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The optical response of a many-electron system is calculated by mapping it onto a coupled set of
classical oscillators representing the electron–hole pair components of the reduced single-
electron-density matrix. This classical representation is rigorously established using a Poisson
bracket relation. Expressions for the nonlinear optical susceptibilities obtained using a
Green’s-function solution of the oscillator equations of motion are used to analyze the size scaling
of the off-resonant response and the resonant structure of the response. ©1996 American Institute
of Physics.@S0021-9606~96!03401-6#

I. INTRODUCTION

The mechanism of optical nonlinearities constitutes an
important fundamental problem with practical implications
connected with the synthesis of new optical materials with
large off-resonant nonlinear optical susceptibilities.1–5 Opti-
cal susceptibilities of small molecules may be calculated by
expanding them in the global~many-body! eigenstates of the
system. The response is then related to the eigenvalues and
the matrix elements of the polarization operator.6 However,
this approach becomes impractical for large systems since
the number of eigenstates involved in the response grows
rapidly with size. The response is in this case determined
primarily by statistical properties such as level correlations
which show up in multidimensional spectral densities rather
than by properties of the individual eigenstates.7 In addition,
the global eigenstates representation faces some serious dif-
ficulties in predicting the size scaling of the polarizabilities
since the;N scaling for large sizes~whereN is the number
of atoms! results from cancellations of terms which scale as
;N2.8 To obtain these cancellations by performing approxi-
mate calculations of the eigenstates one should ensure the
compatability of approximations for the ground and excited
states.9 These difficulties, known as the size-consistency
problem, can be overcome using many-body methods based
on a reduced description.10,11 This is obtained using equa-
tions of motion, which can be closed by invoking certain
approximations. In these approaches the correct scaling for
large sizes is built in from the start and it does not require a
delicate cancellation of terms. An application of a many-
body Green’s-function technique to Frenkel exciton systems
in molecular aggregates had clearly demonstrated these
points.7 The time-dependent Hartree–Fock~TDHF!12 is a
many-body technique which has been shown to be useful for
predicting optical properties of many-electron systems with
extended single-electron states and strong Coulomb interac-
tions. The method has been applied to study the resonant as
well as off-resonant optical properties of conjugated
polymers.13–15

In this paper we recast the TDHF equation for a many-
electron system driven by an external field in a form of
Hamilton’s classical equations of motion involving a classi-

cal Hamiltonian and a Poisson bracket16 defined on the clas-
sical phase space: the manifold of all single Slater determi-
nants representing the state of a many-electron problem. By
expanding the solution of the TDHF equation in powers of
the applied field we derive closed expressions for the lowest
three optical response functions. We then establish a coupled
oscillator~quasiparticle! picture for the response, and express
the response functions in terms of eigenmodes~oscillators!
of the linearized TDHF equation representing electron–hole
excitation. For a system ofM electrons withN available
orbitals the number of oscillators isM (N2M ). The nonlin-
ear response can be attributed to mode scattering. The ex-
pressions for the response contain commutators and traces in
the phase space of reduced single-electron-density matrices.
Size consistency, namely, the;N scaling of hyperpolariz-
abilities for large sizes, is naturally built in and requires no
delicate cancellations.

II. THE TIME-DEPENDENT HARTREE–FOCK
EQUATIONS

We consider a many-fermion system withM electrons
which can occupyN orthonormal states (M<N) denoted by
Latin indices with overbars~n̄,m̄,...! and the indices include
the spin.17 Assuming two-body interactions, the general sys-
tem Hamiltonian has the form

Ĥ5(
m̄n̄

t̄ m̄n̄ĉm̄
1ĉn̄1(

m̄n̄k̄l̄

V̄m̄n̄k̄l̄ ĉm̄
1ĉn̄

1ĉk̄ĉl̄ , ~2.1a!

where ĉ( ĉ1) are the electron annihilation~creation! opera-
tors which satisfy the Fermi commutation relations

ĉm̄ĉn̄
1

1 ĉn̄
1ĉm̄5dm̄n̄ , ~2.1b!

and all other anticommutators ofĉ and ĉ1 vanish. Without
loss of generality, the matrixV̄m̄n̄k̄l̄ is assumed to be antisym-
metric with respect to permutationsm̄ with n̄ and k̄ with l̄ .

We adopt the multipolar form of interaction with the
transverse electric field,18 and the total HamiltonianĤT of
the driven system is

ĤT~ t !5Ĥ2(
m̄n̄
E m̄n̄~ t !ĉm̄

1ĉn̄ , ~2.2!
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whereEmn(t) can be expressed in terms of the external field
E~r ,t!

E m̄n̄~ t ![E dr E~r ,t !mm̄n̄~r !. ~2.3!

Expressions for the matrix elementsmm̄n̄(r ) of the polariza-
tion operator were given in Refs. 14 and 17.

The TDHF procedure results in closed equations of mo-
tion for the reduced single-electron-density matrixrm̄n̄
[ ^cm̄

1cn̄&.
12–15 In this section we recast the time-dependent

Hartree–Fock equations in a form of Hamilton’s dynamical
equations of classical mechanics. We will adopt the follow-
ing convention. LetA be the space of linear operators acting
on the N-dimensional spaceV of single-electron states;
therefore,A is the single-electron Liouville space; we will
use a caret to denote the elements ofA. Any Q̂PA can be
viewed as a function onA:

Q̂~ r̂ ![Tr~ r̂Q̂! for r̂PA, ~2.4!

and we will also use a caret to denote functions onA. Let
ŝm̄n̄ be a basis set inA. The componentsrm̄n̄ of the reduced
density matrixr̂ are given by

rm̄n̄5ŝm̄n̄~ r̂ !5Tr~ r̂ŝm̄n̄!. ~2.5a!

Any elementQ̂PA can be represented in terms of its matrix
elementsQm̄n̄ :

Q̂5(
m̄n̄

Qm̄n̄ŝm̄n̄ . ~2.5b!

The associate algebra of functions onA is generated by
ŝm̄n̄ and we have

ŝm̄l n̄l
•••ŝm̄kn̄k

~ r̂ !5Tr~ ŝm̄1n̄1
r̂ !•••Tr~ ŝm̄kn̄k

r̂ !

5rm̄1n̄1
•••rm̄kn̄k

. ~2.5c!

Using this notation, the TDHF equation which describes the
evolution of the reduced density matrix can be presented in a
form

i
]r̂

]t
5@ t̂12V~ r̂ !2Ê~t!,r̂ #, ~2.6!

where

t̂[(
m̄n̄

t̄ m̄n̄ŝm̄n̄ , ~2.7a!

V̄~ r̂ ![
1

2 (
m̄n̄k̄l̄

@Tr~ r̂ŝm̄l̄ !ŝ n̄k̄1Tr~ r̂ŝ n̄k̄!ŝm̄l̄

2Tr~ r̂ŝm̄k̄!ŝ n̄l̄2Tr~ r̂ŝ n̄l̄ !ŝm̄k̄#V̄m̄n̄k̄l̄ . ~2.7b!

To recast the TDHF equation in Hamilton’s form we first
obtain a classical HamiltonianĤ. We make use of the fact
that the reduced density matrixr̂ is a projection operator@see
Eqs.~A1!# and associates with a givenr̂ anM -particle quan-
tum stateV( r̂) which is a single Slater determinant formed
by M single-electron states belonging toV ( r̂)[im( r̂) ~see

Appendix A!. This allows us to define a classical Hamil-
tonian on the Grassman manifoldM,A ~Ref. 19; see Ap-
pendix A!:

Ĥ~ r̂ ![^V~r̂ !uĤuV~r̂!&. ~2.8!

To express this Hamiltonian in terms of matrix elements ofr̂
we make use of the fact that

^V~r̂ !uĉm̄
1ĉn̄uV~r̂!&5rm̄n̄ ~2.9a!

and the Wick theorem10 which gives

^Vuĉm̄
1ĉn̄

1ĉk̄ĉl̄ uV&5^Vuĉm̄
1ĉl̄ uV&^Vuĉn̄

1ĉk̄uV&

2^Vuĉm̄
1ĉk̄uV&^Vuĉn̄

1ĉl̄ uV&. ~2.9b!

Substituting Eq.~2.1a! or Eq.~2.2! into Eq.~2.8! and making
use of Eqs.~2.9! and ~2.5! we obtain

Ĥ5(
m̄n̄

t̄ m̄n̄ŝm̄n̄1(
m̄n̄k̄l̄

V̄m̄n̄k̄l̄ ~ ŝm̄l̄ ŝ n̄k̄2ŝm̄k̄ŝ n̄l̄ !, ~2.10a!

ĤT~t!5Ĥ2Ê~t!, ~2.10b!

where the dipole interaction with the radiation field is

Ê~t![E dr E~r ,t!m̂~r !5(
m̄n̄
E m̄n̄~t!ŝm̄n̄ , ~2.10c!

with the dipole operator

m̂~r ![(
m̄n̄

mm̄n̄~r !ŝm̄n̄ . ~2.10d!

The Liouville equations of classical dynamics written for
distributions~functions onM! have the form16

d f̂

dt
5$Ĥ, f̂ % ~2.11a!

or, using our basis set,

d

dt
ŝm̄n̄5$Ĥ,ŝm̄n̄%. ~2.11b!

$ f̂ ,ĝ% denotes the Poisson bracket off̂ and ĝ, defined as
follows: We first introduce the elementary Poisson bracket

$ŝm̄n̄ ,ŝ k̄l̄ %[ i @ŝm̄n̄ ,ŝ k̄l̄ #, ~2.12a!

where the matrix commutator is

@ŝm̄n̄ ,ŝ k̄l̄ #[d n̄k̄ŝm̄l̄2dm̄l̄ ŝ k̄n̄ . ~2.12b!

Making use of the following properties of the Poisson
bracket:

$ f̂ ,ĝ%52$ĝ, f̂ %, ~2.13a!

$ f̂ ,ĝĥ%5$ f̂ ,ĝ%ĥ1ĝ$ f̂ ,ĥ%, ~2.13b!

we can extend the Poisson bracket definition to arbitrary
functions on our classical phase spaceM.

