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The optical response of a many-electron system is calculated by mapping it onto a coupled set of
classical oscillators representing the electron—hole pair components of the reduced single-
electron-density matrix. This classical representation is rigorously established using a Poisson
bracket relation. Expressions for the nonlinear optical susceptibilities obtained using a
Green’s-function solution of the oscillator equations of motion are used to analyze the size scaling
of the off-resonant response and the resonant structure of the resporfs@63American Institute

of Physics[S0021-960626)03401-4

I. INTRODUCTION cal Hamiltonian and a Poisson brackadefined on the clas-
. . _ . _ sical phase space: the manifold of all single Slater determi-

The mechanism of optical nonlinearities constitutes amgnts representing the state of a many-electron problem. By
important fundamental problem with practical implications expanding the solution of the TDHF equation in powers of
connected with the synthesis of new optical materials withne applied field we derive closed expressions for the lowest
large off-resonant nonlinear optical susceptibilitte3Opti-  three optical response functions. We then establish a coupled
cal susceptibilities of small molecules may be calculated bBbsciIIator(quasiparticlézpicture for the response, and express
expanding them in the globahany-body eigenstates of the  the response functions in terms of eigenmottesillators
system. The response is then related to the eigenvalues agflthe linearized TDHF equation representing electron—hole
the matrix elements of the polarization oper&tétowever, excitation. For a system ofl electrons withN available
this approach becomes impractical for large systems sincgpitals the number of oscillators M (N—M). The nonlin-
the number of eigenstates involved in the response growsay response can be attributed to mode scattering. The ex-
rapidly with size. The response is in this case determineghressions for the response contain commutators and traces in
primarily by statistical properties such as level correlationspe phase space of reduced single-electron-density matrices.
which show up in multidimensional spectral densities rathergjze consistency, namely, theN scaling of hyperpolariz-

than by properties of the individual eigensta%éﬂ-additiqn, abilities for large sizes, is naturally built in and requires no
the global eigenstates representation faces some serious difajicate cancellations.

ficulties in predicting the size scaling of the polarizabilities

since the~N scaling for large si.zeéwhereN is thg number | THE TIME-DEPENDENT HARTREE—EOCK

of atoms results from cancellations of terms which scale ascquaTIONS

~N228 To obtain these cancellations by performing approxi- ) . ]

mate calculations of the eigenstates one should ensure the We consider a many-fermion system with electrons
compatability of approximations for the ground and excitedWhich can occupiN orthonormal statesM <N) denoted by
states’ These difficulties, known as the size-consistency-atin indices with overbargn,m,..) and the indices include
problem, can be overcome using many-body methods basdBe SPin’ Assuming two-body interactions, the general sys-
on a reduced descriptid! This is obtained using equa- t€m Hamiltonian has the form

tions of motion, which can be closed by invoking certain . _ _

approximations. In these approaches the correct scaling for H=2, tﬁﬁf:}néﬁz_ Vi CmCn CiCi (219
large sizes is built in from the start and it does not require a m i

delicate cancellation of terms. An application of a many-where¢(¢™) are the electron annihilatiofcreation opera-
body Green's-function technique to Frenkel exciton systemsors which satisfy the Fermi commutation relations

in molecular aggregates had clearly demonstrated these . .. .i.

points’ The time-dependent Hartree—Fo¢KDHF)!? is a CrCh + Cq Cm= Omn» (2.1b
many-body technique which has been shown to be useful faind all other anticommutators éfand & vanish. Without
predicting optical properties of many-electron systems withpss of generality, the matri¥ i is assumed to be antisym-
extended single-electron states and strong Coulomb interagnetric with respect to permutatioms with n andk with |.
tions. The method has been applied to study the resonant as We adopt the multipolar form of interaction with the
well as off-resonant optical properties of conjugatediransverse electric fielf and the total Hamiltoniam; of

polymers:>~° the driven system is

In this paper we recast the TDHF equation for a many-
electron system driven by an external field in a form of [ ()= Lrn(er e, 2.2)
Hamilton’s classical equations of motion involving a classi- m
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where#,,(t) can be expressed in terms of the external fieldAppendix A). This allows us to define a classical Hamil-

At tonian on the Grassman manifold/C. 7 (Ref. 19; see Ap-
pendix A):

Crn(t)= f dr 2.0 uaar)- @3 H(P)=(Q(B)IAIQ(P). 29
Expressions for the matrix elements(r) of the polariza-  To express this Hamiltonian in terms of matrix elementp of
tion operator were given in Refs. 14 and 17. we make use of the fact that

The TDHF procedure results in closed equations of mo- (Q(p)|”+An|Q(p ) =pin (2.9a

tion for the reduced single-electron-density matgix,,
= (cicy).*25In this section we recast the time-dependentand the Wick theoreffl which gives
Hartree—Fock equations in a form of Hamilton’s dynamical atat
equations of clagsical mechanics. We will adopt thye follow- (Qleqer iy =(afe C19><Q| Ck|Q>
ing convention. LetZ be the space of linear operators acting —(QELedQNQ[EEE]Q). (2.9
on the N-dimensional space”” of single-electron states;
therefore,  is the single-electron Liouville space; we will Substituting Eq(2.18 or Eq.(2.2) into Eq.(2.8) and making
use a caret to denote the elements©fAny Qe. 7 can be  use of Eqs(2.9) and (2.5 we obtain
viewed as a function on#: R _ _
H=2 trnoimnt 2 Vi (0 0ak— Oakom),  (2.108

Q(p)=Tr(pQ) for pe.?, (2.4 = =
and we will also use a caret to denote functions @n Let H(r)=H—Z(7), (2.10H

o be a basis set inZ. The componentg; of the reduced

density matrixp are given by where the dipole interaction with the radiation field is

pi= il P) = TN @83 Ho= | dr AnDA0=3 fMom, (2100
m
Any eIementQ e.# can be represented in terms of its matrix )
elementQ 7 with the dipole operator

Q=2 Qudima- (2.5b [‘(V)E% Mmn(T) O - (2.100

The Liouville equations of classical dynamics written for

The associate algebra of functions o#f is generated by distributions(functions on /) have the forr

o and we have

A - - - - A N df - .
Tmn," " Oman (P)=Tr(oma p) TH(Tmn P) g ={H.f} (2.113
= Pmyny " Pmyny: 259 o using our basis set,
Using this notation, the TDHF equation which describes the ¢
evolution of the reduced density matrix can be presentedina g Fan={H G} (2.11b
form A
A {f,0} denotes the Poisson bracket bfand g, defined as
follows: We first introduce the elementary Poisson bracket
=[tr2v(p)—2(n.p), (2.6 R Y
{omn owt=ilom, ol (2.123
where where the matrix commutator is
= teomn, (2.7 [ 04 ]= Skl — O Tca - (2.12h
m

Making use of the following properties of the Poisson

- .1 SO NN bracket:
Vip)=5 2 [TH(paa) ot THpa) o - s
i {f.g}=—{0.f}, (2.133
~Tr(poi) o= TH(pom) ol Vinmia - (27D {f.ghy={f.ath+a{f.h}, (2.13b

To recast the TDHF equation in Hamilton’s form we first we can extend the Poisson bracket definition to arbitrary
obtain a classical HamiltoniaH. We make use of the fact functions on our classical phase spaze
that the reduced density matiixs a projection operatdsee To present the equations in a compact form which sug-
Egs.(Al)] and associates with a giveran M-particle quan-  gests possible generalizatiofsee Appendix Bwe note that
tum stateQ)(p) which is a single Slater determinant formed . # forms a Lie algebra with respect to the commutator given
by M single-electron states belonging #o(p)=im(p) (see by Eq. (2.12h. Since in the following all indices come in
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pairs, we shall adopt an abbreviated notation and hereafter  5p, ) )
use a single Latin index to represent a pair of indices with ! o7 :E tmfmaPbT 22 Vinnf naPmPb
. mb mnb
overbars. The basis set thus becomes
on=0m for m=mn. (2.14 = Zm( D2 00 (2.189
mb

