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The role of medium-induced relaxation of intermedidigdge sites in energy and charge transfer
processes in molecular aggregates of arbitrary size and geometry is explored by means of Green’s
function techniques. The coupling of electronic dadlvent and intramoleculanuclear degrees of
freedom is incorporated using the Brownian oscillator model, which allows an exact calculation of
the necessary two-point and four-point correlation functions of exciton operators. The signatures of
energy transfer and spectral diffusion in time- and frequency-resolved fluorescence spectroscopy are
studied. A unified expression for the frequency-dependent transfer rate is derived, which interpolates
between the sequential and superexchange limits. Numerical results and a Liouville space pathway
analysis for a donor—acceptor system coupled through a single bridge molecule are presented.
© 1996 American Institute of Physid$0021-960606)00115-2

I. INTRODUCTION in light harvesting antenn&é?* Effects such as spectral dif-
fusion, excitation equilibration, and the role of protein modes
Many important chemical and biological processes in-have been discussed in great detail. Hole burfing,
volve long-range transfer of electronic excitation energy Olhump-prob&® and photon ectd spectroscopies have been
electric charges between donor and acceptor moleétes. used as well. Coupling with the mediufprotein, solvent,
At large spatial separation, there is no direct donor—acceptoy,q chromophore’s nuclear motioris crucial in determin-
(DA) coupling, and intervening “bridge” sites that promote jng the transfer rates and pathways. In the superexchange
the transfer are required. One of the key questions in gt the problem reduces to an effective two-site system,
study of donor-bndge—aqceptor complgxes is the ne}tgre 0émd the medium only enters through its coupling to the donor
the transfer process, which could be either a sequefial 5,4 5ccentor. This is the standard charge transfer problem,

cohergn): hopping between adjacent sites or a direct quantun\]vhich can be handled by the Marcus theStyhere solvent
tunneling(superexchangdetween the donor and the accep- otions are incorporated via a single solvation coordinate.

tor. In the former case the bridge provides intermediate S'teﬁormally, this is equivalent to the calculation of an ordinary

in which the excitation resides, whereas the only role of the oo . : :
. . . . . . absorption lineshape. When the intermediate bridge states are
bridge in the latter case is to provide virtual orbitals that

determine the effective DA coupling. These mechanismsfesonam or near resonant with the donor and acceptor, the

have been discussed in connection with ultrafast biologicaﬂ1eOIIum effects on the bridge need to be included as well. A

electron transfer in the reaction cent@®C) of photosyn- s!mple way to treat bath-mduced_%ephas_lng Processes s
thetic system&%-26 which may be modeled as a three-site 9'VE" by the Haken—Strobl mod@l.* This is an infinite

system, where the electron moves 17 A8 ps. Ultrafast temper.ature model that dqes not allow the incorporation of
DA-electron transfer through a DNA helix has been@" arbitrary spectral density of the medium. Such spectral

reported and investigated theoreticalfyas well. Here an  densities AT currently - available ~experimentally ~and
electron requires several nanoseconds to travel more than jfla,eorehc_ally?’ The polaron model has been used to study
A sequential charge and energy transport in crystar.

Recent structural data on the light harvesting antennae of A unified description that includes sequential and tunnel-
bacterial RC¥ and of the RC of higher planfshave trig- N9 Processes as I|m|t|ng cases has- been Qeveloped by for-
gered a host of nonlinear optical studies of the energy trandulating the problem using the density matrix and its evolu-
fer mechanism. In the chlorophydl/b protein antenna com- tion in. Liouville space. A gen_erallzed master equation
plex of Photosystem II, for instance, transient absorptiorfle€scribing the population dynamics of excitons has been de-
spectroscopy revealed a dynamics involving several pigmerftved. A proper incorporation of solvent effects requires the
molecules before the excitation energy is finally trapped irfalculation of simultaneous dynamics of several solvation
the acceptor staf€.Time-resolved fluorescence is a valuable coordinates. Hu and M'J_kanjfé| have calculated the
tool in the study of energy transfer mechanisms in moleculaffequency-dependent rates in a three-site system in the static
aggregates and crystdis?2 Considerable insight has been limit for the solvent. Skourtis and Mukanfélhave recently
gained recently into the role of different system time scaleginalyzed the mechanism for a system with an arbitrary num-

ber of bridge sites but without the incorporation of the sol-
30n leave from Landau Institute for Theoretical Physics, Kosygina Street Zvem' In this paper we generalize these studies and examine

117334 Moscow, and the Institute of Spectroscopy, Russian Academy oyhe effect of a med_'um with an arbitrary spectrgl density that
Sciences, 142092 Troitsk, Moscow Region, Russia. is coupled to all sitegdonor, acceptor, and bridgen the
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5822 Kihn, Rupasov, and Mukamel: Spectral density for energy transfer

dynamics of energy and charge transfer processes in molecouclear Hamiltonian upon excitation of site The second
lar aggregates. In Sec. Il we introduce the Frenkel Hamilterm in Eq.(1) represents intermolecular dipole—dipole cou-
tonian in the Heitler—London approximation, and present theling, and is given by

Green'’s function formal expressions for the two-point corre-

lation function of exciton operators in the Heisenberg pic- VZE Unm(Br Bm+BiBy). (4)
ture. These two-point correlation functions are then related to nm

a hierarchy of two-point and four-point correlation functions We assume that only one moleciitbe donor, labeled=1)
of individual (noninteractingmolecules. These are evaluated ;\+aracts with the external electric fiefe(t). Thus,He(t) is
using the Brownian oscillator model of nuclear dynamics.