To present the equations in a compact form which sug-
gests possible generalizations~see Appendix B! we note that
A forms a Lie algebra with respect to the commutator given
by Eq. ~2.12b!. Since in the following all indices come in
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pairs, we shall adopt an abbreviated notation and hereafter
use a single Latin index to represent a pair of indices with
overbars. The basis set thus becomes

ŝm[ŝm̄n̄ for m5m̄n̄. ~2.14!

Writing the commutator in terms of structure constantsf ,

@ŝm ,ŝn#5(
a

f mn
a ŝa , ~2.15a!

we can extend the TDHF equation to an arbitrary Lie algebra
A whereŝm are assumed to form an orthonormal basis set
of A:

Tr~ ŝmŝn!5dmn . ~2.15b!

For the initial case@algebra gl(N;C)#, and using the new
single-index notation, the HamiltoniansĤ and ĤT can be
written in a form

Ĥ5(
m

tmŝm1(
mn

Vmnŝmŝn , ~2.16a!

ĤT~t!5Ĥ2Ê~t!, ~2.16b!

where

Ê~t![E dr E~r ,t!m̂~r !5(
m
Em~t!ŝm , ~2.16c!

with

m̂~r ![(
m

mm~r !ŝm . ~2.16d!

Here

f mn
a 5d n̄k̄dm̄ād l̄ b̄2dm̄l̄d k̄ād n̄b̄ , ~2.17a!

tm5 t̄ m̄n̄ , mm~r !5mm̄n̄~r !, ~2.17b!

Vmn5
1
2~V̄m̄k̄l̄ n̄2V̄m̄k̄n̄l̄ !1 1

2~V̄k̄m̄n̄l̄2V̄k̄m̄l̄ n̄!, ~2.17c!

wherem5m̄n̄, n5 k̄l̄ , a5āb̄.
The following equations hold for a general Hamiltonian

given by Eq.~2.16! and the Poisson bracket@Eq. ~2.15a!#.
Equations~2.17! will be used only at the end~see Appendix
F!. To connect the Liouville equation of motion@Eqs.~2.11!#
to the TDHF equations we recast the Liouville dynamical
equation in a form of the Hamilton’s equation for trajectories
in phase space~see Appendix C for derivation! and obtain

i
]r̂

]t
5@ t̂12V~ r̂ !2Ê~t!,r̂ # ~2.18a!

with

t̂[(
m

tmŝm , V~ r̂ ![(
mn

Vmn Tr~ r̂ŝn!ŝm , ~2.18b!

which coincides with the TDHF equation. Equation~2.18a!
can also be written for the componentsrm[Tr( r̂ŝm),

i
]ra
]t

5(
mb

tmfma
b rb12(

mnb
Vmnf na

b rmrb

2(
mb

Em~t! f ma
b rb . ~2.18c!

III. EXPANDING THE TDHF EQUATION IN THE
VICINITY OF A STATIONARY SOLUTION

Before the external field is applied, the system is at equi-
librium, and the reduced density matrixr̂ does not depend on
time @to avoid confusion between the time-dependent density
matrix r̂~t! and the stationary density matrix we denote the
latter using an overbar:r̄, r̄ is still an operator~r̄PA!; the
overbar is also used to denote its componentsr̄m[Tr~r̄ŝm)#:

r̂~t![r̄. ~3.1!

From Eqs.~2.18! we see that the stationary density matrixr̄
satisfies the nonlinear equation

(
mb

tmfma
b r̄b12(

mnb
Vmnf na

b r̄mr̄b50 ~3.2a!

which can also be written in a form

@ t̂12V~ r̄ !,r̄ #50. ~3.2b!

This constitutes the stationary Hartree–Fock equation~this is
a system of equations for all components of the reduced den-
sity matrix r̄! and its solutionr̄ represents the ground-state
reduced density matrix in the Hartree–Fock approximation.

To calculate the optical susceptibilities, we expand the
solution of the TDHF equations around their stationary point
r̄:

r̂~t!5 r̄1dr̂~t!. ~3.3!

Substituting Eq.~3.3! into Eq. ~2.18! and making use of Eq.
~3.2b! we obtain

2 i
]dra
]t

5(
mb

tmfma
b drb12(

mnb
Vmnf na

b r̄mdrb

12(
mnb

Vmnf na
b r̄mdrb2(

mb
Em~t! f ma

b r̄b

12(
mnb

Vmnf na
b drmdrb2(

mb
fmn
b
Em~t!drb

~3.4a!

or, alternatively,

i
]dr̂

]t
5@ t̂12V~ r̄ !,dr̂#22@ r̄,V~dr̂ !#2@Ê ,r̄ #

12@V~dr̂ !,dr̂#2@Ê ,dr̂#, ~3.4b!

and the polarization adopts the form~neglecting the equilib-
rium polarization Tr@m̂~r !r̄#, which does not participate in
the optical response!

P~r !5Tr„m̂~r !dr̂…5(
n

mn~r !drn . ~3.4c!
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Equation~3.4b! is the TDHF equation for the deviation of
the reduced density matrix from equilibrium. It can be solved
pertubatively inE , resulting in the optical susceptibilities.
The first three terms in the rhs of Eq.~3.4b! describe a sys-
tem of harmonic oscillators driven by an external field; the
last two terms represent the anharmonicities which lead to
the optical nonlinearities.

We shall now describe the ‘‘restricted scheme’’14,20 of
the TDHF equation which allows us to work with fewer vari-
ables. This more compact scheme is based on the fact that
the TDHF equation can be recast in a form@see Eq.~2.18a!#

]r̂

]t
5@ ĥ~ r̂,t!,r̂ #, ĥ~ r̂,t!PA ~3.5!

and, therefore, at any time,r̂~t! belongs to the orbit of the
Lie group related to the Lie algebraA which starts at point
r̄. A convenient choice of local coordinates in the vicinity of
r̄ is obtained choosing the particle–hole components of the
density matrix~we will denote the subspace of intraband and
interband components byA0 andA1, respectively!. We can
useA1 as a system of local coordinates on the orbit in the
vicinity of r̄ by introducing a ~nonlinear! mapping
T: A1→A0 so that anyr̂ which belongs to the orbit is
represented as

r̂5 r̄1 ĵ1T~ ĵ !, ĵPA1 . ~3.6!

Hereafter, we use Latin indices with primes and double
primes to denote the basis sets ofA1 andA0, respectively.
n8 represents electron–hole pairs whereasn9 represents ei-
ther electron–electron or hole–hole variables. In this nota-
tion we have

drn8[jn8 ~3.7a!

and

drn9[Tn9~ ĵ !, ~3.7b!

whereT can be expanded in powers ofj, starting with qua-
dratic terms:

Tn95 (
a8b8

Tn9,a8b8
~2! ja8jb81 (

a8b8c8
Tn9,a8b8c8

~3! ja8jb8jc81••• .

~3.8!

$The operatorT can be in principle obtained by solving the
constraint r̂25 r̂; however, the expansion coefficients Eq.
~3.8! can be derived for a more general case because using
the fact thatM is an orbit, the coefficients can be expressed
in terms of commutators~see Appendix B!. In other words,
the coefficientsT( j ) are universal functions of the structure
constantsf @Eq. ~2.15a!# and do not depend on the model.%

Substituting Eq.~3.6! into Eq. ~3.4b! and making use of
Eqs.~B4! we obtain forĵPA1

i
]ĵ

]t
5L~ ĵ !2@Ê ,r̄ #12@V~0!

„ĵ1T~ ĵ !…,ĵ #

12@V~1!
„T~ ĵ !…,r̄ #12@V~1!

„ĵ1T~ ĵ !…,T~ ĵ !#

2@Ê ~0!,ĵ #2@Ê ~1!,T~ ĵ !#, ~3.9a!

where

L~ ĵ ![@ t̂12V~ r̄ !,ĵ #22@ r̄,V~ ĵ !#, ~3.9b!

and Ê ( j ), V( j ) for j50,1 stand for partitions inA0 andA1,
respectively:

Ê5Ê ~0!1Ê ~1!, V5V~0!1V~1!. ~3.9c!

Due to Eq.~2.10d! the polarizationm̂~r ! is a function onM.
It can be viewed as a function ofĵ according to the repre-
sentation of Eq.~3.6!, and hence can be represented in a form

m̂~r ,ĵ !5Tr„m̂~r !ĵ…1Tr„m̂~r !T~ ĵ !…, m̂~r !PA. ~3.10a!

The two terms in the rhs of Eq.~3.10a! represent linear and
nonlinear terms inĵ. The polarizationP~r ,t! is given by

P~r ,t!5m̂„r ,ĵ~t !…5(
n8

mn8~r !jn81(
n9

mn9~r !Tn9 .

~3.10b!

Equation ~3.9a! together with Eq.~3.6! constitute the
‘‘restricted’’ system of TDHF equations which is based on
electron–hole variables alone.

IV. LINEAR OPTICAL RESPONSE AND OSCILLATOR
MODES

In this section we obtain a Green’s-function expression
for the linear response. This allows us to introduce the oscil-
lator modes which map the system onto a set of classical
oscillators, and provides a natural representation for the lin-
ear response. In the next section we calculate the nonlinear
response using the oscillator modes and relate it to oscillator
scattering.

We start by defining the response function corresponding
to dr̂, which represents the deviation of the reduced density
matrix from its equilibrium valuer̄, expanded in powers of
the external fieldE~t!. Switching to the frequency domain:

drn~t!5E dv

2p
e2 ivtdrn~v!, ~4.1a!

En~t!5E dv

2p
e2 ivtEn~v!, ~4.1b!

we introduce the response functions

Rnm1•••mJ

~J! ~2vs ;v1 ,...,vJ!,

defined by the expansion
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drn~vs!5 (
J51

`

(
m1•••mJ

E
2`

` dv1•••dvJ

~2p!J

32pd~v11•••1vJ2vs!

3Rnm1•••mJ

~J! ~2vs ;v1 ,...,vJ!

3Em1
~v1!•••EmJ

~vJ!. ~4.2a!

The response functionsR(J)~2vsr s ;v1r1,...,vJr J! which
express the microscopic polarization in terms of the external
field E~r ! in the frequency domain are related to the response
functions introduced by Eq.~4.2a! in the following way:

R~J!~2vsr s ;v1r1 ,...,vJr J!

5 (
nm1•••mJ

mn~r s!mm1
~r1!•••mmJ

~r J!

3Rnm1•••mJ

~J! ~2vs ;v1 ,...,vJ!. ~4.2b!

