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Effects of static disorder and interaction with phonons on the dynamics of Frenkel excitons in
molecular aggregates are studied by calculating the absorption of a weak probe in the presence of
a strong resonant and off-resonant pump field. To second order in the pump amplitude, the
self-energy which determines the Stark shift and dynamical broadening of the probe absorption is
expressed in terms of the single exciton Green function and the two-exciton scattering matrix. For
stronger pump intensities the self-energy is calculated using higher-order optical response functions
of the system. ©1996 American Institute of Physics.@S0021-9606~96!01314-4#

I. INTRODUCTION

The nature of electronic excitations of molecular aggre-
gates is a fundamental problem with important practical
implications.1–4 Studies of size dependence of optical re-
sponse provide a unique insight into the connection between
properties of individual molecules and bulk properties of
materials.5 The structure and dynamics of molecules is com-
monly interpreted using their electronic and vibrational
eigenstates. Molecular6,7 and semiconductor8,9 crystals are
on the other hand best described using collective~quasipar-
ticle! excitations such as excitons and phonons. Small aggre-
gates may be treated using both pictures, thus clarifying the
connection between them. From the practical side, strongly
coupled aggregates of dye molecules~e.g., cyanide dyes!
known asJ aggregates play an important role in photosensi-
tization of semiconductor particles which is the primary step
in photography.3,9–13Organic nanostructures such as mono-
layers and multiple quantum wells show interesting photoin-
duced charge transfer properties which can be used in elec-
troluminescence devices and nonlinear optical switches.14

Molecular aggregates have numerous important biological
functions. These include the conversion of light energy into
chemical energy by collecting the light and channelling it
into the necessary sites by the light harvesting antenna sys-
tems, and the intermolecular charge transfer in the photosyn-
thetic reaction center.15–18

The electronic structure of molecular aggregates may be
described using the Frenkel-exciton Hamiltonian.6 The linear
optical response is determined by the properties of one-
exciton states, whereas multiexciton states can be probed us-
ing a variety of nonlinear spectroscopic techniques in the
frequency and time domain.5,19 Multiexciton states are cru-
cial in determining how nonlinear susceptibilities scale with
aggregate size.5

In this paper we calculate the pump–probe frequency-
domain spectrum of molecular aggregates using the Frenkel
exciton model, including static disorder and exciton–phonon
coupling. For off-resonant pump~i.e., when the pump fre-
quency is tuned outside the exciton band!, the probe absorp-

tion shifts with the pump intensity. This ‘‘optical Stark shift’’
is analogous to the ordinary Stark effect induced by a static
~dc! electric field.20 Pump–probe spectroscopy monitors the
linear absorption of a weak probe in the presence of a strong
pump field. Since the system is excited by the pump, multi-
exciton states become accessible. For sufficiently weak
pump and probe this spectroscopy can be described as a four-
wave mixing process. The signal is then expressed in terms
of the linear and third-order nonlinear response functions
R~1! and R~3!, and involves one- and two-exciton states
only.19 The one-exciton to two-exciton transition has been
observed in disorderedJ aggregates.21 For higher pump
fields the optical Stark effect has been observed in aniso-
tropic molecular crystals,22 J aggregates,23 direct-gap
semiconductors,24 polydiacetylene and conjugated
polymers.25–27 The theoretical interpretation of the dynami-
cal Stark effect beyond the two-level model~which is inap-
plicable for small detuning! was developed by Schmitt-Rink,
Chemla, and Haug.28 Combescot and Combescot29 high-
lighted the important role of two-exciton states for near-
resonance excitation and discussed the effect of Coulomb
interaction betweene2h pairs for different detuning re-
gimes. Later, Zimmermann,30 has discussed the interband
and intraband Stark effect for quantum wells to second order
in the pump amplitude. Another interesting aspect of the dy-
namical Stark effect, namely, the ultrafast~femtosecond! re-
sponse time reflecting exciton dynamics in quantum-well
structures24,31 is useful for optical gating and generation of
ultrashort electrical pulses.32 The Stark shift ofJ aggregates
in strong pump fields involving multiexciton states has been
investigated both experimentally33 and theoretically.34 Elec-
troabsorption measurements35 have shown both dynamical
broadening and Stark shift. The present theory applies for
off-resonant as well as resonant pump frequencies. When the
pump is tuned inside the exciton band the picture becomes
more complicated since real excitations are created and both
coherent motion of two-exciton states and exciton transport
affect the spectrum. We show how the Stark shift and dy-
namical broadening induced by an intense pump provide
clear signatures for disorder and phonon effects in the exci-
ton motion. We will demonstrate how the interplay of two-
exciton coherent motion and exciton transport manifests it-
self in the Stark effect. This makes optical Stark
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spectroscopy a useful tool for studying exciton properties in
molecular aggregates.

