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A theory for Frenkel exciton dynamics in molecular aggregates which incorporates coupling to
vibrational motions~intramolecular, intermolecular and solvent! with multiple spectral densities of
arbitrary nature and interpolates between the coherent and the incoherent limits is developed. A
rigorous procedure for identifying the relevant collective nuclear coordinates necessary to represent
a given set of spectral densities is obtained. Additional coordinates are required as the temperature
is lowered. Exciton dynamics is calculated by following the evolution of wavepackets representing
the electronic density matrix in the collective coordinates phase space. The signatures of excitonic
and nuclear motions in ultrafast fluorescence spectroscopy are explored using a hierarchy of
reduction schemes with varying numbers of collective coordinates. ©1996 American Institute of
Physics.@S0021-9606~96!00134-1#

I. INTRODUCTION

Femtosecond spectroscopy of molecular aggregates has
become recently an area of special interest; this is connected
with intensive studies of the nature of energy transfer in bio-
logical systems, such as reaction center and light harvesting
photosynthetic antennae.1 Ultrafast energy transfer between
different pigment pools in LHCII2 and in FMO trimers in the
Green bacterium,3 coherent nuclear motion, which shows up
as quantum beats in pump-probe signals,4 photon echo and
transient grating signals5 from light harvesting complexes,
long-time quantum beats in the fluorescence from LH-1
complexes,6 hole-burning studies of energy transfer in B800-
B850 antenna complex7 and LH-2 complexes8 show a com-
plicated interplay of intermolecular interactions, coherent
nuclear motions, solvent dynamics and static disorder. Simi-
lar issues have been addressed earlier in the studies of
J-aggregates and molecular crystals.9–15 The theoretical
modeling of molecular aggregates should incorporate the
complex dynamics of nuclear motions and solvent degrees of
freedom coupled to the elementary electronic excitations, the
Frenkel excitons.9,10 Discovery of the crystal structure of an
integral membrane light-harvesting complex from photosyn-
thetic bacteria16 had opened up new levels of modeling the
photosynthesis processes, unveiling possible pathways of en-
ergy transfer, and allowing a good estimate of intermolecular
interactions.

In this paper we develop a theoretical framework for
calculating excitonic motions in aggregates, including inter-
actions with molecular and solvent nuclear degrees of free-
dom with an arbitrary distribution of timescales. Progress in
ultrafast experimental techniques had made it possible to
measure the spectral densities associated with nuclear mo-
tions both in neat liquids and for solvated chromophores.17

Theoretical methods for calculating these spectral densities
have been developed as well.18 An important open problem
addressed in this paper is how to incorporate these spectral
densities in the modeling of excitonic motions and what are
their spectroscopic signatures. We shall

focus on ultrafast fluorescence measurements, but the for-
malism can be directly applied to other nonlinear optical
techniques such as photon echoes, pump-probe, etc.

The electronic structure of a molecular aggregate can be
described by the Frenkel exciton Hamiltonian9

Ĥe5(
m

Ĥm1Ĥ8, ~1.1!

where Ĥm , the Hamiltonian of themth molecule, can be
written in the form

Ĥm5(
a

EmaB̂ma
1 B̂ma . ~1.2!

HereEna is the energy of theath exciton state of molecule
m ~with the ground state energy taken to be zero!, anda runs
over the relevant excited states. The exciton operators obey
the following commutation relations:

@B̂ma ,B̂nb
1 #5dmnH dab)

m
~12B̂mm

1 Bmm!2B̂mb
1 B̂maJ .

~1.3!

Ĥ8 represents intermolecular hopping of excitons due to
dipole-dipole or exchange interactions.9,10,19 Neglecting for
the sake of simplicity, the matrix elements of the dipole op-
erator between excited states, and the ground state permanent
dipole ~these can be easily incorporated in the model!, Ĥ8
assumes the form

Ĥ85 (
mnab

Jma,nbB̂ma
1 B̂nb . ~1.4!

This form, which conserves the number of excitons, is
known as the Heitler-London approximation.

In many applications it is sufficient to consider a single
excited state on each molecule, and the Frenkel exciton
model then represents interacting two-level molecules.19 In
this case we may omit the Greek indices in Eqs.~1.2! and
~1.4!, and the commutation relations adopt the standard form
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@B̂m ,B̂n
1#5dmn~122B̂m

1B̂m!. ~1.5!

The interaction of electronic degrees of freedom with
intramolecular, intermolecular and solvent nuclear motions
can be incorporated through the dependence of the transition
frequenciesE and intermolecular couplingJ on nuclear
coordinates.9,12 The combined electronic and nuclear Hamil-
tonian is

Ĥep5Ĥe~Q̂!1Ĥph . ~1.6!

Here Ĥph represents nuclear degrees of freedomQ̂, andĤe

depends onQ through theQ-dependence of the site energies
Ema ~diagonal coupling! and the hopping elementsJma,nb

~off diagonal coupling!. Assuming thatĤph represents a set
of harmonic oscillators, and retaining only linear terms in the
expansion ofĤe in Q, we obtain Davydov’s exciton-phonon
Hamiltonian.9 Finally, the total Hamiltonian of the aggregate
interacting with a time-dependent external field«(t) is

ĤT~t!5Ĥep2«~t!m̂, ~1.7!

the polarization operatorm̂ in the dipole approximation is
given by19

m̂5(
ma

mma~B̂ma1B̂ma
1 !, ~1.8!

andmma are the molecular transition dipoles.
Since the electronic subsystem is coupled to a large

number of nuclear degrees of freedom, even the dynamics of
small molecular aggregates constitutes a complicated many-
body problem. The only practical way to proceed is by de-
veloping a reduced description based on following the evo-
lution of a few relevant variables. Projection operator
techniques20 provide a formal procedure for developing a
reduced description in terms of any chosen set of dynamical
variables. The difficulty is then hidden in evaluating the co-
efficients of the resulting generalized master equation20–22

which constitutes a closed equation for the evolution of rel-
evant variables.

The simplest reduction scheme is based on keeping only
the electronic variables, completely eliminating all nuclear
degrees of freedom. This yields a closed system of equations
for the excitonic reduced density matrix.21 However, the nec-
essary memory kernels can only be calculated in two limiting
cases. The first is the coherent~weak exciton-phonon cou-
pling! limit. The bath variables can then be eliminated by a
perturbative calculation of the kernels in exciton-phonon
coupling, which leads to the standard band theories of
transport.23 Under these conditions, time- and frequency-
resolved fluorescence and coherent four-wave mixing can be
described using a unified theory formulated in terms of ex-
citon transport~treated, e.g., using the Boltzmann equation!
and exciton-exciton scattering.11,15 The second case is the
limit of incoherent transport, where the coupling to the bath
is diagonal, and intermolecular coupling is weak compared
to the dephasing rate~the absorption linewidth!. This limit
corresponds to Holstein’s small polaron theory.24 Since the
model of a single molecule linearly coupled to a harmonic

bath can be solved exactly,19,25 the kernels can be obtained
by a perturbative calculation in intermolecular coupling. The
master equation for molecular electronic populations repre-
sents in this case the incoherent transport theory of Forster
and Dexter.26,27 A theory which interpolates between these
two limits has been developed for diagonal28 as well as off
diagonal coupling.29 This theory is based on equations of
motion for the evolution of polaron populations and is, there-
fore, valid in both limiting cases.

None of the above theories, which focus on the elec-
tronic variables alone holds for ultrafast transport observed,
e.g., in the biological antenna complexes and the reaction
center. The polaron theory28,29 is inapplicable when the
transport timescale is comparable with the timescale of po-
laron formation. Calculations of the intermolecular coupling
parameters30 in LH2 antennae complexes based on their geo-
metrical structure giveJ;300 cm21 which is comparable to
the absorption and fluorescence linewidths. This makes
Forster’s incoherent limit inapplicable. An attempt to ap-
proach the problem from the coherent limit faces the follow-
ing difficulty. Elimination of nuclear degrees of freedom can
be effectively done only when the exciton-phonon coupling
is much smaller than the inverse bath relaxation time. The
latter cannot be faster than\/kT due to the Matsubara fre-
quencies which show up in the expansion of the bath corre-
lation function.19,31Physically, this implies that bath degrees
of freedom with frequenciesv.kT/\ are frozen, and in the
limit of weak exciton-phonon coupling the typical energy
transfer timet tr@\/kT. At room temperatures\/kT;30 fs,
which is comparable with the observed transport timescale
t tr,100 fs.2,3 The above inequality is only marginally satis-
fied, and the weak exciton-phonon coupling approach cannot
be used. The only practical way to address the problem is to
adopt a less reduced description, retaining additional infor-
mation about the system, such as relevant collective degrees
of freedom representing nuclear motions and solvent dynam-
ics.

When the bath is weakly coupled to the collective coor-
dinates, a reduced description in terms of electronic and col-
lective variables can be obtained by applying the Redfield
theory.32 Theoretical modeling of charge transfer33 ~which is
formally equivalent to the problem of energy transfer! for
two electronic states coupled to a single collective nuclear
mode using the Redfield theory has been carried out in Ref.
34. This approach makes it possible to explore a broad range
of parameters, interpolating between coherent and incoherent
transport, and providing a clear physical picture of transport.
It has, however, two limitations. First, since it is based on a
weak coupling approximation for eliminating the bath, it has
difficulties in describing femtosecond transport. Second, the
procedure of calculating the components of the Redfield ten-
sor involves diagonalizing the Hamiltonian of the electronic
system coupled to the collective coordinate, which is a seri-
ous numerical problem even for the case of two electronic
levels and a single nuclear coordinate. This approach is,
therefore, not practical for large aggregates. Recently a non-
perturbative approach has been proposed35 which treats
strong coupling of the collective coordinate to the Gaussian-

4566 V. Chernyak and S. Mukamel: Energy transfer and spectroscopy of molecular aggregates

J. Chem. Phys., Vol. 105, No. 11, 15 September 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



Markovian bath, and results in a hierarchy of kinetic equa-
tions. This approach has been generalized to multistate
systems36 and formally applied to low temperatures and ar-
bitrary spectral densities,37 where it yields complicated mul-
tidimensional hierarchies of kinetic equations.

In this paper we introduce an alternative approach based
on modeling the relevant bath properties by a finite number
of collective bath coordinates. The number of collective co-
ordinates depends on the form of the bath spectral density as
well as the temperature.