Applying the restricted scheme, we can solve Eq.~3.9a! it-
eratively and find the expansion fordrn8(vs). The expan-
sion fordrn9(vs) is obtained by applying Eq.~3.8!, and the
expansion coefficients give the response functionsR(J).

To obtain the linear response we introduce the Green’s
function Gn8m8(v) of the linearized TDHF equation@Eq.
~4.5!#,

Gn8m8~v![@~v2L̄ !21#n8m8 , ~4.3!

whereL̄ is the linear operatorL defined by Eq.~3.9b!, con-
fined toA1 @note thatL~A1!,A1#, and obtain the linear
response functionR~1! in a form

Rn8m8
~1!

~v![Rn8m8
~1!

~2vs ;v!5 (
a8b9

f b9m8
a8 r̄b9Gn8a8~v!.

~4.4!

All other components~i.e.,Rn9m8, Rn8m9, andRn9m9) vanish.
Equations~4.3! and ~4.4! show that the linear response

function can be expressed in terms of the eigenmodes of the
operatorL̄, denoted the oscillator modes~the reason will be
clarified later!. These modes can be obtained from the linear-
ized TDHF equation which follows from Eq.~3.9a! if we set
E~t![0 and only retain the linear terms,

i
]ĵ

]t
5L~ ĵ !. ~4.5!

The eigenmodesĵa of Eq. ~4.5! are defined by the equations

L~ ĵa!5Vaĵa , ĵaPA1 , ~4.6!

which implies thatĵa are the eigenmodes of the operatorL
confined onA1.

In order to show that Eq.~4.5! describes a set of har-
monic oscillators we recast it in a form of a Hamilton’s equa-
tion of classical dynamics. To that end, we expand the
Hamiltonian Ĥ @Eq. ~2.16a!# and the Poisson bracket@Eqs.
~2.12a!, ~2.15a!, and~2.13!# in the vicinity of r̄ in powers of
jn8, making use of Eq.~3.8!. To obtain the linearized TDHF

equation we retain up to quadratic terms in the Hamiltonian.
The linear terms of the expansion vanish due to the station-
ary Hartree–Fock equation@Eqs.~3.2!#. Neglecting the con-
stant termĤ( r̄) which does not contribute to the equations
of motion, the Hamiltonian becomes

Ĥ5
1

2 (
m8n8

Hm8n8ŝm8ŝn8 . ~4.7!

We will keep only the zero-order terms in the expansion of
the Poisson bracket$ĵ,ĵ8%. $ĵ,ĵ8% under this approximation
is a constant function equal to the value of$ĵ,ĵ8% at the
point r̄, which using Eq.~2.12a! yields

$ĵ,ĵ8%5 i Tr~ r̄@ ĵ,ĵ8# !; ~4.8!

Eq. ~4.5! can then be written in Liouville form@Eq. ~2.11!#
using Eqs.~4.7! and ~4.8!.

Equations~4.7! together with~4.8! define a harmonic
system. To map it into a set of uncoupled harmonic oscilla-
tors we use the equations of motion@Eq. ~4.5!#. It follows
from the fact that Eq.~4.5! can be written in the form of Eq.
~2.11! that the linear operatorL satisfies the following prop-
erties@for example, Eq.~4.9a! follows from the representa-
tion $L(û),v̂%52(m8n8Tr(ûŝm8)Tr( v̂ŝn8)Hm8n8]:

$Lû,v̂%52$û,L v̂%, ~4.9a!

~Lû!152Lû1, ~4.9b!

for any û, v̂PA1 @Eq. ~4.9a! means thatL is ‘‘Hermitian’’
with respect to antisymmetric scalar product defined by Eq.
~4.8!#.

Equations~4.9! imply the following important properties
of the eigenmodes:

$ĵa ,ĵb%50, if VaÞ2Vb ~4.10a!

and for each eigenmodeja with Va.0 we have an eigen-
modeĵ2a[ĵa

1 with

V2a52Va . ~4.10b!

Using Eq.~4.10b!, we can consider the modesĵa with a.0
~which implies a positive frequencyVa.0! only. Normaliz-
ing the modesĵa~a.0! with the condition

Tr~ r̄@ ĵa
1 ,ĵa# !51, ~4.11!

we obtain the Poisson brackets for the modes:

$ĵa ,ĵb%5$ĵa
1 ,ĵb

1%50, ~4.12a!

$ĵb
1 ,ĵa%5 idab , ~4.12b!

for any a, b.0. The HamiltonianĤ @Eq. ~4.7!# now be-
comes

Ĥ5 (
a.0

Vaẑa
1ẑa , ~4.13a!

where ẑa are functions related to an expansion ofĵ in the
modes

ĵ5(
a

~zaĵa1za* ĵa
1! ~4.13b!

as follows
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ẑa~ ĵ !5za ~4.13c!

and, therefore,

ẑa5@ r̄,ĵa
1# ~4.13d!

and

$ẑa ,ẑb
1%5 idab . ~4.13e!

Equations~4.12! and ~4.13! map the system onto a set of
noninteracting harmonic oscillators labelleda.0; Va is an
oscillator frequency andẑa and ẑa

1 are its variables. Alterna-
tively, we can use the momentum-coordinate variablesP̂a ,
Q̂a ,

Q̂a[2
i

&

~ ĵa2 ĵa
1!, ~4.14a!

P̂a[
1

&

~ ĵa1 ĵa
1!, ~4.14b!

with the Poisson brackets

$P̂a ,P̂b%5$Q̂a ,Q̂b%50, ~4.15a!

$P̂a ,Q̂b%5dab . ~4.15b!

We will use the abbreviated vector notation

X̂1a[ P̂a , X̂2a[Q̂a ~4.15c!

or equivalently

$X̂ia ,X̂jb%5e i jdab . ~4.15d!

It is important to note that the Poisson bracket is defined on
functions onM, whereas the eigenmodesĵa , ĵa

1 as well as
X̂ja are tangent vectors toM at the pointr̄PM, since that
the Poisson bracket in Eqs.~4.9a!, ~4.10a!, ~4.12!, ~4.14!, and
~4.15!, being an antisymmetric two-form defined on the tan-
gent space, is the symplectic structure21 rather than the Pois-
son bracket. However, since the scalar product onA de-
noted by Tr connects vectors to forms and the symplectic
structure~when applying this connection! has the same form
as the Poisson bracket, we will make no distinction between
the two objects. However, this leads to a definition ofP̂a and
Q̂a in terms of left and right variablesĵa and ĵa

1 which
differs from the conventional. This can be rationalized as
follows: The variables are actually the coefficient in the ex-
pansion ofj in the modes rather than the modes themselves.
The Poisson bracket and the transformation for these vari-
ables coincide with the conventional. In Eq.~4.15d! i , j51,2
andei j is the two-dimensional Levi–Cevita tensor with com-
ponentse1252e2151, e115e2250.

The operatorL is non-Hermitian. Nevertheless, one can
use Eqs.~4.12! or Eqs.~4.15! to expand vectorsûPA1 in
the oscillator variables and avoid inverting of the operator
~v2L!21 which was required in Ref. 15. To show this we
expand the projector operatorP :A→A1 which adopts a
form

P ~ û!5 (
a.0

Tr~ r̄@ ĵa
1 ,û# !ĵa2 (

a.0
Tr~ r̄@ ĵa ,û# !ĵa

1 ,

~4.16a!

or alternatively

P ~ û!5 (
a.0

$û,Q̂a%P̂a2 (
a.0

$û,P̂a%Q̂a , ~4.16b!

for any ûPA.
Using the notation of Eqs.~4.14!, Eq. ~4.16! can also be

presented in a form

P ~ û!5 (
a.0

e i j $û,X̂ja%X̂ia . ~4.16c!

Hereafter we adopt the convention that repeated indices with
values 1 and 2 should be summed over.

In summary, two eigenmodesĵa andĵa
1 of the operatorL̄

are associated with anath oscillator. SinceP̂a andQ̂a which
are not the eigenmodes ofL̄ are closely related to them@Eqs.
~4.14!# and have a clear physical meaning we will refer to
them as oscillator modes as well. Altogether there are
2M (N2M ) modes. We can now represent the linear optical
response in terms of the oscillator variables. To that end we
note that the Green’s functionG~v! in Eq. ~4.3! is diagonal
in the eigenmode basis set and make use of Eqs.~4.16!.
Introducing frequency-domain oscillator Green’s functions
Gi j

a ~v! ~i , j51,2!, which are 232 matrices for each oscillator
~since each oscillator represents a pair of phase space vari-
ables, a coordinate and a momentum!,

Gi j
a~v![

Vad i j2 ive i j
Va

22~v1 ig!2
, ~4.17a!

whereg is phenomenological damping. These describe the
solution of the linearized TDHF equation@Eq. ~4.5!# in terms
of the oscillator coordinate-momentum variableszia intro-
duced by Eq.~5.1!,

zma~t!5Gmn
a ~t!zna~0!, ~4.17b!

Gmn
a ~t![E dv

2p
emjGjn

a ~v!exp~2 ivt!, ~4.17c!

we obtain for the linear response, combining Eqs.~4.16! and
~4.4!,

R~1!~2vsr s ;vr !5(
a

m ia~r s!Gi j
a~v!m ja~r !, ~4.18a!

where

m ia~r ![Tr~@ r̄,m̂~r !#@X̂ia ,r̄ # !. ~4.18b!

Equations~4.17! and ~4.18! constitute the linear response,
expanded in the oscillator modes.

V. SECOND- AND THIRD-ORDER NONLINEAR
OPTICAL RESPONSE AND MODE SCATTERING

In this section we calculate the second- and third-order
nonlinear response functions and relate them to mode scat-
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tering. To that end, we recast the equations of motion@Eq.
~3.9!# in the oscillator form by introducing a coordinate sys-
tem based on the modes~oscillators!:

ĵ5(
a

zmaX̂ma . ~5.1!

Substituting Eq.~5.1! into Eqs. ~3.9!, making use of Eq.
~4.16c!, and neglecting all terms which lead to higher than
the third-order response in the external field we obtain the
TDHF equation

]zma

]t
1Vaemnzna2emnE dr E~r !mna~r !