In Sec. II we present the model Hamiltonian of a mo-
lecular aggregate with electronic and nuclear degrees of free-
dom. The induced polarization to first order in the probe is
expressed in terms of correlation functions of the polariza-
tion operators. In order to calculate the probe absorption we
need to expand the optical polarization to first order in the
probe, but retain high-order contributions in the pump. This
is accomplished by introducing the pump-induced Stark self-
energyS(s) whose real part determines the shift while the
imaginary part results in dynamical broadening. The Stark
self-energy can be expanded in powers of the pump field and
the expansion coefficients expressed in terms of the optical
response functions. We derive Green function expressions
for the Stark self-energy to first order in the pump intensity.
The self-energy is expressed in terms of the one-exciton
Green function and two-exciton scattering matrix. The ex-
pressions for the Green function and scattering matrix are
given in the site representation and apply to an arbitrary ag-
gregate geometry. A recently developed Green function
theory of four wave mixing spectroscopy of confined exci-
tons including exciton–exciton interaction, phonons, and
static disorder4,7 will be used in calculations presented in the
coming sections. In Sec. III we specialize to periodic aggre-
gates and provide closed expressions for the necessary Green
functions in k space. Numerical calculations for a one-
dimensional aggregate with no additional degrees of freedom
~other than electronic! are presented. In Sec. IV we repeat the
numerical calculations of Sec. III for an aggregate with static
diagonal disorder. Exciton–phonon interaction is incorpo-
rated in Sec. V. Our results are summarized in Sec. VI where
we also connect the Stark self-energy with higher-order non-
linear response functions.

II. REAL SPACE GREEN FUNCTION EXPRESSION
FOR THE PROBE ABSORPTION

The dynamics of electronic excitations in molecular ag-
gregates can be modeled using the Frenkel exciton Hamil-
tonian which represents an assembly of interacting two-level
molecules:6

Ĥmat~j!5(
n

Vn~j!B̂n
1B̂n1 (

mÞn
Jmn~j!B̂m

1B̂n1Ĥ8~j!.

~2.1!

Here B̂m(B̂m
1) is the exciton annihilation~creation! operator

for themth molecule that satisfy the Pauli commutation re-
lations

@B̂m ,B̂n
1#5~122B̂n

1B̂n!dmn , ~2.2!

Vm is the electronic excitation energy of themth molecule
andJnm is the intermolecular coupling responsible for exci-
ton hopping.j stands for additional degrees of freedom~e.g.,
molecular vibrations, phonons, solvent, etc.! described by the
Hamiltonian Ĥ8. Their coupling with the excitons enters
through thej dependence ofVn~j! andJmn~j!. We have used
the Heitler–London approximation for the intermolecular

coupling which conserves the number of excitons and can
only induce exciton hopping. This is justified in molecular
aggregates where typicallyuJnmu!Vn . Consequently the
ground state is the vacuum state with no excitons, and the
purely electronic problem~with no additional degrees of
freedom! is exactly solvable. The additional degrees of free-
dom make this a genuine many-body problem which may
only be solved approximately. The coupling with radiation
field E~r ,t! is given by

Ĥ int~ t !52E dr E~r ,t !• P̂~r !. ~2.3!

Here the polarization operatorP̂~r ! has the form:36,37

P̂~r !5S P̂m~r !,

P̂m~r !5umur~r2Rm!~B̂m1B̂m
1!,

~2.4!

wherer~r2Rm! is the normalized polarization density andm
is the transition dipole.