In Section II we start with a model which assumes that
the electronic degrees of freedom are coupled to a few pri-
mary effective nuclear coordinates which in turn are linearly
coupled to a harmonic bath. This model is general enough to
represent an arbitrary nuclear spectral density. We then show
how the bath microscopic degrees of freedom may be elimi-
nated, resulting in a reduced description which includes the
electronic as well as the collective nuclear variables.19 These
variables represent the primary oscillators, collective bath
coordinates as well as Matsubara modes which enter at low
temperatures. A systematic method for constructing these co-
ordinates is obtained using a trace-conserving transformation
in Liouiville space. We obtain closed equations for wave-
packets which depend on the primary coordinates and mo-
menta and a finite set of additional coordinates representing
the bath. The evolution of these additional coordinates is
described by the Smoluchowski equation. In Section III we
show that when the temperature is high compared with the
characteristic frequency of collective nuclear motion
kT@\vc , the bath variables can be eliminated,38 which
yields the Fokker-Planck equation for the reduced density
matrix. ~This limit is not applicable to femtosecond transport
in antenna complexes at room temperature where
kT;200 cm21 andvc is in hundreds wavenumbers, e.g.,
vc;100 cm21 in Ref. 6.! Two additional levels of reduc-
tion corresponding to overdamped primary mode with and
without the high temperature approximations are presented
as well. In Section IV we represent the time- and frequency-
resolved fluorescence signal in terms of the Green functions
of these equations of motion. We then develop a procedure
for computing these Green functions using Gaussian wave-
packets in phase space. In Section V we eliminate intermo-
lecular electronic coherences and derive a generalized master
equation for electronic population variables, assuming that
the primary nuclear motions are overdamped~the spectral
diffusion limit!. The solution of these equations using Gauss-
ian wavepackets is given in Section VI. Section VII summa-
rizes the hierarchy of levels of reduction and discusses their
applicability. The results of Ref. 37 can be recovered by
representing the equations in the basis set of eigenstates of
the Smoluchowski operator, and the dimensionality of the
corresponding hierarchical equations is equal to the number
of additional coordinates. Our approach gives a clear physi-
cal insight by representing the bath by a finite number of
relevant collective variables, and suggests powerful methods
of solving them using Gaussian phase-space wavepackets.19

The resulting equations for the wavepacket parameters can
be solved numerically even for very large aggregates. Since

the approach is nonperturbative, it naturally describes ul-
trafast~femtosecond! transport. The condition\vc!kT can
further be relaxed by including a few additional coordinates.
In the following sections we set\51 which is equivalent to
measuring energies in the units of frequency~e.g., cm21).
However, in some places in the text we retain the Planck
constant\ to emphasize the quantum nature of certain ef-
fects.

II. REDUCED DESCRIPTION USING COLLECTIVE
NUCLEAR COORDINATES

In this section we develop a procedure for modeling ex-
citon dynamics in molecular aggregates, based on keeping a
finite number of molecular and solvent relevant nuclear de-
grees of freedom, and deriving closed equations for the re-
duced density matrix. Adopting Davydov’s exciton-phonon
Hamiltonian, we represent the nuclear degrees of freedom as
a set of harmonic oscillators with the momenta and coordi-
nate operatorsp̂ j8 and q̂ j8. The Hamiltonian@Eq. ~1.6!# then
assumes the form

Ĥep5(
n

EnB̂n
1B̂n1(

mn
JmnB̂m

1B̂n

2(
jmn

mj8v j8
2dj ,mn8 B̂m

1B̂nq̂j8

1(
j

S p̂ j822mj8
1
mj8v j8

2q̂ j8
2

2 D , ~2.1!

whereĤe is given by the first three terms, and the last term
is the phonon HamiltonianĤph . Heremj8 and v j8 are the
masses and the frequencies of the oscillators representing
nuclear ~molecular and solvent! motions, anddj ,mn8 is the
displacement of thej th oscillator induced by molecular
populations (m5n) and intermolecular coherences (mÞ n),
representing the diagonal and off diagonal coupling to nu-
clei, respectively. All nuclear properties which affect the
electronic motion are contained in the matrix of spectral den-
sitiesCmn,kl(v) which is a direct generalization of the stan-
dard spectral densityC(v)19 and is given by

Cmn,kl~v!

[(
j

mj8v j8
3

4
dj ,mn8 dj ,kl8 2p@d~v2v j8!2d~v1v j8!#.

~2.2!

This matrix represents the dynamics of the collective nuclear
coordinates,

q̂mn
~c![(

j
mj8v j8

2dj ,mn8 q̂ j8 , ~2.3!

and is given by the Fourier transform of their correlation
functions

Cmn,kl~v!5
i

2E2`

`

dt exp~ ivt!^@ q̂mn
~c!~t !,q̂kl

~c!~0!#&,

~2.4!
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where the time evolution ofq̂mn
(c)(t) is calculated using the

nuclear HamiltonianĤph @the last term in Eq.~2.1!#.
To obtain a reduced description in terms of relevant col-

lective variables, we recast the Hamiltonian of Eq.~2.1! in a
different form, by introducing a set of primary oscillators
with variablesP̂a ,Q̂a , coupled to the electronic degrees of
freedom and to a set of secondary oscillatorsp̂j ,q̂ j .

19,35–39

The exciton-phonon Hamiltonian is then partitioned in the
form

Ĥep5ĤS1ĤB , ~2.5!

where the system HamiltonianĤS describes the electronic
degrees of freedom coupled to the primary oscillators:

ĤS5(
n

EnB̂n
1B̂n1(

mn
JmnB̂m

1B̂n

1(
a

S P̂a
2

2Ma
1
MaVa

2Q̂a
2

2 D
2(

amn
MaVa

2da,mnB̂m
1B̂nQ̂a , ~2.6!

and ĤB represents the bath oscillators and their coupling to
the primary oscillators,

ĤB5(
ja

F p̂ ja
2

2mja
1
mjav ja

2

2 S q̂ ja2
cja

mjav ja
2 Q̂aD 2G . ~2.7!

The system-bath coupling is now given by thecja param-
eters, and the relevant properties of the bath are represented
by a new set of spectral densitiesJa(v),

19,35–37,39

Ja~v![(
j

cja
2

4mjav ja
2p@d~v2v ja!2d~v1v ja!#. ~2.8!

These can be expressed in terms of correlation functions of
the collective coordinates,

q̂a
~c![(

j
cjaq̂ja , ~2.9!

in the following way:

Ja~v!5
i

2E2`

`

dt exp~ ivt!^@ q̂a
~c!~t !,q̂a

~c!~0!#&. ~2.10!

Here the dynamics ofq̂a
(c)(t) is given by the Hamiltonian

Eq. ~2.7! with cja50.
The transformation from Eqs.~2.5! through~2.7! to Eq.

~2.1! is straightforward: using a standard canonical transfor-
mation, one can represent a system of coupled harmonic os-
cillators with variablesP̂a ,Q̂a ,p̂ j ,q̂ j as a system of un-
coupled harmonic oscillators with canonical variables
p̂ j8 ,q̂ j8 which constitute the normal mode representation of
Eq. ~2.1!. In particular, this procedure connects the spectral
densities Ja(v) to the matrix of spectral densities
Cmn,kl(v). Expressions ofC(v) in terms of J(v) for the
case of a single primary mode were given in Refs. 19 and 39.
A straightforward generalization yields

Cmn,kl~v!5(
a

MaVa
4

2
dmn,adkl,a

3
2Ma

21Ja~v!

~v22Va
2!21@Ma

21Ja~v!#2
. ~2.11!

The inverse transformation is, however, not unique. This
gives a great deal of flexibility in representing Eq.~2.1! in a
form of Eqs.~2.5!–~2.7!, i.e., in the choice of collective vari-
ables. We can see from Eq.~2.7! that each primary oscillator
has its own bath, and that these baths are uncorrelated. We
obtain, however, nontrivial correlations in the spectral den-
sitiesCmn,kl(v), allowing each primary oscillator to couple
to all electronic populations and intermolecular coherences
~the coupling constants are determined byda,mn).

By recasting the Hamiltonian~2.1! in the form of ~2.5!
we highlighted more clearly the role of the~few! primary
oscillators, which makes it easier to develop a simple physi-
cal picture. Hereafter, we shall, therefore, adopt the form of
Eq. ~2.5!. For clarity, we assume a single primary oscillator;
the generalization to an arbitrary number of oscillators is
straightforward.

We first recast the system Hamiltonian in a form

ĤS5
P̂2

2M
1V~Q̂!, ~2.12!

whereV is a matrix in the electronic space with each matrix
element depending on the primary nuclear coordinates. For
the Hamiltonian of Eq.~2.6! V only contains terms not
higher than quadratic inQ̂, however, the following deriva-
tion applies for any functional dependenceV on Q̂ which
allows us to treat arbitrary anharmonic potentials. At this
point we introduce Liouville space notation which will allow
us to recast our results in a compact form. Given an ordinary
~Hilbert space! operatorÂ, we define the following superop-
erators acting in Liouville space:AL ~action from left!, AR

~action from right!, A1 ~anticommutator! andA2 ~commu-
tator!,

ALr̂[Âr̂, ARr̂[r̂Â,
~2.13!

A2[AL2AR , A1[ 1
2 ~AL1AR!.

Using this notation, the system’s Liouville operatorL is ex-
pressed in terms of the HamiltonianĤ as L5H2 . Obvi-
ously,A2r̂[@Â,r̂ #, Â1r̂5 1

2(Âr̂1 r̂Â).
We now apply a canonical transformation in the com-

plete ~system and bath! Liouville space, i.e.,

r̂85U r̂, ~2.14!

with

Tr~U r̂ !5Tr~ r̂ !. ~2.15!

Here r̂ is any ordinary operator belonging to our Liouville
space, and the superoperatorU is

U[ expS 2 iQ1(
j

cj
mjv j

2 pj2D . ~2.16!
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This is an invertible, trace-conserving linear transformation.
According to Eqs.~2.14! and ~2.15!, superoperators are
transformed as

A85UAU21, ~2.17!

with the property

Tr~A1 ...Anr̂ !5Tr~A18 ...An8r̂8!. ~2.18!

A straightforward calculation gives for the Liouville operator
corresponding to the HamiltonianĤep of Eq. ~2.5!,

L5
1

M
P1P21V2~Q̂!1LB2qQ22

1

M
P1p, ~2.19!

where the first two terms represent the system, and the third
term is the bath Liouville operator,

LB[(
j

S pj1pj2mj
1mjv j

2qj1qj2D . ~2.20!

The system-bath coupling is given by the last two terms
which depend on the collective bath coordinateq and its
conjugate momentump, represented by the superoperators

q[(
j
cjqj1 , p[(

j

cj
mjv j

2 pj2 . ~2.21!

These satisfy the commutation relation

@p,q#52 i(
j

cj
2

mjv j
2 52 i E

2`

` dv

2p

2J~v!

v
. ~2.22!

