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A theory for Frenkel exciton dynamics in molecular aggregates which incorporates coupling to
vibrational motiongintramolecular, intermolecular and solvemiith multiple spectral densities of
arbitrary nature and interpolates between the coherent and the incoherent limits is developed. A
rigorous procedure for identifying the relevant collective nuclear coordinates necessary to represent
a given set of spectral densities is obtained. Additional coordinates are required as the temperature
is lowered. Exciton dynamics is calculated by following the evolution of wavepackets representing
the electronic density matrix in the collective coordinates phase space. The signatures of excitonic
and nuclear motions in ultrafast fluorescence spectroscopy are explored using a hierarchy of
reduction schemes with varying numbers of collective coordinates19@6 American Institute of
Physics[S0021-960806)00134-1

I. INTRODUCTION focus on ultrafast fluorescence measurements, but the for-
malism can be directly applied to other nonlinear optical
Femtosecond spectroscopy of molecular aggregates h?échniques such as photon echoes, pump-probe, etc.

with intensive studies of the nature of energy transfer in bioescribed by the Frenkel exciton Hamiltorflan

logical systems, such as reaction center and light harvesting
photosynthetic antenndeUltrafast energy transfer between
different pigment pools in LHCHland in FMO trimers in the
Green bacterium coherent nuclear motion, which shows up - o
as quantum beats in pump-probe sigrfaihioton echo and whereHm, the Hamiltonian of themth molecule, can be
transient grating signalsrom light harvesting complexes, Written in the form
long-time quantum beats in the fluorescence from LH-1 L
complexe$, hole-burning studies of energy transfer in B800- Hn= 2 EmaBrmaBme - (1.2
B850 antenna compléand LH-2 complexésshow a com- @
plicated interplay of intermolecular interactions, coherentHereE,, is the energy of therth exciton state of molecule
nuclear motions, solvent dynamics and static disorder. Simim (with the ground state energy taken to be zeanda runs
lar issues have been addressed earlier in the studies ger the relevant excited states. The exciton operators obey
J-aggregates and molecular crystal® The theoretical the following commutation relations:
modeling of molecular aggregates should incorporate the
complex dynamics of nuclear motions and solvent degrees of 4 B+ 1 _ A+ _ A+ R
freedom coupled to the elementary electronic excitations, the [Brnec:Bng] = Onn 5“31,:[ (1~ BryBime) = BrmgBrne
Frenkel excitong:° Discovery of the crystal structure of an 1.3
integral membrane light-harvesting complex from photosyn--,, : . .
thetic bacterit had opened up new levels of modeling the H. reprgsents mtermolecu_lar hop_pmg 18f exc'to_”s due to
photosynthesis processes, unveiling possible pathways of ed{pole—dlpole.or gx_change |nte-ract|o?1§).* Neglectmg for

' the sake of simplicity, the matrix elements of the dipole op-

ﬁ]rtg;ggif:r’ and allowing a good estimate of mtermolecula{arator between excited states, and the ground state permanent

In this paper we develop a theoretical framework fordipoIe (these can be easily incorporated in the madell

calculating excitonic motions in aggregates, including inter-2SSUMes the form

actions with molecular and solvent nuclear degrees of free- . -~ A

dom with an arbitrary distribution of timescales. Progress in H'= 2 ImansBmaBng- (1.9
ultrafast experimental techniques had made it possible to mnap

measure the spectral densities associated with nuclear mdhis form, which conserves the number of excitons, is
tions both in neat liquids and for solvated chromophdfes. known as the Heitler-London approximation.

Theoretical methods for calculating these spectral densities In many applications it is sufficient to consider a single
have been developed as wBllAn important open problem excited state on each molecule, and the Frenkel exciton
addressed in this paper is how to incorporate these spectraiodel then represents interacting two-level molectilds.
densities in the modeling of excitonic motions and what arehis case we may omit the Greek indices in E(is2) and
their spectroscopic sighatures. We shall (1.4), and the commutation relations adopt the standard form

He=>, Hp+H’, (1.1)
m
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4566 V. Chernyak and S. Mukamel: Energy transfer and spectroscopy of molecular aggregates

[Bm,B 1= 8mn(1— 2B Bn). (1.5  bath can be solved exac.ﬂ?/,zf the kernels can be obtained

by a perturbative calculation in intermolecular coupling. The

The interaction of electronic degrees of freedom withmaster equation for molecular electronic populations repre-
intramolecular, intermolecular and solvent nuclear motionssents in this case the incoherent transport theory of Forster
can be incorporated through the dependence of the transitigghd Dexte®?” A theory which interpolates between these
frequenciesE_and intermolecular couplingd on nuclear two limits has been developed for diagcfias well as off
coordinates:** The combined electronic and nuclear Hamil- giagonal coupling® This theory is based on equations of
tonian is motion for the evolution of polaron populations and is, there-

" N AN fore, valid in both limiting cases.

Hep=He(Q)+Hpp. (1.6 None of the above gzheories, which focus on the elec-
Herel:|ph represents nuclear degrees of freed@mandH,  tronic variables alone holds for ultrafast transport observed,
depends o) through theQ-dependence of the site energies €.9., in the biological antenna complexes and the reaction
Em. (diagonal couplingand the hopping elements,, ,;  center. The polaron thed?® is inapplicable when the
(off diagonal coupling Assuming thaH ,, represents a set transport tlmescale is co_mparable Wlth the timescale of. po-
of harmonic oscillators, and retaining only linear terms in thelaron formation. Calculations of the intermolecular coupling
expansion 01:|e in Q, we obtain Davydov’s exciton-phonon para!’neter’é’ in LH2 gntennae complex'es pased on their geo-
Hamiltonian® Finally, the total Hamiltonian of the aggregate Metrical structure givd~300 cm * which is comparable to

interacting with a time-dependent external fielgr) is the absorption and fluorescence linewidths. This makes
~ ~ Forster's incoherent limit inapplicable. An attempt to ap-
Hr(7)=Hep—&(n) a2, (1.7 proach the problem from the coherent limit faces the follow-

ing difficulty. Elimination of nuclear degrees of freedom can

the polarization operatox in the dipole approximation is be effectively done only when the exciton-phonon coupling

; 9
given by is much smaller than the inverse bath relaxation time. The
. - ~ latter cannot be faster thai’kT due to the Matsubara fre-
MZZ Mma(Bmat Bma), (1.8 guencies which show up in the expansion of the bath corre-
me lation function!®3! Physically, this implies that bath degrees
and u,,, are the molecular transition dipoles. of freedom with frequencie®>kT/% are frozen, and in the

Since the electronic subsystem is coupled to a largdimit of weak exciton-phonon coupling the typical energy
number of nuclear degrees of freedom, even the dynamics afansfer timer;,>#/kT. At room temperatured/k T~ 30 fs,
small molecular aggregates constitutes a complicated manyvhich is comparable with the observed transport timescale
body problem. The only practical way to proceed is by de-r,,<100 fs?>2 The above inequality is only marginally satis-
veloping a reduced description based on following the evofied, and the weak exciton-phonon coupling approach cannot
lution of a few relevant variables. Projection operatorbe used. The only practical way to address the problem is to
technique® provide a formal procedure for developing a adopt a less reduced description, retaining additional infor-
reduced description in terms of any chosen set of dynamicahation about the system, such as relevant collective degrees
variables. The difficulty is then hidden in evaluating the co-of freedom representing nuclear motions and solvent dynam-
efficients of the resulting generalized master equalidA ics.
which constitutes a closed equation for the evolution of rel-  When the bath is weakly coupled to the collective coor-
evant variables. dinates, a reduced description in terms of electronic and col-

