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The role of medium-induced relaxation of intermediate~bridge! sites in energy and charge transfer
processes in molecular aggregates of arbitrary size and geometry is explored by means of Green’s
function techniques. The coupling of electronic and~solvent and intramolecular! nuclear degrees of
freedom is incorporated using the Brownian oscillator model, which allows an exact calculation of
the necessary two-point and four-point correlation functions of exciton operators. The signatures of
energy transfer and spectral diffusion in time- and frequency-resolved fluorescence spectroscopy are
studied. A unified expression for the frequency-dependent transfer rate is derived, which interpolates
between the sequential and superexchange limits. Numerical results and a Liouville space pathway
analysis for a donor–acceptor system coupled through a single bridge molecule are presented.
© 1996 American Institute of Physics.@S0021-9606~96!00115-2#

I. INTRODUCTION

Many important chemical and biological processes in-
volve long-range transfer of electronic excitation energy or
electric charges between donor and acceptor molecules.1–9

At large spatial separation, there is no direct donor–acceptor
~DA! coupling, and intervening ‘‘bridge’’ sites that promote
the transfer are required. One of the key questions in the
study of donor-bridge-acceptor complexes is the nature of
the transfer process, which could be either a sequential~in-
coherent! hopping between adjacent sites or a direct quantum
tunneling~superexchange! between the donor and the accep-
tor. In the former case the bridge provides intermediate sites
in which the excitation resides, whereas the only role of the
bridge in the latter case is to provide virtual orbitals that
determine the effective DA coupling. These mechanisms
have been discussed in connection with ultrafast biological
electron transfer in the reaction center~RC! of photosyn-
thetic systems,10–16 which may be modeled as a three-site
system, where the electron moves 17 Å in;3 ps. Ultrafast
DA-electron transfer through a DNA helix has been
reported5 and investigated theoretically17 as well. Here an
electron requires several nanoseconds to travel more than 40
Å.

Recent structural data on the light harvesting antennae of
bacterial RCs18 and of the RC of higher plants19 have trig-
gered a host of nonlinear optical studies of the energy trans-
fer mechanism. In the chlorophylla/b protein antenna com-
plex of Photosystem II, for instance, transient absorption
spectroscopy revealed a dynamics involving several pigment
molecules before the excitation energy is finally trapped in
the acceptor state.20 Time-resolved fluorescence is a valuable
tool in the study of energy transfer mechanisms in molecular
aggregates and crystals.21,22 Considerable insight has been
gained recently into the role of different system time scales

in light harvesting antennae.23,24Effects such as spectral dif-
fusion, excitation equilibration, and the role of protein modes
have been discussed in great detail. Hole burning,25

pump-probe,26 and photon echo27 spectroscopies have been
used as well. Coupling with the medium~protein, solvent,
and chromophore’s nuclear motions! is crucial in determin-
ing the transfer rates and pathways. In the superexchange
limit the problem reduces to an effective two-site system,
and the medium only enters through its coupling to the donor
and acceptor. This is the standard charge transfer problem,
which can be handled by the Marcus theory,28 where solvent
motions are incorporated via a single solvation coordinate.
Formally, this is equivalent to the calculation of an ordinary
absorption lineshape. When the intermediate bridge states are
resonant or near resonant with the donor and acceptor, the
medium effects on the bridge need to be included as well. A
simple way to treat bath-induced dephasing processes is
given by the Haken–Strobl model.29–33 This is an infinite
temperature model that does not allow the incorporation of
an arbitrary spectral density of the medium. Such spectral
densities are currently available experimentally and
theoretically.33–36The polaron model has been used to study
sequential charge and energy transport in crystals.37–41

A unified description that includes sequential and tunnel-
ing processes as limiting cases has been developed by for-
mulating the problem using the density matrix and its evolu-
tion in Liouville space. A generalized master equation
describing the population dynamics of excitons has been de-
rived. A proper incorporation of solvent effects requires the
calculation of simultaneous dynamics of several solvation
coordinates. Hu and Mukamel11 have calculated the
frequency-dependent rates in a three-site system in the static
limit for the solvent. Skourtis and Mukamel42 have recently
analyzed the mechanism for a system with an arbitrary num-
ber of bridge sites but without the incorporation of the sol-
vent. In this paper we generalize these studies and examine
the effect of a medium with an arbitrary spectral density that
is coupled to all sites~donor, acceptor, and bridge! on the
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dynamics of energy and charge transfer processes in molecu-
lar aggregates. In Sec. II we introduce the Frenkel Hamil-
tonian in the Heitler–London approximation, and present the
Green’s function formal expressions for the two-point corre-
lation function of exciton operators in the Heisenberg pic-
ture. These two-point correlation functions are then related to
a hierarchy of two-point and four-point correlation functions
of individual ~noninteracting! molecules. These are evaluated
using the Brownian oscillator model of nuclear dynamics.
Numerical calculations of time-resolved fluorescence spectra
that demonstrate the role of the finite nuclear motion time
scale are presented in Sec. III.

In Sec. IV the frequency-dependent rate matrix is calcu-
lated to lowest order in intermolecular interactions and the
role of the bridge spectral density is explored. In the sequen-
tial limit, the Förster rate is recovered, whereas in the super-
exchange limit the bridge states enter only through an effec-
tive coupling matrix element between donor and acceptor.
Finally, the frequency-dependent rate in a three-site~single
bridge! system is calculated in Sec. V. We formulate the DA
transfer in terms of Liouville space pathways,11 which have
been widely used in nonlinear optics43 as well as electron
transfer theory.44,42The various Liouville space pathways are
discussed and used to identify the sequential and super-
exchange contributions to the transfer. The results generalize
the static limit expressions of Hu and Mukamel11 for electron
transfer to incorporate solvation processes with arbitrary
time scales.

II. CORRELATION FUNCTION EXPRESSIONS FOR
ENERGY TRANSFER

In this section we introduce the Hamiltonian and review
the iterative correlation function procedure for calculating
the excitation transfer developed by Mukamel and
Rupasov.45 For clarity we focus on energy transfer. However,
the quantities calculated can be used for the description of
charge transfer as well, as will be shown in Sec. IV.

We consider a molecular aggregate consisting ofN mol-
ecules, described by the Frenkel exciton Hamiltonian,21,46

H5H01V1HF~ t !, ~1!

whereH0 represents noninteracting molecules, each assumed
to be an electronic two-level system with a ground stateug&
and an excited stateue&,

H05 (
n51

N

Hn~q!Bn
1Bn1Hnuc~q!. ~2!