Numerical calculations of time-resolved fluorescence spectra Hg(t)=—u [ E(t)B] +E*(t)B,], 5

that demonstrate the role of the finite nuclear motion time . . . .
: where u, is its transition dipole moment. We further invoke
scale are presented in Sec. lll.

o the Condon approximation for the dipole moment as well as
In Sec. IV the frequency-dependent rate matrix is calcu- . . .
for the intermolecular coupling and neglect their dependence

lated to lowest order in intermolecular interactions and the X )
on the nuclear configuration.

role of the bridge spectral density is explored. In the sequen- . . NG .

tial limit, the Farster rate is recovered, whereas in the super, orrglzggnt?l:sng%rg|Iton|an, we shall calculate the two-point

exchange limit the bridge states enter only through an effec- '

g\_/e ch:outalin? matrix elgmentdbeiweten.don?r: anisflccleptor. &n(t,t’):(é:(t)én(t’)), (6)
inally, the frequency-dependent rate in a three-&tegle 3 HkaT kT

bridge system is calculated in Sec. V. We formulate the DAWhere(---) = Tr{---e”"e7}/Tr{e” ™"}, and

transfer in terms of Liouville space pathwaysyhich have B (1)=U*(t,—=)B,U(t,— =) )

been widely used in nonlinear optfésas well as electron neT e o .

transfer theory**?The various Liouville space pathways are is the exciton operator in the Heisenberg representation.

discussed and used to identify the sequential and supek!(t,t") is the time evolution operator,

exchange contributions to the transfer. The results generalize

A . i it
the static limit expressions of Hu and Mukartdbr electron U(t,—»)= ? ex;{ — — (Ho+W)t— — J dr He(7)|.
transfer to incorporate solvation processes with arbitrary h o) e
time scales. 8

The operatorst? and? stand for chronological and anti-

chronological time ordering, respectively. The correlation

function (6) carries the information necessary for calculating

optical properties and energy transfer processes in the sys-
In this section we introduce the Hamiltonian and reviewtem. This will be illustrated in the coming sections, where we

the iterative correlation function procedure for calculatingconnect it to various observables.

the excitation transfer developed by Mukamel and  We restrict the following analysis to a single path, where

Rupasov® For clarity we focus on energy transfer. However, molecule 1 is coupled to 2, 2 to 3, etc., and moleduitel to

the guantities calculated can be used for the description d¥. A perturbative expansion to lowest nonvanishing order in

II. CORRELATION FUNCTION EXPRESSIONS FOR
ENERGY TRANSFER

charge transfer as well, as will be shown in Sec. IV, the external field and the intermolecular coupling yields

We consider a molecular aggregate consistinyl shol- o N 27 .,

. . . H ~ U _

ecules, described by the Frenkel exciton Hamiltorft, Fa(tt))= % H2 ( n,;; 1) f, dty_---dt, dr

H:H0+V+Hp(t), (1) n=

. . t'
whereH, represents noninteracting molecules, each assumed XJ dt},_,---dt] dr’ E*(n)E(r)
to be an electronic two-level system with a ground stgje —
and an excited state), .
N X(T[By(7)By (t)--Bn(ty-—1)By(D)]

Ho=n21 Ha(a) B, Byt Houd Q). 2

-
X T[Bn(t)BR(t]-1) - ~Ba(t})B] (7)]).

The operator8, (B,,) that create(annihilate an electronic

excitation on thenth molecule, satisfy the Pauli commuta- ©)

tion rules: We now assume that each molecule is coupled to a dif-

e n ferent set of nuclear degrees of freedom and that nuclear

[BnBm]= dnm(1=28B, B). ©) dynamics of different molecules are uncorrelated. This im-

H,.d{q) is the nuclear Hamiltonian that describes intramo-plies thatH, depends om,,, which is a subset of the entire

lecular as well as solvent degrees of the freedom, dergpted nuclear degrees of freedog Using this model, we can con-

The coupling of electronic and nuclear degrees of freedom istruct a numerically efficient iterative procedure for comput-

represented byd,(q) which accounts for the change in the ing the necessary correlation functions. We first calculate the
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* dw C,
gn(t):_f @ (;0)

o 2T

donor correlation function,

oq(t,t")
2 rt t’
=<%) J',de 7wd7" F(ntt', 7)E*(7)E(7T). X
(10

fio |\
(1—cog wt))cotl—< m) —i(sin(wt) — wt)

(18

whereC,(w) is thespectral densityassociated with nuclear
olvent and intramoleculadynamics,

The remaining(bridge and acceptprcorrelation functions
are then obtained successively through the recursive relatioh’

2
Un,n-1 t t’
% ) Lch .

X G q(1,7') (N=2---N).

Chw)=1% 2 w? &2 [ 80— ;)= dw+o) )]
(19

These expressions will be applied in the coming sections for

) ) . calculating the time- and frequency-resolved fluorescence as
The molecular correlation function that appears in these eXzell as the energy and charge transfer rates in molecular

dr’ T'h(7t,t',7")

on(t,t")=

(11)

pressions is given by

Loty o ts,t) =(Bn(ty) By (t2)Bn(t3) By (t,)). (12

aggregates.

lll. APPLICATION TO TIME- AND FREQUENCY-

Here B,(t) denotes the time-dependent exciton operator iIrRESOLVED FLUORESCENCE SPECTROSCOPY

the interaction representation, i.e.,
Bn(t):eiHot/ﬁBne*iHot/ﬁ’ (13)

and(---) = Tr{---e Ho’keT}/Tr{e Ho’ksT} W shall also de-
fine the two-time correlation functions,

on(t’ =) =(Bn(t)B, (1)). (14

In what follows we represent the solvent using the
Brownian oscillator model. In this model, nuclear motions
that couple to the electronic transition are treated as a

In the following we adopt the overdamped Brownian
oscillator model for the spectral density, i.e.,

oA,
w’+ AL

In the high-temperature limikgT>#%A,, Egs.(18) and(20)
yield

Ch(w)=2X\, (20

Az
gn<t>=(x2-—i

n

n

X sgr(t))(e‘An“+Anltl—1>, (21)

continuous distribution of harmonic modes whose equilib-yith

rium positions are displaced between the

form Hp, =2 fiw; ob'wb; n, and H =7 (Q,+\,) + (182)
X Ejﬁwjyndj,n(bjfnJr b; n), where(}, is the electronic transi-
tion frequency andv; ,, d; , are the frequency and the di-
mensionless displacement of ttj¢h oscillator, andbffn