The simplest reduction scheme is based on keeping onllective variables can be obtained by applying the Redfield
the electronic variables, completely eliminating all nucleartheory®? Theoretical modeling of charge transféfwhich is
degrees of freedom. This yields a closed system of equatiorfermally equivalent to the problem of energy trangféor
for the excitonic reduced density matfixHowever, the nec- two electronic states coupled to a single collective nuclear
essary memory kernels can only be calculated in two limitingnode using the Redfield theory has been carried out in Ref.
cases. The first is the cohereteak exciton-phonon cou- 34. This approach makes it possible to explore a broad range
pling) limit. The bath variables can then be eliminated by aof parameters, interpolating between coherent and incoherent
perturbative calculation of the kernels in exciton-phonontransport, and providing a clear physical picture of transport.
coupling, which leads to the standard band theories oft has, however, two limitations. First, since it is based on a
transpor® Under these conditions, time- and frequency-weak coupling approximation for eliminating the bath, it has
resolved fluorescence and coherent four-wave mixing can bdifficulties in describing femtosecond transport. Second, the
described using a unified theory formulated in terms of ex{rocedure of calculating the components of the Redfield ten-
citon transport(treated, e.g., using the Boltzmann equation sor involves diagonalizing the Hamiltonian of the electronic
and exciton-exciton scattering!® The second case is the system coupled to the collective coordinate, which is a seri-
limit of incoherent transport, where the coupling to the bathous numerical problem even for the case of two electronic
is diagonal, and intermolecular coupling is weak comparedevels and a single nuclear coordinate. This approach is,
to the dephasing ratéhe absorption linewidth This limit  therefore, not practical for large aggregates. Recently a non-
corresponds to Holstein’s small polaron the&hBince the perturbative approach has been propd3eghich treats
model of a single molecule linearly coupled to a harmonicstrong coupling of the collective coordinate to the Gaussian-
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Markovian bath, and results in a hierarchy of kinetic equathe approach is nonperturbative, it naturally describes ul-
tions. This approach has been generalized to multistatgafast(femtosecongtransport. The conditioh w.<kT can
system$® and formally applied to low temperatures and ar-further be relaxed by including a few additional coordinates.
bitrary spectral densitie¥,where it yields complicated mul- In the following sections we sét=1 which is equivalent to
tidimensional hierarchies of kinetic equations. measuring energies in the units of frequerieyy., cm'%).

In this paper we introduce an alternative approach basetowever, in some places in the text we retain the Planck
on modeling the relevant bath properties by a finite numbeconstantz to emphasize the quantum nature of certain ef-
of collective bath coordinates. The number of collective co-fects.
ordinates depends on the form of the bath spectral density as

well as the temperature.
In Section Il we start with a model which assumes that!: REDUCED DESCRIPTION USING COLLECTIVE

the electronic degrees of freedom are coupled to a few pri—NUCLEAR COORDINATES

mary effective nuclear coordinates which in turn are linearly  |n this section we develop a procedure for modeling ex-
coupled to a harmonic bath. This model is general enough tgiton dynamics in molecular aggregates, based on keeping a
represent an arbitrary nuclear spectral density. We then shofinite number of molecular and solvent relevant nuclear de-
how the bath microscopic degrees of freedom may be elimigrees of freedom, and deriving closed equations for the re-
nated, resulting in a reduced description which includes theluced density matrix. Adopting Davydov’s exciton-phonon
electronic as well as the collective nuclear variaBféBhese  Hamiltonian, we represent the nuclear degrees of freedom as
variables represent the primary oscillators, collective batta set of harmonic oscillators with the momenta and coordi-
coordinates as well as Matsubara modes which enter at lowate operatorp; andq;. The HamiltonianEq. (1.6)] then
temperatures. A systematic method for constructing these casssumes the form

ordinates is obtained using a trace-conserving transformation

in Liouiville space. We obtain closed equations for wave- ﬁepZE EnBBnt+ > JmnBiB

packets which depend on the primary coordinates and mo- n mn

menta and a finite set of additional coordinates representing

the bath. The evolution of these additional coordinates is -> m{ @
described by the Smoluchowski equation. In Section Il we jmn
show that when the temperature is high compared with the A m(w{2a_/2
characteristic frequency of collective nuclear motion | e 2L )
kT>%w., the bath variables can be eliminat®dyhich T\ 2m, 2

yields the Fokker-Planck equation for the reduced densityyhereH, is given by the first three terms, and the last term
matrix. (This limit is not applicable to femtosecond transport s ine phonon Hamiltoniarh:lph. Herem! and o/ are the

In_ antenna _(1:omplexe_s ~at room temperature  Whergn,sses and the frequencies of the oscillators representing
kT~200 cm- and w is in hundreds wavenumbers, €.9., hyclear (molecular and solvejptmotions, andd; ., is the
wc~100 cm * in Ref. 6) Two additional levels of reduc- gigplacement of thejth oscillator induced by molecular
tion corresponding to overdamped primary mode with a”dpopulations (h=n) and intermolecular coherences ¢ n),
without the high temperature approximgtions are prese”teﬁepresenting the diagonal and off diagonal coupling to nu-
as well. In Section IV we represent the time- and frequencygej, respectively. All nuclear properties which affect the
resolved fluorescence signal in terms of the Green functiongjectronic motion are contained in the matrix of spectral den-

of these equations of motion. We then develop a procedurgitiescmnvkl(w) which is a direct generalization of the stan-
for comp_utmg these Green funct_lons using _Ga_lu55|a_n WaVejard spectral densitg(w)® and is given by

packets in phase space. In Section V we eliminate intermo-

lecular electronic coherences and derive a generalized mastemnki(®)

equation for electronic population variables, assuming that m '3

the primary nuclear motions are overdampgte spectral => 4%’ ] 27 8w — o)) — Sw+))].
diffusion limit). The solution of these equations using Gauss- T4 .

ian wavepackets is given in Section VI. Section VIl summa- (2.2
rizes the hierarchy of levels of reduction and discusses theiThis matrix represents the dynamics of the collective nuclear
applicability. The results of Ref. 37 can be recovered bycoordinates,

representing the equations in the basis set of eigenstates of

the Smoluchowski operator, and the dimensionality of the (’E{E‘g?_lzz mj’w].’Zdj' mnqj’, (2.3
corresponding hierarchical equations is equal to the number i '

of additional coordinates. Our approach gives a clear physiang is given by the Fourier transform of their correlation
cal insight by representing the bath by a finite number ofnctions

relevant collective variables, and suggests powerful T\@Lhods i

of solving them using Gaussian phase-space wavepackets. _" : A(C) -\ A(C)

The resulting equations for the wavepacket parameters can Connia( @)= 2J70cd7 eXpiw7){[Amn( 7). G (O],

be solved numerically even for very large aggregates. Since (2.9

1247
i di,mn

BrBnd]

12

p .

(2.1
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where the time evolution oEf](C) 7) is calculated using the M Q;‘
nuclear HamiltoniarH ,,, [the last term in Eq(2.1)]. Cmn,k|(w):§a: 5 Gmnaluia
To obtain a reduced description in terms of relevant col-
lective variables, we recast the Hamiltonian of E2}1) in a 2M; 1, (w)
different form, by introducing a set of primary oscillators X(wz_ﬂg)2+[M;lJa(w)]2' (213

with variablesP,,Q,, coupled to the electronic degrees of
freedom and to a set of secondary oscnlatp[sq 1935-39  The inverse transformation is, however, not unique. This

The exciton-phonon Hamiltonian is then partitioned in thegives a great deal of flexibility in representing E2.1) in a

form form of Egs.(2.5—(2.7), i.e., in the choice of collective vari-
. A ables. We can see from E@.7) that each primary oscillator
Hep=HstHsg, (25  has its own bath, and that these baths are uncorrelated. We

obtain, however, nontrivial correlations in the spectral den-
sities Cpyp ki(w), allowing each primary oscillator to couple
to all electronic populations and intermolecular coherences
(the coupling constants are determineddy,).

where the system Hamiltoniaﬁs describes the electronic
degrees of freedom coupled to the primary oscillators:

Hs:; EnBrTBn‘l'% JmnBmBn By recasting the Hamiltoniaf2.1) in the form of (2.5)
A A we highlighted more clearly the role of tHéew) primary
P2 M,Q2Q2 oscillators, which makes it easier to develop a simple physi-
+§ 2M + 2 cal picture. Hereafter, we shall, therefore, adopt the form of
a

Eq. (2.5). For clarity, we assume a single primary oscillator;
5 PP the generalization to an arbitrary number of oscillators is
_a%n Maf23da miBmBnQa, (2.6 straightforward.
We first recast the system Hamiltonian in a form

andl:|B represents the bath oscillators and their coupling to B2

the primary oscillators, H3:2|\/| V(). 212
~2 m. w2 2
0= 2 Pja " ja®ja Cja Q 2.7 . - . . .
BT~ |om 2 —2— al |- . whereV is a matrix in the electronic space with each matrix
Ja ja mjaw ja

element depending on the primary nuclear coordinates. For
The system-bath coupling is now given by thg param- the Hamiltonian of Eq.(2.6) V only contains terms not
eters, and the relevant properties of the bath are representbijher than quadratic iQ, however, the following deriva-

by a new set of spectral densitidy( w),1°35-37:39 tion applies for any functional dependeneon Q which
allows us to treat arbitrary anharmonic potentials. At this
A(w)= E —E 2n[S(w—wjp)— o+ )] (2.8) point we introduce L|ouy|lle space notation w_hlch will allc_)w
Mja®Wja us to recast our results in a compact form. Given an ordinary

