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Sum rules which connect spectral moments of linear and nonlinear optical susceptibilities of
nonrelativistic many-electron systems to their ground state properties are derived. These sum rules
provide a direct connection between chemical bonding and optical properties and may assist in
constructing tight-binding Hamiltonians for the effective modeling of electronic spectroscopy. In the
time-dependent Hartree–Fock approximation, the only relevant ground state information is the
Hartree–Fock ground stated reduced single-electron density matrix. ©1995 American Institute of
Physics.
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I. INTRODUCTION

Linear and nonlinear optical spectra are most common
interpreted using the electronic energy levels and the dip
matrix elements of the system.1,2 Consequently, their theo-
retical modeling requires an accurate calculation of t
ground state as well as the relevant excited states.3 Sum
rules, which allow the calculation of some averaged glob
properties of optical spectra using a considerably reduc
effort,4–6 provide a powerful tool for the analysis of comple
spectra. The simplest and the most widely used sum rule
known as the Thomas–Reiche–Kuhn~or the oscillator
strength! sum rule, and relates the sum of the oscillato
strengths of electronic transitions to the number of electro
in the system7,8

(
a

f a5N, ~1.1a!

where the oscillator strength isf a[(2m/e2\)Vaumau2; ma

andVa being the transition dipole and transition frequenc
andm ande are the electron mass and charge, respective
This remarkably simple sum rule can also be written in term
of the imaginary part of the linear susceptibilityx~1!~v! ~i.e.,
the absorption line shape!

E
0

` dv

2p
2v Im@x~1!~v!#5

e2

2m
N. ~1.1b!

Sum rules which connect the higher-order moments of t
absorption

E
0

` dv

2p
2vn@ Im x~1!~v!#

to a hierarchy of ground state reduced~single-electron, two-
electron, etc.! density matrices can be derived as well.4,5

Equations~1.1! hold for a system of electrons interacting
with the potential of nuclei and with each other through th
Coulomb interaction, and involves all transitionsa @Eq.
~1.1a!# or all frequenciesv @Eq. ~1.1b!#, including nonoptical
~e.g., x-ray! frequencies. In this paper, we derive sum rule
for general tight-binding many-electron models which a
restricted to optical electronic transitions and, consequen
could be much more useful in analyzing optical propertie
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We further propose a new family of sum rules which connec
nonlinear optical susceptibilities to ground state properties
these are of special interest for clarifying the mechanism o
the nonlinear response and predicting its dependence o
chemical bonding.

Sum rules based on higher-order moments generall
connect optical properties to higher-order ground state re
duced density matrices. The time-dependent Hartree–Foc
~TDHF! approximation9 has been successfully applied in
studies of the nonlinear optical properties of many-electron
systems.10 Making use of the Hamilton’s form of the TDHF
equation,11 we show that, within this approximation, all lin-
ear and nonlinear sum rules can be expressed in terms of th
ground state single-electron reduced density matrixr̂0 repre-
senting the Hartree–Fock~HF! ground state.12,13 Since the
off-diagonal elements ofr̂0 reflect the bond order, the TDHF
sum rules provide direct relations between optical and
chemical bonding properties.14,15

Our derivation starts with the following Hamiltonian
representing a system driven by a uniform external fieldE~t!

ĤT5Ĥ2m̂E~t!, ~1.2!

whereĤ is the Hamiltonian of the unperturbed system andm̂
is the system’s dipole operator. We next introduce the time
domain optical response functionsR(n)(tn ,...,t1) obtained
by expanding the expectation value of the polarization
^P~t!&[Tr[ m̂(t) r̂] in powers of the external field:1,2

^P~t!&5(
n

1

n! E0
`

dt1•••E
0

`

dtnR
~n!~ tn ,tn21 ,...,t1!

3E~t2t12•••2tn!•••E~t2tn!. ~1.3!