(b; ) is its creation(annihilation) operator. We further intro-
duce the reorganization energystokes shift parameter
)\n=1/221d12,nw1,n- For this model, the two- and four-point

correlation functions afé
ot —t)=exp{—i(Q+A) (' —t)—g,(t'—t)} (15
and
[o(ty,ty,t3,ts)
=exp{ —i(Qn+ Ny (ty—tr+t3—t,) —Fn(ty,to,t3,t0)},
(16)
where
Fr(ty to,t3,t) =0n(t;—t2) + gn(ta—t3) + gn(ty—ty)
+gn(t3_t4)_gn(tl_t3)_gn(t2_t4)-
(17
The functiong,(t) is given by

two
electronic state®® The nuclear Hamiltonian assumes the

Ap=2N\ KgT/%. (22)

The two-point correlation functions introduced in the

previous section may be used to calculate several interesting

spectroscopic observabléall quantities are given to lowest
nonvanishing order in intermolecular coupling and field.
The linear absorption lineshape is

N P 2
Tand @)= 2 (7) on(w), (23
where
Un(w)=fx dt €“to (1) (24)

is the normalized absorption line shafi@m) ! dw o,(w)

=1]. The full width at half maximumFWHM) I, of the

on(w) is given by the Padapproximatiorf?
2.355+1.76«,

r,=A
"N 140.85¢,+0.88?

(25

where the dimensionless parametg/=A /A, determines
the nature of the line shape; faf;<1 it assumes a Gaussian
inhomogeneous form, whereas feg>1 it becomes a mo-
tionally narrowed Lorentzian.

The relaxed fluorescence signal is
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FIG. 1. Energy level scheme for the five monomer aggregate used in the
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fluorescence (arb. units)

0.0 0.1 0.2

(@ 82 [eV]

calculation of the time- and frequency-resolved fluorescence. The transition

energies aref(Q,—Qs)=(5—n)X0.02 eV and the Stokes shift is
fix,=0.01 eV for all molecules. The arrow indicates that the external field
only excites the donorm(=1) molecule.

N
og(w)= 277(0;1 Pho(®), (26)
with the normalized fluorescence line shape
U,'](w)ZJ dt eeta/(t). (27

Hereo /(1) is the correlation function, E¢14), with the only

difference that it is calculated with respect to the density

matrix of the excited state anid,, denotes the equilibrium
population of siten.

In the following numerical calculations we consider an
aggregate with five monome(Big. 1) and electronic transi-
tion energies#(Q,—Q5)=(5—n)x0.02 eV (=1---4).

0.25ps

2ps

fluorescence (arb. units)

-0.2

(b)

0.2

AQ [eV]

FIG. 3. (a) Time-resolved fluorescence spectriiyg. (28)] (AQ=05—w)

We include a single overdamped mode in the high-for delay times of 0, 100, 250, 500, 1000, and 200(ffism bottom to top,

temperature limit[Eqgs. (21)] for each site. Assuming a
Stokes shift parameter @f\,=0.01 eV for all sites and a
temperature off =300 K we have for the coupling strength
hA,=0.0227 eV according to Eq(22), x,=0.1, and
FWHM I',=0.0526 eV[Eq. (25)]. In Fig. 2 we display the

abs./fluo.(arb. units)

0.0 0.1 0.2

AQ [eV]

FIG. 2. Stationary absorptidisolid line, Eq.(23)] and fluorescenciglashed
line, Eq.(23)] spectrum for the aggregate shown in FigAX)=Aw—#/Qs).
The dipole moments of the monomers are assumed to be identical and
equilibrium only the acceptor contributes to the fluorescence. The temper

A,=0.1A,). The curves have been shifted vertically and the magnitude was
scaled to comprise all delay timésompare Fig. # Note that the intramo-
lecular coupling as well as the amplitude of the external field ente{Z8).

only as an overall scaling factotb) The contributions of the individual
molecules to the fluorescence spectrum at a delay of 25@fs and 2000

fs (bottom (solid—total signal; short dashes—2; dashed—dotted—3;
dotted—4; and long dashes»-5

stationary absorption of the aggregée]. (23)). The relaxed
fluorescence spectrum obtained from E26) is shown as
well, assuming that only the acceptor site is populated at
thermal equilibrium.

The time- and frequency-resolved fluorescence of the
aggregate, following an excitation pulse that only interacts
with molecule 1(the donoy*’ is given by>4°

H—Tt
2!

o .
dr €'“a,

—o

N
Sy(w,t)=27w >, Z). (28)

n=1 2
At long times this reduces to the relaxed fluoresceltem
(26)].*° Fig. 3@ shows the time-dependent fluorescence
spectrun Eq. (28)]. For clarity, only the fluorescence due to
trt1e bridge and the acceptor molecules is displayed in the
iollowing calculations; the strong donor emission is not

ture isT=300 K. shown. We used a 50 fs Gaussian pulse tuned on resonance

J. Chem. Phys., Vol. 104, No. 15, 15 April 1996
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0.08 In this section we adopt a different procedure and calcu-
late the time- dependent populations of the various mol-
= ecules,P,(t)=(B (t)B,(t)). These carry less information
£ oos | than the two-point correlation functions, and their simplicity
; makes it possible to develop a resummed approximation, as
= o0 | will be shown below. Moreover, all the results of the present
g section apply equally to charge transfer. In the latter dage,
3 creates an electron on tigh site, and the two states of each
S o002} site, |e) and |g) represent a state with and without an
- electron?® For brevity, we continue to refer to the process as
- energy transfer. The Hamiltonian is given HygHy+V and
09%05 200 600 300 7000 we setH=0. Thus, we do not incorporate the coupling with

delay [fs] the radiation field explicitly, but assume that the system is
initially excited, and the nuclear degrees of freedom at each