These can be expressed in terms of correlation functions c‘ﬁ'lbert spacg operatorA, we define the following superop-
the collective coordinates erators acting in Liouville spacéy, (action from lefy, Ag

(action from righj, A, (anticommutatorand A_ (commu-
taton,
(C)_Z Cjaq]a1 2.9 A .
ALp=Ap, Arp=pA,
in the following way: A —A A A= 1A+ A (2.13
—-=ALT AR, += 2(AL R)-

Ja(w)= f dr expion)([a9(7),4(0)]). (2.10 Using this notation, the system’s Liouville operatotis ex-
pressed in terms of the Hamiltonidh asL=H_. Obvi-
Here the dynamics ofi{”(7) is given by the Hamiltonian ously,A_p=[A,p], A,p=3Ap+pA).
Eq. (2.7) with ¢j,=0. We now apply a canonical transformation in the com-
The transformation from Eq$2.5) through(2.7) to Eq.  plete (system and bajhLiouville space, i.e.,

(2.1 is straightforward: using a standard canonical transfor- ., -
mation, one can represent a system of coupled harmonic os- p'=Up, (2.1
cillators with variablesP,,Q,,p;,0; as a system of un- with
coupled harmonic oscillators with canonical variables - -
f)j’ ,aj’ which constitute the normal mode representation of Tr(Up)=Tr(p). (2.19
Eq. (2.1). In particular, this procedure connects the spectraHere p is any ordinary operator belonging to our Liouville
densities J,(w) to the matrix of spectral densities space, and the superoperatbris
Cinki(w). Expressions ofC(w) in terms ofJ(w) for the
case qf a single primary modg were given in Refs. 19and 39. ,_ ex;{ -iQ, 2 2 pi_|. (2.16
A straightforward generalization yields

J. Chem. Phys., Vol. 105, No. 11, 15 September 1996

Downloaded-07-Mar-2001-t0-128.151.176.185.-Redistribution-subject-to~AlP-copyright,~see-http://ojps.aip.org/jcpo/jcpcpyrts.html



V. Chernyak and S. Mukamel: Energy transfer and spectroscopy of molecular aggregates 4569

This is an invertible, trace-conserving linear transformationthe canonical bath variables. This gives us a great deal of
According to Egs.(2.14 and (2.15, superoperators are flexibility in modifying Lz, which can be used to simplify

transformed as the calculations.
A'=UAU"L, 2.17) We next represent the spectral density in the form
; Aza)
with the propeity A Hw)=M 2 2+A2 _ (2.24
Tr(Ay...App) =Tr(A;...A/p"). (2.18

This expansion constitutes essentially a Laplace transform of

J(t), and by taking a sufficient number of terms in the r.h.s.

of Eq. (2.24 we can approximate any spectral density.
Substituting Eq(2.24) into Egs.(2.23 we obtain

A straightforward calculation gives for the Liouville operator
corresponding to the Hamiltonidn,, of Eq. (2.5,

1 A 1
L=y P+P-+V-(Q+Lg=aQ-— xP.p, (219

M No
— P —A,T
where the first two terms represent the system, and the third (a(n)p(0))=6(n)iM ;::1 Yahol T,
term is the bath Liouville operator, Ng . (2.25
Pi+P; 0))= e—Aa\T\+ _e—ZﬂTr‘lkT\T\’
LBE; l:n = +me q]+q]7 (22@ <Q(T)CI( )> azl T4 I’]Zl On
i
The system-bath coupling is given by the last two termsWhere
which depend on the collective bath coordinateand its 1 5 N
conjugate momentur, represented by the superoperators UaEEM Yal\ €O 2kT/
C N 2 (226
a=2 cidjs, P=2 — 5P (2.29 — 3 4mn(kT)
T jmj,z' Tn=2, My,A2

*(27nkT)2— A%
These satisfy the commutation relation
2

[p, q]——IZ 2=

wj

By truncating the infinite sum over(n=1,... N;) in Egs.
* do 2J(w) - (2.25, we can model the correlation functions in E¢&25
- 27 @ 222 in the following way. Instead of the bath variablgs and
p; we introduce a new set ®=Ny+ N, collective coordi-
We next introduce the time ordered correlation functlon%atesqa a=1,...N. The effective L|ouwlle operator is still
(d(7)a(0)) and (q(r)p(0)). Here the time evolution given by Eq.(2.19. However, the bath operatar, adopts
is in the bath Liouvile space and given by the form
g(7) = exp(Lgr)gexp(—iLg7). “Time ordered” means that

the superoperators in these correlation functions should be d
reordered in a way that superoperators with later time argu- =l E Aaaqa @ UQE ' (2.27)
ments stand to the left of those with earlier time arguments.
These correlation functions are given by and the superoperatogsandp are replaced by
0 _J’ de 13) _%
(a(na(0))= | 5—JI(w)coth 5 =|cogwr), 4= 2, Ga:
© 2i3(w) . N ; (2.28
L e N R ) Myh
(p(7)p(0))=0. The firstNg coordinates are required in order to fit the spec-

Here 6(7) is the Heaviside step function. It arises since fortral density[Eq. (2.24] with A , ando, given by Eqs(2.24)

<0 thep(0) superoperator acts from the left. Since this isand (2.26. The remaining N; coordinates q,,

a “minus” operator, it gives a commutator whose trace van-@=Ng+1,...,N are Matsubara oscillators which are required

ishes. to model the system if the temperature is not sufficiently
Applying a path-integral representation for the Liouville high. For these oscillators we define

space evolution in the spirit of Refs. 35-39, and mtegratmg

over bath variables, we see that the only information about (2.29

the bath relevant for the system dynamics is contained in '

these correlation functions. This observation has the follow- It should be emphasized that our effective dynamical

ing important implication: The dynamics of any system vari- system defined by the coordinaigs, cannot be represented

able calculated using the Liouville operaféig. (2.19] will by reduced effective Hamiltonian in theg, space, but only

be unaffected if we can model these correlation functiondy an effective Liouville operator. This is why it is essential

using a different Liouville operatdrg, which is quadratic in  to perform all our transformations in Liouville space. An

o=2m(a—Np)kT, o,=0,_ Ny Ya=0; a>No.
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effective Liouivillian can represent much more general dy-Matsubara frequencies#hkT/A. Our reduced description
namics than an effective Hamiltonian. can be further simplified in the high-temperatk®&>#(),

Adopting the Wigner representation for the primary os-limit, provided the bath, formed by the secondary oscillators,
cillator variables, the density matrix can be considered as ais fast compared with the frequencies of our primary system.
operatorp(P,Q;q;, ... ,dy) in the full electronic space of In this case the secondary variablgs can be eliminated,
states(i.e., the complete space of states of the electroniavhich results in closed equations of motion for sysietec-
subsystem with all possible numbers of electronic excitatronic and primary oscillatojyscoordinates alone. This level
tions), where each matrix element between any pair of elecef reduction had been accomplished for a single electronic
tronic states depends on the momentBrand coordinate state using the path-integral technique of
Q of the primary oscillator and collective bath variables Caldeira and Leggetf and subsequently generalized to the
d1,---,qn- The equation of motion for the reduced density multi-state case that yields the multistate Fokker-Planck
matrix p for the system driven by an external field becomesequatiort®

- A In this section we derive these results as a limiting case
ap 1 &p ) _—
- I[He,P] _MQZE dmn By, of the more generali.e., less reducedevel of description
Za ’9P developed in Section Il. To that end, we note that the fre-

P guenciesw in J(w) [Eg. (2.19] relevant for the system dy-

||\/|QZQE dmn[B Bn,P] 9P namics are of the order of the primary system frequencies
M ‘9Q Q.. When all bath timescales are fast/%, A ,>Q,, we
P can use the low-frequency part fw), takingw<<A ,. This
2 — |5 yields the Ohmic spectral density
+MQ Q 2 Aaaq ( Gt aaﬁqa)p
A N A Ja(w)=Myv 0, (3.1
-> §_p+p2 A &_p_H (D[ fe.p] where
= qaap = ya aaqa e(7 Mvp )
NOa
(2.30 Ya= Zl Yaa- (3.2

where[ , ], denotes an anticommutator.