5emn(
a1a2

Ana,m1a1 ,m2a2
zm1a1

zm2a2

1emn (
a8a1a2

Ana,m8a8,m1a1 ,m2a2

~1! zm8a8zm1a1
zm2a2

1emn(
a8

E dr E~r !Bna,m8a8~r !zm8a8

1emn(
a1a2

E dr E~r !Bna,m1a1 ,m2a2
~1! ~r !zm1a1

zm2a2
.

~5.2!

In Eq. ~5.2! we have used the following notation:

Ana,m1a1 ,m2a2
[Tr~@X̂na ,r̄ #@V~X̂m1a1

!,X̂m2a2
# !

1Tr~@X̂na ,r̄ #@V~X̂m2a2
!,X̂m1a1

# !

12 Tr~@X̂na ,r̄ #@V~Ŵm1a1 ,m2a2
!,r̄ # !, ~5.3a!

Bna,m8a8~r ![Tr~@ r̄,X̂na#@m̂~r !,X̂m8a8# !, ~5.3b!

Ana,m8a8,m1a1 ,m2a2

~1!

[2 Tr~@X̂na ,r̄ #@V~X̂m8a8!,Ŵm1a1 ,m2a2
# !

12 Tr~@X̂na ,r̄ #@V~Ŵm1a1 ,m2a2
!,X̂m8a8# !, ~5.3c!

Bna,m1a1 ,m2a2
~1! ~r ![Tr~@m̂~r !,Ŵm1a1 ,m2a2

#@ r̄,X̂na#!, ~5.3d!

Ŵia, jb[ 1
4@@X̂ia ,r̄ #,X̂jb#1 1

4@@X̂jb ,r̄ #,X̂ia#PA. ~5.3e!

The polarization truncated to quadratic order inz ~which is
the order required for the third-order response! is

P~r !5(
a

mna~r !zna1(
ab

Sma,nb~r !zmaznb . ~5.4a!

mna~r ! was defined in Eq.~4.18b! and

Sia, jb~r ![ 1
4 Tr~@X̂ia ,r̄ #@X̂jb ,m̂~r !# !1 1

4 Tr~@X̂jb ,r̄ #

3@X̂ia ,m̂~r !# !5 1
4Bia, jb~r !1 1

4Bjb,ia~r !.

~5.4b!

Equations~5.2! and~5.4! can be alternatively derived by
expressing the Poisson bracket and the Hamiltonian in terms
of the variables given by Eq.~5.1! and applying Hamilton’s

equation of motion using these variables. The Poisson
bracket and the Hamiltonian are expressed in terms ofzma in
Appendix D.

Setting the rhs of Eq.~5.2! to zero and neglecting the
second term in the rhs of Eq.~5.4a! we obtain a system of
uncoupled harmonic oscillators with zero nonlinear response.
Equations~5.2! and ~5.4a! express the nonlinear response in
terms of mode scattering. The quantities entering Eqs.~5.2!
and ~5.4a! defined by Eqs.~5.3! and ~5.4b! ~see Fig. 1 for
diagrammatic representation! have the following signifi-
cance:mia~r ! describes the creation of the modeia by the
external field acting at the pointr or formation of polariza-
tion at r coming from the modeia, Sia, jb~r ! gives the po-
larization atr generated by a combination of the modesia
and jb, andA andB describe scattering of modes.Aia,mm,nn

represents a process whereby the modeia is obtained out of
a pair of modesmm andnn; Bia, jm~r ! describes a scattering
of the modejm on the external field at pointr , which creates
the mode ia. Ana,m8a8,m1a1 ,m2a2

(1) describes a process of

forming a particle–particle component of the density matrix
Ŵ out of two modesm1a1 andm2a2 which forms the mode
na being scattered on the modem8a8. Bna,m1a1 ,m2a2

(1) (r ) is
related to a similar process with the only difference that the
mode na is formed as a result of scattering ofŴ on the
external field at pointr . Optical response functions can be
obtained by solving Eq.~5.2! iteratively and applying Eq.
~5.4a!. The second-order response has a form of three con-
tributions ~see Fig. 2 for diagrammatic representation!,

FIG. 1. Elements of the diagram technique related to scattering processes
discussed in Sec. V, which contribute to the nonlinear response.

FIG. 2. Diagrammatic representation of three contributions toR~2! corre-
sponding to Eqs.~5.6a!–~5.6c!.
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R~2!~2vsr s ;v1r1 ,v2r2!5 (
n51

3

Rn
~2!~2vsr s ;v1r1 ;v2r2!

~5.5!

with

R1
~2!~2vsr s ;v1r1 ,v2r2!

5 (
amn

k ia8 ~vsr s!Aia, j 1m, j 2nk j 1m~v1r1!k j 2n~v2r2!,

~5.6a!

R2
~2!~2vsr s ;v1r1 ,v2r2!

5(
am

k ia8 ~vsr s!Bia, jm~r2!k jm~v1r1!, ~5.6b!

R3
~2!~2vsr s ;v1r1 ,v2r2!

5(
ab

Sia, jb~r s!k ia~v1r1!k jb~v2r2!, ~5.6c!

where

k ja~vr ![Gjm
a ~v!mma~r !, ~5.7a!

k ja8 ~vsr s![mma~r s!Gmj
a ~vs!. ~5.7b!

Similarly, the third-order nonlinear responseR~3! can be
represented as a sum of eight contributions~see Fig. 3!:

R~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!

5 (
n51

8

Rn
~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!. ~5.8!

These contributions in the mode representation are given in
Appendix E.

Expressions for the static response functions@R~1!~r s ,r !,
R~2!~r s ;r1,r2! andR

~3!~r s ;r1,r2,r3!# can be obtained by set-
ting all frequencies in Eqs.~4.18a!, ~5.6!, and ~E1! to zero.
Equation~4.17a! for the Green’s functionGi j

a ~v! then yields
Gi j

a (v)5d i j /Va . For the linear response we have

R~1!~r s ,r !5(
a

m ja~r s!m ja~r !

Va
. ~5.9!

The second-order response functionR~2! is a sum of three
contributions,

R1
~2!~r s ;r1 ,r2!5 (

amn

m ia~r s!m jm~r1!msn~r2!

VaVmVn
Aia, jm,sn ,

~5.10a!

R2
~2!~r s ;r1 ,r2!5(

an

m ia~r s!m jn~r1!

VaVn
Bia, jn~r2!, ~5.10b!

R3
~2!~r s ;r1 ,r2!5(

ab

m ia~r1!m jb~r2!

VaVb
Sia, jb~r s!. ~5.10c!

The corresponding expressions for the third-order response
are given in Appendix E as well.

In summary, to calculate the optical response functions
within the TDHF approximation one should proceed in the
following steps.~i! Starting with the quantum Hamiltonian
@Eqs. ~2.1a! and ~2.2!# determined by parameterst̄ m̄n̄ ,
V̄m̄n̄k̄l̄ , and mm̄n̄ we obtain the classical Hamiltonian and
expression for polarization@Eq. ~2.10!# which are determined
by the matricest̂ and m̂ and a superoperatorV acting in the
space of reduced density matrices and defined by Eq.
~2.18b!. These are expressed in terms of the initial param-
eters of the model by means of Eqs.~2.17! and ~2.18b!. ~ii !
Solve the stationary Hartree–Fock equation@Eqs. ~3.2!#
which is written in terms oft̂ andV, and obtain the ground-
state density matrixr̄. ~iii ! Find the eigenmodesĵa of the
linearized TDHF equation solving the linear problem@Eq.
~4.6!#; the linear operatorL is expressed in terms oft̂, V,
andr̄ @Eq. ~3.9b!#. ~iv! Calculate the oscillator variablesX̂ia

@Eqs. ~4.14! and ~4.15c!#. ~v! Calculate the dipole moments
of the modes@Eq. ~4.18b!# and the anharmonicity constants
@Eqs. ~5.3! and ~5.4b!#. Upon substituting them into Eqs.
~4.18a!, ~5.6!, and~E1! we finally obtain the optical response
functions.

VI. SIZE CONSISTENCY OF THE OSCILLATOR
REPRESENTATION

In this section we consider the optical response of long
one-dimensional chains~e.g., conjugated polymers or semi-
conductor quantum wires! with translational symmetry~i.e.,

FIG. 3. Diagrammatic representation of eight contributions toR~3! corre-
sponding to Eqs.~E1a!–~E1h!.
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a one-dimensional lattice!.2,3,14We will show that the third-
order polarizability scales linearly with the number of sites.
More importantly, each of the eight terms in Eqs.~E1! has
the correct scaling, and the problem of interference among
large terms, which usually complicates the size consistency,
does not exist in this picture. We consider a semiempirical
model, with the Hamiltonian given by Eqs.~2.1! and ~2.2!,
and with the parameters defined in Appendix F@Eqs. ~F1!
and~F2!#. We choose thez axis of our coordinate system in
the chain direction, so that

Rn5~0,0,zn!, zn[na, ~6.1!

wherea is the lattice constant~in this section we use Latin
indices to denote the sites!. We will treatE as thez compo-
nent of the external electric field, and invoke the dipole ap-
proximation~assuming that the optical wavelength is larger
than the chain size!. This allows us to neglect ther depen-
dence ofE , i.e.,E~r ,t!5E~t!, and leads to

mn~r !5eznd~r2Rn!, ~6.2a!

En~t!5eznE~t!. ~6.2b!

We assume that the ground state is a singlet with respect to
the spin variables, and as shown in Appendix F the spin
variables can be omitted and we only need to follow the
evolution ofrmn wherem andn denote the sites.

If the chain is longer than all relevant coherence sizes
but still shorter than the optical wavelength, we can invoke
the dipole approximation, yet neglect boundary~edge! ef-
fects. The HamiltonianĤ without the external field possesses
the translational symmetryn→n11. In the conjugated phase
the symmetry is spontaneously broken up to the symmetry
n→n12, i.e., translations with respect to the unit cell which
has the size of two lattice constants~2a!. In the Hartree–
Fock approximation this implies that the ground-state density
matrix r̄mn which is the solution of the stationary Hartree–
Fock equation has the following properties:

r̄m11,n11Þr̄mn , ~6.3a!

r̄m12,n125 r̄mn . ~6.3b!

The Hamiltonian is obtained from Eq.~F4a! by omitting the
spin variables and assuming

t̄mn5 t̄m2n , Umn5Um2n , ~6.4!

resulting in

Ĥ5(
mn

t̄m2nŝmn1(
mn

Um2nŝmmŝnn

2(
mn

Um2nŝmnŝnm . ~6.5a!