FIG. 4. The time-resolved fluorescence at a fixed frequeney)s—A\s. site are equilibrated. The vectBft) =[P, (t P.(t)] sat-
fix,=0.01 eV andl',=0.0526 eV;(solid line—«,=0.1,#A,=0.0227 eV q : ()=[P4(1),....Pn(1)]

(T=300 K); dashed line—,=0.05,A,=0.0225 eV(T=294 K). isfies the generalized master equat
dP(t) t
—=f d7 K(t—71)P(7), (30
dt 0

with the donor absorption maximum. The correlation func-
tions for the monomers have been calculated iteratively us?
ing Egs.(9)—(11) on a two-dimensional grid with a spacing

where K(t) is the rate matrix. The probabilitieB(t) ob-
tained by solving Eq(30), whenK(t) is calculated pertur-

of 2 fs. The necessary grid size is determined\3y as well batively, then contain terms to infinite order in intermolecu-
lar coupling. Hence, the calculation may hold at long times

as the delay time. The maximum grid size was 120200.

For zero delay the fluorescence coincides with the donofS Well _ o
absorption spectrum centered/s2=0.09 eV. For short de- We start our calculation &k (t) by considering the for-
lays the fluorescence is mainly due to the 2 bridge mol-  M&! solution of Eq(30),
ecule that is next to the donor site. With increasing delay the  P(t)=W(t)P(0). (31)

nergy is transferred to th tor, resulting in tr
siﬁigi)énsproiess: Iﬁdad%itioi i(r:l(eesppzetrl?;ubro?ideni derﬁogé/e further define the Laplace transform of a time-dependent
sites participate in the emission. The contributions of thefunCtlon
individual molecules to the total fluorescence spectrum are o et
plotted in Fig. 3b) for two delay times. Note that the pertur- A(s)= JO dt A(t)e>. (32)
bative approach used here is only valid for short delay times
(t<#/V,,) (see Sec. V. In Fig. 4 the rise of the fluores- BY applying this transform to Eq¢30) and(31) we obtain
cence at the acceptor frequer@y=0—\s) is shown as the the exact formal relation
parameter, is varied, keeping the FWHNEQ. (25)] fixed
(hI',=0.0526 eV. As expected, the acceptor fluorescence  W(s)=
rise time slows down ag, is decreased.

sl1-K(s)’ (33
Expanding both sides of this equation in powers of the inter-
molecular interaction yields the following recursive relations

IV. THE FREQUENCY-DEPENDENT TRANSFER RATE among the elements of both matridés,

. . . . 2) — 2 2
The previous calculations of the two-time correlation Kim(s)=sWiiK(s), (34)
functions a,(t,t') were carried out to lowest nonvanishing
order in intermolecular coupling. As such, they only hold for Kﬁ%(s)zszwm(s)—s3§|: W (s)Wi2(s), (35

short times and may not be used to describe the long-time
limit. It is possible to extend their range of validity by solv- and more generally,
ing the following integral equations fowr,(t,t') self-

consistently rather than iteratively: [K®($)Jmn
~ p—2
t,t’ _
on(tt) — WO ]p=s D [KP-I(WA(S) ],
Unm t t’ , - ) q=24,...
_n;n( ) J,xf,oodeT Iy(ntt',7)on(7,7") (p=2.4,..), (36)

where p denotes the order in intermolecular coupling and
) J' f dr d7’ Ty(7t,t',7")EL (7)En(7"). K©=0. Thus, the present procedure consists of calculating
W(s) perturbatively and then using E(B6) to get a pertur-
(29 bative expression for the frequency-dependent rate matrix
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K(s). If the intramolecular nuclear dynamics time scale ishighlights the separate role of the bridge and the DA spectral

much faster than the intermolecular transfer time, the ratelensities. Combining Eq$10), (11), and(38) we get

matrix will show no dispersion in the relevant frequencyw(z(m_n))(t)

range, and we can replaBgs) by K=K (s=0). The master mn

equation (30) then becomes an ordinary rate equation m VK1 2] tm thio

dP(t)/dt=KP(t). =l 11 ( - ) “ dtmf dtm,f--f dt, 4
The matrix element§V,,(t) give the conditional prob- k=n+1 0 o o

ability of the system to be in the stateat timet, given that t th ¢

it started at state att=0, with the nuclear degrees of free- Xf dtrlnf dtf 1o f "ty om(tn—ty)

dom at thermal equilibrium. They can be calculated using the 0 - o

guantities introduced in the previous section. The only dif- XT o1 (tme 15 tmo b )

ference is that at=0 the system is now assumed to be with

probability one in the excited donor state)( with the XThra(the 1 tas 2 tniz i) op(thr i —tasn). (39)

nuclear degrees of freedom at equilibrium. Thus, we can exyext, we introduce the Fourier transform of the four-point
press Eq(10) in terms of the correlation function that cor- ¢qrrelation functions according to

responds to the fluorescence spectiitg. (27)] of the do-

» do, do, do
nor, P k oy dwy
N Ci(te ter oty 1,0 = J' T 2nd
an(tt)=6(t)6(t" Yo (t' —1), 37 *°"
whered(t) is the Heaviside step function. Next, we use Eq. X @~ 1otk ) g T (tir 1 k1)

(11) to successively calculate, . ;, theno,»,...,0p_1. Fi-
nally, we apply Eq(11) once more but sdt=t’, i.e., at the
final site (m) we calculate a population rather than the two-
point correlation function. We then get

Wit "0

X @ 1okttt 1t 1)/2

er(wkiwli ,O_)k). (40)
Substituting this in Eq(39) and performing the time integra-

tions finally yields
ﬁ Uk,k—1 ? fx doy doy,
k=n+1 h —o (277)2
Equations(11), (37), and(38) constitute our general ex-

pression for the conditional probability to lowest order in X O @m) S @m, @n;S)o(@n),  (41)
Umn- We shall now recast Eq38) in a form that clearly with the bridge spectral function