Here m̂~t! is the dipole operator in the Heisenberg picture
and r̂ is the system’s equilibrium density matrix. The argu-
ments of the response functionsR(n) are the time intervals
t1 ,...,tn between successive interactions with the radiation
field. Switching to the frequency domain and using the con-
vention

f ~t!5E dv

2p
e2 ivt f ~v!, ~1.4a!
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7641V. Chernyak and S. Mukamel: Sum rules for optical nonlinearities
we can relate the polarization and the external field in t
frequency domain using the optical susceptibilitie
x (n)(2vs ;v1 ,...,vn) defined as

^P~vs!&5(
n

1

n! E2`

` dv1

2p
•••E

2`

` dvn

2p

32pd~v11•••1vn2vs!

3x~n!~2vs ;v1 ,...,vn!E~v1!...E~vn!.

~1.4b!

Comparing Eqs.~1.3! and~1.4! we obtain the general multi-
dimensional Fourier transform relationship between optic
susceptibilities and response functions

R~n!~ tn ,tn21 ,...t1!5E
2`

` dv1

2p
•••E

2`

` dvn

2p

3x~n!

3~2vs ;v1 ,...,vn!

3e2 iv1t12 i ~v11v2!t22•••2 i ~v11•••1vn!tn.

~1.5!

We next adopt the following notation. For an arbitrary op
eratorÂ we introduce a superoperator~also denoted as Liou-
ville space operator! Ã, defined by its action on another op
eratorB̂

ÃB̂[@Â,B̂#. ~1.6a!

The superoperatorH̃ corresponding to the HamiltonianĤ is
known as the Liouville operator. The Greens function of th
Liouville operator is given by

G ~ t !5exp~ iH̃ t !. ~1.6b!

We also define the expectation value of an operatorÂ with
respect to the equilibrium density matrixr̂ as

^Âur̂&[Tr~ r̂Â!. ~1.6c!

Using this notation, the nonlinear response function is giv
by2

R~n!~ tn ,tn21 ,...,t1!

5~21!n^m̃G ~ t1!m̃G ~ t2!m̃...m̃G ~ tn!m̂ur̂&. ~1.7!

Equation~1.7! can be obtained using the Heisenberg pictu
of quantum evolution

]Q̂~t!

]t
5 iH̃ T~t!Q̂~t!, ~1.8a!

^Q̂~t!&5^Q̂~t!ur̂&. ~1.8b!

To derive the sum rules we first introduce the spectr
moments of the optical susceptibilities.

Km1 ...mn

~n! [~21!n~2 i !m11•••1mnE dv1 ...dvn

~2p!n

3x~n!~2vs ;v1 ,...,vn!v1
m1~v11v2!

m2•••

3~v11•••1vn!
mn. ~1.9a!
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The sum rules are obtained by expressing the short-time o
tical response in terms of the frequency-domain optical sus
ceptibilities as well as in terms of ground-state properties
The short-time optical response thus provides a bridge b
tween optical and ground state~chemical! properties of the
system. Expanding Eq.~1.7! in a Taylor series with respect to
the ~positive! time argumentst1 ,...,tn , we obtain

Km1 ...mn

~n! 5 i m11•••1mn1n^m̃~H̃ !m1m̃~H̃ !m2m̃...~H̃ !mnm̂ur̂&.
~1.9b!

Equation ~1.9a!, together with Eq.~1.9b!, constitute a
family of generalized sum rules, each labeled by integer
n.0 andm1 ,...,mn . They relate the spectral moments to a
combination of commutators and the density matrix of the
system. In the remainder of this paper we apply the forma
expression~1.9! to various cases. In Sec. II we consider a
many-electron system and show how the sum rules are co
nected with a hierarchy of reduced electronic density matr
ces. In Sec. III we specialize to the time dependent Hartree
Fock ~TDHF! approximation where the reduced single-
electron density matrixr̂0 is the only relevant ground state
property. Our results are summarized and discussed in Se
IV.

II. SUM RULES FOR MANY-ELECTRON SYSTEMS

We consider a many-electron system described by th
Hamiltonian

ĤT~t!5 t̂1Û2m̂E~t!, ~2.1a!

with the hopping~transfer! coupling

t̂5(
m̄ n̄

tm̄n̄ĉm̄
1ĉn̄ , ~2.1b!

the Coulomb interaction

Û[ (
m̄ n̄ k̄ l̄

Um̄n̄k̄l̄ ĉm̄
1ĉn̄

1ĉk̄ĉl̄ , ~2.1c!

and the dipole operator

m̂[(
m̄ n̄

mm̄n̄ĉm̄
1ĉn̄ . ~2.1d!