Equation(2.30 with N;=c describes the exact evolu- Note that since the bath relaxation rates include the Matsub-
tion of the electronic degrees of freedom and primary oscilara frequencies 2nkT/#%, this is also necessarily a high
lators for the Hamiltonian with the spectral density given bytemperature limit, i.e kT is large compared with the primary
Eq. (2.29. In practice, it is sufficient to ush; which satis-  frequencied, .
fies the conditiork TN,>7%(). Generalization of Eq(2.30 Upon evaluating the Liouville space Green functions of
to include additional primary oscillators is straightforward. the primary variables, neglecting their coupling to the elec-

In summary, our procedure for modeling the optical andtronic subsystem we notice that they can be modeled by the

energy transfer processes in aggregates consists of the fabllowing effective Liouville operatotfor details see Appen-
lowing stepsi(i) start with the Hamiltonian of Eq2.1) with dix B):

the matrix of spectral densities given by EQ.2). These

spectral densities can often be extracted from experinfiént; _ 1 2

transform to the Hamiltonian of Eq&2.5) through(2.7), and Lo= ; [M_apa* Pa-*+Ma2Qa+Qa—+7aQa-Pas
choose the set of primary oscillators, with parameters and

spectral densitied,(w) of Eq. (2.8) which reproduce the — iy M.KT(Q )2} 3.3
given Cpn(w) by means of Eq.(2.1D; (i) expand a é

Ja(w) in a form of Eg.(2.249 which yields the collec-
tive coordinatesq,,, a@=1,...Ng,; (iv) add collective
variables Qany_+1,.--0an, With Na=Nga+Nj,, where
N1a~%Q 4/ KT; (v) the multidimensional extension of Eq.
(2.30 to include several primary oscillators finally describes ~ dp
the ultrafast exciton and nuclear dynamics of the aggregate. g7 '[He'p]
In the coming sections we develop several approximate
schemes for solving Eq2.30.

The Liouville equation written in the Wigner represen-
tation for p(P,Q,7) adopts the form of the multi-state
Fokker-Planck equation:

1 AL n &p
32 MaQdmnal BaBn 55

mna

+

+i X MaQ2dyn2Qal BriBn ,p]

mna

Ill. FURTHER REDUCTIONS: THE MULTISTATE

FOKKER-PLANCK AND THE SMOLUCHOWSKI B {ip P p.
EQUATIONS > | M Pagg,  MaltaQayp
In Section Il we have shown that the secondary oscilla- P P
tors can be modeled by collective variabtgs, provided the ~Ya3p P.+ MakTﬁ pl+ie(n)[mpl.
spectral densities are represented in the form of (BE@4). a
The relevant bath relaxation rates are ti¥gy), as well as the (3.9
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Further reduction may be made in the limit of strongly most general equation that holds for an arbitrary spectral
overdamped nuclear motior,,>(),, where the collective density[Eq. (2.30], the fast bath, high temperature limit
momentaP, are much faster than the collective primary co-[Eq. (3.4)], the overdamped primary nuclear motipBEg.
ordinatesQ, and may be eliminated. Using the terminology (3.7)], and the high temperature limit of the latter, £8§.5).
of Section Il, the relevant Liouville space correlation func- All of these equations can be written in a unified compact
tions of nuclear variables can be modeled using distributiorfiorm by introducing variablex, which represent the rel-
functions in configuration space which only depend on theevant reduced variables for each case. Equati@30),
collective coordinate®, (excluding the moment®,). The (3.4, (3.5, and(3.7) then adopt the common form
procedure is presented in Appendix B and yields the multi- 95

state Smoluchowski equation fpfQ, 7): a—p:—i[ﬁe,ﬁ]— EE Dmna ér;énaj_p
T mna ' Xa +
T R 0 I %
(9—=—|[He,p]——2 _admn,a ;Bniw . - SR A J p
T mna Ya al +IE Dmnaxa[BmBn,p]sz Aaﬁ_(xﬁp)
mna ' aB IXg
+i1 > MaQ20mn2Qal BiBy 5] PP ..
&, 'atralmnalal Bmbn +3 B, 2z +He(D[Ap] (3.9
S 0% g (Q n kT p+ie(T)[ i, p] The parameterE:D_A B, andC for all four cases are
_— —_— T le(T P YA, by
2 Ya 0Qa é MaQa dQa P P

listed in Appendices A, B, and C. In the following sections
(3.5  we will use Eq.(3.9 to analyze the dynamics of aggregates.

Finally we consider a different level of reduction which
applies when the primary modes are overdamped, however
the temperature is not necessarily high. This situation can b?' GAUSSIAN PHASE-SPACE WAVEPACKETS FOR

. . . e IME- AND FREQUENCY-RESOLVED
described by the following matrix of spectral densities: FLUORESCENCE
MaQZ (072

cmn‘kl(w):22 damra ki 5 . 5. In this section we express the time- and frequency-
a 2 0"+ (Q3ya) resolved fluorescence signal in terms of Green functions of
(36 the Liouville equatiorfEqg. (3.9)]. We then propose a conve-

In this case the Liouville space correlation functions ofnient approximation scheme for calculating these Green
operatorQ, responsible for the system-bath interactions carfunctions, based on a Gaussian ansatz for the wavepackets
be modeled in the configuration space defined by the coorepresenting the dynamics of collective coordinates in phase
dinates Q, and the associated Matsubara modesSPace.

Qan,n=12,... . Theequation of motion derived in Appen- In Section Il we have derived the equation of motion
dix C becomes [Eq. (3.9)] for the density matrix in Liouville space, that
includes both electronic and nuclear variabtgs The latter
include primary relevant modes as well as collective coordi-
nates representing the relevant secondary oscillators. The
density matrix in Eq(3.9) is represented as andependent
SR A operatorp(x) in the full electronic space of states. We shall
Qa"'zS Qas) [BmBn.pl (x) of p(x) in the

dp P R— - p
£:_|[Heup]__2 Aadmn,a Br;B

mna

9
"9Qa),

+iY, MaQ2dmna

mna introduce matrix element;sml__mN Ny
electronic space by
+EILQ+0’_LA - 5 ~rRt R
2 a(?Qa a a(?Qa p Pm,..my.ng,..., nN,(X)E<0|Bm1...BmNP(X) n1---B”N’|O>'
5 5 4.
+ 2 Ags——| Quet 0as——|p+ie(D[ &, p], This allows us to recast Eq3.9) in a form of a set of
as (?Qas aQas

coupled equations of motion for nuclear wavepackets
3.7  pmn(X) wherem=m,...my,n=n4...Nys. pmn(X) represents
electronic coherences betwedih-exciton and N’-exciton
- o states N-exciton states populations are a special case
— 02 A, Aq wherebyN=N’).
Aq . 0= Wcot( m) When the external field is switched off, the Hamiltonian
a a a_ 3.9 (and the equations of motipronserve the number of exci-
_ o A, 47n(kT)? ' tons. This implies that equations for wavepackgis(x) are
Agn=2mnKT, 0= M2 (2K 2—A2" uncoupled for different values of\(,N). The perturbative
atta (2mnkT) a solution of Egs.(3.9) in £(7) involves solving equations of
In summary, we have obtained four equations of motionmotion for wavepacketp,,(X,7) in the absence of the
representing different levels of reduction. These include thdield.!® Settinge(7)=0 in Eq.(3.9) and projecting it into the

where we have used the notation
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electronic subspace with up to one excitation in the bra and We next introduce the Green function solution of the

the ket states of the electronic system, we obtain Liouville equation,
dpmn
=—IE (Emkokn— PmiExn) Pl T =2 Cnpa( 7 7 )P T). (4.5
pa
1 D, 9Pkn IPmk The time- and frequency-resolved fluorescence signal is
2% | TR ax, T oax, e given by140-42
) _ R t . ’y o~ : ’ ~
+Ik2 Xa(DmKapkn_pmkan,a) S(wsvt):f dtr[elws(tft )%’(t,t’)+e'“’s(t 7t)7;(/(t',t)],
4.6)
J azpmn (
+2, Ag— (X + B . 4.2 ~
% aﬁﬁxa( pPmn) Ea: “ X2 “.2 where ¢ is the correlation function of the polarization

o operator;140-42
Here latin indices can also assume zero val{@sde- P

notes the ground electronic state of the system |amdde- Tt =(m(m(t 4
notes the state whereby only thth molecule is excited and A =(pORM)). 4.2

all other molecules are in the ground state. We have used thggre A A(7) denotes the Heisenberg operator related to a

following notation. Ifm=0, or n=0, Eny=0, Dmna=0,  schrainger operatoA whose evolution is given by the full

andDp,=0. Form,n # 0 we have HamiltonianH(7) [Eq. (1.7)]. Equation(4.6) represents an
Enn=En 0t Jmn- (4.3 ideal signal® In reality we need to convolute it with the