2
Umm-1 t t ’ (AP !
:( m;Ln ) fodeodT om(7— 7" om—1(7,7"). (38 ngmfn))(s)zé

S §)=2 fm dwm—1dwr,n—1d6m—1 “dwn+1dwr,1+1d5n+1
mn(wmvwnas =4m Cw (277_)3 (277)3
m—1 ) —
I'(wy, o, ,0) s/
< TI _ kK, @y K i , ™ . 42
k=n+1 (0t o2+ &, (KN)—op)(o— o2+ E_(kn)—o,)|s Hop— oy ton_1— " — wp)
|
wheret.. (k,n) = =[Zq, 1 (01— 0] £ 0//2). " V) ? [* Do do,
We shall now explore several applications and limiting ~ Kmn(S)=27| 2=| | 5—=5— T 0m)
cases of these results. We start by considering the second-
order ratd Eq. (34)]. Combining Eqs(37) and(38), we have , sl
Xop(wn) P p— (44)
2 ro . .
W2 (s)= m) f ds efstfthfth/ Settings=0, we can use the relation
mn
h
0 0 0 _ o B
Xon(t—1")on (7 —1). (43 lims_.o x2+s2 (), (45)

and recover Fister’s rate’!
Using the properties of the Laplace transform, this gives the

2 o0
rate that depends on the normalized absorption and fluores- K<z>_27,<m) f do (46)

’
= ~— Op\lw)o,(W).
cence spectra of the two sites: mn h . 27 In(@)onl(®)
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In the static limit,x,<1, we have Since in the super-exchange limit the bridge molecules
are excited only virtually for a very short time, we can cal-
47) culate the four-point correlation function in the short time

2
n

A
an(t)zexp[ —iQpgt——5t2

2 limit, A t<1,
and Ci(tio e 1t 1 te)
2
! _ Q An 2
on(t)=exg ~i€n el = 577, 48 =exp) — 10 gt b1+t g — 1)
with Qp =Q,+ X, andQ, .=Q,—\,. The absorption and Aﬁ
fluorescence lineshapes assume in this case the Gaussian pro- — 7(tk—tk+1+t{<+1—t{()z} , (53
files,
2 2 fork=n+1,... m—1. Using the Fourier transform of Gauss-
(0)= _h expl — (o= )" (49 ian functions
It 2kgTA, akgTh, | '

, . ) ) A? 27\ (> do w?
ando(w) = op(w + 2\,), i.e. the fluorescence maximum s exp — = t?=|-— f — ex —iwty,

2 T 5A2
shifted by 2, (the Stokes shijtto the red relative to the 2 A = 2T 24
absorption. The Hster rate now becomes (54)
2 12 one obtains for the bridge spectral function
k@ _[tmn?( P
mn ) AkgT(Ap+Np) S )= 2 sl
Wm,Wn,S)=2T 55—
ﬁ(QnYe—Qm‘g)z n m n SZ+(wm—wn)2
Xexp — m . (50) m—1

X

H JOC da)k 1
The sequential transfer limit applies if we can identify a kont1 J oo 27 (0p— op)?

single path where only the fluorescence spectrum ohthe

- 27| Y (0 Q)2
molecule and the absorption spectrum of the-{)th mol- % _) expl — —K _""kg }
ecule overlap. We further assume that subsequent transfer AR p{ 2A¢ }
events are uncorrelated and the four-point correlation func- (55)
tions factorize into products of two-point correlation func-
tions, In order to study the transfer via virtual intermediate
states, we assume that the energy gap between the donor and
In(ts,to,t3,t) = on(ti—tg) op(ta—to). (51 any bridge molecule is much larger than the characteristic

For this case, the DA transfer is completely described inwidths,An. This enables us to calculate the frequency inte-

terms of nearest neighbor second-order rat€&; ,(s) grals in Eq.(55) to get
given in Eq.(44). All higher-order terms are canceled by the; m ; 2
second term in Eq36) as a consequence of the factorization| [] ( k£‘1>

Shn(@m,©n;S)

(51). This will be demonstrated for a three-site in Sec. V. [k=n+1
If the intramolecular relaxation is fast compared to the s/
transfer timef A ;>v, .4, the functionF, in Eq. (17) takes =27|Vee|? 57—, (56)
the form s (om=wn)
A2 A2 with
n n
Fr(ty,to,ts,t) = 5 (ti—tg) %+ = (t3—ty)? m—1
2 2 v v Ik
_ n+1n k+1k (57)
_Zi)\n(t:;_tz), (52) ef h k=n+1 Qn,e_Qk,g

and the factorizatiori51) becomes exact with the rate given Comparison with Eq(44) shows that the DA rate is equiva-
by Eq. (50). lent to the rate for sequential transfer between neighboring

We next assume that only the acceptor’s absorption andites, with the intermolecular coupling replaced by an effec-
the donor’s fluorescence spectra overlap, while all the intertive DA coupling V. In this limit, which agrees with the
mediate bridge molecules & 2,... m— 1) have higher ener- conventional treatment of the superexchange prohlese,
gies. For this limit the populations of the bridge moleculese.g., Refs. 10 and 52the bridge only provides an effective
are negligible at all times, and the fster nearest neighbor intermolecular coupling constant that enters the rate as a
rate equation cannot be used to describe the transfer procegsefactor. From Eq(42) it is evident, however, that the in-
Using the superexchange modei!®? we expect these fluence of the bridge is generally more complex and its entire
bridge states to modify the effective DA coupling. spectral properties need to be taken into account.
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5828 Kiihn, Rupasov, and Mukamel: Spectral density for energy transfer

cases of a general three-site system with an arbitrary time

(a) t=t scale for nuclear motion. The rates will be calculated to low-
A est nonvanishing order in intermolecular coupling. This ap-
[~ plies to typical biological systems, where electronic dephas-
. : ing (i.e., the absorption linewidjhis larger (=400 cmi ')
n] Lt than the intermolecular coupling=40 cmi'%). Using Eq.
(36), the DA energy transfer rate is
M Mo,
. . K{H(s) =W (s) — sPWR (s)WIE (s), (58)
to whereW(2)(s) is given by Eq.(43) and
. M
1 2
VablUdb * _
o Wg;g(s):( ) ) [Cate=

U] (n (i

t ty t N
xfdtaf dtbfdt;fadtg
0 — o0 0 —o0
() —(a)  (ad)—(an) X o (ta th) Tty ta ot oh(t—t). (59

We shall express the rate by means of the Liouville
space formulation of quantum dynamics, as used in the treat-
ment of the nonlinear optical resporfSeThis amounts to
changing the time variables in the above integrations and
breaking the rhs of Eq59) into several contributions with
all possible time orderingssee Fig. 5a)]. As shown in Ref.