The Hamiltonian is written using a general basis set o
single-electron states~labeled by latin indices with overbars!
represented by the electron creation~annihilation! operators
ĉm̄

1( ĉm̄).
16

In this section we use Eq.~1.9b! to evaluate the moments
Km1 ,...,mn

(n) for some particular cases. This requires calculating

commutators of operators@Eq. ~1.6a!#. Km1 ,...,mn

(n) then adopt

a form of a sum of terms proportional to
^ ĉm̄1

1 ,...,ĉm̄k

1 ĉn̄1,...,ĉn̄kur̂& and can thus be written in terms

of the ground state reducedk-electron density matrices

r̄m̄1 ,...,m̄k ,n̄1 ,...,n̄k

~k! [Tr~ r̂ ĉm̄1

1 ,...,ĉm̄k

1 ĉn̄1,...,ĉn̄k!. ~2.2!

We consider a class of models which satisfy

m̂5(
n̄

m n̄ĉn̄
1ĉn̄ , ~2.3a!

@m̂,Û#50. ~2.3b!
o. 17, 1 November 1995¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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7642 V. Chernyak and S. Mukamel: Sum rules for optical nonlinearities
Equation~2.3b! holds, for example, for the following form
for the Coulomb interaction commonly used in semiemp
ical models16

Û5(
m̄ n̄

Um̄n̄ĉm̄
1ĉn̄

1ĉn̄ĉm̄ . ~2.4!

We first consider sum rules based onK0...01
(n) . Making use

of Eqs.~2.3! we obtain

K0...01
~n! 5 i n11^@m̂,@m̂,...@ t̂,m̂#...#ur̂&

5 i n21(
p̄ q̄

~m p̄2m q̄!
n11t p̄q̄r̄ p̄q̄

~1! . ~2.5!

For any ordern of the response, these sum rules involve o
the single-electron reduced density matrix and do not dep
on the Coulomb interaction.

Sum rules related to higher moments can be represe
in a compact form by adopting the following notation. L
W(k) be the space ofk-electron states,ŝm̄1 ,...,m̄k ,n̄1 ,...,n̄k

(k)

[ ĉm̄1

1 ...ĉm̄k

1 ĉn̄1
1 ...ĉn̄k be a basis set in the correspondi

Liouville spaceL (k) of operators acting inW(k), and Trk be
the trace inW(k). We can associate with each opera
ÂPL ~1! a superoperatorÃ(k) acting inL (k). To that end we
define the superoperators corresponding to the basis seŝ(k)

s̃m̄n̄
~k!~ ŝm̄1 ,...,m̄k ,n̄1 ...,n̄k

~k! !

5 (
p51

k

d n̄m̄p
ŝm̄1 ...m̄p21m̄m̄p11 ...m̄k ,n̄1 ...n̄k

~k!

2 (
p51

k

dm̄n̄pŝm̄1 ...m̄k ,n̄1 ,...n̄p21n̄n̄p11 ...n̄k

~k! . ~2.6a!

The reduced density operatorsr̂(k)PL (k) are given by

Tr~ r̂~k!ŝm̄1 ...m̄k ,n̄1 ...n̄k

~k! !5 r̄m̄1 ...m̄k ,n̄1 ...n̄k
. ~2.6b!

We further introduceÛPL ~2! by

Û[ (
m̄ n̄ k̄ l̄

Um̄n̄k̄l̄ ŝm̄n̄,k̄l̄

~2!
. ~2.6c!

We next consider the sum rules for the linear respon
Noting that by symmetry@x~1!~2v!52x~1!~v!#, all even mo-
ments vanish identically

K2n
~1!50, n50,1,2,... . ~2.7a!

K1
~1! gives the oscillator strength sum rule@Eq. ~2.5! for

n51#. The next nanovanishing sum rule is, therefore,

K3
~1!5Tr1~ r̂~1! t̃ ~1! t̃ ~1! t̂ !1Tr2~ r̂~2! t̃ ~1! t̃ ~1!Û !. ~2.7b!