Writing the commutator in terms of structure constaints

lll. EXPANDING THE TDHF EQUATION IN THE
[0, 0n]= Ea: fa Ga, (2.153 VICINITY OF A STATIONARY SOLUTION

Before the external field is applied, the system is at equi-
we can extend the TDHF equation to an arbitrary Lie algebraibrium, and the reduced density matfi»does not depend on
% wherea,, are assumed to form an orthonormal basis setime [to avoid confusion between the time-dependent density
of .Z: matrix p(7) and the stationary density matrix we denote the
latter using an overbap, p is still an operatofp €. 7); the

TH(Tmom) = Smn- (2158 verbar is also used to denote its components Tr(pa,) I:
For the initial casgalgebra gl{N;C)], and using the new p(r)=p. (3.
single-index notation, the Hamiltoniart$ and H; can be ) ) _
written in a form From Egs.(2.18 we see that the stationary density maisix
satisfies the nonlinear equation
H=2 tmom* > VinOmOn . 2.16 _ -
% mem % memen ( 3 2 tmfbmapb-l-ZE anfgapmpb=0 (3.2
mb mnb
Hy(7)=H-2(7), (2.16B  which can also be written in a form
where [t+2V(p),p]=0. (3.2b
R 7 A 7 R This constitutes the stationary Hartree—Fock equdtiois is
A T)Ef dr ?5(T,T)M(f)=§ EnlT)om, (2.160  asystem of equations for all components of the reduced den-
sity matrix p) and its solutionp represents the ground-state
with reduced density matrix in the Hartree—Fock approximation.
To calculate the optical susceptibilities, we expand the
- - solution of the TDHF equations around their stationary point
GESIGL (169 > a yp
Here p( T):E"‘ 8p(7). 3.3
_ _ _ Substituting Eq(3.3) into Eq. (2.18 and making use of Eq.
fin= Onkdmadin— Omi Okadib » @173 350 we ogbta?n( ) 9-(218 g a
tm=tmn,  Am(")=pma(r), (2.17b 38 _
T S22 a0t 22 Vi Sapmpn
Vin= 2(Vikin = Vnknl) + 2( Vienal — Vimin)» (2.179
wherem=mn, n=kl, a=§b. o +2 Voo 2opmdpp— > Em( D2 Do
The following equations hold for a general Hamiltonian mnb mb
given by Eq.(2.16 and the Poisson brackfEq. (2.153].
Equations(2.17 will be used only at the entsee Appendix +22 Vi 2a8pmdpp— >, o0& m(7) Spp
F). To connect the Liouville equation of moti¢Eqgs.(2.11)] mnb mb
to the TDHF equations we recast the Liouville dynamical (3.43

equation in a form of the Hamilton’s equation for trajectories

in phase spacésee Appendix C for derivatiorand obtain 2" alternatively,

“ dép . . _ R ~ _
1% - A . i —=[t+2V(p),dp]—2[p,V(Sp)]—[ ¢,
i 0_/;:[t+zv(p)_g(7)’p] (2.183 o L (p),6p]=2[p,V(6p)]=[%p]
with +2[V(8p),8p]~[7,6p], (3.4b)
and the polarization adopts the forimeglecting the equilib-
i - Ay An rium polarization Tra(r)p], which does not participate in
F% tmm, V(p)_% Vinn TH(pon)om, - (2188 0 optical responge
which coincides with the TDHF equation. Equati¢h183 P(r) =Tr(a(r)85)= Nne 3.4
can also be written for the componemts=Tr(po ), (1) =Tr(u(r)5p) ; #n(F) 9. (349
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Equation(3.4b) is the TDHF equation for the deviation of 9¢ . . R o
the reduced density matrix from equilibrium. It can be solved 1 —-= L(&)—[£,p]+2[VO(E+T(§)),€]
pertubatively in#, resulting in the optical susceptibilities.

The first three terms in the rhs of E.4b describe a sys- +2[VO(T(E),pl+2[VE(E+T(8),T(E)]
tem of harmonic oscillators driven by an external field; the A a - -
last two terms represent the anharmonicities which lead to —[£9, -2V, T(9)], (3.93
the optical nonlinearities.
We shall now describe the “restricted schentfe® of where
the TDHF equation which allows us to work with fewer vari L(3)=[t+2V(p).E]-2[p.V(D)], (3.9

ables. This more compact scheme is based on the fact that
the TDHF equation can be recast in a fofsee Eq(2.1839]  gang 20, Vi) for j=0,1 stand for partitions inZ, and. 7,

respectively:
P n -
--=lh(p,7).p], h(p,)e.” (3.9 F=r 04 2D y=yO L@, (3.90

Due to Eq.(2.109 the polarizatioryl(r) is a function on#Z.
It can be viewed as a function @f according to the repre-
sentation of Eq(3.6), and hence can be represented in a form

and, therefore, at any time(7) belongs to the orbit of the
Lie group related to the Lie algebr& which starts at point
p. A convenient choice of local coordinates in the vicinity of
p is obtained choosing the particle—hole components of the, (v &) =Tr(iu(r)&)+ Tr((NT(8), a(r)e.Z  (3.108
density matrix(we will denote the subspace of intraband and

interband components by, and. 7,, respectively. We can  The two terms in the rhs of E¢3.109 represent linear and
use.Z; as a system of local coordinates on the orbit in thenonlinear terms ir€. The polarizatiorP(r,7) is given by
vicinity of p by introducing a (nonlineay mapping
T: .Z1—.7y SO that anyp which belongs to the orbit is
represented as

P 7= A0 ED)=2 (N + 2 p(D Ty
’ ’ (3.108

p=p+E+T(8), Ee.t. (3.6 Equation (3.9a together with Eq.(3.6) constitute the

o . ) “restricted” system of TDHF equations which is based on
Hereafter, we use Latin indices with primes and doublegiectron—hole variables alone.

primes to denote the basis sets @f and. %, respectively.
n' represents electron—hole pairs whereasepresents ei-

ther electron—electron or hole—hole variables. In this nota-
tion we have IV. LINEAR OPTICAL RESPONSE AND OSCILLATOR
MODES

Opn'=&nr (3.7a In this section we obtain a Green’s-function expression
for the linear response. This allows us to introduce the oscil-
and lator modes which map the system onto a set of classical
oscillators, and provides a natural representation for the lin-

Sp=T (&), (3.7  ear response. In the next section we calculate the nonlinear
response using the oscillator modes and relate it to oscillator
scattering.

We start by defining the response function corresponding
to 8p, which represents the deviation of the reduced density
matrix from its equilibrium valugy, expanded in powers of
Ty= E T<2>a,b,§a,§b,+ E T<3)arb,c,§a,§b,§c,+ . the external field?(7). Switching to the frequency domain:

a'b’

n" nH
' a’'b’c’ '
(3.8

whereT can be expanded in powers &fstarting with qua-
dratic terms:

do .
Spn(7)= f 5 € opy(w), (4.1a
{The operatoiT can be in principle obtained by solving the
constraint p>=p; however, the expansion coefficients Eq. do .
(3.8) can be derived for a more general case because using gh(7)=f 7 e ' (w), (4.1b
the fact that 7 is an orbit, the coefficients can be expressed
in terms of commutatorésee Appendix B In other words, we introduce the response functions
the coefficientsT!) are universal functions of the structure

constants [Eq. (2.153] and do not depend on the model. Rﬁf,ﬂll_..mj(—ws;wl,...,wj),
Substituting Eq(3.6) into Eq. (3.4b and making use of
Egs.(B4) we obtain forée. 7, defined by the expansion
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448 V. Chernyak and S. Mukamel: Nonlinear optical susceptibilities

* “ dw; - do, equation we retain up to quadratic terms in the Hamiltonian.
Spn(wg) =, f 2 The linear terms of the expansion vanish due to the station-

I=Lmyemy S e 7 ary Hartree—Fock equatidiegs. (3.2)]. Neglecting the con-

X2m 8wyt + wy— ws) stant termH(p) which does not contribute to the equations

S of motion, the Hamiltonian becomes
><Rg%l,,,mj(—ws;wl,...,wj) 1
. " H:—E H rl(} r(}r. (47)
erml(wl)-”omj(wj). (4.29 2 menEEmeEn

The response functior®™(— wgr : T 1,037 3) Which We will keep only the zero-order terms in the expansion of
s

express the microscopic polarization in terms of the externdf® Poisson brackgE,&'}. {¢,¢'} under this approximation
field #(r) in the frequency domain are related to the responst® & constant function equal to the value {@¢&'} at the
functions introduced by Eq4.23 in the following way: point p, which using Eq(2.123 yields

RO(— oty gt 1, sf) {&.€}=1 Tr(pl&,€'D); (4.9
Eq. (4.5 can then be written in Liouville formiEq. (2.11)]

_ 2 (1) st (F1) st (1) using Eqgs.(4.7) and(4.8).
1 J
J

nmg---m Equations(4.7) together with(4.8) define a harmonic
) _ system. To map it into a set of uncoupled harmonic oscilla-
XRim,...m,(— 0s;01,...,0)). (425 tors we use the equations of motifgq. (4.5]. It follows

from the fact that Eq4.5) can be written in the form of Eq.
(2.1)) that the linear operatdr satisfies the following prop-
erties[for example, Eq(4.99 follows from the representa-
tion {L(0),0}= =20 Tr(Uom)Tr(von ) Hmrn']:

Applying the restricted scheme, we can solve E99 it-
eratively and find the expansion fdip,'(ws). The expan-
sion for dp,7(w) is obtained by applying Eq3.8), and the
expansion coefficients give the response functiahs.