The following calculations use a compact correlation
function expression for the optical response functions,4

which are based on nonequilibrium Green function formal-
ism, first introduced by Keldysh.38 For an arbitrary operator
Q̂ we define the Heisenberg operatorQ̂(t) whose evolution
is determined by the material HamiltonianĤmat ~i.e., without
the external field!. For any set of operatorsQ̂,...,

(1) Q̂(n) we
introduce the following correlation function

^Q̂a1
~1!~ t1!•••Q̂an

~n!~ tn!&[Tr$r̂T̂a1 ...an
@Q̂~1!~ t1!...Q̂

~n!~ tn!#%,

~2.5!

wherer̂ is the equilibrium density matrix of the system, and
the indicesa1...an assume the valuesL ~left! andR ~right!.
Equation~2.5! should be understood as follows: All opera-
tors with L(R) should be placed to the left~right! of the
density matrix. Furthermore,T̂a1 ...an

denotes a time-ordering
operator which acts in the following manner: allL operators
are ordered antichronologically~earlier times last! whereas
the reverse~chronological! ordering is applied to theR op-
erators. Using this notation, the order of operators in the lhs
of Eq. ~2.5! is immaterial since we have a unique prescrip-
tion for ordering them based on their labels and time argu-
ments. We next introduce the following combinations of left
and right operators.

Q2[QL2QR ,
~2.6!

Q1[ 1
2~QL1QR!.

The expectation value of the polarizationP~r ,t! in the driven
system is4

P~r ,t !

5K P̂1~r ,t !expF i E dr 8E
2`

1`

dt8 E~r 8,t8!P̂2~r 8,t8!G L .
~2.7!

In a frequency-domain pump–probe measurement, the elec-
tric field is given by

E~r ,t !5Epe
ikpr2 ivpt1Ese

iksr2 ivst1c.c., ~2.8!
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whereEp represents a strong pump field whereasEs is a
weak probe. Expanding the polarization to first order in the
probe, we have

P~r ,t !5E dr 8 dt8 R~r ,t,r 8,t;@Ep# !Es~r 8,t8!, ~2.9!

whereR denotes the linear response function of the system
driven by the pump alone. The formal expression of the re-
sponse function can be obtained by perturbative expansion of
Eq. ~2.7! which yields

R~r ,t,r 8,t8;@Ep# !

5 i K P̂1~r ,t !P̂2~r 8,t !expF i E dr 9 dt9

3Ep~r 9,t9!P̂2~r 9,t9!G L . ~2.10!

We next expand the response function in powers of the
pump, resulting in

R~r ,t;r 8,t8;@Ep# !

5 i ^P̂1~r ,t !P̂2~r 8,t8!&

1 i 2E dr 9 dt9^P̂1~r ,t !P̂2~r 8,t8!P̂2~r 9,t9!&

3Ep~r 9,t9!1••• . ~2.11!

Successive terms in this expansion require the evaluation of
higher-order correlation functions of the dipole operator. For
a weak pump it is sufficient to truncate the sum to second
order in Ep . The necessary correlation function
^P1P2P2P2& then represents the third-order response. For
a strong pump we need to sum the series to infinite order.
This can be done approximately using diagrammatic
techniques.4 To present the result we define the bare one-
exciton Green functionGmn~v!:

Gmn~v!52 i E
0

`

dt eivt^B̂n~ t !B̂m
1~0!&. ~2.12!

We further introduce the two-exciton Green functionG~2!:37

Gnm1m2m3

~2! ~2vs ;v1 ,2v2 ,v3!

[E
0

`E
0

`E
0

`

dt1 dt2 dt3 e
2 i ~v1t12v2t21v3t3!

3^B̂n1~0!B̂m22~ t2!B̂m12
1 ~ t1!B̂m32

1 ~ t3!&, ~2.13!

which satisfies the Bethe–Salpeter equation

Gnm1m2m3

~2! ~2v2 ;v1 ,2v2 ,v3!

5 (
n8m18m28m38

Gnn8~vs!Gm
28m2

~v2!

3Ḡn8m18m28m38
~ t !

~2vs ;v1 ,2v2 ,v3!Gm
28m1

~v1!

3Gm
38m3

~v3!, ~2.14!

whereḠ(t) is the two-exciton scattering matrix.38,39

Using these quantities, we obtain the following expres-
sion for the response to first order inEs , and partially re-
sumed to infinite order inEp

R~r ,t,r 8,t8;@Ep# !5(
mn

r~r2Rm!r~r 82Rn!

3E dv

2p
Rmn~v,@Ep# !e2 iv~ t2t8!,

~2.15!

with

Rmn~v,@Ep# !5m2$G mn~v,@Ep# !1G nm* ~v,@Ep# !%.
~2.16!