) . temporal and spectral profiles of the detectiGgatin
We have thus expressed the density matrix of the SySte'Bevti):e“z For our [r)’nodel WZ have (ating

in the complete Liouville space as a matrix in the electronic

subspace and as an operator in the nuclear subspace. Each -

electronic matrix elemenp,, is now a wavepacket in Z(tt)= E fmbn? molt,t'). (4.8
nuclear space. Equatio@.2) allows the calculation of the

density matrix by solving coupled equations of motion for |n Egs.(4.8—(4.11) latin indices do not assume zero values.
these wavepackets. As shown in Ref. 19 the signal, to linear when the signal is calculated, we find that it naturally
order in pump intensity, can be obtained by following evo-separates into two contributions that differ by the time order-
lution of the wavepacketsoo, pom:Pmo, @ndpm, calculated  ing of the various interactions. These are responsible for the
in the absence of the external field. Allowing latin indices to Raman and the fluorescence components and will be denoted
assume the value 0 we can obtain the Liouville equation fOby Superscriptﬁ andF, respectiveb}_g We thus have

the wavepacketfEq. (4.2)] in a form

“ ?)’ ' :?;(R) ' ?:(F) '
dpmn(X,T)+i2 » X pe(x.r) =0 wa 7t t)H)=72R ")+ 20 (t,t"), (4.9
dr S5 mned M Ppal BT ' with

o t t' v 2 1\ G ’ "o !
Zm(tt) =00t X ft,dr f d7'( Zmoxo(t= 1) Lo0,0d T—t') Cona(t' = 7)pglew( )&l (1)

t t v ! 1\ o & ~ * '
+9(t'—t)% Jt dT'JideCf‘/bn,m(t —7')%000d T 1) Cmoko(t— 7)pg)er(T)ef (7") (4.10
and

Zht) =6t )E f er d7'(Cmogo(t=t") Canpi(t’ = 7') T ool 7' = T pg)e( e (17)
! t ! t' (o2 1\ o ’ ) AP * !
+o(t—t )k%q - dr ,d7'<-5/mo,qo(t_t ) Cankp(t’ = 7) Copal(T— ") pgew(T)e ()
t t
o003 [ ar' | drl St ~0Fmaselt= ) Zopol 7= e et (7)

+a<t'—t>2j drfdrwnm(t ) Fmapit= 1) Fposol 7' = pghe( el (). (410
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Here p, is the equilibrium ground state wavepackét;-) nal by following the evolution of reduced wavepackets. The

stands for the trace over bath variables, andsame procedure can be applied to calculate other types of

el(N=pre(7). optical signals. For example, four-wave mixing measure-
As shown in this and the preceding sections, the dynamments may be calculated by following the evolution of wave-

ics of excitonic variables can be modeled by following thepackets of Eq(4.2) as well as wavepackets representing the

evolution of reduced wavepackei$x,,r) (X, representing coherences between two-exciton and ground electronic

the relevant collective variablegiven by Eq.(3.9. Since states. The latter can be represented dyo(X,7) with

the polarization operator is expressed in terms of electronipy,o=pnmo and pmmo=0. The corresponding equation of

variables alone, and the latter do not change under the canotion, obtained from Eq.3.9), reads

nonical transformation defined by Ed2.14) and(2.16), the P

signal is given by Eqgs(4.10 and (4.11), with the Green Pmn,oz_i(Em+ En)pmno—i > (ImiPkn ot InkPmko)

functions defined by Eqg4.4) and (4.5 where the wave- ar ' k '

packetsp,,, are represented by functiops,(x,), the Liou-

ville operators”,, ,q are defined by Eq4.2), and

_Ez D apkn,0+ &Pmk,o
2ka mk, o (9Xa nk, « (9Xa

<p(T)>:Tr[p(X,T)]:f P07 412 +ik2 Xa(D_rnKapkn,O+D_nk,apmk,0)

Equations(4.8)—(4.11) together with the definitions of the

, 2
Liouville space Green functions,, ,q given by Egs.(4.2) 4 I Pmno
, ; + — + — .
and (4.5, form a closed system of equations that relate the QEB Aap axa(xﬁpmn'c’) ; Ba axXe,
fluorescence spectra to exciton transport. 4.14

A convenient method for computing the necessary Green
functions is obtained by making a Gaussian ansatz for the Equation(4.2) together with Eq(4.14 contains all the
wavepackets in the collective variableg, necessary information for calculating any time-resolved or

frequency-resolved four-wave mixing process.

Amn(7)

Pmn(X, T) = ————
mn Jde(27o (7))
V. EXCITON TRANSPORT AND FLUORESCENCE IN

1 _
><exp[ _ E% (0m3(7) ap(Xa=Xmnal 7)) THE SPECTRAL DIFFUSION LIMIT

In this section we assume diagonal coupling of the elec-
_ 4.13 tronic system to a bath, modeled by a finite number of over-
damped modes whose dynamics is described by the Smolu-
) o chowski equation. In the spectral-diffusion limit we can
This form depends on the following time dependent pa-|iminate the reduced wavepackets representing intermolecu-
rameters: The overall normalizaticsi,(7), average por- |ar electronic coherences. This leads to a closed set of
tions Xpn(7), and a covariance matriky (7). To obtain  gmojuchowski equations for electronic population wave-
equations of motion for these parameters, we substitute thﬁ‘ackets.
ansatz Eq(4.13 into Eq. (4.2 and require that they repro- Diagonal coupling implies that the exciton-bath interac-
duce the first and the second moments of the collective cQ;on constants are given by
ordinatesx,, .!° These equations of motion are given in Ap- me
pendix D. Instead of solving a coupled set of partial different ~ dmn,a= mndm.a (5.9

equations we now solve trajectories representing the evolyghere Greek indices denote the collective overdamped coor-

tion of these parameters. This solution immediately yieldsyinates. The matrix of spectral densities of E2.1) also
the Green functions necessary for calculating the fluoresssgymes a diagonal form

cence. It is important to note that we are making a Gaussian
ansatz for the evolution of the free system without the exter-  Cmnki(®) = SnndkiCmi(@). (5.2

nal driving electric field. Therefore, this ansatz yields only |, ihe overdamped limiy,,> (), the matrix of spectral den-
the Green functions. The actual density matrix or correlationjjiag represents a collection of overdamped Brownian
functions involve time-integrations, and after these integrabscillators}g
tions are performed, the wavepacket is no longer a Gaussian.
In the terminology of Ref. 19 these wavepackets merely give — —
the Liouville space generating function for the signal. Had Cmn(w)=§ dm.adn,aTA—z- (5.3
we made the Gaussian ansatz on the solution of the equation @
with the driving field, we would have obtained a much Here we have introduced the notation
cruder approximation for the signal. 2

Finally we note that in this section we have shown how /TQE & A= M (5.4)
to model the time- and frequency-resolved fluorescence sig- Ya

X (Xﬂ_xmn,ﬁ( 7))
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M, Q2 A <Ag,. 5.9
M= = (dm)? ’ 59
m This is known as the spectral diffusion limit. Since in this
d_ —d [E (d )2}_1/2 (5.9 limit we haver.<7,, and we are interested in the evolution
m o™ Em,a) & na : of the signal on a timescale>r., we can eliminate the

intermolecular coherences and make a Markovian approxi-

Defining the dimensionless collective coordinatgs mation, which vyields time-local equations of motion for

-12

_ 2 population wavepackei{svithout memory.
0=Qa Em: (cn.a) ’ 59 In the Smoluchowski equations for the coherer{dss.
we can recast the Smoluchowski equat(@y. (3.5] in a (5.8] A~ A since the size of an equilibrated wavepacket is
form g~A/2\. SinceA<A andW<A, the first two terms in the

i rhs of Eq.(5.8 dominate the equations of motion for coher-

p e — ALA . .