The operatorsBn
1(Bn) that create~annihilate! an electronic

excitation on thenth molecule, satisfy the Pauli commuta-
tion rules:

@Bn ,Bm
1#5dnm~122Bn

1Bn!. ~3!

Hnuc~q! is the nuclear Hamiltonian that describes intramo-
lecular as well as solvent degrees of the freedom, denotedq.
The coupling of electronic and nuclear degrees of freedom is
represented byHn~q! which accounts for the change in the

nuclear Hamiltonian upon excitation of siten. The second
term in Eq.~1! represents intermolecular dipole–dipole cou-
pling, and is given by

V5(
nm

vnm~Bn
1Bm1Bm

1Bn!. ~4!

We assume that only one molecule~the donor, labeledn51!
interacts with the external electric fieldE(t). Thus,HF(t) is

HF~ t !52m1@E~ t !B1
11E* ~ t !B1#, ~5!

wherem1 is its transition dipole moment. We further invoke
the Condon approximation for the dipole moment as well as
for the intermolecular coupling and neglect their dependence
on the nuclear configuration.

Using this Hamiltonian, we shall calculate the two-point
correlation function,

s̃n~ t,t8!5^B̃n
1~ t !B̃n~ t8!&, ~6!

wherê •••& 5 Tr$•••e2H/kBT%/Tr$e2H/kBT%, and

B̃n~ t !5U1~ t,2`!BnU~ t,2`!, ~7!

is the exciton operator in the Heisenberg representation.
U(t,t8) is the time evolution operator,

U~ t,2`!5 T
→

expF2
i

\
~H01V!t2

i

\ E
2`

t

dt HF~t!G .
~8!

The operatorstT
→

andT
←

stand for chronological and anti-
chronological time ordering, respectively. The correlation
function ~6! carries the information necessary for calculating
optical properties and energy transfer processes in the sys-
tem. This will be illustrated in the coming sections, where we
connect it to various observables.

We restrict the following analysis to a single path, where
molecule 1 is coupled to 2, 2 to 3, etc., and moleculeN21 to
N. A perturbative expansion to lowest nonvanishing order in
the external field and the intermolecular coupling yields

s̃N~ t,t8!5S m1

\ D 2F )
n52

N S vn,n21

\ D 2G E
2`

t

dtN21•••dt1 dt

3E
2`

t8
dtN218 •••dt18 dt8 E* ~t!E~t8!

3^ T
→

@B1~t!B1
1~ t1!•••BN~ tN21!BN

1~ t !#

3 T
←

@BN~ t8!BN
1~ tN218 !•••B1~ t18!B1

1~t8!#&.

~9!

We now assume that each molecule is coupled to a dif-
ferent set of nuclear degrees of freedom and that nuclear
dynamics of different molecules are uncorrelated. This im-
plies thatHn depends onqn , which is a subset of the entire
nuclear degrees of freedomq. Using this model, we can con-
struct a numerically efficient iterative procedure for comput-
ing the necessary correlation functions. We first calculate the
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donor correlation function,

s̃1~ t,t8!

5S m1

\ D 2E
2`

t

dtE
2`

t8
dt8 G1~t,t,t8,t8!E* ~t!E~t8!.

~10!

The remaining~bridge and acceptor! correlation functions
are then obtained successively through the recursive relation

s̃n~ t,t8!5S vn,n21

\ D 2E
2`

t

dtE
2`

t8
dt8 Gn~t,t,t8,t8!

3s̃n21~t,t8! ~n52•••N!. ~11!

The molecular correlation function that appears in these ex-
pressions is given by

Gn~ t1 ,t2 ,t3 ,t4!5^Bn~ t1!Bn
1~ t2!Bn~ t3!Bn

1~ t4!&. ~12!

HereBn(t) denotes the time-dependent exciton operator in
the interaction representation, i.e.,

Bn~ t !5eiH0t/\Bne
2 iH0t/\, ~13!

and^•••& 5 Tr$•••e2H0 /kBT%/Tr$e2H0 /kBT%. We shall also de-
fine the two-time correlation functions,

sn~ t82t !5^Bn~ t8!Bn
1~ t !&. ~14!

In what follows we represent the solvent using the
Brownian oscillator model. In this model, nuclear motions
that couple to the electronic transition are treated as a
continuous distribution of harmonic modes whose equilib-
rium positions are displaced between the two
electronic states.43 The nuclear Hamiltonian assumes the
form Hnuc5( j\v j ,nbj ,n

1 bj ,n , andHn5\(Vn1ln)1(1/&)
3( j\v j ,ndj ,n(bj ,n

1 1bj ,n), whereVn is the electronic transi-
tion frequency andv j ,n , dj ,n are the frequency and the di-
mensionless displacement of thej th oscillator, andbj ,n

1

(bj ,n) is its creation~annihilation! operator. We further intro-
duce the reorganization energy~Stokes shift parameter!
ln51/2( jdj ,n

2 v j ,n . For this model, the two- and four-point
correlation functions are43

sn~ t82t !5exp$2 i ~Vn1ln!~ t82t !2gn~ t82t !% ~15!

and

Gn~ t1 ,t2 ,t3 ,t4!

5exp$2 i ~Vn1ln!~ t12t21t32t4!2Fn~ t1 ,t2 ,t3 ,t4!%,

~16!

where

Fn~ t1 ,t2 ,t3 ,t4!5gn~ t12t2!1gn~ t22t3!1gn~ t12t4!

1gn~ t32t4!2gn~ t12t3!2gn~ t22t4!.

~17!

The functiongn(t) is given by

gn~ t !52E
2`

` dv

2p

Cn~v!

v2

3F „12cos~vt !…cothS \v

2kBT
D2 i „sin~vt !2vt…G ,

~18!

whereCn(v) is thespectral densityassociated with nuclear
~solvent and intramolecular! dynamics,

Cn~v!5 1
2 (

j
v j ,n
2 dj ,n

2 @d~v2v j ,n!2d~v1v j ,n!#.

~19!

These expressions will be applied in the coming sections for
calculating the time- and frequency-resolved fluorescence as
well as the energy and charge transfer rates in molecular
aggregates.