We next introduce the time ordered correlation functions
^q(t)q(0)& and ^q(t)p(0)&. Here the time evolution
is in the bath Liouville space and given by
q(t) [ exp(iLBt)q exp(2iLBt). ‘‘Time ordered’’ means that
the superoperators in these correlation functions should be
reordered in a way that superoperators with later time argu-
ments stand to the left of those with earlier time arguments.
These correlation functions are given by

^q~t!q~0!&5E dv

2p
J~v!cothS v

2kTD cos~vt!,

^q~t!p~0!&5u~t!E dv

2p

2iJ~v!

v
cos~vt!, ~2.23!

^p~t!p~0!&50.

Hereu(t) is the Heaviside step function. It arises since for
t,0 thep(0) superoperator acts from the left. Since this is
a ‘‘minus’’ operator, it gives a commutator whose trace van-
ishes.

Applying a path-integral representation for the Liouville
space evolution in the spirit of Refs. 35–39, and integrating
over bath variables, we see that the only information about
the bath relevant for the system dynamics is contained in
these correlation functions. This observation has the follow-
ing important implication: The dynamics of any system vari-
able calculated using the Liouville operator@Eq. ~2.19!# will
be unaffected if we can model these correlation functions
using a different Liouville operatorLB , which is quadratic in

the canonical bath variables. This gives us a great deal of
flexibility in modifying LB , which can be used to simplify
the calculations.

We next represent the spectral density in the form

J~v!5M (
a51

N0 gaLa
2v

v21La
2 . ~2.24!

This expansion constitutes essentially a Laplace transform of
J(t), and by taking a sufficient number of terms in the r.h.s.
of Eq. ~2.24! we can approximate any spectral density.

Substituting Eq.~2.24! into Eqs.~2.23! we obtain

^q~t!p~0!&5u~t!iM (
a51

N0

gaLae
2Lat,

~2.25!

^q~t!q~0!&5 (
a51

N0

sae
2Lautu1 (

n51

`

s̄ne
22pnkTutu,

where

sa[
1

2
MgaLa

2cotS La

2kTD ,
~2.26!

s̄n[ (
a51

N0

MgaLa
2 4pn~kT!2

~2pnkT!22La
2 .

By truncating the infinite sum overn(n51, . . . ,N1) in Eqs.
~2.25!, we can model the correlation functions in Eqs.~2.25!
in the following way. Instead of the bath variablesqj and
pj we introduce a new set ofN5N01N1 collective coordi-
natesqa a51,...,N. The effective Liouville operator is still
given by Eq.~2.19!. However, the bath operatorLB adopts
the form

LB5 i (
a51

N

La

]

]qa
S qa1sa

]

]qa
D , ~2.27!

and the superoperatorsq andp are replaced by

q[ (
a51

N

qa ,

~2.28!

p52 i (
a51

N

MgaLa

]

]qa
.

The firstN0 coordinates are required in order to fit the spec-
tral density@Eq. ~2.24!# with La andsa given by Eqs.~2.24!
and ~2.26!. The remaining N1 coordinates qa ,
a5N011,...,N are Matsubara oscillators which are required
to model the system if the temperature is not sufficiently
high. For these oscillators we define

La[2p~a2N0!kT, sa[s̄a2N0
, ga[0; a.N0 .

~2.29!

It should be emphasized that our effective dynamical
system defined by the coordinatesqa , cannot be represented
by reduced effective Hamiltonian in theqa space, but only
by an effective Liouville operator. This is why it is essential
to perform all our transformations in Liouville space. An
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effective Liouivillian can represent much more general dy-
namics than an effective Hamiltonian.

Adopting the Wigner representation for the primary os-
cillator variables, the density matrix can be considered as an
operatorr̂(P,Q;q1 , . . . ,qN) in the full electronic space of
states~i.e., the complete space of states of the electronic
subsystem with all possible numbers of electronic excita-
tions!, where each matrix element between any pair of elec-
tronic states depends on the momentumP and coordinate
Q of the primary oscillator and collective bath variables
q1 ,...,qN . The equation of motion for the reduced density
matrix r̂ for the system driven by an external field becomes

]r̂

]t
52 i @Ĥe ,r̂ #2

1

2
MV2(

mn
dmnF B̂m

1B̂n ,
]r̂

]PG
1

1 iMV2Q(
mn

dmn@B̂m
1B̂n ,r̂ #2

1

M
P

]r̂

]Q

1MV2Q
]r̂

]P
1 (

a51

N

La

]

]qa
S qa1sa

]

]qa
D r̂

2 (
a51

N

qa

]r̂

]P
1P(

a51

N

gaLa

]r̂

]qa
1 i«~t!@m̂,r̂ #,

~2.30!

where@ , #1 denotes an anticommutator.
Equation~2.30! with N15` describes the exact evolu-

tion of the electronic degrees of freedom and primary oscil-
lators for the Hamiltonian with the spectral density given by
Eq. ~2.24!. In practice, it is sufficient to useN1 which satis-
fies the conditionkTN1.\V. Generalization of Eq.~2.30!
to include additional primary oscillators is straightforward.

In summary, our procedure for modeling the optical and
energy transfer processes in aggregates consists of the fol-
lowing steps:~i! start with the Hamiltonian of Eq.~2.1! with
the matrix of spectral densities given by Eq.~2.2!. These
spectral densities can often be extracted from experiment;~ii !
transform to the Hamiltonian of Eqs.~2.5! through~2.7!, and
choose the set of primary oscillators, with parameters and
spectral densitiesJa(v) of Eq. ~2.8! which reproduce the
given Cmn,kl(v) by means of Eq.~2.11!; ~iii ! expand
Ja(v) in a form of Eq. ~2.24! which yields the collec-
tive coordinatesqaa , a51,...,N0a ; ~iv! add collective
variables qaN0a11 ,...,qaNa with Na[N0a1N1a , where
N1a;\Va / kT; ~v! the multidimensional extension of Eq.
~2.30! to include several primary oscillators finally describes
the ultrafast exciton and nuclear dynamics of the aggregate.

In the coming sections we develop several approximate
schemes for solving Eq.~2.30!.

III. FURTHER REDUCTIONS: THE MULTISTATE
FOKKER-PLANCK AND THE SMOLUCHOWSKI
EQUATIONS

In Section II we have shown that the secondary oscilla-
tors can be modeled by collective variablesqa , provided the
spectral densities are represented in the form of Eq.~2.24!.
The relevant bath relaxation rates are thenLaa as well as the

Matsubara frequencies 2pnkT/\. Our reduced description
can be further simplified in the high-temperaturekT@\Va

limit, provided the bath, formed by the secondary oscillators,
is fast compared with the frequencies of our primary system.
In this case the secondary variablesqa can be eliminated,
which results in closed equations of motion for system~elec-
tronic and primary oscillators! coordinates alone. This level
of reduction had been accomplished for a single electronic
state using the path-integral technique of
Caldeira and Leggett,38 and subsequently generalized to the
multi-state case that yields the multistate Fokker-Planck
equation.36

In this section we derive these results as a limiting case
of the more general~i.e., less reduced! level of description
developed in Section II. To that end, we note that the fre-
quenciesv in J(v) @Eq. ~2.19!# relevant for the system dy-
namics are of the order of the primary system frequencies
Va . When all bath timescales are fastkT/\, Laa@Va , we
can use the low-frequency part ofJ(v), takingv!La . This
yields the Ohmic spectral density

Ja~v!5Magav, ~3.1!

where

ga[ (
a51

N0a

gaa . ~3.2!

Note that since the bath relaxation rates include the Matsub-
ara frequencies 2pnkT/\, this is also necessarily a high
temperature limit, i.e.,kT is large compared with the primary
frequenciesVa .

Upon evaluating the Liouville space Green functions of
the primary variables, neglecting their coupling to the elec-
tronic subsystem we notice that they can be modeled by the
following effective Liouville operator~for details see Appen-
dix B!:

L05(
a

F 1

Ma
Pa1Pa21MaVa

2Qa1Qa21gaQa2Pa1

2 igaMakT~Qa2!2G . ~3.3!

The Liouville equation written in the Wigner represen-
tation for r̂(P,Q,t) adopts the form of the multi-state
Fokker-Planck equation:

]r̂

]t
52 i @Ĥe ,r̂ #2

1

2(mna
MaVa

2dmn,aF B̂m
1B̂n ,

]r̂

]Pa
G

1

1 i(
mna

MaVa
2dmn,aQa@B̂m

1B̂n ,r̂ #

2(
a

F 1

Ma
Pa

]r̂

]Qa
2MaVa

2Qa

]r̂

]Pa

2ga

]

]Pa
S Pa1MakT

]

]Pa
D r̂ G1 i«~t!@m̂,r̂ #.

~3.4!
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Further reduction may be made in the limit of strongly
overdamped nuclear motion,ga@Va , where the collective
momentaPa are much faster than the collective primary co-
ordinatesQa and may be eliminated. Using the terminology
of Section II, the relevant Liouville space correlation func-
tions of nuclear variables can be modeled using distribution
functions in configuration space which only depend on the
collective coordinatesQa ~excluding the momentaPa). The
procedure is presented in Appendix B and yields the multi-
state Smoluchowski equation forr(Q,t):

]r̂

]t
52 i @Ĥe ,r̂ #2

1

2(mna

Va
2

ga
dmn,aF B̂m

1B̂n ,
]r̂

]Qa
G

1

1 i(
mna

MaVa
2dmn,aQa@B̂m

1Bn ,r̂ #

1(
a

Va
2

ga

]

]Qa
SQa1

kT

MaVa
2

]

]Qa
D r̂1 i«~t!@m̂,r̂ #.

~3.5!

Finally we consider a different level of reduction which
applies when the primary modes are overdamped, however,
the temperature is not necessarily high. This situation can be
described by the following matrix of spectral densities:

Cmn,kl~v!52(
a

da,mnda,kl
MaVa

2

2

v~Va
2/ga!

v21~Va
2/ga!

2 .

~3.6!

In this case the Liouville space correlation functions of
operatorsQ̂a responsible for the system-bath interactions can
be modeled in the configuration space defined by the coor-
dinates Qa and the associated Matsubara modes
Qan ,n51,2,... . Theequation of motion derived in Appen-
dix C becomes

]r̂

]t
52 i @Ĥe ,r̂ #2

1

2(mna
L̄admn,aF B̂m

1Bn ,
]r̂

]Qa
G

1

1 i(
mna

MaVa
2dmn,aSQa1(

s
QasD @B̂m

1B̂n ,r̂ #

1(
a

L̄a

]

]Qa
SQa1s̄a

]

]Qa
D r̂

1(
as

L̄as

]

]Qas
SQas1s̄as

]

]Qas
D r̂1 i«~t!@m̂,r̂ #,

~3.7!

where we have used the notation

L̄a[
Va

2

ga
, s̄a[

L̄a

2MaVa
2cotS L̄a

2kTD ,
~3.8!