Proceeding in the same way we obtain the complete
set of sum rules related to third moments ofx~3!

K111
~3! 52Tr1~ r̂~1! t̃ ~1!m̃ t̃ ~2! t̂ !2Tr2~ r̂~2! t̃ ~1!m̃ t̃ ~2!Û !, ~2.8a!

K021
~3! 5Tr1~ r̂~1! t̃ ~2! t̃ ~2! t̂ !22 Tr1~ r̂~1!m̃ t̃ ~1! t̃ ~2! t̂ !

1Tr2~ r̂~2! t̃ ~2! t̃ ~2!Û !22 Tr2~ r̂~2!m̃ t̃ ~1! t̃ ~2!Û !, ~2.8b!

K102
~3! 5K111

~3! , K012
~3! 5K021

~3! , ~2.8c!
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K201
~3! 52Tr1~ r̂~1! t̃ ~1! t̃ ~3! t̂ !2Tr2~ r̂~2! t̃ ~1! t̃ ~3!Û !, ~2.8d!

K003
~3! 53 Tr1~ r̂~1!m̃ t̃ ~2! t̃ ~1! t̂ !23 Tr1~ r̂~1!m̃m̃ t̃ ~1! t̃ ~1! t̂ !

2Tr1~ r̂~1! t̃ ~3! t̃ ~1! t̂ !13 Tr2~ r̂~2!m̃ t̃ ~2! t̃ ~1!Û !

23 Tr2~ r̂~2!m̃m̃ t̃ ~1! t̃ ~1!Û !2Tr2~ r̂~2! t̃ ~3! t̃ ~1!Û ! ~2.8e!

with

t̂ ~ j ![[ m̂,[ m̂,@ ...,@m̂, t̂#...#5(
p̄ q̄

t p̄q̄~m p̄2m q̄!
j ŝ p̄q̄ .

~2.9!

III. APPLICATION TO THE TDHF APPROXIMATION:
THE SINGLE ELECTRON DENSITY MATRIX

It has been shown in Ref. 11 that the TDHF equation ca
be viewed as Hamilton’s classical equation of motion on th
phase spaceM of all single Slater determinants which can
be described by single-electron reduced density matricesr̂0
satisfying the conditionr̂0

25 r̂0 . Each quantum operatorQ̂
then becomes a function onM, defined as the expectation
value ofQ̂ with respect to the Slater determinant represente
by r̂0. @The algebra of functions ofM is generated~as an
associative algebra! by the functionsŝaPA which form a
basis set of a matrix Lie algebraA generated by operators
ĉm̄

1ĉn̄ . For arbitrary functionjPA its value onr̂0PM is
ĵ( r̂0)5Tr( ĵr̂0).# The classical Hamiltonian corresponding to
the quantum Hamiltonian@Eqs. ~1.2!# which yields the
TDHF equation, has the form

ĤT~t!5Ĥ2m̂E~t!5 t̂1V̂2m̂E~t!, ~3.1a!

with

t̂5(
m

tmŝm , V̂5(
mn

Vmnŝmŝn , m̂5(
m

mmŝm .

~3.1b!

Expressions fortm , Vmn , andmm in terms of tm̄n̄ , Um̄n̄k̄l̄ ,
andmm̄n̄ were given in Ref. 11. The Poisson bracket for any
ĵ, ĥPA is determined by the commutator onA which is the
algebra of single-electron reduced density matrices

$ĵ,ĥ%5 i @ ĵ,ĥ#. ~3.2a!

This definition can be extended to arbitrary functions onM,
making use of the property

$ĵ,ĥ1ĥ2%5$ĵ,ĥ1%ĥ21ĥ1$ĵ,ĥ2%. ~3.2b!

We shall use the Heisenberg picture~which appears very
similar for the quantum and classical, i.e., TDHF cases! to
derive the TDHF sum rules.$The classical analog of the
Schrodinger–Liouville picture is based on following the evo-
lution of r̂PM:

^Q̂~t!&5Q̂@ r̂~t!#, i
]r̂~t!