The HamiltonianHT of the driven system can be obtained
from Eqs.~F4! by making use of Eqs.~6.2!:

ĤT5Ĥ2e(
n

znŝnnE~t!. ~6.5b!

Ĥ possesses translational symmetry with respect to a unit
cell; however, the Hamiltonian of the driven systemĤT does

not have such symmetry due to the factorszn in the last term
of Eq. ~6.5b!. Nevertheless, translational symmetry is recov-
ered in the equations of motion, as can be seen from the
TDHF equation, which follows from Eqs.~2.11!, ~6.5b!, and
~2.12!:

i
]ŝmn

]t
5 i $Ĥ,ŝmn%2e~zm2zn!ŝmnE~t!. ~6.6!

This implies that Eq.~6.3b! holds at all times; i.e., the re-
duced density matrix possesses translational symmetry with
respect to a unit cell at all times. Consequently, the relative
motion of electron–hole pairs is factorized from their center
of mass, and only electron–hole pairs with zero total mo-
mentum contribute to the response.

The TDHF equations@Eqs. ~2.18!# and the expressions
for the response functions@Eqs. ~4.18!, ~E1!, and ~5.3!–
~5.10!# have been obtained for an arbitrary algebra. In par-
ticular, they apply to the matrices obeying Eq.~6.3b! which
form a closed algebra. As a result the modes will be repre-
sented by density matrices satisfying Eq.~6.3b! which de-
scribe the relative electron–hole motion.

We adopt the following representation for reduced den-
sity matricesrmn satisfying Eq.~6.3b!:

r2n,2m5 r̃00~n2m!, r2n11,2m115 r̃11~n2m!,
~6.7!

r2n11,2m5 r̃10~n2m!, r2n,2m115 r̃01~n2m!.

Equations~6.7! representrmn in a form of n 232 matrices
r̃i j (n), where i , j50,1. The matrix product in the space of
matricesr̂ induces a product in the space of matrix functions
r̃(n):

~ r̃h̃ ! i j ~n!5 (
k50,1

(
m52`

`

r̃ ik~n2m!r̃k j~m!. ~6.8!

Equation~6.8! implies that a product of matrix functions is a
matrix product with respect to matrix indices and a convolu-
tion with respect to the argument. The definition of product
given by Eq.~6.8! leads to the usual definition of the com-
mutator~i.e., [r̃,h̃][r̃h̃2h̃r̃).

We define Tr(r̃) as

Tr~ r̃ ![r̃00~0!1 r̃11~0!, ~6.9a!

which is related to Tr(r̃) by

Tr~ r̂ ![~N/2!Tr~ r̃ !, ~6.9b!

whereN/2 is the number of unit cells in the chain. The scalar
product is defined by

Tr~ r̃h̃ !5 (
i , j50,1

(
m52`

`

r̃ i j ~m!h̃ j i ~2m!, ~6.10a!

and satisfies

Tr~ r̂ĥ !5~N/2!Tr~ r̃h̃ !. ~6.10b!

We can now apply the expressions of Sec. V to calculate
the hyperpolarizabilities. The second-order polarizability
b~2vs ;v1,v2! vanishes in cenrosymmetric systems. We de-
fine the third-order polarizabilityg
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g~2vs ;v1 ,v2 ,v3![E dr s dr1 dr2 dr3

3R~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!.

~6.11a!

Normalizing the eigenmodes according to Eq.~4.11! or,
equivalently, Eqs.~4.12! or Eqs.~4.15! using the definition of
the trace given by Eqs.~6.9a! and ~6.9b!, we obtain

g~2vs ;v1 ,v2 ,v3!5~N/2!R~3!~2vs ;v1 ,v2 ,v3!,
~6.11b!

whereR~3!~2vs ;v1,v2,v3! is a sum of eight contributions
R1
(3) ,...,R8

(3) corresponding to Eqs.~E1a!–~E1h!. These con-
tributions have the form of Eqs.~E1! provided we omit ther
arguments ofB, S, B~1!, k, andk8 and define the coefficients
in Eqs.~E1! in the following way:A, A~1!, andŴ are given
by Eqs.~5.3a!, ~5.3c!, and~5.3e!;

k ia~v![Gi j
a~v!Tr„m~r̄!@X̂ja ,r̄ #…, ~6.12a!

k ia8 ~vs![Tr„m~r̄!@X̂ja ,r̄ #…Gji
a~vs!, ~6.12b!

Bia, jm[Tr~@X̂ia ,r̄ #m„X̂jm!…, ~6.12c!

Bia,i1a1 ,i2a2
~1! [Tr~@X̂ia ,r̄ #m„Ŵi1a1 ,i2a2

!…, ~6.12d!

Sia, jb[ 1
4 Tr„@X̂ia ,r̄ #m~X̂jb!…1 1

4 Tr~@X̂jb ,r̄ #m„X̂ia!….

~6.12e!

The algebraA in this case is represented by 232 matrix
functions r̃i j (n); i , j50,1. In Eqs.~6.12! m: A→A, which
acts as follows:

„m~r̃!…i j ~n![2ea~2n1 i2 j !r̃ i j ~n!. ~6.13!

The operatorV and the vectort̂PA enter in the definition of
L @Eq. ~3.9b!# which determines the modes@Eq. ~4.6!#. They
appear in the definition ofA andA~1! @Eqs.~5.3a! and~5.3c!#
and assume the form

t̃ i j ~n![ t̄2n1 i2 j , ~6.14a!

@V~ r̃ !# i j ~n![d i jd~n! (
k50,1

(
m52`

`

U2m1 i2kr̃kk~0!

2U2n1 i2 j r̃ i j ~n!, ~6.14b!

wherei , j50,1.
Equations~E1! applied to the algebra defined by Eqs.

~6.7!–~6.10! are expressed in terms of the modes of the rela-
tive motion of electrons and holes which do not depend on
N. Therefore,R1

(3) ,...,R8
(3) do not depend onN as well, and

Eq. ~6.11b! yields the;N scaling of all eight contributions
to g @Eqs. ~E1a!–~E1h!#. The origin of theN factor in Eq.
~6.11b! can be rationalized as follows: In order to obtain the
perturbative expansion of the deviation of the reduced den-
sity matrix from its stationary value in the external field we
can apply the results of Sec. V to the algebra defined by Eqs.
~6.7!–~6.10! which does not containN as a parameter. This
yields Eqs.~E1! which do not containN. However, in calcu-

lating the total polarization one needs to use the conventional
definition of the trace which gives theN/2 factor in Eq.
~6.11b! due to Eq.~6.10b!.

Although we have already demonstrated theg;N scal-
ing of the nonlinear response for each contribution@see Eqs.
~6.11! and~E1!# it will be instructive to show how this scal-
ing follows naturally from the normalization of the modes
@Eq. ~6.7!# with the usual definition of the trace. To that end
we consider Eqs.~6.12! and~5.3!, and make use of the trans-
lational symmetry which holds at large sizes, and implies
that each oscillator mode has a factor ofN21/2, the trace
gives a factor ofN, and the commutators do not yield any
size-dependent factors. We then obtain the following large-
size scaling properties of the parameters entering Eqs.~E1!:

k ia;N1/2, Aia,mm,nn;N21/2, Bia, jm;N0, ~6.15a!

Aia, jb,i1a1 ,i2a2
~1! ;N21, Bia,i1a1 ,i2a2

~1! ;N21/2, ~6.15b!

Sia, jb;N0, Gi j
a ;N0. ~6.15c!

Substituting Eqs.~6.15! into Eqs. ~E1! we obtain the;N
scaling of each of the eight contributions given by Eqs.
~E1a!–~E1h!.

Equations~6.15! are useful for studying the size depen-
dence of hyperpolarizabilities. Adopting the dominant mode
picture14,15which means that only a few modes~in the sim-
plest case, oneBu and oneAg mode! contribute to Eqs.~E1!,
we can express the response in terms of specific properties of
the modes@i.e., the parameters in Eqs.~6.15!#. This means
that the dominant modes constitute the collective variables
~quasiparticles! of the system. Deviations from the;N scal-
ing of nonlinear hyperpolarizabilities for smaller sizes is then
due to deviations of the scaling properties of these param-
eters, Eqs.~6.15!.

Finally, we note that the expressions for the optical re-
sponse derived in this section hold for a more general model
with an arbitrary numberL of orbitals per unit cell, irrespec-
tive of the mechanism of formation of a unit cell~here we
have considered the translational symmetry-breaking mecha-
nism!. In this case matricesr̃i j (n) becomeL3L ~instead of
232! n-dependent matrices.

VII. DISCUSSION

In this paper we represented the TDHF equation for a
nonrelativistic many-electron system~whose Hamiltonian
conserves the number of particles! in a form of the Hamil-
ton’s classical equation of motion. Since the optical response
functions are determined by dynamics in the vicinity of the
stationary pointr̄, the global geometric properties of the
phase space~which is the manifold of all single Slater deter-
minants! do not affect the response to weak fields. We can
therefore introduce a system of local coordinates in the vi-
cinity of r̄ and expand the Poisson bracket and the Hamil-
tonian in these coordinates. This was done in Appendix D for
a particular choice of coordinates representing the particle–
hole eigenmodes of the linearized TDHF equation. These
results establish an oscillator picture of the response in the
following sense: Using this coordinate system in phase
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space, we obtain the Poisson bracket which is canonical to
first nonvanishing order~in powers of coordinates! and the
Hamiltonian which starts with quadratic terms. This implies
that in zeroth order we have a system of uncoupled harmonic
oscillators. Optical nonlinearities are induced by higher-
order terms in the expansion of the Hamiltonian as well as
the Poisson bracket in powers of the phase-space coordi-
nates; the former terms can be considered as nonlinearities
induced by anharmonicities, and the latter represent nonlin-
earities due to nonboson statistics of quasiparticles. The
Poisson bracket up to the terms in the expansion which con-
tribute to the second- and third-order response is given in
Appendix D @Eqs. ~D7!#. The corresponding expansions for
the dipole operator and the Hamiltonian are

m̂~r !5(
a

m ia~r !ẑ ia1(
mn

Sim, jn~r !ẑ imẑ jn, ~7.1!