L̄an[2pnkT, s̄an[
L̄a

MaVa
2

4pn~kT!2

~2pnkT!22L̄a
2 .

In summary, we have obtained four equations of motion
representing different levels of reduction. These include the

most general equation that holds for an arbitrary spectral
density @Eq. ~2.30!#, the fast bath, high temperature limit
@Eq. ~3.4!#, the overdamped primary nuclear motion@Eq.
~3.7!#, and the high temperature limit of the latter, Eq.~3.5!.
All of these equations can be written in a unified compact
form by introducing variablesxa which represent the rel-
evant reduced variables for each case. Equations~2.30!,
~3.4!, ~3.5!, and~3.7! then adopt the common form

]r̂

]t
52 i @Ĥe ,r̂ #2

1

2(mna
Dmn,aF B̂m

1B̂n ,
]r̂

]xa
G

1

1 i(
mna

D̄mn,axa@B̂m
1B̂n ,r̂ #1(

ab
Aab

]

]xa
~xbr̂ !

1(
a

Ba

]2r̂

]xa
2 1 i«~t!@m̂,r̂ #. ~3.9!

The parametersD,D̄,A, B, andC for all four cases are
listed in Appendices A, B, and C. In the following sections
we will use Eq.~3.9! to analyze the dynamics of aggregates.

IV. GAUSSIAN PHASE-SPACE WAVEPACKETS FOR
TIME- AND FREQUENCY-RESOLVED
FLUORESCENCE

In this section we express the time- and frequency-
resolved fluorescence signal in terms of Green functions of
the Liouville equation@Eq. ~3.9!#. We then propose a conve-
nient approximation scheme for calculating these Green
functions, based on a Gaussian ansatz for the wavepackets
representing the dynamics of collective coordinates in phase
space.

In Section III we have derived the equation of motion
@Eq. ~3.9!# for the density matrix in Liouville space, that
includes both electronic and nuclear variablesxa . The latter
include primary relevant modes as well as collective coordi-
nates representing the relevant secondary oscillators. The
density matrix in Eq.~3.9! is represented as anx-dependent
operatorr̂(x) in the full electronic space of states. We shall
introduce matrix elementsrm1 ...mN ,n1 ...nN8

(x) of r̂(x) in the
electronic space by

rm1 ...mN ,n1 ,...,nN8
~x![^0uB̂m1 ...

B̂mN
r̂~x!B̂n1 ...

1 B̂nN8

1 u0&.
~4.1!

This allows us to recast Eq.~3.9! in a form of a set of
coupled equations of motion for nuclear wavepackets
rmn(x) wherem[m1 ...mN ,n[n1 ...nN8. rmn(x) represents
electronic coherences betweenN-exciton andN8-exciton
states (N-exciton states populations are a special case
wherebyN5N8).

When the external field is switched off, the Hamiltonian
~and the equations of motion! conserve the number of exci-
tons. This implies that equations for wavepacketsrmn(x) are
uncoupled for different values of (N8,N). The perturbative
solution of Eqs.~3.9! in «(t) involves solving equations of
motion for wavepacketsrmn(x,t) in the absence of the
field.19 Setting«(t)[0 in Eq.~3.9! and projecting it into the

4571V. Chernyak and S. Mukamel: Energy transfer and spectroscopy of molecular aggregates

J. Chem. Phys., Vol. 105, No. 11, 15 September 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



electronic subspace with up to one excitation in the bra and
the ket states of the electronic system, we obtain

drmn

dt
52 i(

k
~Emkrkn2rmkEkn!

2
1

2(ka
SDmk,a

]rkn
]xa

1
]rmk

]xa
Dkn,aD

1 i(
ka

xa~D̄mk,arkn2rmkD̄kn,a!

1(
ab

Aab

]

]xa
~xbrmn!1(

a
Ba

]2rmn

]xa
2 . ~4.2!

Here latin indices can also assume zero values.u0& de-
notes the ground electronic state of the system andum& de-
notes the state whereby only themth molecule is excited and
all other molecules are in the ground state. We have used the
following notation. If m50, or n50, Emn50, Dmn,a50,
andD̄mn,a50. Form,n Þ 0 we have

Emn[Endmn1Jmn . ~4.3!

We have thus expressed the density matrix of the system
in the complete Liouville space as a matrix in the electronic
subspace and as an operator in the nuclear subspace. Each
electronic matrix elementrnm is now a wavepacket in
nuclear space. Equation~4.2! allows the calculation of the
density matrix by solving coupled equations of motion for
these wavepackets. As shown in Ref. 19 the signal, to linear
order in pump intensity, can be obtained by following evo-
lution of the wavepacketsr̂00,r̂0m ,r̂m0 , andr̂mn calculated
in the absence of the external field. Allowing latin indices to
assume the value 0 we can obtain the Liouville equation for
the wavepackets@Eq. ~4.2!# in a form

dr̂mn~x,t!

dt
1 i(

pq
Lmn,pq~x!r̂pq~x,t!50. ~4.4!

We next introduce the Green function solution of the
Liouville equation,

r̂mn~t!5(
pq

G mn,pq~t2t8!r̂pq~t8!. ~4.5!

The time- and frequency-resolved fluorescence signal is
given by11,40–42

S~vs ,t !5E
2`

t

dt8@eivs~ t2t8!C̃ ~ t,t8!1eivs~ t82t !C̃ ~ t8,t !#,

~4.6!

where C̃ is the correlation function of the polarization
operator,11,40–42

C̃ ~ t,t8!5^m̃~ t !m̃~ t8!&. ~4.7!

Here Ã(t) denotes the Heisenberg operator related to a
Schrödinger operatorÂ whose evolution is given by the full
HamiltonianĤT(t) @Eq. ~1.7!#. Equation~4.6! represents an
ideal signal.19 In reality we need to convolute it with the
temporal and spectral profiles of the detection~gating!
device.42 For our model we have

C̃ ~ t,t8!5(
mn

mmmnC̃ mn~ t,t8!. ~4.8!

In Eqs.~4.8!–~4.11! latin indices do not assume zero values.
When the signal is calculated, we find that it naturally

separates into two contributions that differ by the time order-
ing of the various interactions. These are responsible for the
Raman and the fluorescence components and will be denoted
by superscriptsR andF, respectively.19 We thus have

C̃ ~ t,t8!5C̃ ~R!~ t,t8!1C̃ ~F !~ t,t8!, ~4.9!

with

C̃ mn
~R!~ t,t8!5u~ t2t8!(

kl
E
t8

t

dtE
2`

t8
dt8^G m0,k0~ t2t!G 00,00~t2t8!G 0n,0l~ t82t8!r̂g&«k~t!« l* ~t8!

1u~ t82t !(
kl

E
t

t8
dt8E

2`

t

dt^G 0n,0l~ t82t8!G 00,00~t2t !G m0,k0~ t2t!r̂g&«k~t!« l* ~t8! ~4.10!

and

C̃ mn
~F !~ t,t8!5u~ t2t8! (

klpq
E

2`

t8
dtE

t

t8
dt8^G m0,q0~ t2t8!G qn,pl~ t82t8!G p0,k0~t82t!r̂g&«k~t!« l* ~t8!

1u~ t2t8! (
klpq

E
2

t8
dt8E

t8

t8
dt^G m0,q0~ t2t8!G qn,kp~ t82t!G 0p,0l~t2t8!r̂g&«k~t!« l* ~t8!

1u~ t82t ! (
klpq

E
2`

t

dt8E
t8

t

dt^G 0n,0q~ t82t !G mq,kp~ t2t!G 0p,0l~t2t8!r̂g&«k~t!« l* ~t8!

1u~ t82t ! (
klpq

E
2`

t

dtE
t

t

dt8^G 0n,0q~ t82t !G mq,pl~ t2t8!G p0,k0~t82t!r̂g&«k~t!« l* ~t8!. ~4.11!
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Here rg is the equilibrium ground state wavepacket,^•••&
stands for the trace over bath variables, and
«k(t)[mk«(t).

As shown in this and the preceding sections, the dynam-
ics of excitonic variables can be modeled by following the
evolution of reduced wavepacketsr(xa ,t) (xa representing
the relevant collective variables! given by Eq.~3.9!. Since
the polarization operator is expressed in terms of electronic
variables alone, and the latter do not change under the ca-
nonical transformation defined by Eqs.~2.14! and~2.16!, the
signal is given by Eqs.~4.10! and ~4.11!, with the Green
functions defined by Eqs.~4.4! and ~4.5! where the wave-
packetsr̂mn are represented by functionsrmn(xa), the Liou-
ville operatorsLmn,pq are defined by Eq.~4.2!, and

^r̂~t!&5Tr@ r̂~x,t!#5E dxr~x,t!. ~4.12!

Equations~4.8!–~4.11! together with the definitions of the
Liouville space Green functionsG mn,pq given by Eqs.~4.2!
and ~4.5!, form a closed system of equations that relate the
fluorescence spectra to exciton transport.

A convenient method for computing the necessary Green
functions is obtained by making a Gaussian ansatz for the
wavepackets in the collective variablesxa ,

rmn~x,t!5
amn~t!

Adet~2psmn~t!!

3expF2
1

2(ab
~smn

21~t!!ab~xa2xmn,a~t!!

3~xb2xmn,b~t!!G . ~4.13!

This form depends on the following time dependent pa-
rameters: The overall normalizationamn(t), average por-
tions xmn(t), and a covariance matrixsmn(t). To obtain
equations of motion for these parameters, we substitute the
ansatz Eq.~4.13! into Eq. ~4.2! and require that they repro-
duce the first and the second moments of the collective co-
ordinatesxa .

19 These equations of motion are given in Ap-
pendix D. Instead of solving a coupled set of partial different
equations we now solve trajectories representing the evolu-
tion of these parameters. This solution immediately yields
the Green functions necessary for calculating the fluores-
cence. It is important to note that we are making a Gaussian
ansatz for the evolution of the free system without the exter-
nal driving electric field. Therefore, this ansatz yields only
the Green functions. The actual density matrix or correlation
functions involve time-integrations, and after these integra-
tions are performed, the wavepacket is no longer a Gaussian.
In the terminology of Ref. 19 these wavepackets merely give
the Liouville space generating function for the signal. Had
we made the Gaussian ansatz on the solution of the equation
with the driving field, we would have obtained a much
cruder approximation for the signal.