To obtain the linear response we introduce the Green’s {LU,0}=—{0,Lo}, (4.99
function G,,/,v(w) of the linearized TDHF equatiohEq. (LO)t=—La* (4.99
(4.9], ’ '

— for any U, v €. 7, [Eq. (4.99 means that. is “Hermitian”

Grm(@)=[(0—=L) "Jnrm s (4.3 with respect to antisymmetric scalar product defined by Eq.
whereL is the linear operatoc defined by Eq(3.9b, con- 4.8)]

Equationg4.9 imply the following important properties

fi A hatL(.#,)C. % in the li ;
ined to. 7, [note thatL(.#;)C. 7], and obtain the linear of the eigenmodes:

response functioR" in a form

{€,.66=0, if Q,#-0Q, (4.103
Rirm (@) =Ry (—wsi0) = 2 o P Grrar (@) and for each eigenmodg, with Q,>0 we have an eigen-
ab 4.4 modeé_ =& with
Q ,=-0,. (4.108

All other componentsi.e., Ry, Ry s @andRnv) vVanish. R
Equations(4.3) and (4.4) show that the linear response Using Eq.(4.10h, we can consider the modés with >0

function can be expressed in terms of the eigenmodes of th@vhich implies a positive frequencf,>0) only. Normaliz-

operatorL, denoted the oscillator modéthe reason will be ing the modest,(e>0) with the condition

clarified latey. These modes can be obtained from the linear-

—ay
ized TDHF equation which follows from E¢3.93 if we set T(pl€a €a)) =1, (4.19
#(7)=0 and only retain the linear terms, we obtain the Poisson brackets for the modes:
0E . {&..80={E} .&51=0, (4.123
i ——=L(9). (4.5 P
T (&) €4 =180p. (4.12b

The eigenmodeéa of Eq. (4.5 are defined by the equations for any «, 8>0. The HamiltonianH [Eq. (4.7] now be-
- A - ) comes
L(ga):Qaé:a! gae'///lr (46)

which implies that¢, are the eigenmodes of the operator H=2> Q.0 L. (4.133
confined on 7. 0 )

In order to show that Eq4.5) describes a set of har- Where{, are functions related to an expansionéfn the
monic oscillators we recast it in a form of a Hamilton’s equa-modes
tion of classical dynamics. To that end, we expand the R R
HamiltonianH [Eq. (2.163] and the Poisson brackEEgs. E= D, (Lobat I5ED) (4.13h
(2.123, (2.153, and(2.13)] in the vicinity of p in powers of “«
&,, making use of Eq(3.8). To obtain the linearized TDHF as follows
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LD=C4 (4.139

and, therefore,

:%(ngo Tr(p[ &} ,aD%a—go Tr(p[ £,,0])E]

(4.163
L=[p.&2] (4.130  or alternatively
o A3, (0.0~ 5 (@8I0, (416
{La:lp}=164p. (4.130

for anyle 4.

Equations(4.12) and (4.13 map the system onto a set of Using the notation of Eqg4.14), Eq. (4.16 can also be
noninteracting harmonic oscillators labelled~0; (), is an  presented in a form

oscillator frequency and, and{, are its variables. Alterna-

%vely, we can use the momentum-coordinate variatigs @(a):go eij{a,g(j i (4.160
i Hereafter we adopt the convention that repeated indices with

Qu=—— (£, &), (4.143 Vvalues 1 and 2 should be summed over. _

V2 In summary, two eigenmodes and¢,, of the operatot

are associated with ath oscillator. SinceéP, andQ , which

~ 1 . L3 414 are not the eigenmodes bfare closely related to thepigs.
a™ 5 (§at&a), (4.14h (4.14)] and have a clear physical meaning we will refer to
them as oscillator modes as well. Altogether there are
with the Poisson brackets 2M(N—M) modes. We can now represent the linear optical
~ A A response in terms of the oscillator variables. To that end we
{Pa.Pst={Q..Qp}=0, (4153 ote that the Green's functioB(w) in Eq. (4.3 is diagonal
PN in the eigenmode basis set and make use of E446).
{Pa:Qp} = dap- (4.150 Introducing frequency-domain oscillator Green’s functions
We will use the abbreviated vector notation Gij(w) (i,j=1,2), which are 22 matrices for each oscillator
) R R R (since each oscillator represents a pair of phase space vari-
X1.=P,, X5,=Q, (4.159  ables, a coordinate and a momenjum
or equivalently v Qubij—lwe;
Gij((v)—m, (4173

{Xia: Xjp} = €ijOup - (4.150 _ . . .
where y is phenomenological damping. These describe the

It is important to note that the Poisson bracket is defined oRolution of the linearized TDHF equati¢Bq. (4.5)] in terms
functions on 7, whereas the eigenmodés, &, as well as  of the oscillator coordinate-momentum variablgs intro-
Xj, are tangent vectors to” at the pointp €./, since that  duced by Eq(5.1),
the Poisson bracket in Eq&.93, (4.109, (4.12), (4.14), and N
(4.15), being an antisymmetric two-form defined on the tan- {ma( )= Gmn(7)£nal0),
gent space, is the symplectic structdmather than the Pois- do
son bracket. However, since the scalar product énde- Gf{,n(r)zj 7 €miGjn(w)exp—iwT), (4.179
noted by Tr connects vectors to forms and the symplectic m
structure(when applying this connectipinas the same form we obtain for the linear response, combining Egs16 and
as the Poisson bracket, we will make no distinction betweert4.4),
the two objects. However, this leads to a definitiorPgfand
Q, in terms of left and right variableg, and &, which RY(—wdsiwr)=> Lia(rs)Gj(@)pin(r), (4.183
differs from the conventional. This can be rationalized as @
follows: The variables are actually the coefficient in the ex-where
pansion of¢ in the modes rather than the modes themselves. . -~
The Poisson bracket and the transformation for these vari- #ia(N=TrH([p,u(N][Xiq.p]). (4.18h
ables coincide with the conventional. In B4.15d i,j=1,2  Equations(4.17) and (4.18 constitute the linear response,
ande;; is the two-dimensional Levi—Cevita tensor with com- expanded in the oscillator modes.
ponentse;,=—€,1=1, €;1=€,,=0.

The operatot is non-Hermitian. Nevertheless, one can
use Egs(4.12 or Egs.(4.19 to expand vectorsie. 7, in V. SECOND- AND THIRD-ORDER NONLINEAR

the oscillator variables and avoid inverting of the operatorqpricAL RESPONSE AND MODE SCATTERING
(w—L)"1 which was required in Ref. 15. To show this we

expand the projector operatoP: Z—.4; which adopts a In this section we calculate the second- and third-order
form nonlinear response functions and relate them to mode scat-

(4.17b
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tering. To that end, we recast the equations of mofi6q.
(3.9/] in the oscillator form by introducing a coordinate sys- G "

N
tem based on the modésscillators: >@X_ }@__ >:DM
B S
b

£=2 LmaXma- (5.2) ;
Substituting Eq.(5.1) into Egs. (3.9, making use of Eq. A B

(4-160_' and negleCting a”_ terms which |e?-d to hig}“er_thanFIG. 1. Elements of the diagram technique related to scattering processes
the third-order response in the external field we obtain theliscussed in Sec. V, which contribute to the nonlinear response.