Ĥ5(
a

Vaẑmaẑma2
1

3 (
amn

Aia,mm,nnẑ iaẑmmẑnn

2
1

4 (
a1a2b1b2

Am1a1 ,m2a2 ,n1b1 ,n2b2
~1! ẑm1a1

ẑm2a2
ẑn1b1

ẑn2b2

1
1

4 (
a1a2b1b2

Va2
em1n

Fna1 ,m2a2 ,n1b1 ,n2b2

3 ẑm1a1
ẑm2a2

ẑn1b1
ẑn2b2

, ~7.2!

where the functionsẑma are defined in Appendix D@Eqs.
~D3!# andA, A~1!, S, andF are given by Eqs.~5.3a!, ~5.3c!,
~5.4b!, and~D7b!. The equation of motion for thezma vari-
ables@Eq. ~5.2!# can be obtained by substituting the Hamil-
tonian @Eqs. ~7.1! and ~7.2!# and the Poisson bracket@Eqs.
~D7!# into the Liouville equation@Eq. ~D2!#. This derivation
which leads to the same equation of motion@Eq. ~5.2!# is
different from those used in Sec. V, where we adopted the
following scheme: Starting with the Liouville equation in an
invariant form we derived the Hamilton’s equation in an in-
variant form@Eq. ~3.4b! or Eq. ~3.9a!# and then switched to
the zma variables. The alternative derivation presented here
starts by recasting the Poisson bracket and the Hamiltonian
in terms of thezma variables which leads to the Liouville and
then to the Hamilton’s equation of motion, both written using
these variables. The latter derivation, though more compli-
cated in practice, highlights the Hamilton’s structure of Eq.
~5.2! and describes the anharmonicity constants as coeffi-
cients in the expansion of the Poisson bracket and the Hamil-
tonian in powers of the oscillator variables.

Classification of different contributions~i.e., originating
either from statistics or anharmonicity! to the response can
be made in the following way. Since a Poisson bracket can
be always presented locally in the canonical form after a
proper coordinate transformation, and since our Poisson

bracket is canonical to first nonvanishing order, we can make
it exactly canonical by applying a transformation which does
not contain linear terms. In practice it can be obtained in a
form of an expansion in coordinates which starts with qua-
dratic terms. Since the Poisson bracket becomes canonical,
the system can be treated as a set of coupled oscillators with
anharmonicities given by the higher than quadratic terms in
the Hamiltonian. Optical nonlinearities are induced by the
higher-order terms in the Hamiltonian~anharmonicities! as
well as the nonlinear terms in the expansion of the dipole
moment~effects of statistics!.

Hamilton’s form of the TDHF equations is crucial for
obtaining simple expressions for ‘‘scattering’’ constants~an-
harmonicities! entering the nonlinear response functions in
the oscillator representation. The matrixL̄ in Eq. ~4.3! for the
Green’s function of the linearized TDHF equation@Eq. ~4.5!#
is non-Hermitian, and one cannot use projections onto modes
for inverting the matrix~v2L̄!21. A direct numerical inver-
sion procedure has been used in Ref. 15. This poses, how-
ever, the following problem: To obtain an anharmonicity
constant related to a scattering process of, say, a pair of
modes, we need to have information about all modes of the
linearized TDHF equation. This seriously complicates the
dominant mode representation;14,15although the response in-
volves only a few modes, the anharmonicity constants and
hence the response cannot be expressed in terms of these
modes alone@one needs information about all modes to in-
vert ~v2L̄!#, and the dominant modes cannot be regarded as
genuine collective variables. This problem can be overcome
using the Hamilton’s origin of the TDHF equation: The ma-
trix L̄ is symplectic, i.e., ‘‘Hermitian,’’ with respect to the
antisymmetric ‘‘scalar product’’ defined by the Poisson
bracket@see Eqs.~4.8! and~4.9!#, and a projection technique
using an antisymmetric ‘‘scalar’’ product can be used@see
Eqs.~4.16!#.

Another important consequence of Hamilton’s form of
the TDHF equation is that the response functions can be
written in terms of commutators and traces for a general
algebra which makes it possible to prove easily the;N scal-
ing of the response functions for large sizes; it is important to
note that even though the response functions contain a large
number of contributions, they all scale as;N and we need
not worry about cancellations of;N2 terms.8

Alternatively, it is possible to consider the entire reduced
density matrix elements as oscillators.15 In that case, we ob-
tainN2 @rather thanM (N2M )# oscillators. Although the two
approaches are mathematically equivalent, the present re-
stricted scheme has several advantages. First, it requires con-
siderably fewer oscillators, which simplifies the calculation
as well as the analysis. Second, Hamilton’s form of the
TDHF equation makes it possible to express the anharmonic-
ity constants representing mode scattering in terms of the
modes involved in a particular elementary scattering process.
This is particularly useful for analyzing the dynamical be-
havior of the system. In the other approach, the expression
for each scattering process involves all the modes of the
linearized TDHF equation. This becomes particularly advan-
tageous in the ‘‘dominant mode picture,’’14 i.e., when only a
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few modes ~oscillators! contribute to the response. The
dominant modes then become well-defined collective vari-
ables, and the response is expressed in terms of their indi-
vidual properties.

Finally, we note that Hamilton’s form of the TDHF
equations allows us to derive a family of sum rules22 con-
necting the optical response to the ground-state reduced
single-electron-density matrix.23 In addition, since we con-
sider a general Lie algebra, the analog of the TDHF equa-
tions ~generalized TDHF equations! can be derived for a
more general class of systems.
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APPENDIX A: THE GRASSMAN MANIFOLD AND
POISSON BRACKET RELATIONS

In this appendix we discuss the Grassman manifold in
the TDHF equation. Within the TDHF approximation the re-
duced density matrixr̂~t! remains a projector operator at all
times, i.e.,

r̂25 r̂ ~A1a!

and

rank~ r̂ !5M , ~A1b!

whereM is the number of electrons. LetM be the space of
Hermitian matricesr̂ satisfying Eqs.~A1!. Any matrix of this
type can be uniquely associated with anM -dimensional sub-
spaceV ( r̂) of theN-dimensional complex vector space of
single-electron statesV 5CN,

V ~ r̂ ![ im~ r̂ !, ~A2!

where im(r̂) is the image ofr̂, i.e., a vector subspace con-
sisting of vectorsv which can be represented asvm̄
5 ( n̄rm̄n̄un̄ , un̄ being basis set vectors. This implies that the
reduced density matrices which satisfy the conditions of Eqs.
~A1b! form a Grassman manifoldG(M ,N;C) defined as the
set of all M -dimensional complex vector subspaces of a
complex N-dimensional vector space.19 We can therefore
treat the TDHF equation as a dynamical equation on the
Grassman manifoldG(M ,N;C). In order to express the
TDHF equation in a form of Hamilton’s classical dynamics
we need to introduce a Poisson bracket onM5G(M ,N;C)
and a classical HamiltonianĤ ~which is a function onM! so
that the equation can be represented as in the Liouville form
@Eq. ~2.11!#. A Poisson bracket onM can, in principle, be
induced by the canonical symplectic structure on a Grassman
manifold.19 However, in Sec. II we introduced it algebra-
ically. It is easy to show that the Poisson bracket defined by
Eqs. ~2.12! and ~2.13! coincides with the canonical Poisson
bracket onG(M ,N;C).19

APPENDIX B: ALGEBRAIC ASPECTS OF THE TDHF
EQUATIONS

In this appendix we present the TDHF equations on an
orbitM of a Lie algebraA @the conventional TDHF equa-
tions are related to the case whenA5gl(N,C) is a full lin-
ear matrix algebra#.

Let A be a complex Lie algebra with a nondegenerate
invariant scalar product denoted Tr(ûv̂) for any û,v̂PA and
a real structurer :A→A, which is an antilinear mapping
@i.e., r (lû)5l* r (û) for any lPC, ûPA#. The invariance
of the scalar product means

Tr~ û@ v̂,ŵ# !5Tr~ v̂@ŵ,û# ! ~B1!

for any û,v̂,ŵPA. We will also use a notationû1[r (û).
Each orbitM of the coadjoint representation of the Lie

groupG associated with the real form ofA ~which consists
of all ûPA with û15û! has a symplectic structure, i.e., a
nondegenerate closed two-formv on M which defines a
Hamilton structure.21

Since the scalar product forms an isomorphism between
A andA* ~the space of linear functionals onA! there is no
difference between coadjoint and adjoint representations and
we will work with the latter. Therefore, pointsr̂PM can be
considered as elements ofA ~sinceM,A*>A!. Ele-
mentsûPA can be viewed as functions onM defined as

û~ r̂ ![Tr~ ûr̂ ! for r̂PM. ~B2!

The algebra of functions onM is generated~as an associa-
tive algebra! by elements ofA. The Poisson bracket onM
associated with the canonical sympectic structure onM can
be defined algebraically,

$ f̂ ,ĝ%[ i @ f̂ ,ĝ#, ~B3!

for any f̂ ,ĝPA and then extended to any functionsf̂ and ĝ
using Eqs.~2.13!.

The TDHF equations have been derived in Sec. II for
this general case whenŝm in the expression for the Hamil-
tonian@Eqs.~2.16!# form a basis set ofA. The conventional
TDHF equations correspond to the particular case when
A5gl(N,C), andM is the Grassman manifold.

A local coordinate system onM in the vicinity of the
stationary pointr̄PM can be introduced as follows. LetA
be represented in a form

A5A0%A1 , ~B4a!

whereA0 is the stabilizer of the orbit; i.e., it consists of all
ûPA commuting withr̄.A1 satisfies the following condi-
tions:

@ û,v̂#PA0 , if û,v̂PA1 , ~B4b!

@ û,v̂#PA1 , if ûPA0 ,v̂PA1 , ~B4c!

andA1 can be considered as a local coordinate system in
view of Eq. ~3.6!.

Finally, we show how to obtain the expansion ofT( ĵ) in
powers ofĵ. Sincer̂ belongs to an orbit of the adjoint rep-
resentation we obtain, making use of Eq.~3.6!,
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r̄1 ĵ1T~ ĵ !5 r̄1@ĥ,r̄ #1 1
2†ĥ,@ĥ,r̄ #‡1••• ~B5!

for someĥPA1 and in the first nonvanishing order we ob-
tain

ĵ5@ĥ,r̄ #, ~B6a!