III. APPLICATION TO TIME- AND FREQUENCY-
RESOLVED FLUORESCENCE SPECTROSCOPY

In the following we adopt the overdamped Brownian
oscillator model for the spectral density, i.e.,

Cn~v!52ln

vLn

v21Ln
2 . ~20!

In the high-temperature limit,kBT@\Ln , Eqs.~18! and~20!
yield

gn~ t !5S Dn
2

Ln
22 i

ln

Ln
sgn~ t ! D ~e2Lnutu1Lnutu21!, ~21!

with

Dn5A2lnkBT/\. ~22!

The two-point correlation functions introduced in the
previous section may be used to calculate several interesting
spectroscopic observables.~All quantities are given to lowest
nonvanishing order in intermolecular coupling and field.!
The linear absorption lineshape is

sabs~v!5 (
n51

N S mn

\ D 2sn~v!, ~23!

where

sn~v!5E
2`

`

dt eivtsn~ t ! ~24!

is the normalized absorption line shape@~2p!21* dv sn~v!
51#. The full width at half maximum~FWHM! Gn of the
sn(v) is given by the Pade´ approximation,43

Gn5Dn

2.35511.76kn

110.85kn10.88kn
2 , ~25!

where the dimensionless parameterkn[Ln/Dn determines
the nature of the line shape; forkn!1 it assumes a Gaussian
inhomogeneous form, whereas forkn@1 it becomes a mo-
tionally narrowed Lorentzian.

The relaxed fluorescence signal is
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sfl~v!52pv (
n51

N

Pnsn8~v!, ~26!

with the normalized fluorescence line shape

sn8~v!5E
2`

`

dt eivtsn8~ t !. ~27!

Heresn8(t) is the correlation function, Eq.~14!, with the only
difference that it is calculated with respect to the density
matrix of the excited state andPn denotes the equilibrium
population of siten.

In the following numerical calculations we consider an
aggregate with five monomers~Fig. 1! and electronic transi-
tion energies\(Vn2V5)5(52n)30.02 eV (n51•••4).
We include a single overdamped mode in the high-
temperature limit@Eqs. ~21!# for each site. Assuming a
Stokes shift parameter of\ln50.01 eV for all sites and a
temperature ofT5300 K we have for the coupling strength
\Dn50.0227 eV according to Eq.~22!, kn50.1, and
FWHM Gn50.0526 eV@Eq. ~25!#. In Fig. 2 we display the

stationary absorption of the aggregate~Eq. ~23!!. The relaxed
fluorescence spectrum obtained from Eq.~26! is shown as
well, assuming that only the acceptor site is populated at
thermal equilibrium.

The time- and frequency-resolved fluorescence of the
aggregate, following an excitation pulse that only interacts
with molecule 1~the donor!47 is given by22,45

Sfl~v,t !52pv (
n51

N E
2`

`

dt eivts̃nS t1 t

2
,t2

t

2D . ~28!

At long times this reduces to the relaxed fluorescence@Eq.
~26!#.45 Fig. 3~a! shows the time-dependent fluorescence
spectrum@Eq. ~28!#. For clarity, only the fluorescence due to
the bridge and the acceptor molecules is displayed in the
following calculations; the strong donor emission is not
shown. We used a 50 fs Gaussian pulse tuned on resonance

FIG. 1. Energy level scheme for the five monomer aggregate used in the
calculation of the time- and frequency-resolved fluorescence. The transition
energies are\(Vn2V5)5(52n)30.02 eV and the Stokes shift is
\ln50.01 eV for all molecules. The arrow indicates that the external field
only excites the donor (n51) molecule.

FIG. 2. Stationary absorption@solid line, Eq.~23!# and fluorescence@dashed
line, Eq.~23!# spectrum for the aggregate shown in Fig. 1~DV5\v2\V5!.
The dipole moments of the monomers are assumed to be identical and at
equilibrium only the acceptor contributes to the fluorescence. The tempera-
ture isT5300 K.

FIG. 3. ~a! Time-resolved fluorescence spectrum@Eq. ~28!# ~DV5V52v!
for delay times of 0, 100, 250, 500, 1000, and 2000 fs~from bottom to top,
Ln50.1Dn!. The curves have been shifted vertically and the magnitude was
scaled to comprise all delay times~compare Fig. 4!. Note that the intramo-
lecular coupling as well as the amplitude of the external field enter Eq.~28!
only as an overall scaling factor.~b! The contributions of the individual
molecules to the fluorescence spectrum at a delay of 250 fs~top! and 2000
fs ~bottom! ~solid—total signal; short dashes—2; dashed—dotted—3;
dotted—4; and long dashes—5!.
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with the donor absorption maximum. The correlation func-
tions for the monomers have been calculated iteratively us-
ing Eqs.~9!–~11! on a two-dimensional grid with a spacing
of 2 fs. The necessary grid size is determined byDn

21 as well
as the delay time. The maximum grid size was 120031200.

For zero delay the fluorescence coincides with the donor
absorption spectrum centered atDV50.09 eV. For short de-
lays the fluorescence is mainly due to then52 bridge mol-
ecule that is next to the donor site. With increasing delay the
energy is transferred to the acceptor, resulting in a spectral
diffusion process. In addition, the spectrum broadens as more
sites participate in the emission. The contributions of the
individual molecules to the total fluorescence spectrum are
plotted in Fig. 3~b! for two delay times. Note that the pertur-
bative approach used here is only valid for short delay times
(t,\/Vmn) ~see Sec. IV!. In Fig. 4 the rise of the fluores-
cence at the acceptor frequency~v5V52l5! is shown as the
parameterkn is varied, keeping the FWHM@Eq. ~25!# fixed
~\Gn50.0526 eV!. As expected, the acceptor fluorescence
rise time slows down askn is decreased.

IV. THE FREQUENCY-DEPENDENT TRANSFER RATE

The previous calculations of the two-time correlation
functions s̃n(t,t8) were carried out to lowest nonvanishing
order in intermolecular coupling. As such, they only hold for
short times and may not be used to describe the long-time
limit. It is possible to extend their range of validity by solv-
ing the following integral equations fors̃n(t,t8) self-
consistently rather than iteratively:45

s̃n~ t,t8!

5 (
mÞn

S vnm\ D 2E
2`

t E
2`

t8
dt dt8 Gn~t,t,t8,t8!s̃m~t,t8!

1S mn

\ D 2E
2`

t E
2`

t8
dt dt8 Gn~t,t,t8,t8!En* ~t!En~t8!.