11 the rate can be expressed in terms of correlation functions
that represent the different Liouville space pathways for en-
ergy transfer(see Fig. 5,

(b)
()
()
OO ORI
()
©

?
(®)
&—& ®—10F

—(o)—()
m @ (n @

Vanldb)
=] 22 rd
FIG. 5. The Feynman diagram corresponding to &), in which the bra
and the ket are not mutually time ordered, is shatap), together with the 1
diagrams that result after time orderifigottom) [panel(a)]. The latter can _ - < <, (S))(f? (S))
be associated with distinct Liouville space pathways for energy transfer in g \ba ~db
the three-site systefipanel(b)]. The contributions to the DA transfer rate in
Eq.(61) are due to the population patti$ and(ll), as well as the coherence
path(Ill) and their complex conjugates. +

2
Kinn(s)=2 ”7"1) Re(Znm(S)), (60

(Z0a(8) Zon(S) Zan(S))

(Zba(S) Zh(S) Cha(s))

1
V. SEQUENTIAL VERSUS SUPEREXCHANGE ~ 5 (Zba(8)(FplS))
TRANSFER IN A THREE-SITE SYSTEM

The primary charge transfer in the RC of photosynthetic +{(palS) Zgals) -%b(S»]- (62)
bacteria is usually described using a three-site sy<iEme
donor is a bacteriochlorophyll dimer called the special pairHere we introduced the frequency domain Green’s functions
the acceptor is a bacteriopheophytin molecule, whereas aw,_ (s), defined by its action on an arbitrary Hilbert space
accessory bacteriochlorophyll may act as a britfyeCon- operatorA,
siderable efforts have been devoted to clarify the role of the
bridge for the efficient and fast(3 ps at room
temperaturt'>1§ charge separation. In particular, it has
been shown that the vibrational dephasing time scale is likely
to be comparable to the transfer time, which renders the con- The first two terms in Eq(61) represent sequential con-
ventional Foster theory inapplicab® Liouville space tributions to the rate, since they involve a population of the
analysis in the static limit! and the real time path integral bridge state(Fig. 5, paths | and )I (The subtraction of the
techniques? have been applied to this problem. In the fol- respective uncorrelated expressions results in a cancellation
lowing we will carry out a complete analysis of all limiting of the 15 singularity, as will be shown short)yThe third

g/mn(S)A: jo dt e—Ste—IHmI/ﬁAelHnt/ﬁ (62)
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term represents energy transfer via a virtual bridge state, ° Zd)m
which constitutes the superexchange compofi€igt 5, path Kia(s)=— 2( ) Z
). m=0
In Appendix A we derive closed expressions for the rates , [ d
in (60) and (61). For the donor—bridge transfer rate we get X e o\ s+MAg+ = Q= Dy g (63)

and for the DA rate we obtain

© —Z* m .
KE(s)=2 i’zﬂ Re 2 s UE a2 ren
=1 mp=0 n!m!p!

><J*n*(s+ MA L+ Ta/2,0p o= Q)3 (5+PpAg+Te/2,04— Qp o)
s+nA,

*
(z5)"(—2z5)Pe

XJ; (S+MA,+T4/2,0p o= Q) I% (5+PAg+Te/2,04— Qp o)
s+nA,

*
+(25)"(—z5)Pe’

In(S+MAL+T0/2,0,— Qp ) 35 (5+pAg+T4/2,04— Qp )
SHNAL+MA 4+ pAg+ (T T)2+1(Qg—Qy)

(64)

Here znz(fnlz—i)\n)/An, fnZZAﬁ/An, and we have in- Ref. 11. The homogeneous limit of fast nuclear motion can
troduced the auxiliary functions, be obtained from63) and (64) by retaining only the first
term in the summations over, m, andp. As the solvent time

scale slows dowiA decreaseswe need to keep more terms
Jn(s,Q)= _|J dt e Stel 2t—9u(t) (1—eAotyn (65) in the summation since the sum converges more slowly. In

the static limit, A—0, we can still use these expressions.

However, in this case it is more convenient to evaluate the
and necessary integrals directly. Following Refs. 11 and 44 we

write. K{H(s)=KXP(s)+ K} <(s), where the resulting

2 contribution due to the population pathways is

n
J.(s,Q)= —|J dt e St~ gb“)( Ab‘) . (66

Z Kg‘g>'P(s):(L2¥) (277)2j dt e—slf dx dy
0 —o0

A practical numerical procedure for evaluating the integrals

in Egs.(65) and(66) is to express them in terms of confluent slm  slw
hypergeometric functior§;>3 which can then be calculated A vy [W(x,t;y) —W(X,%y)],
using recursion relations.