The one exciton Green functionG mn~v,@Ep#! for the
system driven by the pump field is defined as follows. We
first introduce the time-domain Green function
G mn~t,t8;@Ep#! in the presence of the pump field:

G mn~ t,t8,@Ep# ![2 i K B̂m2~ t !B̂n1~ t8!

3expF i E dt dr P̂2~r ,t!Ep~r ,t!G L .
~2.17!

Since the pump field is monochromatic@Eq. ~2.8!#, this
Green function can be expanded as

G mn~ t,t8,@Ep# !

5 (
N52`

1` E dv dv8

~2p!2
e2 ivt1 iv8t8

32pd~v2v822vpN!G mn
~N!~v;@Ep# !. ~2.18!

The Green function in Eq. ~2.16! is defined as
G mn~v,@Ep#![G mn

(0)~v,@Ep#!. It can be obtained by solving
the Dyson equation

G mn~v,@Ep# !5Gmn~v!1 (
m8n8

Gmm8~v!

3Sm8,n8
~s!

~v,@Ep# !G n8n~v,@Ep# !. ~2.19!

Equations~2.16! and ~2.19! were obtained using the dia-
grammatic technique introduced in Ref. 4, where a single
line stands for the exciton Green functionG andḠ(t) denotes
the two-exciton scattering matrix.R(v,@Ep#) can be ex-
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pressed as a sum of diagrams with two external lines carry-
ing the probe frequencyv and arbitrary number of external
lines carrying the pump frequencyvp . The latter determines
the order with respect to the pump field. Whenv is in the
absorption region, to avoid the compensation of the small
factors related to the pump field by large resonant factors
G~v! we introduce the sum of diagrams contributing toR
which do not contain these resonant factors and denote this
sum by S(s)~v,@Ep#!. This leads to the Dyson equation
~2.19!. Since the real and imaginary parts ofS(s)~v,@Ep#!
determine the shift and the broadening respectively of the
absorption line induced by the pump, we will refer to
Snm
(s) ~v,@Ep#! as the Stark self-energy. It can be expanded in

even powers of the pump fieldEp , and the leading~second
order! term is given by diagrams with two external lines
carrying the pump frequencyvp as shown in Fig. 1~a!. Note
that the polarization which is related toG mn is given in this
approximation by the infinite sum of diagrams shown in Fig.
1~b! containing all orders of the pump field.@This means that
if the Green functionG is given by diagrams presented in
Fig. 1~b!, it can be expressed in the form of Eq.~2.19!, with
S(s) presented diagrammatically in Fig. 1~a! and given by
Eq. ~2.20!.# The Stark self-energy can therefore be expressed
in terms of the bare Green function and the two-exciton scat-
tering matrix:

Snm
~s! ~v,@Ep# !5m2 (

m8n8m9n9
Ḡnm8n8m

~ t !
~2v;vp ,2vp ,v!

3Gm8m9~vp!Gn8n9
* ~vp!Em9En9

* . ~2.20!

Equation~2.16! together with~2.12!, ~2.19!, and~2.20! con-
stitutes the main formal result of the present article which
will be used in the coming sections.

III. PUMP–PROBE SPECTROSCOPY OF PERIODIC
AGGREGATES

In periodic aggregates the exciton Green function intro-
duced in Sec. II can be further simplified by switching to
momentumk space, we adopt the following convention:
dk5~2p/a)d ddk, wherea is the lattice constant andd is the
dimension of an aggregate. Molecular monolayers and mul-
tilayers have a two-dimensional periodicity. In this section
we consider a perfect one-dimensional aggregate with near-
est neighbor interactions and neglect the additionalj degrees
of freedom. This model can serve as an excellent starting
point for the simulation of optical properties ofJ aggregates.
The optical response of cyclic periodic aggregates have been
considered in Ref. 12. The photosynthetic antenna com-
plexes have a circular geometry with 9, 12, and 18
chromophores.15

The one exciton Green functionG~v,k! is now given by

G~v,k!5
1

v2e~k!1 ih~k!/2
, ~3.1!

wheree~k! is a dispersion relation for free excitons, andh~k!
is a phenomenological momentum-dependent scattering ma-
trix. The two-exciton scattering matrix has the following
form in the momentum domain:

Ḡ~ t !~2vs2ks ;v1k1 ,2v22k2 ,v3k!