Finally we note that in this section we have shown how
to model the time- and frequency-resolved fluorescence sig-

nal by following the evolution of reduced wavepackets. The
same procedure can be applied to calculate other types of
optical signals. For example, four-wave mixing measure-
ments may be calculated by following the evolution of wave-
packets of Eq.~4.2! as well as wavepackets representing the
coherences between two-exciton and ground electronic
states. The latter can be represented byrmn,0(x,t) with
rmn,05rnm,0 and rmm,050. The corresponding equation of
motion, obtained from Eq.~3.9!, reads

]rmn,0

]t
52 i ~Em1En!rmn,02 i(

k
~Jmkrkn,01Jnkrmk,0!

2
1

2(ka
SDmk,a

]rkn,0
]xa

1Dnk,a

]rmk,0

]xa
D

1 i(
ka

xa~D̄mk,arkn,01D̄nk,armk,0!

1(
ab

Aab

]

]xa
~xbrmn,0!1(

a
Ba

]2rmn,0

]xa
2 .

~4.14!

Equation~4.2! together with Eq.~4.14! contains all the
necessary information for calculating any time-resolved or
frequency-resolved four-wave mixing process.

V. EXCITON TRANSPORT AND FLUORESCENCE IN
THE SPECTRAL DIFFUSION LIMIT

In this section we assume diagonal coupling of the elec-
tronic system to a bath, modeled by a finite number of over-
damped modes whose dynamics is described by the Smolu-
chowski equation. In the spectral-diffusion limit we can
eliminate the reduced wavepackets representing intermolecu-
lar electronic coherences. This leads to a closed set of
Smoluchowski equations for electronic population wave-
packets.

Diagonal coupling implies that the exciton-bath interac-
tion constantsdmn,a , are given by

dmn,a5dmndm,a , ~5.1!

where Greek indices denote the collective overdamped coor-
dinates. The matrix of spectral densities of Eq.~2.11! also
assumes a diagonal form,

Cmn,kl~v!5dmndklCmk~v!. ~5.2!

In the overdamped limitga@Va , the matrix of spectral den-
sities represents a collection of overdamped Brownian
oscillators,19

Cmn~v!5(
a

d̄m,ad̄n,a
2laL̄a

v21L̄a
2
. ~5.3!

Here we have introduced the notation

L̄a[
Va

2

ga
, Da[A2lakT, ~5.4!
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la[
MaVa

2

2 (
m

~dm,a!2,

~5.5!
d̄m,a[dm,aF(

n
~dn,a!2G21/2

.

Defining the dimensionless collective coordinatesqa ,

qa[QaF(
m

~dm,a!2G21/2

, ~5.6!

we can recast the Smoluchowski equation@Eq. ~3.5!# in a
form

dr̂

dt
52 i @Ĥe ,r̂ #1 i(

ma
2lad̄m,aqa@B̂m

1B̂m ,r̂ #

1(
a

L̄a

]

]qa
Fqa1S Da

2la
D 2 ]

]qa
G r̂

2
1

2(ma
L̄ad̄m,aF B̂m

1B̂m ,
]r̂

]qa
G

1

1 i«~t!@m̂,r̂ #.

~5.7!

Upon taking electronic matrix elements of this equation,
we obtain the equations of motion for the wavepackets@Eq.
~4.2!#,

drmn~q,t !

dt
52 i ~Em2En!rmn~q,t !

1 i(
a

2la~ d̄m,a2d̄n,a!qarmn~q,t !

1(
a

L̄a

]

]qa
F S qa2

d̄m,a1d̄n,a
2 D

1S Da

2la
D 2 ]

]qa
Grmn~q,t !

2 i(
k

~Jmkrkn2Jknrmk~q,t !!. ~5.8!

We have thus shown that the system described by a spectral
density of Eqs.~5.2! and ~5.3! can be modeled in the high
temperature limitL̄a!kT using Eq.~5.8!.

To proceed further we need to take a closer look at the
various timescales of the system. The evolution timescale of
the coherence wavepacketsr0m , rm0, andrmn ~formÞ n) is
tc;D21. Two timescales appear in the evolution of the
population wavepackets:tp

(1);L̄21 reflecting the relaxation
of the collective coordinates, andtp

(2);W21 related to inter-
molecular transport~hereW is the energy transfer rate!.
WhenW!L we havetp

(1)!tp
(2) , the collective coordinates

are fully relaxed at all times, and we recover Forster’s trans-
port limit @see Eq.~6.10!#. In the opposite limitW@L,
nuclear dynamics is too slow to affect the coherent exciton
motion. Below we consider the more complex case whereby
W;L̄. Here we have only one timescale in the evolution of
population wavepacketstp;tp

(1);tp
(2) . We further assume

that the bath is slow compared with the inverse exciton-
phonon coupling strength, i.e.,

L̄a!Db . ~5.9!

This is known as the spectral diffusion limit. Since in this
limit we havetc!tp , and we are interested in the evolution
of the signal on a timescalet@tc , we can eliminate the
intermolecular coherences and make a Markovian approxi-
mation, which yields time-local equations of motion for
population wavepackets~without memory!.

In the Smoluchowski equations for the coherences@Eqs.
~5.8!# lq;D since the size of an equilibrated wavepacket is
q;D/2l. SinceL̄!D andW!D, the first two terms in the
rhs of Eq.~5.8! dominate the equations of motion for coher-
ence wavepackets~with m Þ n). Neglecting the other terms
we obtain the following simplified equations for intramo-
lecular and intermolecular coherence wavepackets,

drm0
dt

52 iEmrm01 i(
a

2lad̄m,aqarm0 , ~5.10!

drmn

dt
52 i ~Em2En!rmn1 i(

a
2la~ d̄m,a2d̄n,a!qarmn

1 iJmn~rmm2rnn!; mÞn. ~5.11!

In the rhs of Eq.~5.11! we have also retained the population
terms, neglecting the coherences.

Equations~5.10! and ~5.11! may be easily solved. As
indicated in Section IV, the signal is given by Eqs.~4.9!,
~4.10!, and ~4.11! with G being the Green function of the
Smoluchowski equations. We assume that the aggregate is
excited by a short pulse with durationtp!tp , so that in
calculating the signalC̃ (t,t8) for t,t8@tp ,tc we can neglect
the short-time~Raman! componentC̃ (R). Evolution on the
first time interval defined by Eq.~5.10! and represented by
Green functionsG (t2t8) andG (t82t) in Eq. ~4.11! gives
the initial condition for the evolution of populations. Evolu-
tion on the second time interval can be described in the fol-
lowing way. The solution of Eq.~5.11! connects the inter-
molecular coherences to the populations,

rmn~q,t!5 i E
0

`

dt8 expF2 i ~Em2En!t8

1 i( 2la~ d̄m,a2d̄n,a!qat8GJmn

3@rmm~q,t!2rnn~q,t!#, mÞn. ~5.12!

@Here we have invoked the Markovian approximation substi-
tuting r(q,t) for r(q,t2t8) in the rhs#. Substituting Eq.
~5.12! into Eq. ~5.8! for m5n, we obtain a closed equation
for the populations which together with Eq.~5.12! defines
the evolution of the excited states wavepackets during the
second time interval. Evolution on the last time interval
given by Eq. ~5.10! connects the signal to the population
wavepackets.

Since in this caseC̃ mn vanishes whenmÞ n, the fluores-
cence signal only depends on electronic populations and we
have
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C̃ ~ t,t8!5(
m

mm
2

3E dq expF2 i SEm2(
a

2lad̄m,aqaD ~ t2t8!G
3rmn~q,t !. ~5.13!

The electronic population wavepackets are obtained by solv-
ing the master equation

drmm~q,t!

dt

5(
a

L̄a

]

]qa
F ~qa2d̄m,a!1S Da

2la
D 2 ]

]qa
Grmm~q,t!

1(
n

2puJmnu2dFEm2En2(
a

2la~ d̄m,a2d̄n,a!qaG
3@rnn~q,t!2rmm~q,t!#, ~5.14!

with the initial condition

rmm~q,t50!5E
2`

`

dt9E
2`

`

dt8

3expF i SEm2(
a

2lad̄m,aqaD
3~t92t8!]«m~t9!«m* ~t8!rg~q!. ~5.15!

Hererg(q) is the ground state equilibrium wavepacket given
by

rg~q!5)
a

2la

A2pDa

expF2
1

2 S 2la

Da
D 2qa

2 G . ~5.16!

Equation ~5.13! expresses the signal in terms ofrmm(q),
which is obtained by solving a master equation for electronic
populations @Eq. ~5.14!# with the initial conditions, Eq.
~5.15!. The last term in Eq.~5.14! represents the coordinate-
dependent transition rate between statesn and m. The
d-function signifies that the transition in this approximation
takes place only on the curve crossing surface, whereby the
energies of both electronic states dressed by the nuclei are
degenerate. Assuming a single coordinateqa , this equation
coincides with the result of Zusman43 and the curve crossing
surface is then a point. In the next section we will apply the
Gaussian wavepacket approach for the solution of Eq.~5.14!.

VI. GAUSSIAN WAVEPACKETS AND THE TIME-
DEPENDENT FORSTER RATE

In this section we calculate the fluorescence signal@Eqs.
~5.13!–~5.15!# using the Gaussian ansatz@Eq. ~4.13!# for the
wavepacketsrmm(q). We assume that each molecule is
coupled to its own bath described by a single overdamped
mode, and that the various baths are uncorrelated. The wave-
packet coordinates will be denotedx5(q1 ,...,qN) whereN
is the number of molecules. In this case we can use a sim-

plified Gaussian ansatz given by Eq.~4.13! for m5n ~since
we are dealing with population wavepackets only!, taking the
matricessmm to be diagonal, i.e., (smm) i j5d i jsmm, j . The
equations of motion for the parametersamm, qmm, j , and
smm, j can be obtained by substituting Eq.~5.14! into Eqs.
~D1!, ~D2!, and Eq.~D3! for a5b. The fluorescence signal
is expressed in terms of these parameters by substituting Eq.
~4.13! into Eq. ~5.13!. To obtain the initial conditions for
these parameters we calculate the zeroth, the first, and the
second moments of the collective coordinates for the initial
wavepackets@Eq. ~5.15!#. This yields the following expres-
sion for the signal:

C̃ ~ t,t8!5(
m

mm
2 amm~ t !exp$2 i @Em22lmqmm,m~ t !#

3~ t2t8!% expH 2
1

2
~2lm!2smm,m~ t !~ t2t8!2J .

~6.1!

The equations of motion for the populations
ann[*dqrnn(q) are

damm

dt
5(

n
Wmn~t!ann2(

n
Wnm~t!amm, ~6.2!

with

Wmn~t!

[uJmnu2F 2p

~2lm!2snn,m1~2ln!
2snn,n

G1/2
3expF2

1

2

~Em22lmqnn,m2En12lnqnn,n!
2

~2lm!2snn,m1~2ln!
2snn,n

G . ~6.3!