~29!

In this section we adopt a different procedure and calcu-
late the time-dependent populations of the various mol-
ecules,Pn(t)[^B̃n

1(t)B̃n(t)&. These carry less information
than the two-point correlation functions, and their simplicity
makes it possible to develop a resummed approximation, as
will be shown below. Moreover, all the results of the present
section apply equally to charge transfer. In the latter case,Bn

1

creates an electron on thenth site, and the two states of each
site, ue& and ug& represent a state with and without an
electron.48 For brevity, we continue to refer to the process as
energy transfer. The Hamiltonian is given byH5H01V and
we setHF50. Thus, we do not incorporate the coupling with
the radiation field explicitly, but assume that the system is
initially excited, and the nuclear degrees of freedom at each
site are equilibrated. The vectorP(t)5[P1(t),...,PN(t)] sat-
isfies the generalized master equation49,50

dP~ t !

dt
5E

0

t

dt K ~ t2t!P~t!, ~30!

whereK (t) is the rate matrix. The probabilitiesP(t) ob-
tained by solving Eq.~30!, whenK (t) is calculated pertur-
batively, then contain terms to infinite order in intermolecu-
lar coupling. Hence, the calculation may hold at long times
as well.

We start our calculation ofK (t) by considering the for-
mal solution of Eq.~30!,

P~ t !5W~ t !P~0!. ~31!

We further define the Laplace transform of a time-dependent
function,

A~s!5E
0

`

dt A~ t !e2st. ~32!

By applying this transform to Eqs.~30! and ~31! we obtain
the exact formal relation

W~s!5
1

s12K ~s!
. ~33!

Expanding both sides of this equation in powers of the inter-
molecular interaction yields the following recursive relations
among the elements of both matrices,44

Kmn
~2!~s!5s2Wmn

~2!~s!, ~34!

Kmn
~4!~s!5s2Wmn

~4!~s!2s3(
l
Wml

~2!~s!Wln
~2!~s!, ~35!

and more generally,

@K ~p!~s!#mn

5s2@W~p!~s!#mn2s (
q52,4,...

p22

@K ~p2q!~s!W~q!~s!#mn

~p52,4,...!, ~36!

where p denotes the order in intermolecular coupling and
K ~0!50. Thus, the present procedure consists of calculating
W(s) perturbatively and then using Eq.~36! to get a pertur-
bative expression for the frequency-dependent rate matrix

FIG. 4. The time-resolved fluorescence at a fixed frequencyv5V52l5.
\ln50.01 eV andGn50.0526 eV;~solid line—kn50.1, \Dn50.0227 eV
~T5300 K!; dashed line—kn50.05,\Dn50.0225 eV~T5294 K!.
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K (s). If the intramolecular nuclear dynamics time scale is
much faster than the intermolecular transfer time, the rate
matrix will show no dispersion in the relevant frequency
range, and we can replaceK (s) by K5K (s50). The master
equation ~30! then becomes an ordinary rate equation
dP(t)/dt5KP(t).

The matrix elementsWmn(t) give the conditional prob-
ability of the system to be in the statem at timet, given that
it started at staten at t50, with the nuclear degrees of free-
dom at thermal equilibrium. They can be calculated using the
quantities introduced in the previous section. The only dif-
ference is that att50 the system is now assumed to be with
probability one in the excited donor state (n) with the
nuclear degrees of freedom at equilibrium. Thus, we can ex-
press Eq.~10! in terms of the correlation function that cor-
responds to the fluorescence spectrum@Eq. ~27!# of the do-
nor,

s̃n~ t,t8!5u~ t !u~ t8!sn8~ t82t !, ~37!

whereu(t) is the Heaviside step function. Next, we use Eq.
~11! to successively calculates̃n11, thens̃n12,...,s̃m21. Fi-
nally, we apply Eq.~11! once more but sett5t8, i.e., at the
final site (m) we calculate a population rather than the two-
point correlation function. We then get

Wmn
„2~m2n!…~ t !

5S vm,m21

\ D 2E
0

t

dtE
0

t

dt8 sm~t2t8!s̃m21~t,t8!. ~38!

Equations~11!, ~37!, and~38! constitute our general ex-
pression for the conditional probability to lowest order in
vmn . We shall now recast Eq.~38! in a form that clearly

highlights the separate role of the bridge and the DA spectral
densities. Combining Eqs.~10!, ~11!, and~38! we get

Wmn
~2„m2n…!~ t !

5F )
k5n11

m S vk,k21

\ D 2G E
0

t

dtmE
2`

tm
dtm21•••E

2`

tn12
dtn11

3E
0

t

dtm8 E
2`

tm8
dtm218 •••E

2`

tn128
dtn118 sm~ tm2tm8 !

3Gm21~ tm21 ,tm ,tm8 ,tm218 !•••

3Gn11~ tn11 ,tn12 ,tn128 ,tn118 !sn8~ tn118 2tn11!. ~39!

Next, we introduce the Fourier transform of the four-point
correlation functions according to

Gk~ tk ,tk11 ,tk118 ,tk8!5E
2`

` dvk dvk8 dv̄k

~2p!3

3e2 ivk~ tk2tk8!e2 ivk8~ tk118 2tk11!

3e2 i v̄k~ tk1tk82tk118 2tk11!/2

3Gk~vk ,vk8 ,v̄k!. ~40!

Substituting this in Eq.~39! and performing the time integra-
tions finally yields

Wmn
„2~m2n!…~s!5

1

s2 F )
k5n11

m S vk,k21

\ D 2G E
2`

` dvm dvn

~2p!2

3sm~vm!Smn~vm ,vn ;s!sn8~vn!, ~41!

with the bridge spectral function

Smn~vm ,vn ;s!52pE
2`

` dvm21dvm21
8 dv̄m21

~2p!3
•••

dvn11dvn11
8 dv̄n11

~2p!3

3F )
k5n11

m21
Gk~vk ,vk8 ,v̄k!

„vk1v̄k/21j1~k,n!2vn…„vk2v̄k/21j2~k,n!2vn…
G s/p

s21~vm2vm218 1vm212•••2vn!
2 , ~42!

wherej6(k,n)5 ( l5n11
k21 (v l2 v l86 v̄ l /2).