9= —i[He,pl+i > 2\ o0 oGl BiBm A ence wavepacketsvith m # n). Neglecting the other terms
T ma we obtain the following simplified equations for intramo-

lecular and intermolecular coherence wavepackets,

— J A, \2 9
+2 A {qa—’_(m) p

a a@ E dP 0 . . o
~ d: :_|Empm0+|2 zxadm,aqameI (51@
1 = 4 S A é’p . A A “
=52 Adlmal BB, 5| Hie(nlipl: |
“ *l+ p . : — =
(5.7 d_:m=_|(Em_ En)Pmn'HE zxa(dm,a_dn,a)qapmn
Upon taking electronic matrix elements of this equation, . _ ]
we obtain the equations of motion for the wavepackEis. T mr(Pmm= pon); - M#N. (513
(4.2], In the rhs of Eq(5.11) we have also retained the population
dpmn(Q,t) ) terms, neglecting the coherences.
dr =—1(Em—En)pmn(q,t) Equations(5.10 and (5.11) may be easily solved. As

indicated in Section 1V, the signal is given by Edg.9),

. i (4.10, and (4.1 with < being the Green function of the
+'§ 2N o(dm, o= An ) GaPmr( G, L) Smoluchowski equations. We assume that the aggregate is
- excited by a short pulse with duratidg<r,, so that in

( _ dm,a+dn,a) calculating the signat (t,t’) for t,t’>t,, 7. we can neglect
PR s 1 2 the short-time(Raman componentZ‘®). Evolution on the
2 first time interval defined by Eq5.10 and represented by
+< Ag ) i Green functionss(7— 7') and (7' — 7) in Eq. (4.1]) gives
2N,/ 99, the initial condition for the evolution of populations. Evolu-
tion on the second time interval can be described in the fol-
=i > Jrn—JknPmi( A1) (5.8  lowing way. The solution of Eq(5.11) connects the inter-
k molecular coherences to the populations,
We have thus shown that the system described by a spectral
density of Egs(5.2) and(5.3) can be modeled in the high o0y T) =1 fxdr’ exp{—i(E —E,)7
temperature limitA ,<kT using Eq.(5.8). e 0 o
To proceed further we need to take a closer look at the

— 9
+ Ayg—

Pmn(d,1)

various timescales of the system. The evolution timescale of +i> 2)\a(d_m a_d_r'l D™ [Imn
the coherence wavepackets,, pmo, andpmn, (for m # n) is ’ '
r.~A~1 Two timescales appear in the evolution of the X[ pmm( @ T) = pon(@y )], m#EN.  (5.12

population wavepacketS'.fjl)~A‘1 reflecting the relaxation

of the collective coordinates, an’)~W~* related to inter- [Here we have invoked the Markovian approximation substi-
molecular transporthere W is the energy transfer rate tuting p(q,7) for p(q,7— ') in the rhd. Substituting Eq.
WhenW<A we haver{)<7{?), the collective coordinates (5.12 into Eq.(5.8) for m=n, we obtain a closed equation
are fully relaxed at all times, and we recover Forster’s transfor the populations which together with E(p.12) defines
port limit [see Eq.(6.10]. In the opposite limitwsA, the evolution of the excited states wavepackets during the
nuclear dynamics is too slow to affect the coherent excitorécond time interval. Evolution on the last time interval
motion. Below we consider the more complex case wherebgiven by Eq.(5.10 connects the signal to the population

W~ A. Here we have only one timescale in the evolution ofWavepackets. -

population wavepackets,~ 7.gl)w TEJZ)' We further assume Since in this cas& ,,, vanishes whem # n, the fluores-
that the bath is slow compared with the inverse excitonence signal only depends on electronic populations and we
phonon coupling strength, i.e., have
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~ 5 plified Gaussian ansatz given by Eg.13 for m=n (since
zit’)= % Mom we are dealing with population wavepackets onigking the
matriceso,, to be diagonal, i.e., dmm)ij= 6ij0mmj- The

, — , equations of motion for the parametedig,m, qmm;, and
Xf dq EXF{—'(Em—g 2)‘adm,aqﬂ)(t_t )} Omm; Can be obtained by substituting EG.14) into Egs.
(D1), (D2), and Eq.(D3) for a= B. The fluorescence signal
X pmn(d,1). (5.13 is expressed in terms of these parameters by substituting Eq.

The electronic population wavepackets are obtained by son&-13 into Eg. (5.13. To obtain the initial conditions for
ing the master equation these parameters we calculate the zeroth, the first, and the

second moments of the collective coordinates for the initial

dpmm(d, 7) wavepacket$Eq. (5.19]. This yields the following expres-
dr sion for the signal:
A PRI Bt R =3 u? —i[Ep—2)
=§ AQE (Qe—dm o)+ 2N, E Pmm(0s 7) Z(tt') = — Mmamm(t)exp{—i[Ep mAmmm(t)]
- 1
+E 277'|‘-]mn|25[Em_ En_z 2)\a(dm,a_dn,a)qCv} X(t—t')} exp{_E(ka)zammm(t)(t_t,)z .
n o
X[par( @ 7) = e 6 7). (5.14 63

The equations of motion for the populations

with the initial condition
annEquPnn(q) are

o= [ ar [ o dan
Pl 72002 A7) e a7 =2 Wal Man= 2 W Danm, (62
XeXF{i( Em_E 2)\ad_m,aqa> with
’ Win(7)
X(7"= 1) ]em(T)en(7)pg(Q). (5.19 o 112
Herepg(q) is the ground state equilibrium wavepacket given = |‘]mn|2[(2)\m)20nn (2N 2T
by ’ ’
o\ 1(2) 5 Xex;{ 1 (Em_2)\mqnn,m_ En"_Z)\nan,n)2 (6 3)
a a Y 2 2 . .
Pg(Q):H \/Z_A exﬁ{—z( A qi} (5.19 2 (2Nm)Tnnmt (2Nn) Tnnn
“ Ta “ Here the rate®V,,,(7) depend on time through the time evo-
Equation (5.13 expresses the signal in terms pf,(q), lution of the parametersn=(Q,n;(7),0nnj(7)). Closed

which is obtained by solving a master equation for electronicequations of motion for these parameters are given in Ap-
populations[Eg. (5.14] with the initial conditions, Eq. pendix E.

(5.19. The last term in Eq(5.14 represents the coordinate- To obtain an expression for the time-dependent rate
dependent transition rate between statesand m. The  W(7) which closely resembles the Forster's fornffilave
S-function signifies that the transition in this approximation make a further approximation based on the following obser-
takes place only on the curve crossing surface, whereby theation. The initial conditiong§Eq. (E8)] for the wavepacket
energies of both electronic states dressed by the nuclei apgarametersg,,; and oy, for j # m are represented
degenerate. Assuming a single coordinate this equation by  their  equilibrium  values @y,n,;(0)=0 and
coincides with the result of Zusm&hand the curve crossing omm;(0) = (A;/2\))2. Neglecting in Eqs(E1) and(E4) the
surface is then a point. In the next section we will apply theintermolecular-interactions-induced terms we obtain

Gaussian wavepacket approach for the solution of(&G4). A )2
i
Ommj(7)=0, o -(T)=(—) : (6.4
mm;j mmj 2\
V1. GAUSSIAN WAVEPACKETS AND THE TIME- The set of evolving wavepacket parameters is now rep-
DEPENDENT FORSTER RATE resented byn=(Qnnn,0nnn). Substituting Eq.(6.4) into

Egs.(E2) and (E5) we obtain a closed system of equations

In this section we calculate the fluorescence sigBaks.  that describe the dynamics of wavepackets parametgrs
(5.13—(5.19] using the Gaussian ansatq. (4.13] for the  ando,,,. This system can be alternatively derived by mak-
wavepacketspy,(q). We assume that each molecule ising a simplified Gaussian ansatz using E6.4) for omm;
coupled to its own bath described by a single overdampednddq,,n; for j # m and only allowing the evolution of the
mode, and that the various baths are uncorrelated. The wavparameters|,,, , and on,mm. The expression for the time-
packet coordinates will be denotee-(q4,...,qy) WhereN dependent ratEEg. (6.3)] under this approximation adopts a
is the number of molecules. In this case we can use a sinform:
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Wi 7) = | Il 2 2 12 Gann(7) =1+ [Annn(0) — 1]eXp — An7),
mn mn Ar2n+(2)\n)20'nn,n(7) A, ) n , (_613
Xexp{—E[E”_Em_z)\nqnn,n(ﬂ]z] U””’“(T):(zxn) i U””'“(O)_(zxn exp(—2A,7).
2 AL+ (2N nnn(T) Substituting Eq(6.12 into Eq. (6.5) or into Egs.(6.6) and