Here the ratesWmn(t) depend on time through the time evo-
lution of the parametersh[(qnn, j (t),snn, j (t)). Closed
equations of motion for these parameters are given in Ap-
pendix E.

To obtain an expression for the time-dependent rate
W(t) which closely resembles the Forster’s formula26 we
make a further approximation based on the following obser-
vation. The initial conditions@Eq. ~E8!# for the wavepacket
parametersqmm, j and smm, j for j Þ m are represented
by their equilibrium values qmm, j (0)50 and
smm, j (0) 5 (D j /2l j )

2. Neglecting in Eqs.~E1! and~E4! the
intermolecular-interactions-induced terms we obtain

qmm, j~t!50, smm, j~t!5S D j

2l j
D 2. ~6.4!

The set of evolving wavepacket parameters is now rep-
resented byh5(qnn,n ,snn,n). Substituting Eq.~6.4! into
Eqs. ~E2! and ~E5! we obtain a closed system of equations
that describe the dynamics of wavepackets parametersqnn,n
andsnn,n . This system can be alternatively derived by mak-
ing a simplified Gaussian ansatz using Eq.~6.4! for smm, j

andqmm, j for j Þ m and only allowing the evolution of the
parametersqmm,m andsmm,m . The expression for the time-
dependent rate@Eq. ~6.3!# under this approximation adopts a
form:
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Wmn~t!5uJmnu2F 2p

Dm
2 1~2ln!

2snn,n~t!G
1/2

3expH 2
1

2

@En2Em22lnqnn,n~t!#2

Dm
2 1~2ln!

2snn,n~t! J .
~6.5!

This result can be represented in a form that closely re-
sembles Forster’s rate,

Wmn~t!5uJmnu2E
2`

` dv

2p
f m~v! f n8~v;t!. ~6.6!

The rate is given by the overlap of absorptionf m(v),

f m~v!5S 2p

Dm
2 D 1/2 expF2

~v2Em!2

2Dm
2 G , ~6.7!

and time-dependent fluorescencef n8(v;t),

f n8~v;t!5F 2p

~2ln!
2snn,n~t!G

1/2

3expH 2
1

2

@v2En22lnqnn,n~t!#2

~2ln!
2snn,n~t! J . ~6.8!

These lineshapes are normalized to a unit area:

E
2`

` dv

2p
f m~v!5E

2`

` dv

2p
f n8~v;t!51. ~6.9!

In the Forster’s limitJ2/D!L the wavepacket param-
eters equilibrate much faster than the population dynamics,
and upon substituting the equilibrium values
qmm,n5dmn ,smm,n5(Dm/2lm)

2 into Eq.~6.3! we obtain the
Forster time-independent rate,

Wmn5uJmnu2S 2p

Dm
2 1Dn

2D 1/2 expF2
1

2

~En22ln2Em!2

Dm
2 1Dn

2 G .
~6.10!

This rate can be obtained from Eq.~6.6! upon substitution of
the spectral-diffusion forms of the absorptionf m(v) @Eq.
~6.7!# and the relaxed fluorescence spectraf n8(v),

f n8~v!5S 2p

Dn
2 D 2 expF2

~v2En12ln!
2

2Dn
2 G . ~6.11!

f n8(v) is the relaxed~long-time! form of Eq. ~6.8! with
qmm,m51,snn,n5(Dn/2ln)

2.
Equation~6.2! generalizes Forster’s equations to account

for finite nuclear relaxation rates~compared with the transfer
rate!. This results in time-dependent rates associated with the
nonequilibrium nuclear wavepackets.

In concluding this section, we shall consider a simpler
approximation. Neglecting intermolecular coupling in the
equations of motion for the wavepacket parametersqnn,n and
snn,n @Eqs.~E2! and~E5!# ~which means that we neglect the
influence ofJ on the evolution of the form of wavepackets,
retaining its influence on the evolution of populations!, we
can solve these equations and obtain

qnn,n~t!511@qnn,n~0!21#exp~2L̄nt!,
~6.12!

snn,n~t!5S Dn

2ln
D 21Fsnn,n~0!2S Dn

2ln
D 2Gexp~22L̄nt!.

Substituting Eq.~6.12! into Eq. ~6.5! or into Eqs.~6.6! and
~6.8! we obtain an explicit expression forWmn(t).

45 Similar
expressions forW(t) based on the Fermi Golden Rule were
presented in Ref. 46. It should be noted further that Eqs.
~6.10! and ~6.5! reproduce the rate in the nonadiabatic limit
i.e., to ~largeJ! second order inJ. Equations~5.14! or ~6.3!,
however, can interpolate between the nonadiabatic and the
adiabatic limits.47

VII. DISCUSSION

This paper is focused on theoretical modeling of ultrafast
electronic and nuclear motions in molecular aggregates that
can be probed by various femtosecond spectroscopic tech-
niques. Although we gave explicit expressions only for time-
and frequency-resolved fluorescence, the Green functions
obtained here can be used in the calculation of numerous
other nonlinear techniques such as pump-probe and photon
echo.

Given the macroscopic number of solvent degrees of
freedom, ultrafast dynamics of aggregates is a complex
many-body problem. When the coupling to the bath is not
weak, and perturbative many-body techniques are not appli-
cable, the only practical way to treat the problem is by using
a reduced description based on keeping a few relevant col-
lective bath coordinates.

The simplest reduction schemes only retains electronic
variables. This leads to equations of motion that adopt a form
of the master, Boltzmann, Redfield, or Forster
equations.11,20–23,26–29In all of these cases, it is assumed that
the bath relaxation time is much faster than the exciton dy-
namics timescale. This assumption usually fails in the case
of femtosecond energy transfer in biological systems, and
one needs to keep at least those bath variables whose relax-
ation times are comparable to the exciton transport time-
scale; only the faster bath degrees of freedom can be elimi-
nated. In the case of a harmonic bath linearly coupled to the
electronic system, all relevant bath information is contained
in the matrix of spectral densities@Eq. ~2.2!# that represents
the antisymmetrized correlation functions@Eq. ~2.4!# of col-
lective coordinates@Eq. ~2.3!# which couple the bath to the
electronic variables. In the case of a Gaussian-Markovian
~GM! spectral density@given by Eq.~2.24! for N051# such a
correlation function decays exponentially in time and can be
modeled by a single stochastic variable. Since any spectral
density can be approximated by a superposition of GM spec-
tral densities~which amount to a discrete Laplace transform!,
the antisymmetrized correlation functions of the collective
coordinate can be modeled by a set of stochastic variables.
However, an important result of the present paper is that to
describe the exciton dynamics one needs to model not only
the antisymmetrized correlation functions of collective coor-
dinates but the symmetrized ones as well. The latter depend
on temperature and contain infinite sums involving Matsub-
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ara frequencies 2pnkT/\,n51,2,...@see Eq.~2.26!#. As can
be seen from Eq.~2.26!, each term in the infinite sum is
represented by a stochastic variable with the correlation time
given by the inverse Matsubara frequency 2pnkT/\. This
implies that the Matsubara frequencies constitute a set of
additional relaxation rates. In practice it should be possible
to keep only a finite number of stochastic variables repre-
senting the Matsubara frequencies withn<N0 where
(2pN0kT/\)

21 is equal to the fastest system timescale.
When the temperature is sufficiently high, i.e., when

even the first Matsubara correlation time (2pnkT/\)21 is
fast, one does not need to incorporate stochastic variables
representing the Matsubara frequencies, and the bath is de-
scribed on the classical level. On the other hand, even if the
bath is infinitely fast on the classical level@this corresponds
to the caseLa→` in Eq. ~2.24!#, its relaxation time may not
be faster than (2pkT/\)21; this is a quantum effect that
naturally becomes stronger at lower temperatures.

The approach presented in the paper is based on calcu-
lating the relevant~antisymmetrized and symmetrized! cor-
relation functions of collective coordinates using the given
spectral densities~which may be obtained either from experi-
ment or theory! and modeling them with correlation func-
tions of a set of effective collective variables evolving with
closed equations using an effective Liouville operator. The
modeling procedure is not unique and we have developed a
hierarchy of reduction schemes and provided guidance as to
how to choose an adequate reduced description scheme in
each case.

The hierarchy of reduced reduction schemes is depicted
in Fig. 1. Each box represents a different level of reduction,
the first line in a box is a list of variables, the second line
represents the values assumed by indices, and the third line
shows the total number of bath variables. A solid line with
an arrow means a unique transformation, a dashed line rep-
resents a non-unique transformation.

Case~1! in Fig. 1 is the full description of the nuclear
variables represented by a set of oscillator variablespj8 ,pj8
with the Hamiltonian given by Eq.~2.1!. In Case~2! the bath
oscillators are represented by a few primary oscillators
PaQa coupled to the electronic system and a macroscopic set
of solvent oscillator variablespa j ,qa j coupled to the primary
oscillators. In Case~1! the relevant properties of the bath are
given by the matrixCmn,kl(v) @Eq. ~2.2!#, in Case~2! they
are given by spectral densitiesJa(v) @Eq. ~2.8!#. The trans-
formations (2)→(1) is unique and given by Eq.~2.11!. The
transformation (1)→(2) is not unique. The description~2! is
useful since the spectral densitiesCmn,kl(v) typically have a
set of maxima related to coherent nuclear motions coupled to
solvent degrees of freedom. Level~2! is very convenient
formally for modeling a spectral density with a set of
maxima. As shown in Section II, Case~2! can be success-
fully modeled by a reduction scheme~3! based on introduc-
ing a finite set of stochastic variablesqa ja

(c) instead of a mac-

roscopic set of solvent variables. The spectral densities
Ja(v) describing the coupling of solvent variables to the
primary modes should be modeled in the form of Eq.~2.24!.

The equation of motion for the reduced wavepackets adopts
the form of Eq.~2.30!. As shown in Section II, the number of
Matsubara variablesN1 is given byN1;\V/kT and is man-
ageable provided the temperature is not too low. It is not
possible to use a fast bathL@V for modeling in a situation
\V;kT, since one needs to incorporate the Matsubara os-
cillators with nkT,\L which will increase the number of
collective variables.

When the spectral densitiesC(v) do not have strong
features one can model directly the spectral densitiesC(v)
as a superposition of overdamped contributions@Eq. ~3.6!#.
This leads to level~4! in terms of variablesQa ,Qas (Qas are
denoted asqa ja

(c) in Fig. 1!, and the resulting equation of mo-

tion for reduced wavepackets is Eq.~3.7!. In Section III the
reduction has been obtained by modeling the spectral densi-
ties of Eq. ~3.6! directly, however, it can be alternatively
derived by eliminating the fast momentum variablesPa in
case~3! when the primary oscillators are overdamped.