5Ḡ~a!~2vs2ks ;v1k1 ,2v22k2 ,v3k3!, ~3.2!

Ḡ~a!~2vs2ks ;v1k1 ,2v22k2 ,v3k3!

[Ḡ~v11v3 ,k11k3!, ~3.3!

with

Ḡ~v,k![22H E dv8 dp

2p i
G~v8,p!G~v2v8,k2p!J 21

.

~3.4!

@The momentum dependence ofḠ(a) given by Eq.~3.3! fol-
lows from the following real space relation:Ḡnm1m2m3

(a)

5dnm2dm1m3
Ḡnm1

.#
The Stark self-energy is given by

S~s!~v,k;vp ,kp ,@Ep# !5m2Ḡ~ t !~2v2k;vpkp ,

2vp2kp,vk!uG~vp ,kp!u2uE u2.

~3.5!

The response function now becomes

R~vk;vpkp ,@Ep# !5m2@G ~vk;vpkp ,@Ep# !

1G * ~2v2k;vpkp ,@Ep# !#,

~3.6!

with

G ~vk;vpkp ,@Ep# !5$v2e~k!1 ih~k!/2

2S~s!~vk;vpkp ,@Ep# !%21. ~3.7!

FIG. 1. Diagrams contributing to the Stark signal.~a! Stark self-energyS(s)

to the second order in the pump field@Eq. ~2.20!#. ~b! Diagrams contributing
to the polarization@Eqs.~2.16! and ~2.19!#.

5418 Mukamel, Rott, and Chernyak: Spectroscopy of molecular aggregates

J. Chem. Phys., Vol. 104, No. 14, 8 April 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



The linear pulse absorption~in the absence of the pump!
is given by

S0~v!5Im R~v,vp ,@Ep50# !

5m2 Im@G~v,k50!1G* ~2v,k50!# ~3.8!

and the differential probe absorption is given by

SD~v;vp ,@Ep# ![Im R~v;vp ,@Ep# !

2Im R~v;vp ,@Ep50# !, ~3.9!

where

R~v;vp ,@Ep# ![R~v,k50;vp ,kp50,@Ep# !. ~3.10!

We now apply these results to an infinite one-dimensional
periodic aggregate with nearest neighbor interaction,

e~k!5V22J cos~ka!, ~3.11!

whereJ.0 is a transfer matrix element, the band edge en-
ergy ise~0!5V22J, anda is the lattice constant. In all cal-
culations we used the parametersJ5312.5 cm21, andm50.5
Debye,40 which are typical for anthracene. We further as-
sumed a wave-vector-independent widthh~k!5h510 cm21.

The solid curve in Fig. 2~a! shows the linear absorption
lineshapeS0. The differential absorptionSD for various
pump intensities is displayed in Fig. 3. These results can be
interpreted by noting that the Stark self-energy is propor-
tional to

S~s!~v;vp ,@Ep# !}Ḡ~v1vp ,k1kp50!, ~3.12!

and v'e~0!. When vp is tuned below the band~upper
panel!, S(s) is real, and the differential absorption assumes a
dispersive form, reflecting a blue shift of the total absorption
(S01SD). Whenvp is tuned inside the band~bottom panel!,
S(s) is essentially purely imaginary and contributes a dy-
namical line broadening to the Lorentzian profile of the dif-
ferential absorption. Whenvp is close to the bandedge
~middle panel!, the real and imaginary parts ofS(s) are com-
parable and the differential absorption has an asymmetric
profile.

IV. SIGNATURES OF STATIC DIAGONAL DISORDER
IN OPTICAL STARK SPECTROSCOPY

The structure of organic aggregates usually contains
various types of disorder~e.g., intermolecular separations,
relative orientations and impurities!. These reflect the rela-
tively weak intermolecular forces which makes fluctuations
more likely compared with inorganic crystals. To explore the
effects of disorder we incorporate static Gaussian diagonal
disorder to the model of Sec. III. We assume that the energies
Vn are given byVn5V1Un , whereUn are independent
variables with a Gaussian distribution.

FIG. 2. Linear absorption for a periodic one-dimensional aggregates.~a!
System with various diagonal disorder parameter,~b! system with various
exciton-phonon coupling; for other parameters see text. FIG. 3. Differential absorption for a periodic one-dimensional aggregate.