We shall now explore several applications and limiting
cases of these results. We start by considering the second-
order rate@Eq. ~34!#. Combining Eqs.~37! and~38!, we have

Wmn
~2!~s!5S vmn

\ D 2E
0

`

ds e2stE
0

t

dtE
0

t

dt8

3sm~t2t8!sn8~t82t!. ~43!

Using the properties of the Laplace transform, this gives the
rate that depends on the normalized absorption and fluores-
cence spectra of the two sites:

Kmn
~2!~s!52pS vmn

\ D 2E
2`

` dvm

2p

dvn

2p
sm~vm!

3sn8~vn!
s/p

s21~vm2vn!
2 . ~44!

Settings50, we can use the relation

lims→0

s/p

x21s2
5d~x!, ~45!

and recover Fo¨rster’s rate,51

Kmn
~2!52pS vmn

\ D 2E
2`

` dv

2p
sm~v!sn8~v!. ~46!
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In the static limit,kn!1, we have

sn~ t !5expF2 iVn,gt2
Dn
2

2
t2G ~47!

and

sn8~ t !5expF2 iVn,et2
Dn
2

2
t2G , ~48!

with Vn,g5Vn1ln andVn,e5Vn2ln . The absorption and
fluorescence lineshapes assume in this case the Gaussian pro-
files,

sn~v!5S h

2kBTln
D 1/2 expH 2

\~v2Vn,g!
2

4kBTln
J , ~49!

andsn8(v) 5 sn(v 1 2ln), i.e. the fluorescencemaximum is
shifted by 2ln ~the Stokes shift! to the red relative to the
absorption. The Fo¨rster rate now becomes

Kmn
~2!5S vmn

\ D 2S h

4kBT~ln1lm! D
1/2

3expH 2
\~Vn,e2Vm,g!

2

4kBT~ln1lm! J . ~50!

The sequential transfer limit applies if we can identify a
single path where only the fluorescence spectrum of thenth
molecule and the absorption spectrum of the (n11)th mol-
ecule overlap. We further assume that subsequent transfer
events are uncorrelated and the four-point correlation func-
tions factorize into products of two-point correlation func-
tions,

Gn~ t1 ,t2 ,t3 ,t4!5sn~ t12t4!sn8~ t32t2!. ~51!

For this case, the DA transfer is completely described in
terms of nearest neighbor second-order ratesKn11,n

(2) (s)
given in Eq.~44!. All higher-order terms are canceled by the
second term in Eq.~36! as a consequence of the factorization
~51!. This will be demonstrated for a three-site in Sec. V.

If the intramolecular relaxation is fast compared to the
transfer time,\Ln@vn,n11, the functionFn in Eq. ~17! takes
the form

Fn~ t1 ,t2 ,t3 ,t4!5
Dn
2

2
~ t12t4!

21
Dn
2

2
~ t32t2!

2

22iln(t32t2), ~52!

and the factorization~51! becomes exact with the rate given
by Eq. ~50!.

We next assume that only the acceptor’s absorption and
the donor’s fluorescence spectra overlap, while all the inter-
mediate bridge molecules (n52,...,m21) have higher ener-
gies. For this limit the populations of the bridge molecules
are negligible at all times, and the Fo¨rster nearest neighbor
rate equation cannot be used to describe the transfer process.
Using the superexchange model,10,11,52 we expect these
bridge states to modify the effective DA coupling.

Since in the super-exchange limit the bridge molecules
are excited only virtually for a very short time, we can cal-
culate the four-point correlation function in the short time
limit, Lnt!1,

Gk~ tk ,tk11 ,tk118 ,tk8!

5expH 2 iVk,g~ tk2tk111tk118 2tk8!

2
Dk
2

2
~ tk2tk111tk118 2tk8!2J , ~53!

for k5n11,...,m21. Using the Fourier transform of Gauss-
ian functions,

expH 2
D2

2
t2J 5S 2p

D2 D 1/2E
2`

` dv

2p
expH 2

v2

2D22 ivtJ ,
~54!

one obtains for the bridge spectral function

Smn~vm ,vn ;s!52p
s/p

s21~vm2vn!
2

3F )
k5n11

m21 E
2`

` dvk

2p

1

~vk2vn!
2

3S 2p

Dk
2 D 1/2 expH 2

~vk2Vk,g!
2

2Dk
2 J G .

~55!

In order to study the transfer via virtual intermediate
states, we assume that the energy gap between the donor and
any bridge molecule is much larger than the characteristic
widths,Dn . This enables us to calculate the frequency inte-
grals in Eq.~55! to get

F )
k5n11

m S vk,k21

\ D 2GSmn~vm ,vn ;s!

52puVeffu2
s/p

s21~vm2vn!
2 , ~56!

with

Veff5
vn11,n

\ )
k5n11

m21
vk11,k /\

Vn,e2Vk,g
. ~57!

Comparison with Eq.~44! shows that the DA rate is equiva-
lent to the rate for sequential transfer between neighboring
sites, with the intermolecular coupling replaced by an effec-
tive DA couplingVeff . In this limit, which agrees with the
conventional treatment of the superexchange problem~see,
e.g., Refs. 10 and 52!, the bridge only provides an effective
intermolecular coupling constant that enters the rate as a
prefactor. From Eq.~42! it is evident, however, that the in-
fluence of the bridge is generally more complex and its entire
spectral properties need to be taken into account.
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V. SEQUENTIAL VERSUS SUPEREXCHANGE
TRANSFER IN A THREE-SITE SYSTEM

The primary charge transfer in the RC of photosynthetic
bacteria is usually described using a three-site system~The
donor is a bacteriochlorophyll dimer called the special pair,
the acceptor is a bacteriopheophytin molecule, whereas an
accessory bacteriochlorophyll may act as a bridge.14! Con-
siderable efforts have been devoted to clarify the role of the
bridge for the efficient and fast~3 ps at room
temperature13,15,16! charge separation. In particular, it has
been shown that the vibrational dephasing time scale is likely
to be comparable to the transfer time, which renders the con-
ventional Fo¨rster theory inapplicable.16 Liouville space
analysis in the static limit,11 and the real time path integral
techniques,15 have been applied to this problem. In the fol-
lowing we will carry out a complete analysis of all limiting

cases of a general three-site system with an arbitrary time
scale for nuclear motion. The rates will be calculated to low-
est nonvanishing order in intermolecular coupling. This ap-
plies to typical biological systems, where electronic dephas-
ing ~i.e., the absorption linewidth! is larger ~'400 cm21!
than the intermolecular coupling~'40 cm21!. Using Eq.
~36!, the DA energy transfer rate is

Kad
~4!~s!5s2Wad

~4!~s!2s3Wab
~2!~s!Wbd

~2!~s!, ~58!

whereWmn
(2)(s) is given by Eq.~43! and

Wad
~4!~s!5S vabvdb\2 D 2E

0

`

dt e2st

3E
0

t

dtaE
2`

ta
dtbE

0

t

dta8E
2`

ta8 dtb8

3sa~ ta2ta8!Gb~ tb ,ta ,ta8 ,tb8!sd8~ tb82tb!. ~59!