]t
5@ t̂12V~ r̂ !2E~t!m̂,r̂ #,

whereV( r̂)[(mnVmnTr( r̂ŝn)ŝm . This constitutes the stan-
dard form of the TDHF equation%. In this case an operatorQ̂
becomes a distribution~a function in phase spaceM!. Equa-
No. 17, 1 November 1995ct¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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7643V. Chernyak and S. Mukamel: Sum rules for optical nonlinearities
tions ~1.8! apply here as well with the following differences
the superoperatorÃ acting in the space of distributions is
defined as

ÃB̂[2 i $Â,B̂%, ~3.3!

and ^B̂ur̂0& for any distributionB̂ denotes its value on a
reduced density matrixr̂0:

^B̂ur̂0&[B̂~ r̂0!. ~3.4!

In addition, r̂ should be replaced byr̂0 denoting the HF
ground state reduced density matrix~the stationary point of
the TDHF equation!.

Since the classical and the quantum Liouville equatio
are formally identical, the TDHF sum rules have the form o
Eqs.~1.9!, except that the superoperators are defined by E
~3.3!, the operatorm̂ on right-hand side of Eq.~1.9b! should
be understood as a distribution~i.e., a function onM!, and
^B̂ur̂0& for a distributionB̂ denotes its value atr̂0PM, and
r̂0 is the HF ground state density matrix@see Eq.~3.4!#.

We next evaluate Eq.~1.9b!, for a few cases. In the
TDHF caseKm1 ,...,mn

(n) has contributions of the form

^ŝa1
...ŝak

ur̂0&5 r̄a1,...,r̄ak, ~3.5a!

where

r̄a[^ŝaur̂0&[Tr~ ŝar̂0!. ~3.5b!

We shall consider systems satisfying Eqs.~2.3!. In the
TDHF approximation this implies

$m̂,V̂%50, m̂5(
n̄

m n̄ŝ n̄n̄ . ~3.6!

The TDHF sum rules related toK0...01
(n) have the same form

as the exact ones. The only difference is that the ground-s
single-electron reduced density matrix on the right-hand s
of Eqs. ~2.5! is now the HF~rather than the exact! density
matrix.

We next derive the lowest higher-order sum rules f
n51, 3 which are different for the quantum and classic
cases. We find

K2
~1!50, ~3.7a!

and

K3
~1!5^$m̂,$Ĥ,$Ĥ,$Ĥ,m̂%%%%ur̂0&. ~3.7b!

Making use of the Jacobi identity for the Poisson brack
which reads as

$ f̂ ,$ĝ,ĥ%%1$ĝ,$ĥ, f̂ %%1$ĥ,$ f̂ ,ĝ%%50

for any functions f̂ , ĝ, and ĥ, and the fact that
^$Ĥ,ĝ%ur̂0&50, ;ĝ ~which implies thatr̂0 is a stationary
point of the TDHF equation!, we can recast Eq.~3.7b! in the
form

K3
~1!5^$$m̂,Ĥ%,$Ĥ,$Ĥ,m̂%%%ur̂0&.

Noting that

$m̂,Ĥ%5 i @m̂, t̂#[ i t̂ ~1!5 i(
m̄ n̄

~mm̄2m n̄! t̄ m̄n̄ŝm̄n̄ ,
J. Chem. Phys., Vol. 103, NDownloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subjec
s
f
q.

ate
de

r
l

et

we get

K3
~1!52^$ t̂ ~1!,$ t̂ ~1!,Ĥ%%ur̂0&.

Evaluating the right-hand side of this equation we final
obtain

K3
~1!5Tr$@ t̂12V~ r̂0!, t̂

~1!#@ t̂ ~1!,r̂0#%

12 Tr$@ t̂ ~1!,r̂0#V~@ t̂ ~1!,r̂0# !%. ~3.7c!

In analogy with the above derivation we have calculate
the complete set of sum rules representing the third mome
of the third order response:

K111
~3! 5A131B, ~3.8a!

K201
~3! 5A13, K021

~3! 52A1312B1A22, ~3.8b!

K012
~3! 5K021

~3! , K102
~3! 5K111

~3! , ~3.8c!

K003
~3! 53A1313B13A221A31. ~3.8d!