For several pump intensitiesI p}uEpu2, I p5nI0 , with I 050.1 MW/cm2. Up-
per panel: forvp tuned below the bandedge,vp2e~0!52625 cm21. Middle
panel: forvp close to the bandedge,vp2e~0!525 cm21. Bottom panel: for
vp inside the band,vp2e~0!5625 cm21.
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^Un&50,̂ UmUn&5s2dmn , ~4.1!

and^•••& denotes averaging over static disorder. Cooperative
radiative decay41 and effects of exciton localization~i.e.,
Anderson localization! on the optical properties have been
studied.42–44 The necessary Green functions have been cal-
culated in Ref. 4. The one-exciton Green functionG~v,k! is
given by

G~v,k!5
1

v2e~k!2S~v!1 ih~k!/2
, ~4.2!

where the self-energy representing the effects of disorder is
calculated by solving the self-consistent equation:

S~v!5s2E dk
1

v2e~k!2S~v!1 ih~k!/2
. ~4.3!

The two-exciton scattering matrix is

Ḡ~ t !5Ḡ~a!1Ḡ~b! ~4.4!

with Ḡ~a! given by Eq.~3.4!, and

Ḡ~b!~2v2k;vpkp ,2vp2kp ,vk!

[
s2

G0
E dp 2pd~vp2e~p!!Ḡ~k1p,v1vp!. ~4.5!

The probe absorption is now given by Eqs.~3.9! with G and
Ḡ(t) given by Eqs.~4.2!–~4.5!. In Fig. 2~a! we display the
linear absorption for various values of the disorder parameter
s. The self-energyS is complex, and ass increases, the line
shape broadens and undergoes a blue shift. In Fig. 4 we
display the differential absorption forvp tuned well below
the bandedge for a disordered aggregate. For comparison we
show in the top panel the same quantity in the absence of
disorders50. Both systems show a similar blue shift, since
Ḡ(b) vanishes in this case,Ḡ(t)5Ḡ(a), and we can neglect the
self-energies inG(vp), G~v8! and inG(v1vp2v8) in Eq.
~3.4!. These results are in qualitative agreement both with the
experimental work of Johnsonet al.33 on pump–probe spec-
tra of BIC J aggregate and with numerical simulations per-
formed using the sum over states expression for the nonlin-
ear response.34 In Fig. 5 we show the differential absorption
for different values of disorder parameters whenvp is tuned
within the band~solid curves!. For comparison we also give
the signal in the absence of disorder~dashed curves!. We see
an additional blue shift induced by disorder. The reason is
that Ḡ(b)}s2/G0, and ReḠ

(t) which determines the blue shift
is proportional tos2uEpu

2. In addition,S~v! in ~4.3! is com-
plex and also contributes to the line shift. Figures 4 and 5
thus clearly show enhancement of both of the dynamical
broadening and spectral shift due to disorder.

V. EFFECTS OF PHONONS

To incorporate the dynamical effects of phonon we adopt
a model of harmonic phonons with exciton–phonon interac-

FIG. 4. Differential absorption forvp tuned below the bandedge
~vp2e~0!52625 cm21! for a periodic one-dimensional aggregate and vari-
ous pump intensities. Top panel: purely electronic system, no coupling with
nuclear degrees of freedom. Middle panel: with diagonal disorder,s510
cm21. Bottom panel: with coupling to acoustic phononsFac550 cm21,
T5100 K.

FIG. 5. Differential absorption forvp inside the band~vp2e~0!5625 cm21!
for an aggregate with different diagonal disorder parameters. Dashed line:
no disorder,s50.
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tion linear in phonon operators. The pump probe signal for a
two electronic level model coupled with phonons with a
Brownian oscillator spectral density can be calculated ex-
actly for an arbitrary pump intensity.45 In the case of molecu-
lar aggregates,Ĥmat @Eq. ~2.1!# can be written in the form:6

Ĥmat5V(
m

B̂m
1B̂m1 (

mÞn
JmnB̂m

1B̂n1(
m,n

Vmnb̂m
1b̂n

1(
mnl

VmnlB̂m
1B̂n~ b̂l

11b̂l !. ~5.1!

The first three terms represent the free excitons and phonons
energy, the last is the exciton–phonon interaction. The sum
over m and n in the fourth term includes diagonal on-site
coupling n5m as well as off diagonal coupling. Optical
phonons usually couple through the former terms and acous-
tic phonons through the latter.