(6.5 (6.8 we obtain an explicit expression foy,(7).* Similar
) ) expressions foW(r) based on the Fermi Golden Rule were
This result can be represented in a form that closely represented in Ref. 46. It should be noted further that Egs.

sembles Forster’s rate, (6.10 and (6.5) reproduce the rate in the nonadiabatic limit
= de i.e., to(largeJ) second order id. Equationg5.14) or (6.3),
Wmn(T):|Jmn|2f —fm(w)fi(w;7). (6.6)  however, can interpolate between the nonadiabatic and the
=2 adiabatic limits*’

The rate is given by the overlap of absorptiy( »),
VII. DISCUSSION

2\ V2 (0—Ep)? . : . :
fn(w)= Az expg — oA | (6.7 This paper is focused on theoretical modeling of ultrafast
m m electronic and nuclear motions in molecular aggregates that
and time-dependent fluorescerfdg¢w; 7), can be probed by various femtosecond spectroscopic tech-

nigues. Although we gave explicit expressions only for time-

2m and frequency-resolved fluorescence, the Green functions

(2Nn) 20 nnn(7) obtained here can be used in the calculation of numerous

) other nonlinear techniques such as pump-probe and photon

1 [w_En_Zannn,n( 7)] echo

Xexp — = 3 . (6.8 9 _

2 (2Np)onnn(7) Given the macroscopic number of solvent degrees of

freedom, ultrafast dynamics of aggregates is a complex

many-body problem. When the coupling to the bath is not

foc dwf (@) fx dow weak, and perturbative many-body techniques are not appli-
ml @)=

12
fi(w;7)=

These lineshapes are normalized to a unit area:

- g m(ein=1 (6.9  cable, the only practical way to treat the problem is by using
a reduced description based on keeping a few relevant col-
In the Forster’s limitJ/A<A the wavepacket param- lective bath coordinates.
eters equilibrate much faster than the population dynamics, The simplest reduction schemes only retains electronic
and upon substituting the equilibrium values variables. This leads to equations of motion that adopt a form
Ammn= OmnsTmmn=(Am/2\ ) into Eq. (6.3) we obtain the of the master, Boltzmann, Redfield, or Forster

Forster time-independent rate, equationg1?20-23.26-29 3| of these cases, it is assumed that
the bath relaxation time is much faster than the exciton dy-
. 1/2 1 (E —2\.—E )2 K . . . o
W= |Imrl2l ———|  exg — = — -0~ namics timescale. This assumption usually fails in the case
mueEm A2 + A2 2 A2 +AZ of femtosecond energy transfer in biological systems, and

(6.10 one needs to keep at least those bath variables whose relax-
ation times are comparable to the exciton transport time-

scale; only the faster bath degrees of freedom can be elimi-
nated. In the case of a harmonic bath linearly coupled to the

electronic system, all relevant bath information is contained

2 (w—E,+2\,)? in the matrix of spectral densiti¢&q. (2.2)] that represents

) ex{ - —zAz—} (6.1)  the antisymmetrized correlation functiofsq. (2.4)] of col-

n lective coordinate$Eq. (2.3)] which couple the bath to the
fr(w) is the relaxed(long-time form of Eq. (6.8 with  electronic variables. In the case of a Gaussian-Markovian
Ummm=1.0nnn=(An/2\p)?. (GM) spectral densitygiven by Eq.(2.24) for Ng=1] such a

Equation(6.2) generalizes Forster’s equations to accountcorrelation function decays exponentially in time and can be
for finite nuclear relaxation ratdsompared with the transfer modeled by a single stochastic variable. Since any spectral
rate). This results in time-dependent rates associated with thdensity can be approximated by a superposition of GM spec-
nonequilibrium nuclear wavepackets. tral densitiegwhich amount to a discrete Laplace transfgrm

In concluding this section, we shall consider a simplerthe antisymmetrized correlation functions of the collective
approximation. Neglecting intermolecular coupling in the coordinate can be modeled by a set of stochastic variables.
equations of motion for the wavepacket parametgrs, and  However, an important result of the present paper is that to
onnn [EGs.(E2) and(E5)] (which means that we neglect the describe the exciton dynamics one needs to model not only
influence ofJ on the evolution of the form of wavepackets, the antisymmetrized correlation functions of collective coor-
retaining its influence on the evolution of populatipnee  dinates but the symmetrized ones as well. The latter depend
can solve these equations and obtain on temperature and contain infinite sums involving Matsub-

This rate can be obtained from E.6) upon substitution of
the spectral-diffusion forms of the absorptidp(w) [EQ.
(6.7)] and the relaxed fluorescence spedtiew),

2
fé(w):<xz

n
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ara frequencies2nkT/%A,n=1,2,...[see Eq(2.26)]. As can

be seen from Eq(2.26), each term in the infinite sum is
represented by a stochastic variable with the correlation time
given by the inverse Matsubara frequencyrikT/A. This
implies that the Matsubara frequencies constitute a set of

1)

(2

P d;

PaQa; Pajs Gaj

j=1,2,...

a=1,...,L; j=1,2,...

N=x

N =0

4577

additional relaxation rates. In practice it should be possible
to keep only a finite number of stochastic variables repre-
senting the Matsubara frequencies withiN, where
(2mNkT/4) 1 is equal to the fastest system timescale.

When the temperature is sufficiently high, i.e., when
even the first Matsubara correlation time#2kT/4) ! is
fast, one does not need to incorporate stochastic variables
representing the Matsubara frequencies, and the bath is de-
scribed on the classical level. On the other hand, even if the
bath is infinitely fast on the classical levighis corresponds
to the case\ ,— in Eq.(2.24)], its relaxation time may not
be faster than (2kT/A)~1; this is a quantum effect that
naturally becomes stronger at lower temperatures.

The approach presented in the paper is based on calcu- (HT)
lating the relevanfantisymmetrized and symmetrizedor- ©
relation functions of collective coordinates using the given Qa
spectral densitieGvhich may be obtained either from experi-
ment or theory and modeling them with correlation func-
tions of a set of effective collective variables evolving with
Closed, equations u3|.ng an effectlve Liouville operator. TheFIG. 1. The hierarchy of reduction schemes considered in the paper. The
modeling procedure is not unique and we have developed st line in a box is a list of variables representing nuclear motions; the
hierarchy of reduction schemes and provided guidance as &®cond line shows the values assumed by the indices; the third line gives the

how to choose an adequate reduced description scheme tmal number of reduced variables. A solid line represents a unique transfor-
each case mation; a dashed line stands for a non-unique transformation. OD and HT

- . . _ denote reductions due to overdamped motion of primary oscilla@iz3 or
The hierarchy of reduced reduction schemes is depicteghe high temperature limitHT).

in Fig. 1. Each box represents a different level of reduction,
the first line in a box is a list of variables, the second line
represents the values assumed by indices, and the third line
shows the total number of bath variables. A solid line with
an arrow means a unique transformation, a dashed line re
resents a non-unique transformation.

Case(1) in Fig. 1 is the full description of the nuclear
variables represented by a set of oscillator varialplj’eﬁpj’

PP

(3)
P.Qu; ¢
a=1,...,L; ju=1,...,N,

N=2L+N++Ng

(OD) (HT)
(4) (5)
Qur ) PuQu
a=1,...,L; j,=1,...,N, a=1,...,L
N=L+N+-+Ng

N =2L

The equation of motion for the reduced wavepackets adopts
?he form of Eq.(2.30. As shown in Section Il, the number of
Matsubara variableN is given byN;~#Q/KT and is man-
ageable provided the temperature is not too low. It is not

with the Hamiltonian given by Eq2.1). In Case(2) the bath possible to. use a fast bafh»Q for modeling in a situation
oscillators are represented by a few primary oscillatordt{:~KT, since one needs to incorporate the Matsubara os-
P, Q. coupled to the electronic system and a macroscopic s&llators with nkT<# A which will increase the number of

of solvent oscillator variableg,; ,d,; coupled to the primary ~ Collective variables. .