We shall express the rate by means of the Liouville
space formulation of quantum dynamics, as used in the treat-
ment of the nonlinear optical response.43 This amounts to
changing the time variables in the above integrations and
breaking the rhs of Eq.~59! into several contributions with
all possible time orderings@see Fig. 5~a!#. As shown in Ref.
11 the rate can be expressed in terms of correlation functions
that represent the different Liouville space pathways for en-
ergy transfer~see Fig. 5!,

Kmn
~2!~s!52S vmn

\ D 2 Rê G nm~s!&, ~60!

Kad
~4!~s!52S vabvdb\2 D 2 ReH F ^G ba~s!G bb~s!G db~s!&

2
1

s
^G ba~s!&^G db~s!&G

1F ^G ba~s!G bb~s!G ba~s!&

2
1

s
^G ba~s!&^G bd~s!&G

1^G ba~s!G da~s!G db~s!&J . ~61!

Here we introduced the frequency domain Green’s functions
G mn(s), defined by its action on an arbitrary Hilbert space
operatorA,

G mn~s!A5E
0

`

dt e2ste2 iHmt/\AeiHnt/\. ~62!

The first two terms in Eq.~61! represent sequential con-
tributions to the rate, since they involve a population of the
bridge state~Fig. 5, paths I and II! ~The subtraction of the
respective uncorrelated expressions results in a cancellation
of the 1/s singularity, as will be shown shortly.! The third

FIG. 5. The Feynman diagram corresponding to Eq.~59!, in which the bra
and the ket are not mutually time ordered, is shown~top!, together with the
diagrams that result after time ordering~bottom! @panel~a!#. The latter can
be associated with distinct Liouville space pathways for energy transfer in
the three-site system@panel~b!#. The contributions to the DA transfer rate in
Eq. ~61! are due to the population paths~I! and~II !, as well as the coherence
path ~III ! and their complex conjugates.

5828 Kühn, Rupasov, and Mukamel: Spectral density for energy transfer

J. Chem. Phys., Vol. 104, No. 15, 15 April 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



term represents energy transfer via a virtual bridge state,
which constitutes the superexchange component~Fig. 5, path
III !.

In Appendix A we derive closed expressions for the rates
in ~60! and ~61!. For the donor–bridge transfer rate we get

Kbd
~2!~s!522S vbd

\
D 2 Im(

m50

`
~2zd!

m

m!

3ezdJ0S s1mLd1
Ĝd

2
,Vd2Vb,gD , ~63!

and for the DA rate we obtain

Kad
~4!~s!52S vabvdb\2 D 2 Re (

n51

`

(
m,p50

`
~2za* !m

n!m!p!
eza* H ~2zb!

n~2zd!
pezd

3
Jn* ~s1mLa1Ĝa/2,Vb,e2Va!J̃n~s1pLd1Ĝd/2,Vd2Vb,g!

s1nLb
2~zb* !n~2zd* !pezd*

3
Jn* ~s1mLa1Ĝa/2,Vb,e2Va!J̃n* ~s1pLd1Ĝd/2,Vd2Vb,g!

s1nLb
1~zb* !n~2zd* !pezd*

3
Jn~s1mLa1Ĝa/2,Va2Vb,g!Jn* ~s1pLd1Ĝd/2,Vd2Vb,g!

s1nLb1mLa1pLd1~ Ĝd1Ĝa!/21 i ~Vd2Va!
J . ~64!

Here zn5(Ĝn/22 iln)/Ln , Ĝn52Dn
2/Ln , and we have in-

troduced the auxiliary functions,

Jn~s,V!52 i E
0

`

dt e2steiVt2gb~ t !~12e2Lbt!n ~65!

and

J̃n~s,V!52 i E
0

`

dt e2steiVt2gb~ t !S zb*zb2e2LbtD n. ~66!

A practical numerical procedure for evaluating the integrals
in Eqs.~65! and~66! is to express them in terms of confluent
hypergeometric functions,43,53 which can then be calculated
using recursion relations.

Equations~63! and ~64! hold for an arbitrary solvent
time scale. In the static limit they reproduce the results of

Ref. 11. The homogeneous limit of fast nuclear motion can
be obtained from~63! and ~64! by retaining only the first
term in the summations overn,m, andp. As the solvent time
scale slows down~L decreases!, we need to keep more terms
in the summation since the sum converges more slowly. In
the static limit,L→0, we can still use these expressions.
However, in this case it is more convenient to evaluate the
necessary integrals directly. Following Refs. 11 and 44 we
write Kad

(4)(s)5Kad
(4),p(s)1Kad

(4),c(s), where the resulting
contribution due to the population pathways is

Kad
~4!,p~s!5S vabvdb\2 D 2~2p!2E

0

`

dt e2stE
2`

`

dx dy

3
s/p

s21x2
s/p

s21y2
@W~x,t;y!2W~x,`;y!#,

~67!

with (Dmn
2 5Dm

2 1Dn
2)

W~x,t;y!5
1

2p@Dab
2 Dbd

2 2Db
4Mb

2~ t !#1/2
expH 2

Dab
2
„y2~Vd,e2Vb,g!…

21Dbd
2 ~x2„Vb,g~ t !2Va,g!…

2

2@Dab
2 Dbd

2 2Db
4Mb

2~ t !# J
3expH 2

2Db
2Mb~ t !@„y2~Vd,e2Vb,g!…~x2„Vb,g~ t !2Va,g!…#

2@Dab
2 Dbd

2 2Db
4Mb

2~ t !# J . ~68!
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HereW(x,t;y) is the conditional probability for the elec-
tronic gap coordinateU5H02Hnuc2^H02Hnuc& to attain
the valuex at time t given that it started aty at t50. We
further introduced the relaxation function,

Mb~ t !5^eiHnuctUbe
2 iHnuctUb&/Db

2, ~69!

where Ub5Hb2\Vb,g is the electronic gap coordinate
for the bridge, and

Vb,g~ t !5Vb,g1^exp~ iH bt !Ub 3exp~2 iH bt !&
.