TDHF equation

(9 [¢3
g: +Qa€mn§na—€an dr Z(r) pna(r) equation of motion using these variables. The Poisson
bracket and the Hamiltonian are expressed in tern,Qin
Appendix D.
= €mn 2 Anamyay mpapémyayémya; Setting the rhs of Eq(5.2 to zero and neglecting the

v second term in the rhs of E¢5.49 we obtain a system of
uncoupled harmonic oscillators with zero nonlinear response.
Equations(5.2) and (5.4 express the nonlinear response in
terms of mode scattering. The quantities entering Eg%)

and (5.49 defined by Eqgs(5.3) and (5.4b (see Fig. 1 for
diagrammatic representatiprnave the following signifi-
cance:y;,(r) describes the creation of the mote by the

(1)
+Emn E Ana,m’a’,mlal,mzazgm’a'gml"‘lgmzo‘z
a/alaz

+emn2 fdr () Bnamar (D ar

(1) external field acting at the poimtor formation of polariza-
+Emna§2 Ar 2B myay mpay 1) Emy g by tion atr coming from the modéa, S, ;4(r) gives the po-
(5.2 larization atr generated by a combination of the modes
In Eq. (5.2 we have used the following notation: andj 8, andA andB describe scattering of mod&S;q my,n,
- - . represents a process whereby the miadés obtained out of
Anamyay mya,= 11 Xna , PIIV (X a)) 1 Xma,]) a pair of modesnu andnv; By, ;,(r) describes a scattering
~ - - of the modg u on the external field at poimt which creates
T (X PILV Ximyer,) Ximya 1) the modeia. Ag];z),m’a’,mlal,mzaz describes a process of

+2 Tr([ X ’F—,][V(wmlal‘mzaz),;])’ (5.3  forming a particle—particle component of the density matrix
W out of two modesan;«; and m,a, which forms the mode

Bram o (=TI p Xna LN Xny ar 1), (5.39  Na being scattered on the moae'a’. BY) \ , . (1) is
1) related to a similar process with the only difference that the
Na,m’a’,m;a; ,Mya, mode na is formed as a result of scattering @ on the
_ ~ ~ A external field at point. Optical response functions can be
=2Tr([xna'p][v(xm’a’)'Wmlalymzaz]) obtained by solving Eq(5.2) iteratively and applying Eq.
5 = - 3 (5.49. The second-order response has a form of three con-
2 T Xna s PIY (Wi oy myag) X o 1) (5.39 tributions (see Fig. 2 for diagrammatic representatjon
Bl mya; myan 1) =TI Wi om0, 110, Xna]),  (5.30
Wigig=a[Xia.p1. Xjgl+ d[X;5.p1.Xis] €. 4. (5.3¢9

The polarization truncated to quadratic orderifwhich is
the order required for the third-order responise

P(r)=2>, una(r>zna+2ﬁ Snang(Nlmalng. (5.4
Mne(r) was defined in Eq4.18h and
Siajp(N=3 Tr([Xiq,pl[X 5, (N D+ 5 Tr([X; 5,01

X[ Xiq (1)) =3Bi (1) + Bj gialr)-
(5.4b

Equationg5.2) and(5.4) can be alternatively derived by
expressing the PQISSOH bracket and the Ha_lmlltonlar_w IN terMSG, 2. Diagrammatic representation of three contribution®R% corre-
of the variables given by Ed5.1) and applying Hamilton’s  sponding to Egs(5.6a—(5.60.
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o r, m,I)

(h)

FIG. 3. Diagrammatic representation of eight contributionsRf8 corre-
sponding to Eqs(E19—(E1h).

3
) 2 . .
RP(—ods;01r1, 0ol )= 21 R (— gl s;01r1; 0ol )

(5.9
with
R(lz)(_ gl's; 011 1,50 5)
= g}/ Ki’a( wSrS)Aia,jl,u.,jszj 1,u.(wlr1) szy(erZ)a
(5.63
R(zz)(_ gl's; 011 1,50 5)
=2 K05 9)Big (1)K (0171), (5.6
au
Rgz)(_ gl s; 011 1,050 7)
=EB St (s Kial @171) K} g( @I 2), (5.60
where
Kja(wr)EG]qm(w)lu’ma(r)’ (573
Kj’a( wsrs)ElJvma(rs)G%j(ws)- (5.7

Similarly, the third-order nonlinear responB€’ can be
represented as a sum of eight contributi¢sse Fig. 3

R3(—- gl s w1l 1,050 5, W3l 3)

8
:nZl Ri]s)(_wsrs;ﬂ)lrl,wzrz,w3r3). (58)

These contributions in the mode representation are given in
Appendix E.

Expressions for the static response functiﬁﬁ@(rs,r),
R@(rg;ry,ry) and R®(rg;ry,r,,ra)] can be obtained by set-
ting all frequencies in Eq94.183, (5.6), and(E1) to zero.
Equation(4.173 for the Green’s functioiG{j(w) then yields
Gij(w)=6;;/Q, . For the linear response we have

RU(r,N=" Mja(r;;,uja(r). 5.9

The second-order response functiBff’ is a sum of three
contributions,

Mia(Vs) (V1) (T 2)
Rg_Z)(rS;rler):tgv I SQ:‘;IMQV : Aia,jM,svv
(5.103

IU"a(r )lu"v(rl)
RE(rsirr) =2 ——q 5 Biajlr2), (5100

ia(r ) j (r )
RPrsn =% SCg G S (6100

The corresponding expressions for the third-order response
are given in Appendix E as well.

In summary, to calculate the optical response functions
within the TDHF approximation one should proceed in the
following steps.(i) Starting with the quantum Hamiltonian
[Egs. (2.13 and (2.2)] determined by parametersyy,
Vink» and umn we obtain the classical Hamiltonian and
expression for polarizatiorEq. (2.10] which are determined
by the matriceg and /. and a superoperat® acting in the
space of reduced density matrices and defined by Eq.
(2.18h. These are expressed in terms of the initial param-
eters of the model by means of Eq&.17) and(2.18h. (ii)
Solve the stationary Hartree—Fock equatiffgs. (3.2)]
which is written in terms of andV, and obtain the ground-
state density matrix. (iii) Find the eigenmodes, of the
linearized TDHF equation solving the linear problgfaq.
(4.9)]; the linear operatot. is expressed in terms &tAV,
andp [Eq. (3.9b)]. (iv) Calculate the oscillator variableg,,
[Egs.(4.14 and (4.1509]. (v) Calculate the dipole moments
of the modeqEq. (4.18H] and the anharmonicity constants
[Egs. (5.3 and (5.4b]. Upon substituting them into Egs.
(4.183, (5.6), and(E1) we finally obtain the optical response
functions.

VI. SIZE CONSISTENCY OF THE OSCILLATOR
REPRESENTATION

In this section we consider the optical response of long
one-dimensional chain®.g., conjugated polymers or semi-
conductor quantum wiresith translational symmetryi.e.,
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452 V. Chernyak and S. Mukamel: Nonlinear optical susceptibilities

a one-dimensional lattigé>1*We will show that the third- not have such symmetry due to the factgysn the last term
order polarizability scales linearly with the number of sites.of Eq. (6.50). Nevertheless, translational symmetry is recov-
More importantly, each of the eight terms in E4E1) has ered in the equations of motion, as can be seen from the
the correct scaling, and the problem of interference amond@DHF equation, which follows from Eq$2.11), (6.5b), and
large terms, which usually complicates the size consistency2.12):

does not exist in this picture. We consider a semiempirical -

model,. with the Hamiltonian given_ by Eq&.l_) and (2.2, i gm“:'{|3|,(}mn}_e(zm_zn)(}mng(ﬂ_ (6.6)

and with the parameters defined in AppendiXEgs. (F1) T

and(F2)]. We choose the axis of our coordinate system in Thjs implies that Eq(6.30) holds at all times; i.e., the re-

the chain direction, so that duced density matrix possesses translational symmetry with
R,=(0,0z,), z,=na, (6.1)  respectto a unit cell at all times. Consequently, the relative

. . i . ) . motion of electron—hole pairs is factorized from their center
wherea is the lattice constanin this section we use Latin mass, and only electron—hole pairs with zero total mo-

indices to denote the sitesNe will treat as thez compo-  hantum contribute to the response.

nent of the external electric field, and invoke the dipole ap-  1he TDHE equation§Egs. (2.18] and the expressions
proximation(assuming that the optical wavelength is largersor the response functionfEgs. (4.18, (E1), and (5.3—

than the (c’hgin s({iz)eThis( allows us to neglect thedepen- (5 10)] have been obtained for an arbitrary algebra. In par-
dence of7, i.e., Z(r,7)=~(7), and leads to ticular, they apply to the matrices obeying E§.3b which

un(r)=ez,8(r—R,), (6.2a form a closed algebra. As a result the modes will be repre-
_ _ sented by density matrices satisfying E§.3b which de-
Zn(1)=€2(7). (6.2 gcribe the relative electron—hole motion.