Equations(63) and (64) hold for an arbitrary solvent (67)

time scale. In the static limit they reproduce the results ofwith (AZ,=AZ+A2)

1 A2y (e 2,9 AR~ (L g1~ Qag))?
2m[AZ A2~ AIMZ(H) ]2 2[AZ A2~ AEME(D)]

y | 20RMp(D[(y— (nde ng»(x (Qp () — Qag))]
ex 2[AZ AL~ AIME(D)]

W(x,t;y)=

(68)
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Here W(x,t;y) is the conditional probability for the elec- For the coherencéuperexchangepathway, we obtain
tronic gap coordinatdJ =H,—H, ,—(Hy—H,,» to attain
the valuex at timet given that it started ay att=0. We

further introduced the relaxation function, 2 o
| _ K(#).¢(g)— | Vabldb dz-3 0
Mp(t)=(eMndUpe™HnudUp)/AG, (69) R R I )
where U,=H,—%, 4 is the electronic gap coordinate -y z.5)—1 zs 70
for the bridge, and vg.ag(2:8) ~ldeng(2:9)], (70
Qb,g(t):Qb,g+<quiHbt)Ub XeX[i—IHbt)>
where
27 2 *  sin(zx2) 1 Ab
Lo (2,5)= — e (7= Qp=0 ¢) /4kBT()\k+)\j)J' dx ——— od | [ == z
wia(2:9) VAmkgT(A\+ X)) 0 z/2 2 Neth
Md(Qge= Q) TN (Qge—Qyp) x?
+ Sy X ex _Sx_ﬁ , (7D
|
with In Fig. 6 we show the dependence kf2)(s) on the

2 bridge energy(},, (14=0.0) for x,=1.0 (T=319 K). The
(Np+Ag)(Na+Np)— A . .

) (72) rate shows a pronounced maximum when the bridge energy
Mt is close to resonance witl . The exact position of this
A Pade approximation for the integral in Eq71) in the ~ maximum depends on the nuclear motion time scale. If
zero-frequency =0) limit has been derivefEq. (4.21) of  «,>1 (homogeneous limitthe maximum is af),=Q4. In
Ref. 11. the static limit (x,<<1), however, the transfer is most fa-

In Figs. 6-10 we display the frequency-dependent rategored when the bridge energy is detuned frérg to com-
K2)(s) andK{}(s) calculated using Eq$63) and (64) for ~ pensate for the Stokes shift, i.€,=Q4.—\y,. This agrees
different electronic state energies. In all calculations thewith the behavior of spectral lineshapes. The Stokes shift
FWHM of the linear absorption spectrum and the Stokesbserved in the static limit disappears in the homogeneous
shift parameter is held fixe@I',=0.025 eV,A\,=0.005 (motional narrowing limit.
eV). The intermolecular coupling is,,=v4,=0.01 eV. The Next we focus on a three-site system. In Fig. 7 we show
parameterk, = A,/\2\KsT/% [Eq. (22)], which denotes the dependence df${)(s) on the bridge energy,,. The
the ratio of a typical nuclear frequency to the static line-donor and the acceptor energies are equ}<{2,=0.0)
width, was varied by changing the temperature. andk,= 1.0 (T=319 K). The rate has a maximum when the
bridge energy passes through the region of the DA electronic
states. The influence of the nuclear dynamics time scale on
the zero frequency rate is shown in Fig. 8, fet=0.5 (T
=187 K) and x,=1.25(T=413 K). Obviously, an increase
of k,, causes an overall reduction of the rate and a shift in the
resonance positions. Moreover, the rate shows a weaker dis-
persion. As in Fig. 6 the homogeneous limit yields a maxi-
mum rate if all energy levels are degenerated, while in the
inhomogeneous limit the Stokes shift has to be compensated
for optimal transfer. It has been shottithat for a detuning
between the donor and the acceptor energy that exceeds the
linewidth, the rateK((s) can become negative for small
values ofs. The same holds for the arbitrary nuclear dynam-
ics time scale considered here. In Figs. 9 and 10 we plot the
DA rate when the donor and acceptor energies are detuned

Ry =2kgT

0.05 N . . .
9 ley; 0.10 000  ® by I',,. The calculated rate becomes negative if the bridge

state passes the resonance with the donor state, whereas it is
positive for the resonance with the acceptor state. This be-
tion of the bridge energgy=0 for x,=1.0 (T=319 K). The other param- hgwor is insensitive to a va}rlatlon of,, as can be seen in
eters ardil',=0.025 eV andi\,=0.005 eV, andy,g=0.01 eV. Fig. 10. For larges the rate is always positive. The negative

FIG. 6. Frequency-dependent donor-bridge transfer{Eqe(63)] as a func-
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K,q (5) [1/1s]

0.05

Q o>
% [el/] 0.10 0.00

FIG. 7. Frequency-dependent DA-transfer rgffgl. (64)] as a function of  FiG, 9. Frequency-dependent DA-transfer rife). (64)] as a function of
the bridge energy(2q=,=0 andv,g=v,,=0.01 eV. Other parameters the bridge energy if}4— Q,=T, for x,=1.0(T=319 K). Other parameters
are as in Fig. 6. are as in Fig. 7.

values for the frequency-dependent rate indicate a brealf—ed pigment® would require a summation over all possible

iiW'PhOf thle .I\/Iarkfcn;] app(;quanon, as pqlnte? Ogt in Ref. athways connecting these monomers. In practice, however,
- The solution of the ordinary rate equations leads to neg only a few pathways are expected to give relevant contribu-

tive occupation probabilities in the short time dynamics, an ions to the signal. Hence, even though the perturbative treat-
the use of the generalized rate equations that contain the fi

¢ q d (s b " ent restricts the iterative procedure to the short time dy-
requency dependence Kin(s) becomes essential. namics, it has some clear advantages compared with the

derivation of a master equation that treats the vibronic levels
VI. SUMMARY explicitly and is restricted to small systems. The incorpora-

The present correlation function approach for the excitafion of coherent effects such as quantum b’éaas well as
tion and electron dynamics in molecular aggregates provide$1€ treatment of other nonlinear spectroscogéeeg., photon
a powerful tool for studying optical and transport propertiesfeCh&7 and hole burning) can be readily accomplished us-
of these systems. This has been shown first by calculatintid the present approach.
time- and frequency-resolved fluorescence spectra for an ag- 1he characterization of long-range energy and charge
gregate with five monomers. This example demonstrates thgansfer processes using frequency-dependent rates is a major
capabilities of the present approach, which can easily be exfocus of th_eoretical a_nd exper_imental int_erest. Starting with
tended to larger aggregates with more than one nuclear mod@e two-point correlation function for exciton operators, we
per monomer. In a three-dimensional system like the |ighhave given general formulas for the rate in the sequential and
harvesting complex of green plarisfor instance, a simula- the_superexchar_]ge limit, which holq in lowest-order pertur—
tion of energy transfer between the most blue and the modiation theory with respect to the intermolecular coupling.