In the momentum domain, this Hamiltonian assumes the
form

Ĥmat5E dq$e~q!B̂q
1B̂q1V~q!b̂q

1b̂q%

1E dp dq$V~q,q2p!B̂p
1B̂qb̂q2p

1

1V* ~q,q2p!B̂q
1B̂pb̂q2p

1 %, ~5.2!

wheree~q! is the exciton energy@Eq. ~3.11!# and

V~q,q2p![(
mnl

eiq–~Rn2Rl !2 ip–~Rm2Rl !Vmnl . ~5.3!

Neglecting the real part of the self-energy, the one-exciton
Green functionG~v,k! becomes4

G~v,k!5
1

v2e~k!1 iS~k!1 ih~k!/2
, ~5.4!

where the phonon self-energy is given by

S~k!5
1

2 E dp f ~p,k!, ~5.5!

with

f ~p,p8!52puV~p8,p82p!u2~11N@V~p82p!# !d~e~p!

2e~p8!2V~p82p!!12puV~p,p2p8!u2

3N@V~p2p8!#d~e~p!2e~p8!2V~p2p8!!.

~5.6!

NV5@exp~V/kT!21#21 are the Bose occupation numbers and
T is the temperature. The exciton-acoustic phonon coupling
function is6

V~k,q!5Fac

cos@~k1q/2!a#sin~qa/2!

Asinuqa/2u
, ~5.7!

and the phonon spectrum modeled as

Vac~q!5Vac sinuqa/2u. ~5.8!

The two-exciton scattering matrix is given by Eq.~4.4! with

Ḡ~b!~2v2k;vpk;vpkp ,2vp2kp ,vk!

[
C

G0
E dp8 g~p8,k,vp!E dp e2ek/kT

3Ḡ~a!~k1p,e~p!2v!, ~5.9!

where we have used the following notation:

G0[CE dp G~p!expS 2
e~p!

kT D ,
g~p,q0 ;V!52puV~q0 ,q02p!2~11N@V~q02p!# !

3d~V2e~p!2V~q02p!!12puV~p,p2q0!u2

3N@V~p2q0!#d~V2e~p!2V~p2q0!!,

~5.10!

C[H E dp expS 2
e~p!

kT D J 21

.

We note that bothS~k! and Ḡ(b) are quadratic in the
coupling V. In the following calculations we assumed
Vac567 cm21 ~Ref. 40! andT5100 K, and varied the cou-
pling strengthFac. The linear absorption is displayed in Fig.
2~b!. The phonon self-energy@Eq. ~5.5!# is purely imaginary,
and the lineshapes broaden asFac is increased. The differen-
tial absorption whenvp is tuned off resonant is displayed in
the bottom panel in Fig. 4. SinceḠ(b)50, this case looks
qualitatively similar to the pure and disordered aggregates

FIG. 6. Differential absorption for various exciton-phonon coupling strength
Fac. Dashed line: no exciton–phonon coupling.
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~other two panels!. Calculations forvp tuned inside the band
are displayed in Fig. 6. Since the exciton self-energyS~k! in
Eq. ~5.5! is purely imaginary, the differential absorption
broadens~but does not shift! as Fac is increased. This is
different from the case of disorder~Fig. 5! which shows shift
as well.

VI. DISCUSSION

In the article we applied the Keldysh correlation function
formulation of nonlinear response to optical Stark spectros-
copy of Frenkel excitons including static diagonal disorder
or coupling with phonons. The differential absorption line-
shape to lowest order in pump intensity can be expressed in
terms of the one exciton Green function and the two-exciton
scattering matrix which determine the third-order response.
This suggests that to lowest order in the pump intensity the
Stark self-energyS(s) can be expressed in terms of the re-
sponse functionsR~1! andR~3!. We shall now derive a more
general relation between the Stark self-energy and the re-
sponse functionsR(n), which holds to all orders in the pump
field. The response functionsR(n) are defined through the
expansion:4

P~r ,t !5 (
n50

`
1

n! E dr1 dt1 ...E drn dtn

3R~n!~r t;r1t1 , ...,rntn!E~r1 ,t1!...E~rn ,tn!

~6.1!

with

R~n!~r t;r1t1, ...,rntn!