T~ ĵ !5 1
2†ĥ,@ĥ,r̄ #‡. ~B6b!

Since [ĥ,r̄#Þ0 for anyĥPA1, Eq.~B6a! can be solved with
respect toĥ, the solution, when substituted into Eq.~B6b!,
expressesT in terms ofĵ. In the case of the matrix algebra
Eq. ~B6a! can be easily solved using the relation
†r̄,@r̄,ĵ#‡5ĵ for any ĵPA1, which yields

T~ ĵ !5 1
2†@ ĵ,r̄ #,ĵ‡. ~B7!

APPENDIX C: DERIVATION OF THE
TIME-DEPENDENT HARTREE–FOCK EQUATION
[EQ. (2.18a)]

Equation ~2.18a! can be derived in an invariant way
without introducing an orthonormal basis set. To that end we
recast Eq.~2.11a! making use of Eqs.~2.12!, ~2.13!, and
~2.16! in a form

i
]r̂8

]t
5(

m
tm@ r̂8,ŝm#12(

mn
Vmn@ r̂8,ŝm#ŝn

2(
m
Em~t!@ r̂8,ŝm#. ~C1!

Equation~C1! describes the evolution of functions on phase
space. To write it in a form of an equation for phase-space
trajectories we note that the value of a functionr̂8 at point r̂
is Tr(r̂8r̂), and recast Eqs.~C1! in a form

i TrS ]r̂

]t
r̂8D5(

m
tm Tr~@ r̂8,ŝm#r̂ !

12(
mn

Vmn Tr~@ r̂8,ŝm#r̂ !Tr~ ŝnr̂ !

2(
m
Em~t!Tr~@ r̂8,ŝm#r̂ !, ; r̂8PA.

~C2!

Since the scalar product is invariant we obtain immediately
from Eq. ~C2!

i
]r̂

]t
5(

m
tm@ŝm ,r̂ #12(

mn
Vmn Tr~ ŝnr̂ !@ ŝm ,r̂ #

2(
m
Em~t!@ŝm ,r̂ #. ~C3!

Defining

V~ r̂ ![(
mn

Vmn Tr~ ŝnr̂ !ŝm , ~C4a!

t̂[(
m

tmŝm , ~C4b!

we obtain Eq.~C3! in the form of Eq.~2.18a!.

APPENDIX D: TIME-DEPENDENT HARTREE–FOCK
EQUATION IN THE OSCILLATOR REPRESENTATION

In this Appendix we obtain the Poisson bracket, the
Hamiltonian, and the TDHF equation in terms of the oscilla-
tor variables. The Liouville form of the TDHF equation@Eq.
~2.11!# makes it possible to recast it for any coordinate sys-
tem on the phase spaceM. To that end we represent an
arbitrary r̂PM in the vicinity of the stationary solutionr̄ in
a form of Eq.~3.6!,

r̂5 r̄1 ĵ1T~ ĵ !, ĵPA1 , ~D1a!

and expandĵ in terms of the oscillator modesX̂ia :

ĵ5(
a

z iaX̂ia . ~D1b!

It follows from Eq. ~4.16c! that

z ia5e i j i Tr~ r̄@ ĵ,X̂ja#!. ~D1c!

Equations~D1! introducezia as a set of coordinates onM in
the vicinity of r̄; we will call them oscillator variables.

The TDHF equation for oscillator variables follows from
Eq. ~2.11! and has the form

]ẑ ja
]t

5$Ĥ,ẑ ja%, ~D2!

whereẑmm are functions satisfying the condition

ẑmm~ r̂ !5Tr~ ẑmmĵ !5zmm , ~D3a!

so that

ẑmm[ i emn@X̂nm ,r̄ #PA1 . ~D3b!

To obtain the TDHF equations we need to express the Pois-
son bracket and the HamiltonianĤ in terms of the oscillator
variableszja .

It follows from Eqs.~D3! and the definition of the Pois-
son bracket@Eq. ~2.12a!# that the value of$ĵmm ,ĵnn% on
r̂PM is

$ĵmm ,ĵnn%~ r̂ !5Tr~ i @ ẑmm ,ẑnn#r̂ !. ~D4a!

Taking r̂ in a form of Eq.~D1a! with ĵ given by Eq.~D1b!
and making use of Eq. ~D3! we obtain, since
Tr([ ẑmm ,ẑnn] ĵ)50,

$ẑmm ,ẑnn%~ r̂ !52 i emaenb Tr$†@X̂am ,r̄ #,@X̂bn ,r̄ #‡r̄%

2 i emaenb TrH †@X̂am ,r̄ #,@X̂bn ,r̄ #‡

3TS (
a

z ja~ r̂ !X̂jaD J . ~D4b!

Taking into account Eq.~4.15d! we obtain from Eq.~D4! the
Poisson bracket in terms of the oscillator variables@the caret

456 V. Chernyak and S. Mukamel: Nonlinear optical susceptibilities

J. Chem. Phys., Vol. 104, No. 2, 8 January 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



in ẑ ja in the rhs of Eq.~D5! denotes thatẑ ja is a function on
M. The rhs of Eq.~D5! should be calculated by treatingẑ ja
as numbers rather than operators; the resulting expansion
yields the Poisson bracket ofẑmm and ẑnn in powers ofẑ ja
and the same applies to Eq.~D6!#:

$ẑmm ,ẑnn%5emndmn2 i emaenb TrH †@X̂am ,r̄ #,@X̂bn ,r̄ #‡

3TS (
a

ẑ jaX̂jaD J . ~D5!

The first term in the rhs of Eq.~D5! describes the canonical
Poisson bracket of a system of uncoupled oscillators; the
second terms describes coupling of oscillators due to effects
of statistics.

To obtain the Hamiltonian we can use Eqs.~2.16! and
express the functionsŝm in terms ofẑ ja :

ŝm5Tr~ ŝmr̄ !1(
m

Tr~ ŝmX̂jm!ẑ jm

1TrH ŝmTS (
m

ẑ jmX̂jmD J . ~D6!

Equations~D2!, ~D5!, ~2.16!, and~D6! constitute the TDHF
equation written in terms of the oscillator variables. Apply-
ing the expansion of Eq.~3.8! we can obtain the Poisson
bracket and the Hamiltonian as an expansion in powers of
oscillator variables. The Poisson bracket up to quadratic in
jja terms adopts a form

$ẑmm ,ẑnn%5emndmn1(
ab

Fmm,nn,ka, jbẑkaẑ jb , ~D7a!

with

Fmm,nn,ka, jb[2
i

2
emaenb Tr$†@X̂am ,r̄ #,@X̂bn ,r̄ #‡

3†@X̂ka ,r̄ #,X̂jb‡%. ~D7b!

The Hamiltonian is given by Eqs.~7.1! and ~7.2!.

APPENDIX E: THE THIRD-ORDER RESPONSE
FUNCTION

In this appendix we present the expression for the third-
order nonlinear response which is given by Eq.~5.8! with

R1
~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!

52 (
a1a2a3

ab

k ia8 ~vsr s!Aia, jb,i1a3
Gjk

b ~v11v2!

3Akb,i1a1 ,i2a2
k i1a1

~v1r1!k i2a2
~v2r2!k i3a3

~v3r3!,

~E1a!

R2
~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!

52 (
aba1a2

k ia8 ~vsr s!Aia, jb,i2a2
Gjk

b ~v11v3!

3Bkb,i1a1
~r3!k i1a1

~v1r1!k i2a2
~v2r2!, ~E1b!

R3
~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!

5 (
aba1a2

k ia8 ~vsr s!Bia, jb~r3!Gjk
b ~v11v2!

3Akb,i1a1 ,i2a2
k i1a1

~v1r1!k i2a2
~v2r2!, ~E1c!

R4
~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!

5 (
aba1

k ia8 ~vsr s!Bia, jb~r3!Gjk
b ~v11v2!Bkb,i1a1

~r2!

3k i1a1
~v1r1!, ~E1d!

R5
~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!

5 (
a1a2a3a

k ia8 ~vsr s!Aia,i3a3 ,i1a1 ,i2a2
~1! k i3a3

~v3r3!

3k i1a1
~v1r1!k i2a2

~v2r2!, ~E1e!

R6
~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!

5 (
a1a2a

k ia8 ~vsr s!Bia,i1a1 ,i2a2
~1! ~r3!

3k i1a1
~v1r1!k i2a2

~v2r2!, ~E1f!

R7
~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!

52 (
a1a2a3b

Si3a3 , jb
~r s!k i3a3

~v3r3!Gjk
b ~v11v2!

3Akb,i1a1 ,i2a2
k i1a1

~v1r1!k i2a2
~v2r2!, ~E1g!

R8
~3!~2vsr s ;v1r1 ,v2r2 ,v3r3!

52 (
a1a2b

Si1a1 , jb
~r s!k i1a1

~v1r1!Gjk
b ~v21v3!

3Bkb,i2a2
~r3!k i2a2

~v2r2!. ~E1h!

The third-order nonlinear response function is

R~3!5 (
n51

8

Rn
~3! ~E2!

with

R1
~3!~r s;r1 ,r2 ,r3!

52 (
a1a2a3

ab

m ia~r s!m i1a1
~r1!m i2a2

~r2!m i3a3
~r 3!

VaVa1
Va2

Va3
Vb

3Aia, jb,i3a3
Ajb,i1a1,i2a2

, ~E3a!
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R2
3(r s;r1,r2,r 3…52 (

aba1a2

m ia~r s)m i1a1
~r1!m i2a2

~r2!

VaVa1
Va2

Vb

3Aia, jb,i2a2
Bjb,i1a1

~r3!, ~E3b!

R3
~3!~r s;r1 ,r2 ,r3!5 (

aba1a2

m ia~r s!m i1a1
~r1!m i2a2

~r2!

VaVa1
Va2

Vb

3Bia, jb~r3!Ajb,i1a1 ,i2a2
, ~E3c!

R4
~3!~r s ;r1 ,r2 ,r3!5 (

aba1

m ia~r s!m i1a1
~r1!

VaVa1
Vb

3Bia, jb~r3!Bjb,i1a1
~r2!, ~E3d!

R5
~3!~r s ;r1 ,r2 ,r3!