When \Va,kT ~high temperature limit! all secondary
variables can be eliminated; this leads to level~5! retaining
only the primary variablesPa ,Qa . The resulting equation of
motion is the multi-state Fokker-Planck equation@Eq. ~3.4!#.
Again this level can be obtained in two ways: starting either

FIG. 1. The hierarchy of reduction schemes considered in the paper. The
first line in a box is a list of variables representing nuclear motions; the
second line shows the values assumed by the indices; the third line gives the
total number of reduced variables. A solid line represents a unique transfor-
mation; a dashed line stands for a non-unique transformation. OD and HT
denote reductions due to overdamped motion of primary oscillators~OD! or
the high temperature limit~HT!.
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with ~3!, or directly with ~2!, and eliminating the secondary
variables. Finally, level~6! is obtained by assuming both the
high temperature limit and overdamped primary oscillators.
The reduced wavepacket which depends on the variables
Qa satisfy the multi-state Smoluchowski equation@Eq.
~3.5!#. This can be derived by either taking the high tempera-
ture limit of ~4! and eliminating the Matsubara variables
Qas , or by applying the overdamped limit to~5! and elimi-
nating the fast variablesPa in a standard way.19

The hierarchy of Fig. 1 is related to various reduction
schemes with respect to nuclear variables. Reduction of elec-
tronic variables~e.g., elimination of electronic coherences!
can be obtained at all levels of this hierarchy, provided
exciton-phonon interaction is weak~Redfield theory! or in-
termolecular coupling is small~Forster theory!.
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APPENDIX A: CANONICAL TRANSFORMATIONS IN
LIOUIVILLE SPACE AND THE GENERALIZED
FOKKER-PLANCK EQUATION

In this appendix we present the details of the canonical
transformation introduced in Section II@Eqs. ~2.14!–~2.16!#
and give the values of the parametersD,D̄,A, andB in Eq.
~3.9! which generalizes Eq.~2.30! to an arbitrary number of
primary oscillators.

The motivation for performing a canonical transforma-
tion is the following. As can be seen from Eqs.~2.5!–~2.7!,
the Liouville operatorLep[Hep2 related to the Hamiltonian
Ĥep in the case of a single primary oscillator can be written
in a form

Lep5
1

M
P1P21V2~Q̂!

1(
j

Fpj1pj2mj
1mjv j

2S qj12
cj

mjv j
2Q1D

3S qj22
cj

mjv j
2Q2D G , ~A1!

where we have used the notation introduced in Eq.~2.12!.
The system-bath interaction involves the~commuting! bath
superoperatorsqj1 andqj2 . Our goal is to obtain a reduced
description in terms of wavepackets that depend on collec-
tive coordinates alone~no collective momenta!. However,
the algebra of superoperatorspj6 andqj6 can be represented
in the space of wavepackets which depend on coordinates
and momenta~the Wigner representation!. On the other
hand, the superoperatorspj2 andqk1 form a closed algebra
with @pj2 ,qk1#52 id jk which can be represented in the
space of wavepackets depending on coordinates alone. How-
ever, to apply this representation one should recast the
system-bath interaction in a form which involves the opera-
torspj2 andqj1 , notqj2 andqj1 . This can be achieved by
applying the canonical transformation in Liouville space rep-
resented by Eqs.~2.14!–~2.16!.

A quantum canonical transformation in the Schro¨dinger
space is a linear unitary transformationÛ0 in the space of
states. It must be unitary to conserve the basic structure of
the space of states, i.e., the scalar product. The basic struc-
ture of the Liouville space is the trace. A canonical transfor-
mation in Schro¨dinger space generates a canonical transfor-
mationU acting in Liouville space defined as

U r̂[Û1r̂U, ~A2!

which conserves the trace, i.e., Tr(U r̂)5 Tr r̂. However,
one can use a more general class of transformations than Eq.
~A2! which consists of all linear invertible trace-conserving
operatorsU acting in Liouville space@see Eqs.~2.14! and
~2.15!#. One can apply a canonical transformation to opera-
tors, such a transformation should satisfy the property given
by Eq.~2.18!; this leads to the definition given by Eq.~2.17!.

Consider a canonical transformationU defined by Eq.
~2.16! which satisfies Eq.~2.15!. Applying Eq.~2.17! to our
basic operators we obtain

Q68 5Q6 , pj68 5pj6 , qj28 5qj2 , P18 5P1 ,
~A3!

qj18 5qj12
cj

mjv j
2Q1 , P28 5P21(

j

cj
mjv j

2 pj2 .

The Liouville operatorLep from Eq. ~A1! written in
transformed variables adopts the form of Eq.~2.19! where
we omitted the primes. The system-bath interaction in Eq.
~2.19! involves the superoperatorspj2 andqj1 only @see Eq.
~2.21!#. The equation of motion@Eq. ~2.30!# is derived in
Section II starting with Eq.~2.19!.

Generalization of Eq.~2.30! to include an arbitrary num-
ber of primary oscillators is straightforward. Consider Eq.
~2.30! with L primary oscillators described by the variables
Pa ,Qa with a51,...,L. Instead of Greek indices we need to
use double indicesaa, wherea denotes the primary oscilla-
tor coupled to the secondary variablesqaa , a51,...,Na .
The equation of motion has a form of Eq.~3.9!. The vector
x of variablesxa ,a51,...,2L1N11•••1NL is given by
x 5 (P1 ,Q1 ,q11,...,q1N1;P2 ,Q2 ,q21,...,q2N2;...;PL ,QL ,

qL1 ,...,qLNL). The non-zero components ofD and D̄ are

Dmn,m~a!5D̄mn,m~a!11[MaVa
2dmn,a , ~A4!

with

m~a![2~a21!1N11...1Na2111. ~A5!

Non-zero components ofB have the form

Bn~a,a![Laasaa , ~A6!

with 0,a<Na and

n~a,a![2~a21!1N11 •••1Na211a12. ~A7!

The non-zero components ofA are

Am~a!11,m~a![2
1

Ma
, Am~a!,m~a!11[MaVa

2,

Am~a!,n~a,a!521, An~a,a!,m~a!5gaaLaa , ~A8!

An~a,a!,n~a,a!5Laa .
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APPENDIX B: DERIVATION OF THE MULTISTATE
FOKKER-PLANCK AND SMOLUCHOWSKI
EQUATIONS

In this appendix we outline the derivation of the multi-
state Fokker-Planck @Eq. ~3.4!# and multistate
Smoluchowski@Eq. ~3.5!# equations.

In the high temperature limit for the Ohmic spectral den-
sity @Eq. ~3.1!# the evolution can be described by the multi-
state Fokker-Planck equation,36 which can be rederived using
the scheme of Section II as follows.

Adopting the Wigner representation for primary oscilla-
tors, we introduce the reduced wavepacketsr̂(P,Q) which
are operators in the electronic space; the operators
Pa6 ,Qa6 in this representation are

Pa2[2 i
]

]Qa
, Pa1[Pa ,

~B1!

Qa2[ i
]

]Pa
, Qa1[Qa .

Consider the Liouville operatorL0 given by Eq.~3.3!
that acts in the space of reduced wavepacketsr̂(P,Q). The
equilibrium reduced wavepacket is the stationary point of the
Liouville equation with the Liouville operatorL0, it has the
form

rg~P,Q!5)
a

Va

2pkT
expF2S Pa

2

2MakT
1
MaVa

2Qa
2

2kT D G .
~B2!

A straightforward calculation shows that the Liouville
space Green functions of the superoperatorsPa6 ,Qa6 in the
reduced system calculated with respect to the equilibrium
density matrix of Eq.~B2! reproduce the high temperature
limit for the Green function of the corresponding super-
operators in the complete Liouville space, with the Liouville
operator

L085(
a

S 1M Pa1Pa21MaVa
2Qa1Qa2D

1(
j

F 1

mja
pja1pja2

2mjav ja
2 S qja12

cja
mjav ja

2 Qa1D
3S qja22

cja
mjav ja

2 Qa2D G . ~B3!

Since the secondary-oscillator variables are not involved in
interactions with electronic degrees of freedom, this imme-
diately yields the multi-state Fokker-Plank equation@Eq.
~3.4!#.

Equation~3.4! can be also written in a form of Eq.~3.9!.
In this case, the vectorx of the variablesxa ,a51,...,2L is
given by x5(P1 ,Q1 ,...,PL ,QL) and non-zero components
of D,D̄,A, andB are given by

Dmn,2a215D̄mn,2a5MaVa
2dmn,a ,

A2a,2a2152
1

Ma
, A2a21,2a5MaVa

2 , ~B4!

A2a21,2a215ga , B2a215gaMakT.

To derive the multistate Smoluchowski equation we rep-
resent the matrix of spectral densities in the overdamped
limit in a form

Cmn,kl~v!52(
a

da,mnda,kl
MaVa

2

2

v~Va
2/ga!

v21~Va
2/ga!

2 .

~B5!

Since the nuclear variables in Eqs.~2.1! and ~2.6! are con-
nected by a linear canonical transformation we have

Q̂a5(
j
c̄a jq̂ j8 , ~B6!

and comparing the last terms in Eqs.~2.1!–~2.6! we obtain

dj ,mn8 5(
a

da,mnMaVa
2

mj8v j8
2 c̄a j . ~B7!

Combining Eqs.~2.2!, ~B5!, and~B7! yields

J̄ab~v!5dab
1

MaVa
2

v~Va
2/ga!

v21~Va
2/ga!

2 , ~B8!

where

J̄ab~v![(
j

c̄a jc̄b j
4mj8v j8

2p@d~v2v j8!2d~v1v j8!#.

~B9!

Equations~B6!–~B9! imply the following form of the corre-
lation functions ofQa6 operators in a system were the cou-
pling of the electronic degrees of freedom to the nuclear is
neglected,

^Qa1~t!Qb1~0!&5E
2`

` dv

2p
J̄ab~v!cothS v

2kTD cos~vt!,

~B10!

^Qa1~t!Qb2~0!&52 iu~t!E
2`

` dv

2p
2J̄ab~v!sin~vt!.

~B11!

The Liouville space operatorL[Hep2 corresponding to
the HamiltonianĤep of Eq. ~2.1! can be presented in a form

L5Le1LB1Lint , ~B12!

with Le[He2 and

LB[(
j

1

mj8
pj18 pj28 1mj8v j8

2qj18 qj28 ,

~B13!
Lint52(

amn
MaVa

2da,mn~Bm
1Bn!1Qa2

2(
amn

MaVa
2da,mn~Bm

1Bn!2Qa1 .

The interaction of the bath with the electronic degrees of
freedom involves the operatorsQa6 only. The correlation
functions of these operators with respect to the Liouville
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operatorLB @Eq. ~B13!# are given by Eqs.~B10! and ~B11!
and in the high-temperature limit adopt a form

^Qa1~t!Qb1~0!&5dab
kT

MaVa
2 exp@2~Va

2/ga!utu#,

~B14!