We assume that the ground state is a singlet with respect to We adopt the following representation for reduced den-
the spin variables, and as shown in Appendix F the spirpity matricespy,, satisfying Eq.(6.3b):
variables can be omitted and we only need to follow the
evolution of p,,, wherem andn denote the sites.
If the chain is longer than all relevant coherence sizes  pani1.m=p10(N—M),  P2nom+1=pPor(N—M).
but still shorter than the optical wavelength, we can invoke . . :
. o Equations(6.7) represenf,,, in a form of n 2X2 matrices
the dipole approximation, yet neglect bounddedge ef- - L : :
AT . pii(n), wherei,j=0,1. The matrix product in the space of
fects. The Hamiltoniaid without the external field possesses "™ 7" " : . :
. . matricesp induces a product in the space of matrix functions
the translational symmetiry—n+1. In the conjugated phase o(n):
the symmetry is spontaneously broken up to the symmetr{? '
n—n+2, i.e., translations with respect to the unit cell which . c .
has the size of two lattice constar(®a). In the Hartree— (Pmij(M= 2 > pi(n—m)py;(m). (6.9
. . — . . k=0,1 m=—c
Fock approximation this implies that the ground-state density
matrix p.,, which is the solution of the stationary Hartree— Equation(6.8) implies that a product of matrix functions is a
Fock equation has the following properties: matrix product with respect to matrix indices and a convolu-
- 45 (6.33 tion with respect to the argument. The definition of product
’i””l'”“ ’im”’ ' given by Eq.(6.9) leads to the usual definition of the com-
Pm+2n+2= Pmn- (6.3  mutator(i.e., [p,7]=pn— 7p).
We define Trp) as

P2n2m=PoolN—M),  pPoni1om+1=p1(N—M),

(6.7)

The Hamiltonian is obtained from E¢-48 by omitting the

spin variables and assuming Tr(p)=poo(0)+ p12(0), (6.93
tun=tm-n: Umn=Um-n, (6.4  which is related to Trg) by
resulting in Tr(p)=(N/2)Tr(p), (6.9p
" T oA ~Aon hereN/2 is the number of unit cells in the chain. The scalar
H=> tmn0mnt > Uno w
% m-n7mn % m-nTmmnn product is defined by

_% Um—n&mn&nm- (6.59 Tr(f);;)= 2 1m:2—oo Z)ij(m);;ji(—m), (6.10a

i,]=0,

The HamiltonianH of the driven system can be obtained gnd satisfies
from Eqgs.(F4) by making use of Eq96.2): o .
Tr(pm)=(N/2)Tr(p7). (6.100

Hr=H—eX z,50,4(7). (6.5  We can now apply the expressions of Sec. V to calculate
R " the hyperpolarizabilities. The second-order polarizability
H possesses translational symmetry with respect to a unp(—ws;w;,w,) vanishes in cenrosymmetric systems. We de-
cell; however, the Hamiltonian of the driven systéfn does  fine the third-order polarizability
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lating the total polarization one needs to use the conventional
7(—wsiw1,w2,w3)5f drsdry dry drs definition of the trace which gives thi/2 factor in Eq.
(6.11b due to Eq.(6.10h.
XRO(—wgs;o1r1, 0,02, 031 3). Although we have already demonstrated teN scal-

(6.113  ing of the nonlinear response for each contribufisee Egs.
(6.11) and(E1)] it will be instructive to show how this scal-
Normalizing the eigenmodes according to Hg.11) or,  jng follows naturally from the normalization of the modes
equivalently, Eqs(4.12 or Egs.(4.19 using the definition of  [Eq. (6.7)] with the usual definition of the trace. To that end
the trace given by Eq$6.9a and (6.9, we obtain we consider Eqg6.12 and(5.3), and make use of the trans-
. _ 3, . lational symmetry which holds at large sizes, and implies
Y= wsiw1,0z,00) = (NI2)RP ws,wl,wz.w?é,llb that each oscillator mode has a factor Mf/2, the trace
' gives a factor ofN, and the commutators do not yield any
where R®(—wg;w;,0,,05) is @ sum of eight contributions  size-dependent factors. We then obtain the following large-

R{®,....REY corresponding to Eq§E1la—(E1h. These con-  size scaling properties of the parameters entering &®:
tributions have the form of Eq$E1) provided we omit the

arguments 0B, S, BY, «, and«’ and define the coefficients Kia= N2 A =N By, ~N%  (6.153
in Egs.(EY) in the following way:A, AY, andW are given AL Nl N2 (g15h
by Egs.(5.3a, (5.39, and(5.38); lwPlialaaz bl ’
~N° a _NO
k1ol ©)= G (@) (D%, 0], (6120 TN GITNG - (6450
) Substituting Egs(6.15 into Egs.(E1) we obtain the~N
Kl o(05) =Tr(u(p)[Xj4 ,p )G (ws), (6.12h  scaling of each of the eight contributions given by Egs.
o (E19—(E1h.
Biajn=Tr([Xia,plu(X;,)), (6.129 Equations(6.15 are useful for studying the size depen-
) ~ A dence of hyperpolarizabilities. Adopting the dominant mode
Biwijay.ipa,= 1T Xia P10 (Wi 0, isa,)): (6.120  picturd* S which means that only a few modés the sim-
- . . plest case, onB,, and oneA; mode contribute to EQs(E1),
Siaip=7 Tr(Xia p](Xjp))+ 7 TH([ X501 (Xia))- we can express the response in terms of specific properties of

(6.12¢  the modedi.e., the parameters in Eq&6.15]. This means
The algebra 7 in this case is represented by2 matrix that the dominant modes constitute the collective variables

functions;;(n); i,j=0,1. In Eqs.(6.12 u: . Z—.#, which (quasiparticlesof the system. Deviations from theN scal-
acts as follows: ing of nonlinear hyperpolarizabilities for smaller sizes is then
due to deviations of the scaling properties of these param-
(u(p))ij(n)=—ea(2n+i—j)p;(n). (6.13  eters, Egs(6.15.

Finally, we note that the expressions for the optical re-
sponse derived in this section hold for a more general model
with an arbitrary numbek of orbitals per unit cell, irrespec-
tive of the mechanism of formation of a unit céllere we
have considered the translational symmetry-breaking mecha-

The operatoV and the vectot e. Z enter in the definition of
L [Eg. (3.9b] which determines the modggq. (4.6)]. They
appear in the definition ok andA® [Egs.(5.3a and(5.30]
and assume the form

fij(n)Et_znﬂq , (6.143  hism). In this case matri.cefs”(n) becomel X L (instead of
2X2) n-dependent matrices.
[V(p)]ij(n)=&;; 5(n)k:201 m;_w Uam+i-kPuk(0) VII. DISCUSSION
~ In this paper we represented the TDHF equation for a
—Uznti—jpij(n), 6.14 o
2n+i-jPij (M) (6.149 nonrelativistic many-electron systerfwhose Hamiltonian
wherei,j=0,1. conserves the number of particlés a form of the Hamil-