For the coherence~superexchange! pathway, we obtain

Kad
~4!,c~s!5S vabvdb\2 D 2E

2`

`

dz
s/p

s21z2
@ I de,ag~z,s!

2I bg,ag~z,s!2I de,bg~z,s!#, ~70!

where

I kp, jq~z,s!52
2p

A4pkBT~lk1l j !
e2~z2„Vk,p2V j ,q!…2/4kBT~lk1l j !E

0

`

dx
sin~zx/2!

z/2
cosH F S 122

lb

lk1l j
D z

1
lk~Vd,e2V j ,q!1l j~Vd,e2Vk,p!

lk1l j
GxJ expS 2sx2

x2

2Rkj
D , ~71!

with

Rkj
2152kBTF ~lb1ld!~la1lb!2lb

2

lk1l j
G . ~72!

A Padé approximation for the integral in Eq.~71! in the
zero-frequency (s50) limit has been derived@Eq. ~4.21! of
Ref. 11#.

In Figs. 6–10 we display the frequency-dependent rates
Kbd
(2)(s) andKad

(4)(s) calculated using Eqs.~63! and ~64! for
different electronic state energies. In all calculations the
FWHM of the linear absorption spectrum and the Stokes
shift parameter is held fixed~\Gn50.025 eV,\ln50.005
eV!. The intermolecular coupling isvab5vdb50.01 eV. The
parameterkn 5 Ln /A2lnkBT/\ @Eq. ~22!#, which denotes
the ratio of a typical nuclear frequency to the static line-
width, was varied by changing the temperature.

In Fig. 6 we show the dependence ofKbd
(2)(s) on the

bridge energyVb (Vd50.0) for kn51.0 ~T5319 K!. The
rate shows a pronounced maximum when the bridge energy
is close to resonance withVd . The exact position of this
maximum depends on the nuclear motion time scale. If
kn@1 ~homogeneous limit! the maximum is atVb5Vd . In
the static limit (kn!1), however, the transfer is most fa-
vored when the bridge energy is detuned fromVd to com-
pensate for the Stokes shift, i.e.,Vb5Vd,e2lb . This agrees
with the behavior of spectral lineshapes. The Stokes shift
observed in the static limit disappears in the homogeneous
~motional narrowing! limit.

Next we focus on a three-site system. In Fig. 7 we show
the dependence ofKad

(4)(s) on the bridge energyVb. The
donor and the acceptor energies are equal (Vd5Va50.0)
andkn51.0 ~T5319 K!. The rate has a maximum when the
bridge energy passes through the region of the DA electronic
states. The influence of the nuclear dynamics time scale on
the zero frequency rate is shown in Fig. 8, forkn50.5 ~T
5187 K! andkn51.25 ~T5413 K!. Obviously, an increase
of kn causes an overall reduction of the rate and a shift in the
resonance positions. Moreover, the rate shows a weaker dis-
persion. As in Fig. 6 the homogeneous limit yields a maxi-
mum rate if all energy levels are degenerated, while in the
inhomogeneous limit the Stokes shift has to be compensated
for optimal transfer. It has been shown11 that for a detuning
between the donor and the acceptor energy that exceeds the
linewidth, the rateKad

(4)(s) can become negative for small
values ofs. The same holds for the arbitrary nuclear dynam-
ics time scale considered here. In Figs. 9 and 10 we plot the
DA rate when the donor and acceptor energies are detuned
by Gn . The calculated rate becomes negative if the bridge
state passes the resonance with the donor state, whereas it is
positive for the resonance with the acceptor state. This be-
havior is insensitive to a variation ofkn , as can be seen in
Fig. 10. For larges the rate is always positive. The negative

FIG. 6. Frequency-dependent donor-bridge transfer rate@Eq. ~63!# as a func-
tion of the bridge energy~Vd50 for kn51.0 ~T5319 K!. The other param-
eters are\Gn50.025 eV and\ln50.005 eV, andvbd50.01 eV.
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values for the frequency-dependent rate indicate a break-
down of the Markov approximation, as pointed out in Ref.
11. The solution of the ordinary rate equations leads to nega-
tive occupation probabilities in the short time dynamics, and
the use of the generalized rate equations that contain the full
frequency dependence ofKmn

(4)(s) becomes essential.

VI. SUMMARY

The present correlation function approach for the excita-
tion and electron dynamics in molecular aggregates provides
a powerful tool for studying optical and transport properties
of these systems. This has been shown first by calculating
time- and frequency-resolved fluorescence spectra for an ag-
gregate with five monomers. This example demonstrates the
capabilities of the present approach, which can easily be ex-
tended to larger aggregates with more than one nuclear mode
per monomer. In a three-dimensional system like the light
harvesting complex of green plants,19 for instance, a simula-
tion of energy transfer between the most blue and the most

red pigments20 would require a summation over all possible
pathways connecting these monomers. In practice, however,
only a few pathways are expected to give relevant contribu-
tions to the signal. Hence, even though the perturbative treat-
ment restricts the iterative procedure to the short time dy-
namics, it has some clear advantages compared with the
derivation of a master equation that treats the vibronic levels
explicitly and is restricted to small systems. The incorpora-
tion of coherent effects such as quantum beats16 as well as
the treatment of other nonlinear spectroscopies~e.g., photon
echo27 and hole burning25! can be readily accomplished us-
ing the present approach.

The characterization of long-range energy and charge
transfer processes using frequency-dependent rates is a major
focus of theoretical and experimental interest. Starting with
the two-point correlation function for exciton operators, we
have given general formulas for the rate in the sequential and
the superexchange limit, which hold in lowest-order pertur-
bation theory with respect to the intermolecular coupling.

FIG. 7. Frequency-dependent DA-transfer rate@Eq. ~64!# as a function of
the bridge energy.Vd5Va50 andvbd5vab50.01 eV. Other parameters
are as in Fig. 6.

FIG. 8. Zero-frequency DA-transfer rate@Eq. ~64!# as a function of the
bridge energy ifVd5Va50 for kn50.5 ~T5187 K! ~solid! andkn51.25
~T5413 K! ~dashed!. Other parameters are the same as in Fig. 7.