^Qa1~t!Qb2~0!&52 idabu~t!
Va

2/ga

MaVa
2 exp@2~Va

2/ga!t#.

~B15!

These can be modeled as correlation functions of the
operators

Qa1[Qa , Qa2[ i
Va

2/ga

MaVa
2

]

]Qa
, ~B16!

which act in the space of wavepacketsr(Q) with the free-
bath Liouville operatorLB of a form

LB5 i(
a

]

]Qa
SQa1

kT

MaVa
2

]

]Qa
D . ~B17!

Substituting Eq.~B17! into Eq. ~B12! yields the Liou-
ville operatorL in a form

L5Le2(
mna

MaVa
2da,mnQa~Bm

1Bn!2

2 i(
mna

Va
2

ga
da,mn~Bm

1Bn!1

]

]Qa

1 i(
a

Va
2

ga

]

]Qa
SQa1

kT

MaVa
2

]

]Qa
D . ~B18!

By including the external field, the Liouville equation with
L given by Eq.~B18! yields the multi-state Smoluchowski
equation@Eq. ~3.5!# that can also be represented in the form
of Eq. ~3.9!

In the case described by Eq.~3.5! the vector ofx of
variablesxa ,a51, . . . ,L is represented byx5(Q1 ,...,QL)
with the parameters of Eq.~3.9! given by

Dmn,a5
Va

2

ga
dmn,a , D̄mn,a5MaVa

2dmn,a ,

~B19!

Aaa5
Va

2

ga
, Ba5

kT

gaMa
.

APPENDIX C: EQUATIONS OF MOTION FOR
OVERDAMPED PRIMARY MODES

In this appendix we develop a reduction scheme which
applies when the primary bath oscillators are overdamped,
but, the temperature is not necessarily high.

The derivation follows the steps used in obtaining the
Smoluchowski equation~see Appendix B!. The only differ-
ence is that instead of calculating the Liouville space Green
functions of the operatorsQa6 @Eqs.~B10! and~B11!# in the
high temperature limit@leading to Eqs.~B14! and~B15!#, we
evaluate these correlation functions exactly, resulting in

^Qa1~t!Qb1~0!&5dabF s̄a exp~2L̄autu!

1(
s51

`

s̄as exp~2L̄asutu!G . ~C1!

The correlation function̂ Qa1(t)Qb2(0)& still has a
form of Eq.~B15! and^Qa2(t)Qb2(0)&50. The parameters
s̄a ,L̄a ,s̄as , andL̄as are defined in Section III@Eqs.~3.8!#.
To model the Green functions of Eqs.~C1! we introduce
wavepackets depending onQa and additional coordinates
Qas representing the Matsubara frequencies terms in Eq.
~C1! given by the sum overs. To model the correlation func-
tions we define the operatorsQa1 by

Qa15Qa1(
s51

Qas . ~C2!

The operatorsQa2 have the form of Eq.~B16!. The bath
operatorLB should be taken in a form

LB5 i(
a51

L

L̄a

]

]Qa
SQa1s̄a

]

]Qa
D

1 i(
a51

L

(
s51

Na

L̄as

]

]Qas
SQas1s̄as

]

]Qas
D . ~C3!

Strictly speaking, we need to useNa5` for
a51,...,L; however, in practice it is suffice enough to keep
a finite number of Matsubara frequencies~see the discussion
in Section II!. Substituting the bath Liouville operator from
Eq. ~C3! into Eq. ~B12! we obtain Eq.~3.7!.

To represent Eq.~3.7! in a form of Eq. ~3.9! we
introduce the vector x of variables
xa , a51,...,L1N11...1NL by x5(Q1 ,Q11,...,
Q1N1

;Q2 ,Q21,...,Q2N2
;...;QL ,QL1 ,...,QLNL

). The non-zero
components ofD are

Dmn,n~a!5
Va

2

ga
dmn,a , ~C4!

where

n~a![a1N11•••1Na21 . ~C5!

For n(a)<a,n(a11) we have

D̄mn,a5MaVa
2dmn,a . ~C6!

The non-zero components ofA andB are

An~a!,n~a!5L̄a , Bn~a!5L̄as̄a , ~C7!

and

An~a!1s,n~a!1s5L̄as , Bn~a!1s5L̄ass̄as , ~C8!

where 0,s,Na .
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APPENDIX D: TIME EVOLUTION OF GAUSSIAN
WAVEPACKETS IN PHASE SPACE

In this appendix we derive equations of motion for the
parameters of the Gaussian wavepackets@Eq. ~4.13!# assum-
ing that Eq.~4.2! holds for the first and the second moments
of collective coordinatesxa .

The time derivatives of the wavepacket parameters@Eq.
~4.13!# are related to the time derivatives of its moments as
follows:

damn

dt
5E dx

drmn~x!

dt
, ~D1!

dxmn,a

dt
5

1

amn
E dxxa

drmn~x!

dt

2
1

amn
xmn,aE dx

drmn~x!

dt
, ~D2!

dsmn,ab

dt
5

1

amn
E dx~xa2xmn,a!~xb2xmn,b!

drmn~x!

dt

2
1

amn
smn,abE dx

drmn~x!

dt
. ~D3!

Combining Eqs.~D1!–~D3! with Eq. ~4.2!, we obtain,
after a straightforward calculation,

damn

dt
52 i(

k
~Emkakn2Eknamk!

1 i(
km

~D̄mk,mxkn,makn2D̄kn,mxmk,mamk!. ~D4!

The equations for the parametersxmn,a have the form

dxmn,a

dt
5 2

i

amn
(
k

@Emkakn~xkn,a2xmn,a!2Eknamk~xmk,a2xmn,a!#1
1

amn
(
k

1

2
~Dmk,aakn1Dkn,aamk!2(

m
Aamxmn,m

1
i

amn
(
km

D̄mk,m@skn,am1~xkn,a2xmn,a!xkn,m#akn2
i

amn
(
km

D̄kn,m@smk,am1~xmk,a2xmn,a!xmk,m#amk . ~D5!

Finally we have for the parameterssmn,ab

dsmn,ab

dt
52(

m
~Aamsmn,bm1Abmsmn,am!12dabBa2

i

amn
(
k
Emkakn@skn,ab2smn,ab1~xmn,a2xkn,a!~xmn,b

2xkn,b!#1
i

amn
(
k
Eknamk@smk,ab2smn,ab1~xmn,a2xmk,a!~xmn,b2xmk,b!#1

1

amn
(
k

1

2
@Dmk,a~xkn,b

2xmn,b!1Dmk,b~xkn,a2xmn,a!#akn1
1

amn
(
k

1

2
@Dkn,a~xmk,b2xmn,b!1Dkn,b~xmk,a2xmn,a!#amk

1
i

amn
(
km

D̄mk,m@skn,ab~xkn,m2xmn,m!1skn,am~xkn,b2xmn,b!1skn,bm~xkn,a2xmn,a!1~skn,ab

2smn,ab!xmn,m#akn2
i

amn
(
km

D̄kn,m@smk,ab~xmk,m2xmn,m!1smk,am~xmk,b2xmn,b!1smk,bm~xmk,a2xmn,a!

1~smk,ab2smn,ab!xmn,m#amk1
i

amn
(
km

@D̄mk,m~xkn,a2xmn,a!~xkn,b2xmn,b!xkn,makn2D̄kn,m~xmk,a2xmn,a!

3~xmk,b2xmn,b!xmk,mamk#. ~D6!

APPENDIX E: EQUATIONS OF MOTION FOR
WAVEPACKET PARAMETERS IN THE SPECTRAL
DIFFUSION LIMIT

In this appendix we present equations of motion for the
wavepacket parametersh5(qnn, j ,snn, j ) and the initial con-
ditions which describe the evolution of the system in the
spectral diffusion limit~see Section VI!. The collective co-
ordinates satisfy the equations

dqmm, j

dt
52L̄jqmm, j

1(
n

ann
amm

Wmn~h!~qnn, j2qmm, j !

22l js j j , jTm j~h!Wmj~h!
aj j
amm

22l jsmm, jTjm~h!Wjm~h!, ~E1!
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for j Þ mand

dqmm,m

dt
52L̄m~qmm,m21!1(

n

ann
amm

Wmn~h!~qnn,m2qmm,m!1(
n

2lmsnn,mTmn~h!Wmn~h!
ann
amm

1(
n

2lmsmm,mTnm~h!Wnm~h!, ~E2!

where we have defined

Tmn~h![
Em22lmqnn,m2En12lnqnn,n

~2lm!2snn,m1~2ln!
2snn,n

. ~E3!

For the second momentss we have

dsmm, j

dt
522L̄jFsmm, j2S D j

2l j
D 2G1(

n
@~qnn, j2qmm, j !

21snn, j2smm, j #Wmn~h!
ann
amm

24l js j j , jTm j~h!

3~qj j , j2qmm, j !Wmj~h!
aj j
amm

2~2l js j j , j !
2$@Tmj

~1!~h!#22@Tmj~h!#2%Wmj~h!
aj j
amm

1~2l jsmm, j !
2$@Tjm

~1!~h!#2

2@Tjm~h!#2%Wjm~h!, ~E4!

for j Þ mand

dsmm,m

dt
522L̄mFsmm,m2S Dm

2lm
D 2G1(

n
@~qnn,m2qmm,m!21~snn,m2smm,m!#Wmn~h!

ann
amm

1(
n

4lmsnn,mTmn~h!

3~qnn,m2qmm,m!Wmn~h!
ann
amm

2(
n

~2lmsnn,m!2$@Tmn
~1!~h!#22@Tmn~h!#2%Wmn~h!

ann
amm

1(
n

~2lmsmm,m!2$@Tnm
~1!~h!#22@Tnm~h!#2%Wnm~h!, ~E5!

where we have introduced the notation

Tmn
~1!~h![

1

@~2lm!2snn,m1~2ln!
2snn,n#

1/2. ~E6!

The initial conditions are

amm~0!5E
2`

`

dt8dt9 expF iVm~t92t8!2
Dm
2

2
~t92t8!2G«m~t9!«m* ~t8!, ~E7!

qmm, j~0!52dmjiamm
21~0!E

2`

`

dt8dt9
Dm
2

2lm
~t92t8! expF iVm~t92t8!2

Dm
2

2
~t92t8!2G«m~t9!«m* ~t8!,

~E8!

smm, j~0!5S D j

2l j
D 22dmjamm

21~0!
Dm
4

~2lm!2
E

2`

`

dt8dt9~t92t8!2 expF iVm~t92t8!2
Dm
2

2
~t92t8!2G«m~t9!«m* ~t8!.
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