0.020 , ' . : : : . 0.015 . ' : .
0.010
0.015 |
0.005
g g
= 0010} = 0.000
) C)
o o
& JF -0.005
0.005 |-
-0.010
0.000 o ey — 20015 - .
-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
bridge energy [eV] bridge energy [eV]

FIG. 8. Zero-frequency DA-transfer raf&q. (64)] as a function of the  FIG. 10. Zero-frequency DA-transf¢Eq. (64)] rate as a function of the
bridge energy if)4=Q,=0 for x,=0.5 (T=187 K) (solid) and x,=1.25 bridge energy ifQy—Q, =T, for x,=0.5(T=187 K) (solid) and«,=1.25
(T=413 K) (dashedl Other parameters are the same as in Fig. 7. (T=413 K) (dashegl The other parameters are the same as in Fig. 7.
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Our expressions show how the bridge influences the DAvhere we have introduced the time domain response func-
transfer through its spectral properties. Finally, Liouville tions,

space Green’s functions have been used to derive analytical _ . _

expressions for the rate matrix in a three-site system, which Jm,g(1) = X~ 1€, gt = Gm(1)),

hold for_an arbitrary time scale_ of the nut_:lear motion. These Ime(t)=exp(—i Qm ot —gk(1)),

calculations should allow the interpretation of optical mea-

surements conducted on the photosynthetic reaction center. Rkl’(tl,tg,tg,):exp(—in,gtl—in,gtg—g;(tl)—gb(tg,)
Our numerical examples illustrate the influence of the vari-

- ) _ ()
ous parameters characterizing the electronic structure, as fy " (ty,t2,t3)), (A5)
well as the dynamics of the nuclear degrees of freedom. Rg(tl,tz, )= exp(— iy gty +iCy gtg—gé‘(tl)
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This work was supported by the National Science Foun-  R3(ty,tz,ts) =exp(—iQp gty +iQyp gts— gn(t1) — 9 (t3)
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APPENDIX: DERIVATION OF THE THREE-SITE b7t t2.1) = (o) ~ Gu(ta+ 1) ~ Gulta+ o)

TRANSFER RATES FOp(ty+tytts),
. . ) B (AG)
The de_nvatlon of Eq_s(63) and (64) follows the proce ff) )(tl,tz,t3)=g§(t2)—g§(t1+t2)—gb(t2+t3)
dure used in the calculation of fluorescence and Raman spec-
troscopy of two level system{€haps. 8 and 9 of Ref. 43To +gp(ty+t+tg).

this end we first write the rhs of Eq&0) and(61) in terms

of multiple time integrals, Using the overdamped Brownian oscillator mopegs. (21)

and(22)], the auxiliary functiond, can be rewritten as

2 %
K(2(s)= 2( 7 ) Re fo dt eSS (1)), (A1) 07 (t1,tp,t3) = — 2i Aty +Zoe~ Mol2(1— e Aol1)
and X (Z}12,—e Mols),
(=) =7, Mbt2(1 — e Abt1)(1— e Abts (A7)
v fp '(t1,t2,13)=274€ (1—e )(1—e ).
(4) ab db
q(s)=2 ) f f f dt; dt, dtg . .
A Taylor expansion of the exponent yields, for the correla-

tion functions,
X e ST (t3) Cupl(t) Cap(ty))

~(Faalta))( Fanl 1) Rty 2 ) =Jo ol dglte) 3 2 g
F[(Lbalts) Top(t2) Tha(t1)) = (Lhalts)) . n
X{ Zoa(tD))]+{ Foalts) Faalts) Zan(te)}- X<1—e‘Abtl>“(Zz—Z—e‘Ab‘3) :
(A2) *\N
Using the correlation functions that have been introduced in Rz(t11t21t3) Jpe(t)JE g(t3)2 (Zb) e Moty

the treatment of the nonlinear optical response of two-level
systems? we find 2
x(l—e‘Abtl)”(Z—*—

n
e‘Abt3> . (A8)
b

K{2X(s)= 2( i’;”) Refowdt e U g(DI5e(D),  (A3)

o~ (Z)"
and Rg(tl,tz,tg)=beg(tl)J;g(t3)nzo ——e Apnt
(4)( s)=2 far db) J’ J J dt; dt, dts X (1—e Mot1)N(1— e Aola)n,
Sttt )y Tk b Comparing Eqs(60) and (A8) we note the cancellation of
Xe SRR (1) [Ry(ty 1o, ts) the 15 singularity by then=0 term. Thus, when substituted

in Eq. (60) the sum will start ah=1. We shall express the
~Jb.e(t2)J0.g(ts) N elts) F Jao(ta) rate in terms of the function,(s,Q) andJ,(s,Q) defined
><[R2(t1,t2,t3)—Jb'e(tl)Jb‘g(t:g)]dee(ts) in Egs.(65) and(66), which refer to the bridge. We thus use

the following expansion for the time domain response func-
+3% (L) RE(ty 1, t3) g et +t2)}, (A4)  tions related to the donor or the acceptor,
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o0

- — p
Jm'g(t):e—iﬂmt—rmtIZeZmE ( pzlm) e—Ampt (Ag)
p=0 p!
and
s e (—ZR)P
‘]m,e(t) —e" iQnt— Fmt/ZGZm 2 e Ampt. (AlO)

p!

Combining Eqs(A8)—(A10) with Egs. (65) and (66) gives
the bd ratd Eq. (63)] as well as the ad rafé&q. (64)].

p=0
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