Equations(E1) applied to the algebra defined by Egs. ton’s classical equation of motion. Since the optical response
(6.7—(6.10 are expressed in terms of the modes of the relafunctions are determined by dynamics in the vicinity of the
tive motion of electrons and holes which do not depend orstationary pointp, the global geometric properties of the
N. Therefore R{¥,... R do not depend ol as well, and  phase spac@vhich is the manifold of all single Slater deter-
Eq. (6.11D yields the~N scaling of all eight contributions minantg do not affect the response to weak fields. We can
to v [Egs. (E1a—(E1h)]. The origin of theN factor in Eq. therefore introduce a system of local coordinates in the vi-
(6.11b can be rationalized as follows: In order to obtain thecinity of p and expand the Poisson bracket and the Hamil-
perturbative expansion of the deviation of the reduced dentonian in these coordinates. This was done in Appendix D for
sity matrix from its stationary value in the external field we a particular choice of coordinates representing the particle—
can apply the results of Sec. V to the algebra defined by Eq$iole eigenmodes of the linearized TDHF equation. These
(6.7—(6.10 which does not contaiiN as a parameter. This results establish an oscillator picture of the response in the
yields Egs.(E1) which do not contailN. However, in calcu- following sense: Using this coordinate system in phase

J. Chem. Phys., Vol. 104, No. 2, 8 January 1996

Downloaded-07-Mar-2001-t0-128.151.176.185.-Redistribution-subject-to~AlP-copyright,~see-http://ojps.aip.org/jcpo/jcpcpyrts.html



454 V. Chernyak and S. Mukamel: Nonlinear optical susceptibilities

space, we obtain the Poisson bracket which is canonical tbracket is canonical to first nonvanishing order, we can make
first nonvanishing orde¢in powers of coordinatesand the it exactly canonical by applying a transformation which does
Hamiltonian which starts with quadratic terms. This impliesnot contain linear terms. In practice it can be obtained in a
that in zeroth order we have a system of uncoupled harmoniform of an expansion in coordinates which starts with qua-
oscillators. Optical nonlinearities are induced by higher-dratic terms. Since the Poisson bracket becomes canonical,
order terms in the expansion of the Hamiltonian as well aghe system can be treated as a set of coupled oscillators with
the Poisson bracket in powers of the phase-space coordinharmonicities given by the higher than quadratic terms in
nates; the former terms can be considered as nonlinearitieghe Hamiltonian. Optical nonlinearities are induced by the
induced by anharmonicities, and the latter represent nonlinkigher-order terms in the Hamiltonia@anharmonicities as
earities due to nonboson statistics of quasiparticles. Thevell as the nonlinear terms in the expansion of the dipole
Poisson bracket up to the terms in the expansion which conmoment(effects of statistics
tribute to the second- and third-order response is given in  Hamilton’s form of the TDHF equations is crucial for
Appendix D[Egs.(D7)]. The corresponding expansions for obtaining simple expressions for “scattering” constafes-
the dipole operator and the Hamiltonian are harmonicitie$ entering the nonlinear response functions in
the oscillator representation. The matiixn Eq. (4.3 for the
Green’s function of the linearized TDHF equatideg. (4.5)]
R . n a is non-Hermitian, and one cannot use projections onto modes
B(D=2 wia(N&iat > SN (7. for inverting the matrix(w—L) . A direct numerical inver-
“ * sion procedure has been used in Ref. 15. This poses, how-
ever, the following problem: To obtain an anharmonicity
L constant related to a scattering process of, say, a pair of
" s P modes, we need to have information about all modes of the
H_EC:‘ Qalmabma 3 g;v Aia,munvbialmuény linearized TDHF equation. This seriously complicates the
dominant mode representatibh'®although the response in-

_ l 2 AL Z 2 2 Z volves only a few modes, the anharmonicity constants and
4 gy dohip, MO M202 MBLNAEMaSMaaP MBI B, pance the response cannot be expressed in terms of these
1 modes along¢one needs information about all modes to in-

+7 > Qo €mynF ey oy 1By ot vert (w—L)], and the dominant modes cannot be regarded as

ajazBiBy genuine collective variables. This problem can be overcome
Ny - A - 7.2 using the Hamilton’s origin of the TDHF equation: The ma-
gmlalgmzazgnlﬁlgnzﬁz' ) trix L is symplectic, i.e., “Hermitian,” with respect to the
antisymmetric “scalar product” defined by the Poisson
R bracket{see Eqs(4.8) and(4.9)], and a projection technique
where the functiong,,, are defined in Appendix DEgs. using an antisymmetric “scalar” product can be udsee
(D3)] andA, AY, S, andF are given by Eqs(5.3a, (5.30,  Egs.(4.16)].
(5.4b, and(D7b). The equation of motion for thé&,,, vari- Another important consequence of Hamilton’s form of
ables[Eqg. (5.2)] can be obtained by substituting the Hamil- the TDHF equation is that the response functions can be
tonian[Egs. (7.1 and (7.2)] and the Poisson brackgEgs. written in terms of commutators and traces for a general
(D7)] into the Liouville equatioEq. (D2)]. This derivation  algebra which makes it possible to prove easily tHé scal-
which leads to the same equation of motidfg. (5.2)] is  ing of the response functions for large sizes; it is important to
different from those used in Sec. V, where we adopted theote that even though the response functions contain a large
following scheme: Starting with the Liouville equation in an number of contributions, they all scale as\ and we need
invariant form we derived the Hamilton’s equation in an in- not worry about cancellations 6fN? terms®
variant form[Eq. (3.4b or Eqg.(3.93] and then switched to Alternatively, it is possible to consider the entire reduced
the £, variables. The alternative derivation presented herelensity matrix elements as oscillatdPdn that case, we ob-
starts by recasting the Poisson bracket and the Hamiltoniatain N2 [rather tharVl (N— M)] oscillators. Although the two
in terms of theZ,,,,, variables which leads to the Liouville and approaches are mathematically equivalent, the present re-
then to the Hamilton’s equation of motion, both written using stricted scheme has several advantages. First, it requires con-
these variables. The latter derivation, though more complisiderably fewer oscillators, which simplifies the calculation
cated in practice, highlights the Hamilton’s structure of Eq.as well as the analysis. Second, Hamilton’s form of the
(5.2 and describes the anharmonicity constants as coeffifDHF equation makes it possible to express the anharmonic-
cients in the expansion of the Poisson bracket and the Hamilty constants representing mode scattering in terms of the
tonian in powers of the oscillator variables. modes involved in a particular elementary scattering process.
Classification of different contribution@.e., originating  This is particularly useful for analyzing the dynamical be-
either from statistics or anharmonicjtjo the response can havior of the system. In the other approach, the expression
be made in the following way. Since a Poisson bracket caffor each scattering process involves all the modes of the
be always presented locally in the canonical form after dinearized TDHF equation. This becomes particularly advan-
proper coordinate transformation, and since our Poissotageous in the “dominant mode picturé?®i.e., when only a
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few modes (oscillatorg contribute to the response. The APPENDIX B: ALGEBRAIC ASPECTS OF THE TDHF
dominant modes then become well-defined collective variEQUATIONS
ables, and the response is expressed in terms of their indi-
vidual properties.
Finally, we note that Hamilton’s form of the TDHF
equations allows us to derive a family of sum réfeson- .
SAr matrix algebrh

necting the optical response to the ground-state reduc ) . .
g P P g Let.Z be a complex Lie algebra with a nondegenerate

single-electron-density matr. In addition, since we con- . ant | duct denoted i) f tr e 7 and
sider a general Lie algebra, the analog of the TDHF equa'—nva”an scalar product denoted () for anyu,v e.Z an

tions (generalized TDHF equationgan be derived for a a real sEructuia :'fg_"z’ which IS an ?"”“"”e?” mapping
more general class of systems [i.e.,r(Nu)=A*r(u) for anyAeC, ue.#]. The invariance

of the scalar product means

In this appendix we present the TDHF equations on an
orbit .7 of a Lie algebra # [the conventional TDHF equa-
tions are related to the case wheti=gI(N,C) is a full lin-

Tr(G[v,w])=Tr(o[w,U]) (B1)

ACKNOWLEDGMENTS for any U,0,we. 2. We will also use a notation ™ =r(0).

