matrices. _
' Making use of Hamilton’s form of the “classical” TDHF
KM=0, (3.7a  equation, we have applied methods of classical dynamics and
derived a family of simplified sum rules, which connect op-
tical response functions to the single-electron reduced den-
K(31)=<{,&,{H,{H,{H,,&}}}}|;30). (3.7b sity matrix of the _HF ground statg. It is interesting to note
_ o _ _ that the sum rule is an exact relation between these two ap-
Making use of the Jacobi identity for the Poisson brackeproximate quantities, i.e., a response function in the TDHF
which reads as approximation and the HF ground state single-electron re-
Al P Lot oA duced density matrix. This is a consequence of the fact that
f,{g,h}}+{g,{h,f}}+{h,{f,g}}=0 , . .
{f.4g.ni}+{9.{ R }}A {h.{ g}A} the TDHF approach is a classical analog of the original quan-
for any functions f, g, and h, and the fact that tum modeland reflects an inherent consistency of the TDHF
({H,9}|po)=0, Vg (which implies thatp, is a stationary approach to the optical response and the stationary HF ap-
point of the TDHF equation we can recast Eq3.7b in the  proximation for the ground state. Since the “classical” sum

{2 V}=0, a=2 wiom. (3.6

and

form rules only depend on the ground state single-electron re-
AL A A - duced density matrix which controls the chemical bond or-
1
K3"=({aH}{H.{H, 4} po)- der, these sum rules provide very powerful relations between
Noting that optical and chemical properties of molecules. We have cal-
culated the complete set of exact and TDHF sum rules re-
P PN . - . ; i ) (3
M=ifaf=it0=i —— u o lated to the first and third moments g and x'® [see Egs.
(M}l 2 (v ) e 2.5, (2.7, (2.8), (3.79, and(3.8)].
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