5 i n^P̂1~r ,t !P̂2~r1 ,t1!...P̂2~rn ,tn!&. ~6.2!

In ~k,v! space we have

R~3!~2v2k;v1k1 ,2v22k2 ,v3k3!

5E E E dx1 dx2 dx3 R
~3!~r t;r1t1 ,r2t2 ,r3t3!

3eiv1~ t2t1!2 ik1–~r2r1!e2 iv2~ t2t2!1 ik2–~r2r2!

3eiv3~ t2t3!2 ik3–~r2r3!, ~6.3!

wherexi5~t i ,r i!. The response functionR @Eq. ~2.9!# in the
presence of the pump can be written in the form

R~vk;vpkp ,@Ep# !5
R~1!~vk!

11A~vk;vpkp ,@Ep# !
, ~6.4!

with

A~vk;vpkp ,@Ep# !5 (
n51

`

A~2n!~vk;vpkp!uEpu2n. ~6.5!

Substituting the electric field@Eq. ~2.8!# in Eq. ~6.1!, expand-
ing to linear order inEs , and comparing the expansion ofR
in powers ofEp order by order with the expansion~6.4!
gives

A~2!~vk;vpkp!52R~3!~2v2k;vpkp ,2vp2kp ,vk!

3$R~1!~vk!%21,

A~4!~vk;vpkp!

5R~5!~2v2k;vpkp ,2vp2kp ,vpkp ,2vp2kp ,vk!

3$R~1!~vk!%21

1$R~3!~2v2k;vpkp ,2v2kp ,vk!%2

3$R~1!~vk!%22. ~6.6!

Equations~6.6! provide a general connection between the
Stark self-energy and the nonlinear optical response func-
tionsR(n). Similar expressions can be derived for the higher-
order terms. A relation between the Stark shift and the de-
rivative of the linear response functionR~1!~v! with respect
to v has been proposed in Ref. 31 for a two-level model.
This is in good agreement with Eq.~6.6! since for a two-
level moleculeR(3)(2v;vp ,2vp ,v) can be expressed in
terms ofdR(1)(vp)/dvp . Equation~6.6! show however that
in general the Stark self-energy depends on higher-order re-
sponse functions and may not be simply related toR~1!. It is
possible to calculate optical response functions using expres-
sions based on sum over states.20 These show large cancel-
lations of terms in calculating the Stark effect. Such cancel-
lations for R~3! in molecular aggregates have been
demonstrated in Ref. 5. The Green function technique used
here expresses the Stark self-energy in terms of the exciton–
exciton scattering matrix which is a measure the anharmo-
nicity of the Frenkel exciton system. It does not suffer from
such cancellations. It also provides a physical picture of ex-
citon dynamics in terms of weakly coupled slightly anhar-
monic oscillators.

Our results suggest that optical Stark spectroscopy can
be used to probe the frequency and wave-vector-dependent
two-exciton scattering matrixḠ~v,k!. We have shown both
analytically and numerically that if the pump is tuned below
the exciton band, the differential absorption is very similar in
all three cases considered~purely electronic aggregate, dis-
ordered, and with exciton–phonon coupling!, and that the
Stark spectrum is related toḠ~v1vp ,k'0!. This similarity is
maintained whenvp is near the bandedge. The picture is
more interesting when the pump field is tuned inside the
exciton band. In the purely electronic model we still probe
Ḡ~v1vp ,k'0!. In disordered aggregates we have an en-
hancement of the Stark effect given by the ratio of the
dephasing rate related to the static disorder to the inverse
lifetime ~which is typical for the degenerate four-wave mix-
ing spectroscopy!. Another characteristic feature of the dis-
ordered system is that the signal is given byḠ~v1vp ,k8!
with e~k8!5vp . This means that real excitations are created
by the pump field, and their energy is not affected by the
excitation process since the scattering induced by static dis-
order is elastic. Coupling with phonons yields a similar en-
hancement with the only difference from the disorder case is
that the dephasing rate is related to the exciton–phonon scat-
tering. However the signal is in this case related to
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Ḡ~v1v8,k8! with v85e~k8! andv82e~0!;kT. This reflects
the inelastic nature of exciton–phonon scattering; the distri-
bution of real excitons with energyvp created by the pump
field is equilibrated thermally and assumes the Boltzmann
form at long times.
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