Each orbit. 7 of the coadjoint representation of the Lie

The ort of the Air Force Office of Scientific Re- : . . :
supp ! ! enti roupG associated with the real form o¥ (which consists

search and the National Science Foundation is greatfully ad - DA . .
of all ue.Z with u™ =u) has a symplectic structure, i.e., a

knowledged. nondegenerate closed two-form on .7Z which defines a
Hamilton structuré?!
Since the scalar product forms an isomorphism between
APPENDIX A: THE GRASSMAN MANIFOLD AND % and.Z* (the space of linear functionals o) there is no
POISSON BRACKET RELATIONS difference between coadjoint and adjoint representations and

. . inse. /7
In this appendix we discuss the Grassman manifold iwe will work with the latter. Therefore, poinise. 7 can be

. . . . i 7 (si MC A* =), -
the TDHF equation. Within the TDHF approximation the re- conS|dAered/ as elemgnts o (smce. @ / ./) Ele
. i ; . mentsu e.Z can be viewed as functions ow’ defined as

duced density matrix(7) remains a projector operator at all

times, i.e., U(p)=Tr(Gp) for pe.. (B2)
p*=p (Ala) The algebra of functions oz is generatedas an associa-
and tive algebra by elements of 7. The Poisson bracket oz
R associated with the canonical sympectic structurefrcan
rankp)=M, (Alb)  pe defined algebraically,
whereM is the number of electrons. LetZ be the space of {f,@}si[f,g], (B3)

Hermitian matrice$ satisfying Eqs(A1). Any matrix of this ~ ~

type can be uniquely associated with Mrdimensional sub- for any f,ge.Z and then extended to any functiohendg

space7 (p) of the N-dimensional complex vector space of using Eqs(2.13.

single-electron stateg =CN, The TDHF equations have been derived in Sec. Il for
PN this general case whei,, in the expression for the Hamil-
7(p)=im(p), (A2) tonian[Eqgs.(2.16)] form a basis set afZ. The conventional

where im{) is the image ofp, i.e., a vector subspace con- TDHF equations correspond to the particular case when

sisting of vectorsv which can be represented as; .Z2=0I(N,C), and.Z is the Grassman manifold.

= 35pmaUn, Ui being basis set vectors. This implies thatthe A local coordinate system o7 in the vicinity of the

reduced density matrices which satisfy the conditions of Eqsstationary poinip .7 can be introduced as follows. Le¥

(Alb) form a Grassman manifol@(M,N;C) defined as the be represented in a form

set of all M-dimensional complex vector subspaces of a y

complex N-dimensional vector spac¢®.We can therefore A=Ay, (B43)

treat the TDHF equation as a dynamical equation on thevhere. 7, is the stabilizer of the orbit; i.e., it consists of all

Grassman manifold5(M,N;C). In order to express the {e.Z commuting withp. .Z; satisfies the following condi-

TDHF equation in a form of Hamilton’s classical dynamics tions:

we need to introduce a Poisson bracket g¢f=G(M,N;C) A , o

and a classical Hamiltoniad (which is a function on /) so [Uv]e. 7o, if Uve. 7y, (B4b)

that the equation can be represented as in the Liouville form -~ - oA N

[Eq. (2.1D]. A Poisson bracket on/ can, in principle, be [uv]e.z, i Ue Zve 7, (B4

induced by the canonical symplectic structure on a Grassmasnd. #; can be considered as a local coordinate system in

manifold2® However, in Sec. Il we introduced it algebra- view of Eq.(3.6). R

ically. It is easy to show that the Poisson bracket defined by  Finally, we show how to obtain the expansionTdf) in

Egs.(2.12 and(2.13 coincides with the canonical Poisson powers ofé. Sincep belongs to an orbit of the adjoint rep-

bracket onG(M,N;C).*° resentation we obtain, making use of E8§.6),
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p+EFT(E=p+[npl+ AL 72.p11+

pt&+T(E)=p+n.pl+alnln.p]] (BS) EZ o (cab)
for some7ne. Z, and in the first nonvanishing order we ob-
tain we obtain Eq.(C3) in the form of Eq.(2.183.

&=[m.p, (B6a)

APPENDIX D: TIME-DEPENDENT HARTREE-FOCK
HGEE D! (B6b) EQUATION IN THE OSCILLATOR REPRESENTATION

In this Appendix we obtain the Poisson bracket, the
Hamiltonian, and the TDHF equation in terms of the oscilla-
tor variables. The Liouville form of the TDHF equatipBq.
(2.11] makes it possible to recast it for any coordinate sys-
tem on the phase space”Z. To that end we represent an
arbitrarype M in the vicinity of the stationary solutiop in

T(&)=1l[&.p].€]. (B7) ~ aform of Eq.(3.6),
p=p+E+T(E), Ee., (D1a
and expand in terms of the oscillator modésia'

Since [;;E]aeo for any»e. #,, Eq.(B6a) can be solved with
respect toz, the solution, when substituted into E@6b),
expresseq in terms ofg In the case of the matrix algebra
Eq. (B6a can be easily solved using the relation
[p.[p,&E]]=€ for any ée. 4, which yields

APPENDIX C: DERIVATION OF THE
TIME-DEPENDENT HARTREE-FOCK EQUATION
EQ. (2.18a ~ ~
EQ- (2152 £=2 LiaXia- (D1b)
Equation (2.189 can be derived in an invariant way “«
without introducing an orthonormal basis set. To that end wat follows from Eq.(4.169 that
recast Eq.(2.113 making use of Eqgs(2.12, (2.13, and

(2.16 in a form lia= Eiji Tr(;[gyxj a])- (D19
ey EquationgD1) introducey;, as a set of coordinates o in
P n) A n) A a e e : : :
i :2 tolp ,Um]+22 Vol p'&mlom the vicinity of p; we will call them oscillator variables.

The TDHF equation for oscillator variables follows from
Eqg. (2.11) and has the form

=2 (DD Gl (&) gm
—{H Gjah (D2

Equation(C1) describes the evolution of functions on phase

space. To write it in a form of an equation for phase- spachheregmu are functions satisfying the condition

trajectories we note that the value of a functi@nat pointp §m#( p)=Tr( §m# g)_ Lo (D3a)

is Tr(p'p), and recast EqgC1) in a form
so that

(b o .
i Tr(; p'>=2 tm Tr([p,omlp) Cmu=1€md Xnu,ple. 2. (D3b)

m
To obtain the TDHF equations we need to express the Pois-
son bracket and the Hamiltonidh in terms of the oscillator

variables(;,,
It foIIows from Eqgs.(D3) and the definition of the Pois-

=S £ (DT nlp), VP e son brackef Eq. (2.123] that the value of{gmﬂ,gnv} on
m

+2§n Vi TP, 0l p) TH( &)

pe. 7 is
(€2 {€mp & (D) =T ([ L £ 10).- (D4a)
Since the scalar product is invariant we obtain immediatelyTaking p in a form of Eq.(D1a) with £ given by Eq.(D1b)
from Eq.(C2) and_ making use of Eq.(D3) we obtain, since
7 Tr([ Ly +£] €) =0,
P A A N AA A . ~ A
I E:% tm[am,p]+2% an Tl’(crnp)[om,p] {é’m;/, !énv}(p)z _|€ma€nb Tr{[[xap, !p]![xbv yP]]P}
-3 Dmepl. 3 ! €macrp Tr{ X)X -]
m

Defining T X £ia(P)Xja } (D4b)
V(IAJ)EE Vo TH(G0p) 0 (C43 Taking into account Eq4.150 we obtain from Eq(D4) the

Poisson bracket in terms of the oscillator varialjkee caret
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in Zia in the rhs of Eq(D5) denotes thaija is a functiqu on  RP(—wyrs i, ol 5, w3r3)
-7¢. The rhs of Eq(D5) should be calculated by treatirdg,

as numbers rather than operators; the resulting expansion _ / - B
yields the Poisson bracket ¢f,, and £, in powers of Zaﬁzaz Kial @5 ) Aia i, Cli @11 ©3)
and the same applies to E(dDG)]

XByg,ija,(13) Kija, (@171) Ki o (@2 2), (E1lb
{Zm,u, !va}: emn5,4.w_ [ €ma€nb Tr{ [[g(a/i 15]1[§(b1/ 15]] Rgs)( —wglg, w1l , w0l ,w3r3)
TS zjaf(ja) ] (D5) :a[g;az K] (gl ) B jp(F3) Gli( @1+ @)
XAkﬂ,ilal,izazKilal(wlrl) Kizaz(w2r2)1 (E].C)