Here we have introduce the notation:

Akj[Tr$@ r̂0 , t̂
~k!#@ t̂12V~ r̂0!, t̂

~ j !#%

12 Tr$@ r̂0 , t̂
~k!#V~@ t̂ ~ j !,r̂0# !%, ~3.9a!

B[Tr~@ r̂0 , t̂
~1!#@ t̂ ~1!, t̂ ~2!# !, ~3.9b!

and t̂ ( j ) were defined in Eq.~2.9!.

IV. DISCUSSION

In this paper we have introduced generalized sum ru
for the optical response of many-electron systems. In ea
order of nonlinear response we obtain a family of sum rule
analogous to the moments of linear absorption, which co
nect the response functions to ground state properties. Th
relations generally involve detailed ground state informatio
expressed in terms of a hierarchy of reduced density matri
~i.e., single electron, two electron, three electron, etc.!. We
have shown that at each order the response there is one
rule @Eq. ~2.5!# which only depends on the single-electro
ground-state reduced density matrices.

Making use of Hamilton’s form of the ‘‘classical’’ TDHF
equation, we have applied methods of classical dynamics
derived a family of simplified sum rules, which connect op
tical response functions to the single-electron reduced d
sity matrix of the HF ground state. It is interesting to no
that the sum rule is an exact relation between these two
proximate quantities, i.e., a response function in the TDH
approximation and the HF ground state single-electron
duced density matrix. This is a consequence of the fact t
the TDHF approach is a classical analog of the original qua
tum model and reflects an inherent consistency of the TDH
approach to the optical response and the stationary HF
proximation for the ground state. Since the ‘‘classical’’ su
rules only depend on the ground state single-electron
duced density matrix which controls the chemical bond o
der, these sum rules provide very powerful relations betwe
optical and chemical properties of molecules. We have c
culated the complete set of exact and TDHF sum rules
lated to the first and third moments ofx~1! andx~3! @see Eqs.
~2.5!, ~2.7!, ~2.8!, ~3.7c!, and~3.8!#.
o. 17, 1 November 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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7644 V. Chernyak and S. Mukamel: Sum rules for optical nonlinearities
The sum rules derived here can be applied to constr
effective Hamiltonians for many-electron systems using
an input optical and ground state properties which may
either calculated or taken from experiment.17–19 This is ac-
complished by treating the sum rules as a system of eq
tions for the parameters of the Hamiltonian. For the wi
class of Hamiltonians defined by Eqs.~2.1! or Eqs. ~3.1!
which satisfy Eqs.~2.3! the sum rules related toK0...01

(n) in-
volve the hopping matrixt̂ alone and do not contain the
Coulomb interaction parameters. These can be used to d
mine the hopping matrix. Since hopping is usually sho
range we need only a few sum rules. For example, if a m
ecule has a geometry of a long chain3,10,14we can make use
of translational symmetry and require only one sum rule
the nearest-neighbor hopping and two sum rules~involving
x~1! and x~3!! in the case of next nearest-neighbor hoppin
Sum rules related to higher-order moments can be use
determine the Coulomb interaction parameters. The s
rules derived in Secs. II and III.@Eqs.~2.7!, ~2.8!, ~3.7!, and
~3.8!# contain only the first power of the Coulomb interactio
matrix @which is a consequence of the conditions given
Eqs. ~2.3!#, and provide linear equations for the Coulom
interaction. It directly follows from Eqs.~2.3! that all the
sum rules related to the third moments of anyx(n) ~i.e., con-
nected withKm1 ...mn

(n) for m11•••1mn53! involve only the

first power of the Coulomb interaction and in the quantu
case do not involve higher than the two-electron density m
trix ~i.e., Km1 ...mn

(n) for m11•••1m35n can be expressed in

terms ofr̂~1! andr̂~2! for anyn!. The sum rules presented her
are particularly attractive for calculating the optical respon
of conjugated polymers. It has been demonstrated that on
few dominant collective modes contribute to their optic
susceptibilities. Therefore, they can be described in terms
a few parameters which can be determined using a fin
number of sum rules. This should result in a direct conn
tion between off-resonant nonlinear response and
ground-state single-electron reduced density matrix.
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