5 (
a1a2a3a

m ia~r s!m i1a1
~r1!m i2a2

~r2!m i3a3
~r3!

Va1
Va2

Va3
Va

3Aia,i3a3 ,i1a1 ,i2a2
~1! , ~E3e!

R6
~3!~r s ;r1 ,r2 ,r3!5 (

a1a2a

m ia~r s!m i1a1
~r1!m i2a2

~r2!

Va1
Va2

Va

3Bia,i1a1 ,i2a2
~1! ~r3!, ~E3f!

R7
~3!~r s ;r1 ,r2 ,r3!52 (

a1a2a3b

m i1a1
~r1!m i2a2

~r2!m i3a3
~r3!

Va1
Va2

Va3
Vb

3Si3a3 , jb
~r s!Ajb,i1a1 ,i2a2

, ~E3g!

R8
~3!~r s ;r1 ,r2 ,r3!52 (

a1a2b

m i1a1
~r1!m i2a2

~r2!

Va1
Va2

Vb

3Si1a1 , jb
~r s!Bjb,i2a2

~r3!. ~E3h!

APPENDIX F: ELIMINATION OF SPIN VARIABLES

In this appendix we apply the Green’s-function expres-
sions for optical response derived in Secs. IV and V to a
tight-binding model of interacting electrons, and show that
the TDHF equation can be written without spin variables,
provided the ground state is a singlet. We consider a set of
sites located at pointsRn̄8 ~we will use Latin indices with
primes and overbars to denote the sites!. Using Greek indices
with overbars for the projection of electron spin we choose a
basis set in the space of single-electron states to be electrons
with a fixed projection of spin and located on a site; we then
have

m̄5~m̄8,ā !. ~F1!

Assuming that the hopping matrixt̄ and the interaction ma-
trix V̄ do not depend on spin, we obtain

t̄ m̄8ā,n̄8b̄5 t̄ m̄8n̄8dāb̄ , ~F2a!

V̄m̄8ā,n̄8b̄,k̄8m̄,ē8n̄5 1
2Um̄8n̄8~d n̄8k̄8dm̄8ē8db̄m̄dān̄

2d n̄8ē8dm̄8k̄8db̄n̄dām̄!, ~F2b!

with

Um̄8n̄85Un̄8m̄8 . ~F2c!

Assuming further that interaction with the external field is
spin independent, we have

mm̄8ā,n̄8b̄~r !5mm̄8~r !dāb̄dm̄8n̄8 . ~F2d!

The reduced single-electron-density matrixr̂ ~which has
componentsrm̄n̄ 5 rm̄8ā,n̄8b̄ in the spin-coordinate space!, us-
ing a notationrm̄8n̄8āb̄ [ rm̄8ā,n̄8b̄ , can be decomposed in the
following way:

r̂5 r̂ ~0!
^ Î1 r̂ ~z!

^ ŝz1 r̂ ~1 !
^ ŝ21 r̂ ~2 !

^ ŝ1 , ~F3!

wherer̂~0!, r̂(z), r̂~1!, andr̂~2! are the density matrices in the
coordinate~site! space;Î , ŝz , ŝ1 , andŝ2 are the 232 unit
and the Pauli matrices acting in the spin space. Adopting this
notation and making use of Eqs.~F2! we can recast the clas-
sical Hamiltonian given by Eqs.~2.10! in the form

Ĥ5 (
m̄8n̄8

t̄ m̄8n̄8ŝm̄8n̄8^ Î1 (
m̄8n̄8

Um̄8n̄8ŝm̄8m̄8ŝ n̄8n̄8^ ~ Î ^ Î !

2 (
m̄8n̄8

Um̄8n̄8ŝm̄8n̄8ŝ n̄8m̄8^ ~ 1
2Î ^ Î1 1

2ŝz^ ŝz

1ŝ1 ^ ŝ21ŝ2 ^ ŝ1!, ~F4a!

ĤT5Ĥ2(
m̄8

E dr E~r ,t!mm̄8~r !ŝm̄8m̄8^ Î . ~F4b!

Introducing operatorsV0 and V1 acting only on the space
components of the reduced density matrix,

V0~ r̂ ![2(
m̄8n̄8

Um̄8n̄8 Tr~ ŝm̄8m̄8r̂ !ŝ n̄8n̄8

2 (
m̄8n̄8

Um̄8n̄8 Tr~ ŝm̄8n̄8r̂ !ŝ n̄8m̄8 , ~F5a!

V1~ r̂ !52 (
m̄8n̄8

Um̄8n̄8 Tr~ ŝm̄8n̄8r̂ !ŝ n̄8m̄8 , ~F5b!

and switching from the componentsr̂(z), r̂~1!, and r̂~2! to
r̂( i ), i51,2,3, by

r̂ ~3!5 r̂ ~z!, r̂ ~1!5 1
2~ r̂~1 !1 r̂ ~2 !!,

r̂ ~2!5
1

2i
~ r̂~1 !2 r̂ ~2 !!, ~F6!

we obtain the TDHF equations in the component form

i
]r̂~0!

]t
5@ t̂12V0~ r̂~0!!2Ê~t!,r̂ ~0!#

1(
j

@V1~ r̂~ j !!,r̂ ~ j !#, ~F7a!
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i
]r̂~k!

]t
5@ t̂12V0~ r̂~0!!2Ê~t!,r̂ ~k!#12@V1~ r̂~k!!,r̂ ~0!#

2 i(
mn

emnk@V1~ r̂~n!!,r̂ ~m!#1 , ~F7b!

where@ , #1 denotes the anticommutator,emnk is the antisym-
metric Levi–Cevita tensor, and

t̂5 (
m̄8n̄8

t̄ m̄8n̄8ŝm̄8n̄8 , ~F8a!

Ê~t!5(
m̄8

E dr E~r ,t!mm̄8~r !ŝm̄8m̄8 . ~F8b!

It follows from Eqs.~F7! that if the ground state is a singlet,
i.e., r̄ (k)50, then r̂ (k)(t)[0 and the response is given by
r̂~0!~t! which satisfies Eqs.~2.18! if we omit the spin vari-
ables.

1U. Fano, Phys. Rev.103, 1202~1956!; Rev. Mod. Phys.64, 313 ~1992!;
S. I. Pekar, Sov. Phys. JETP6, 785 ~1958!; 11, 1286~1960!.

2J. F. Heflin, K. Y. Wong, Q. Zamani-Khamiri, and A. F. Garito, Phys. Rev.
B 38, 157 ~1988!; W. E. Torruellas, D. Neher, R. Zanoni. G. I. Stegeman,
and F. Kajzar, Chem. Phys. Lett.175, 11 ~1990!; M. Cha, W. Torruellas,
G. Stegeman, H. X. Wang, A. Takahashi, and S. Mukamel,ibid. ~in press!.

3S. Etemad and Z. G. Soos, inSpectroscopy of Advanced Materials, edited
by R. J. H. Clark and R. E. Hester~Wiley, New York, 1991!, pp. 87–133,
and references therein.

4S. Mukamel, inMolecular Nonlinear Optics, edited by J. Zyss~Academic,
New York, 1994!, pp. 1–46.

5W. J. Buma, B. E. Kohler, and T. A. Schuler, J. Chem. Phys.96, 399
~1992!.

6N. Bloembergen,Nonlinear Optics~Benjamin, New York, 1965!; B. J. Orr
and J. F. Ward, Mol. Phys.20, 513 ~1971!.

7V. Chernyak and S. Mukamel, Phys. Status Solidi B189, 67 ~1995!; V.
Chernyak, N. Wang, and S. Mukamel, Phys. Rep.~in press!.

8F. C. Spano and S. Mukamel, Phys. Rev. A40, 5783 ~1989!; Phys. Rev.
Lett. 66, 1197~1991!; J. Chem Phys.95, 7526~1991!.

9I. Lindgren, J. Phys. B7, 2441~1974!; U. Kaldor, Theor. Chim. Acta80,
427~1991!; R. Bartlett,ibid. 80, 71 ~1991!; R. Bishop,ibid. 80, 95 ~1991!.

10A. A. Abrikosov, L. P. Gorkov, and I. Ye. Dzyaloshinsky,Quantum Field
Theoretical Methods in Statistical Physics~Oxford, New York, 1965!.

11L. P. Kadanoff and F. Baym,Quantum Statistical Mechanics~Benjamin,
New York, 1962!; G. D. Mahan,Many-Particle Physics~Plenum, New
York, 1990!.

12P. Ring and P. Schuck,The Nuclear Many-Body Problem~Springer, New
York, 1980!.

13H. Sekino and R. Bartlett, J. Chem. Phys.98, 3022~1993!; Int. J. Quant.
Chem.43, 119 ~1992!; J. Chem. Phys.94, 3665~1991!.

14A. Takahashi and S. Mukamel, J. Chem. Phys.100, 2366 ~1994!; M.
Hartmann, V. Chernyak, and S. Mukamel, Phys. Rev. B52, 2528~1995!.

15S. Mukamel, A. Takahashi, H. X. Wang, and G. Chen, Science256, 250
~1994!; G. Chen and S. Mukamel, J. Am. Chem. Soc.11, 4945~1995!; J.
Chem. Phys.~in press!.

16L. D. Landau and E. M. Lifshitz,Mechanics~Pergamon, New York,
1969!.

17V. Chernyak and S. Mukamel, Phys. Rev. A~in press!.
18E. A. Power and S. Zienau, Philos. Trans. R. Soc. London Ser. A251, 427

~1959!; E. A. Power,Introductory Quantum Electrodynamics~Longmans,
London, 1964!; D. P. Craig and T. Thirunamachandran,Molecular Quan-
tum Electrodynamics~Academic, London, 1984!.

19A. Perelomov, Generalized Coherent States and Their Application
~Springer, Berlin, 1986!.

20T.-I. Shibuya and V. McKoy, Phys. Rev A2, 2208~1970!.
21A. A. Kirillov, Elements of the Theory of Representations~Springer, Ber-
lin, 1976!.

22A. Abragam.The Principles of Nuclear Magnetism~Oxford, New York,
1973!.

23V. Chernyak and S. Mukamel, J. Chem. Phys.103, 7640~1995!.

459V. Chernyak and S. Mukamel: Nonlinear optical susceptibilities

J. Chem. Phys., Vol. 104, No. 2, 8 January 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html