The first term in the rhs of EqD5) describes the canonical
Poisson bracket of a system of uncoupled oscillators; th@&(3)(— o :wry,wory,wsrs)
second terms describes coupling of oscillators due to effects”
of statistics. _ , 8

To obtain the Hamiltonian we can use Eq2.16 and _D‘%l Kia(@sFs)Bia,jp(rs) Gli(@1t ®2)Byg,i o, (T2)
express the functions,, in terms of{;,:

X Kijay(@171), (E1d
Gn=TH(Gmp) + 2 Tr(omX),)ju R (— gl s; 01l 1,02l 3, 03T 3)
"
+TI'| a'mT( 2 Zj,u;(j,u) ] . (DG) - al%yy (wSrS)AIa igag,ijaq,i 2a2Kl3a3( (1)3I’3)
"
X Kilal(wlrl)Kizaz(erZ)! (Ele

Equations(D2), (D5), (2.16, and(D6) constitute the TDHF
equation written in terms of the oscillator variables. Apply- R(3)(— o or :wiry, worp, w3r3)
ing the expansion of Eq3.8) we can obtain the Poisson

bracket and the Hamiltonian as an expansion in powers of _ 2 ' (o )B(L
oscillator variables. The Poisson bracket up to quadratic in ayage s /Py iz
& terms adopts a form

(rs)

XKilal(wlrl)Kizaz(erZ)a (Elf)

{gmuvgnu}zemn‘sﬂu"';ﬁ Fmﬂ,nv,ka,jﬁgkagjﬁa (D7a) R%s)(—wsrs;wlrl,wzrz,w3r3)

with =2 2 Sigag.ip(r )KI3a3(w3r3)GJk(wl+w2)
ajazazf
i A~ o~ o ) :
Fm,u,nv,ka,jﬁE ) €ma€nb Tr{[[xa,u 2 1:[ Xps,p]1] XAkB'Ilal'lzazkllal(wlrl) K|2a2(w2r2): (El9
o = 3 R (—wdls; 101,05 5,030 3)
X[[Xkaap]axjﬁ]} (D?b) s
The Hamiltonian is given by Eq$7.1) and(7.2). _Zagz Siyap, i8I Kijay(@171) Gli(wy+ w3)
X Big,iya,(13) Kija (@2l 2). (E1lh
APPENDIX E: THE THIRD-ORDER RESPONSE The third-order nonlinear response function is
FUNCTION o
In this appendix we present the expression for the third- R®=> R (E2)
n=1

order nonlinear response which is given by Eg8) with
@) with
R (—odls w11, @2, @3l 3) @
R (rsir1,r2,r3)

= ! S B
2a1a22a3 Kla(wer)Ala'Jﬁ'|1a3GJk(wl+ (1)2) Ib(’ia(rs)lbl’i1(11(rl)Mizaz(rz)MiBQS(rs)
=2 >
aff
ajarag QaQalQaZQasgﬁ
XAKB i ay ipayKi o, (017 1) Ki o (021 2) Ki g (@3l'3), ap
(E1a XAia,jBigasPBiyayiyay (E3a
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Mia(rS)/’Lilal(rl)/’Lizaz(rz)
0.,0.0,0,
1 2

R rsr.rafd=2 2

afajar

XAigjpiya,Bipija(r3), (E3b

/'Lia(rs)/-l“ilal(rl)lu'izaz(rZ)

R (riry,rars)= >,

afayay QaQalﬂazﬂﬂ
XBia,ip(13)Ajgi ay ijay (E30
Iu’ia(rs)lu’i a (rl)
RE(rsir1 farg)= 2 —a—o—n—
e Tel1l2.0a)= o 0,0,0p
XBiap(ra)Bigi a,(r2), (E30d
Rgg')(rs;rl,rz,rg)
s Mia(Ts) iy oy (V1) iy (T2) i g (T3)
x AL (E3e

Ia,i3a3,ilal,i2a2’

/'l’ia’(rs)/-l’ilal(rl)lu'izaz(rZ)

3 .
RES )(rs1rl!r2=r3): 2

ajara Qalﬂazﬂa
XBi(i?ilal,izaz(rS)v (E3f)

lui1al(rl)lu'izaz(rZ)lu’isa3(r3)

R%g)(rs;rl,rz,r3)=2 E

ajazazp Qa10a29a395
XSiSa3,j,B(rS)AjB,ilal,izazv (E3g)
Mi. o (rl)lu’i @ (r2)
R (rgirirp rg)=2 > —o—o—n"
g (s:M1 o 0, Q0,08
XSi 0, i8(rs)Bjgira,(r3).  (E3N

APPENDIX F: ELIMINATION OF SPIN VARIABLES

In this appendix we apply the Green’s-function expres-

tva i 5=t Oap (F29
Vi g mev=Ymn (S Ome Opudan
— Onrer Omrkr Oy Oap), (F2b
with
Unnr=Ugpm . (F20)

Assuming further that interaction with the external field is
spin independent, we have

pv i p(F) = o (1) 8 p O - (F2d
The reduced single-electron-density matpx (which has
component®nnr = pm a.nv g in the spin-coordinate spaces-
ing a notationpy 25 = P a,nv . Can be decomposed in the
following way:

p=p0c1+p?05,+p 0o +p w5,,  (FI

wherep©, pi?, o), andp™) are the density matrices in the
coordinate(site) spacej, a,, o, , ando_ are the X2 unit

and the Pauli matrices acting in the spin space. Adopting this
notation and making use of Eq$:2) we can recast the clas-
sical Hamiltonian given by Eq$2.10 in the form

H= Z tn_»lrﬁr(}rﬁ!ﬁr@I +_Z Urﬁrﬁra’n_qrrﬁr(}ﬁrﬁr@(l ®|)
n m'n’

1'

~ ~ 1’\ ~ l;\ ~
— 2 Ui O 0 @ (31 @1 + 36,207,

mn'
+0,®0_+0_®0,), (F4a
Hi=H-X fdr A7) e (N i 1. (FAb)
n

Introducing operatord/, and V,; acting only on the space
components of the reduced density matrix,

Vo(p)=22 Ui TH( & P) O
mn'
_Z Un_qrﬁr Tr(&ﬁrﬁrﬁ)&ﬁrﬁr, (F56)
mn'

Vi(p)=— 2 Ui TG D) i (F5b)

sions for optical response derived in Secs. IV and V to a mn

tight-binding model of interacting electrons, and show that,q switching from the componenié?, "), and p) to
the TDHF equation can be written without spin variables,;)(i)1 i=1,2,3, by

provided the ground state is a singlet. We consider a set of

sites located at pointRy, (we will use Latin indices with
primes and overbars to denote the gitéksing Greek indices

with overbars for the projection of electron spin we choose a
basis set in the space of single-electron states to be electrons

pI=p@ A=Y (),

. 1 . ~fe
pB=5 (=P, (F6)

with a fixed projection of spin and located on a site; we thenye obtain the TDHF equations in the component form

have

m=(m’,a). (F1)

Assuming that the hopping matrtxand the interaction ma-

trix V do not depend on spin, we obtain

ap'” COn B
' 7=[t+2Vo(p(0))—5(T).p(0)]

+ 2 [Va(p").p], (F7a
J

J. Chem. Phys., Vol. 104, No. 2, 8 January 1996

Downloaded-07-Mar-2001-t0-128.151.176.185.-Redistribution-subject-to~AlP-copyright,~see-http://ojps.aip.org/jcpo/jcpcpyrts.html



V. Chernyak and S. Mukamel: Nonlinear optical susceptibilities

apk A . A A A
[ 2(5) - 70 591+ 2L V4 (59,50

=i emndVa(p™),p™1,, (F7b)

where[ , ], denotes the anticommutatef, is the antisym-
metric Levi—Cevita tensor, and

:E:Z _ﬁrﬁra'n_alrﬁ/, (FSa)
m'n’
;%(T)zg fdr A7) e (1) G - (F8b

It follows from Eqgs.(F7) that if the ground state is a singlet,
e., p¥=0, thenp™(7)=0 and the response is given by

p%(2 which satisfies Eqs(2.18 if we omit the spin vari-
ables.
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