FIG. 9. Frequency-dependent DA-transfer rate@Eq. ~64!# as a function of
the bridge energy ifVd2Va5Gn for kn51.0 ~T5319 K!. Other parameters
are as in Fig. 7.

FIG. 10. Zero-frequency DA-transfer@Eq. ~64!# rate as a function of the
bridge energy ifVd2Va5Gn for kn50.5 ~T5187 K! ~solid! andkn51.25
~T5413 K! ~dashed!. The other parameters are the same as in Fig. 7.
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Our expressions show how the bridge influences the DA
transfer through its spectral properties. Finally, Liouville
space Green’s functions have been used to derive analytical
expressions for the rate matrix in a three-site system, which
hold for an arbitrary time scale of the nuclear motion. These
calculations should allow the interpretation of optical mea-
surements conducted on the photosynthetic reaction center.
Our numerical examples illustrate the influence of the vari-
ous parameters characterizing the electronic structure, as
well as the dynamics of the nuclear degrees of freedom.
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APPENDIX: DERIVATION OF THE THREE-SITE
TRANSFER RATES

The derivation of Eqs.~63! and ~64! follows the proce-
dure used in the calculation of fluorescence and Raman spec-
troscopy of two level systems~Chaps. 8 and 9 of Ref. 43!. To
this end we first write the rhs of Eqs.~60! and~61! in terms
of multiple time integrals,

Kmn
~2!~s!52S vmn

\ D 2 Re E
0

`

dt e2st^G nm~ t !&, ~A1!

and

Kad
~4!~s!52S vabvdb\2 D 2 Re E

0

`E
0

`E
0

`

dt1 dt2 dt3

3e2s~ t11t21t3!$@^G ba~ t3!G bb~ t2!G db~ t1!&

2^G ba~ t3!&^G db~ t1!&#

1@^G ba~ t3!G bb~ t2!G bd~ t1!&2^G ba~ t3!&

3^G bd~ t1!&#1^G ba~ t1!G da~ t2!G db~ t1!&%.

~A2!

Using the correlation functions that have been introduced in
the treatment of the nonlinear optical response of two-level
systems,43 we find

Kmn
~2!~s!52S vmn

\ D 2 Re E
0

`

dt e2stJm,g~ t !Jn,e* ~ t !, ~A3!

and

Kad
~4!~s!52S vabvdb\2 D 2 Re E

0

`E
0

`E
0

`

dt1 dt2 dt3

3e2s~ t11t21t3!$Ja,g* ~ t1!@R1
b~ t1 ,t2 ,t3!

2Jb,e~ t1!Jb,g~ t3!#Jd,e* ~ t3!1Ja,g* ~ t1!

3@R2
b~ t1 ,t2 ,t3!2Jb,e~ t1!Jb,g* ~ t3!#Jd,e~ t3!

1Ja,g* ~ t11t2!R3
b~ t1 ,t2 ,t3!Jd,e~ t21t3!%, ~A4!

where we have introduced the time domain response func-
tions,

Jm,g~ t !5exp„2 iVm,gt2gm~ t !…,

Jm,e~ t !5exp„2 iVm,et2gm* ~ t !…,

R1
b~ t1 ,t2 ,t3!5exp„2 iVb,gt12 iVb,gt32gb* ~ t1!2gb~ t3!

2 f b
~1 !~ t1 ,t2 ,t3!…, ~A5!

R2
b~ t1 ,t2 ,t3!5exp„2 iVb,gt11 iVb,gt32gb* ~ t1!

2gb* ~ t3!1 f b
~1 !* ~ t1 ,t2 ,t3!…,

R3
b~ t1 ,t2 ,t3!5exp„2 iVb,gt11 iVb,gt32gb~ t1!2gb* ~ t3!

1 f b
~2 !* ~ t1 ,t2 ,t3!…,

with the auxiliary functions

f b
~1 !~ t1 ,t2 ,t3!5gb~ t2!2gb~ t11t2!2gb~ t21t3!

1gb~ t11t21t3!,
~A6!

f b
~2 !~ t1 ,t2 ,t3!5gb* ~ t2!2gb* ~ t11t2!2gb~ t21t3!

1gb~ t11t21t3!.

Using the overdamped Brownian oscillator model@Eqs.~21!
and ~22!#, the auxiliary functionsf b can be rewritten as

f b
~1 !~ t1 ,t2 ,t3!522ilbt11zbe

2Lbt2~12e2Lbt1!

3~zb* /zb2e2Lbt3!,
~A7!

f b
~2 !~ t1 ,t2 ,t3!5zbe

2Lbt2~12e2Lbt1!~12e2Lbt3!.

A Taylor expansion of the exponent yields, for the correla-
tion functions,

R1
b~ t1 ,t2 ,t3!5Jb,e~ t1!Jb,g~ t3! (

n50

`
~2zb!

n

n!
e2Lbnt2

3~12e2Lbt1!nS zb*zb2e2Lbt3D n,
R2
b~ t1 ,t2 ,t3!5Jb,e~ t1!Jb,g* ~ t3! (

n50

`
~zb* !n

n!
e2Lbnt2

3~12e2Lbt1!nS zbzb*2e2Lbt3D n, ~A8!

R3
b~ t1 ,t2 ,t3!5Jb,g~ t1!Jb,g* ~ t3! (

n50

`
~zb* !n

n!
e2Lbnt2

3~12e2Lbt1!n~12e2Lbt3!n.

Comparing Eqs.~60! and ~A8! we note the cancellation of
the 1/s singularity by then50 term. Thus, when substituted
in Eq. ~60! the sum will start atn51. We shall express the
rate in terms of the functionsJn(s,V) and J̃n(s,V) defined
in Eqs.~65! and~66!, which refer to the bridge. We thus use
the following expansion for the time domain response func-
tions related to the donor or the acceptor,
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Jm,g~ t !5e2 iVmt2Ĝmt/2ezm(
p50

`
~2zm!p

p!
e2Lmpt ~A9!

and

Jm,e~ t !5e2 iVmt2Ĝmt/2ezm* (
p50

`
~2zm* !p

p!
e2Lmpt. ~A10!

Combining Eqs.~A8!–~A10! with Eqs. ~65! and ~66! gives
the bd rate@Eq. ~63!# as well as the ad rate@Eq. ~64!#.
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