oscillators. In Casél) the relevant properties of the bath are ~ When the spectral densitigS(w) do not have strong
given by the matrixC,,, () [Eq. (2.2], in Case(2) they  features one can model directly the spectral dens(lies)

are given by spectral densitidg(w) [Eq. (2.8)]. The trans-  as a& superposition of overdamped contributipgg. (3.6)].
formations (2)-(1) is unique and given by E¢2.11). The  This leads to levet4) in terms of variable®,,Qas (Qas are
transformation (1)-(2) is not unique. The descriptig@) is ~ denoted agY) in Fig. 1), and the resulting equation of mo-
useful since the spectral densitigs,, i (w) typically have a

la
tion for reduced wavepackets is E8.7). In Section Il the

set of maxima related to coherent nuclear motions coupled teeduction has been obtained by modeling the spectral densi-
solvent degrees of freedom. Levéd) is very convenient ties of Eq.(3.6) directly, however, it can be alternatively
formally for modeling a spectral density with a set of derived by eliminating the fast momentum variabRs in
maxima. As shown in Section I, Ca%&) can be success- case(3) when the primary oscillators are overdamped.

fully modeled by a reduction schen®) based on introduc- WhenQ,<kT (high temperature limjtall secondary

ing a finite set of stochastic Vafiab|€l§°j)a instead of a mac- variables can be eliminated; this leads to le(I retaining
roscopic set of solvent variables. The spectral densitiesnly the primary variable®,,Q,. The resulting equation of
J.(w) describing the coupling of solvent variables to themotion is the multi-state Fokker-Planck equat|éy. (3.4)].
primary modes should be modeled in the form of Efj24.  Again this level can be obtained in two ways: starting either
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with (3), or directly with (2), and eliminating the secondary A quantum canonical transformation in the Salinger
variables. Finally, leve(6) is obtained by assuming both the space is a linear unitary transformatibh in the space of
high temperature limit and overdamped primary oscillatorsstates. It must be unitary to conserve the basic structure of
The reduced wavepacket which depends on the variablede space of states, i.e., the scalar product. The basic struc-
Q. satisfy the multi-state Smoluchowski equati¢fq.  ture of the Liouville space is the trace. A canonical transfor-
(3.9)]. This can be derived by either taking the high temperamation in Schrdinger space generates a canonical transfor-
ture limit of (4) and eliminating the Matsubara variables mationU acting in Liouville space defined as

Q.s, or by applying the overdamped limit {®) and elimi- aA A a

nating the fast variableB, in a standard waj® Up=U"pU, (A2)

The hierarchy of Fig. 1 is related to various reductionwhich conserves the trace, i.e., Ug)= Tr p. However,
schemes with respect to nuclear variables. Reduction of ele@ne can use a more general class of transformations than Eq.
tronic variables(e.g., elimination of electronic coherenges (A2) which consists of all linear invertible trace-conserving
can be obtained at all levels of this hierarchy, providedoperatorsU acting in Liouville spacdsee Eqs(2.14 and
exciton-phonon interaction is wedRedfield theory or in-  (2.15]. One can apply a canonical transformation to opera-
termolecular coupling is smafForster theory tors, such a transformation should satisfy the property given
ACKNOWLEDGMENTS by Eq.(2._18); this Iead; to the definitioq given_by E®.17).

Consider a canonical transformati&h defined by Eq.
(2.16 which satisfies Eq(2.195. Applying Eq.(2.17) to our
basic operators we obtain

We gratefully acknowledge the support of the National
Science FoundatiofNSP), the NSF Center for Photoinduced
Charge Transfer, and the Air Force Office of Scientific Re-

search. Q.=Q., pj.=pj+, G_=0;-, P,=P,,
APPENDIX A: CANONICAL TRANSFORMATIONS IN c c (A3)
LIOUIVILLE SPACE AND THE GENERALIZED i+ =0j+— mQJr , PL= P,+2 mpj, .

1% P

FOKKER-PLANCK EQUATION
In this appendix we present the details of the canonical ~The Liouville operatorLe, from Eq. (A1) written in
transformation introduced in Section[Egs.(2.14—(2.16]  transformed variables adopts the form of EB.19 where
and give the values of the paramet&rD,A, andB in Eq.  We omitted the primes. The system-bath interaction in Eq.
(3.9 which generalizes E¢2.30) to an arbitrary number of (2.19 involves the superoperatops_ andg; ., only [see Eq.

J

primary oscillators. (2.21)]. The equation of motiofEqg. (2.30] is derived in
The motivation for performing a canonical transforma- Section Il starting with Eq(2.19. .
tion is the following. As can be seen from Eq8.5—(2.7), Generalization of E¢(2.30 to include an arbitrary num-

the Liouville operatolL.,=H., related to the Hamiltonian Per of primary oscillators is straightforward. Consider Eq.
|:|ep in the case of a single primary oscillator can be written(2-30 with L primary oscillators described by the variables

in a form P.,Qawitha=1,...L. Instead of Greek indices we need to
use double indicea«, wherea denotes the primary oscilla-
1 ~ t led to the secondary variabl =1,...N
Lep:_P+P7+V7(Q) or coupe_ _ Yy Q8. & P |\ P
M The equation of motion has a form of E@.9). The vector
DL D c x of variablesx,,a=1,...,2+N;+---+N_ is given by
+2 L Rk bt _17 +mjwj2<qj+——m_(]u_2Q+) X = (PlanaQ111---rQ1Nl;P2-Q2aQ21a---vQ2N2;---;i_1QL!
) ! 7 qu,...,qLNL). The non-zero components Bf andD are
Ci _
X qu_ m':sz) ’ (Al) Dmn,p(a):Dmn,ﬂ(a)+1EMaQez1dmn,a: (A4)
1™ .
where we have used the notation introduced in €g12. with
The system-bath interaction involves tft@mmuting bath u(@)=2(a—1)+Ny+...+Ny_;+1. (A5)

super.op_erat.oreh+ andq;_ . Our goal is to obtain a reduced Non-zero components & have the form
description in terms of wavepackets that depend on collec-

tive coordinates alonéno collective momenda However, Buaa=NaaTaa> (AB)
fche algebra of superoperatqrs. an(_JIqji can be represent_ed with 0< <N, and
in the space of wavepackets which depend on coordinates

and momenta(the Wigner representatipnOn the other v(a,a)=2(a=1)+Ny+ - +Ny_;ta+2. (A7)
hgnd, the superope_ratqm§_ _anqu+ form a closed algebra The non-zero components &f are

with [pj_ ,0x+]=—id) which can be represented in the

space of wavepackets depending on coordinates alone. How- A _ i A —M.0O2

ever, to apply this representation one should recast the ~#@*le@™ \_» “w@.w@+1=Tata
system-bath interaction in a form which involves the opera-

torsp;_ andq;. , notg;_ andg;, . This can be achieved by Ap@man="1 Ayawu@= Yaelaa (A8)

applying the canonical transformation in Liouville space rep-

AV a),v(a,a :A a-
resented by Eqg2.14—(2.16). (a,@),r(a,0) " ra
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APPENDIX B: DERIVATION OF THE MULTISTATE

FOKKER-PLANCK AND SMOLUCHOWSKI Azaza-1= " 0 Aza-12= MaQ2, (B4)
EQUATIONS a

In this appendix we outline the derivation of the multi- ~ A2a-12-1=7Ya, B2a-1=7aMakT.
state  Fokker-Planck [Eg. (3.4] and multistate To derive the multistate Smoluchowski equation we rep-
SmoluchowskiEg. (3.5] equations. resent the matrix of spectral densities in the overdamped

In the high temperature limit for the Ohmic spectral den-limit in a form
sity [Eq. (3.1)] the evolution can be described by the multi- M.02 (02/y.)
state Fokker-Planck equatidhwhich can be rederived using Comit(©) =2 do o g —2 @ a27a _
the scheme of Section Il as follows. m a omTEE 2 0?+ (04 ya)?

Adopting the Wigner representation for primary oscilla- (B5)
tors, we introduce the reduced wavepackefB,Q) which  Since the nuclear variables in Eqg.1) and (2.6) are con-
are operators in the electronic space; the operatoraected by a linear canonical transformation we have
P.+ ,Q,= in this representation are

p Qa= 2 Cayd] . (B6)
Pa_E_iﬁ, Pa+EPa, )
a and comparing the last terms in E¢8.1)—(2.6) we obtain
J By o maM 202
=j— = , amnVigizg—
Qa- I(?Pa' Qa+=Qa. dJ o= ; leacaj- (B7)

. Lo . i
Consider the Liouville operatok, given by Eq.(3.3) Combining Eqs(2.2), (BS), and (B7) yields

that acts in the space of reduced wavepackéB Q). The

equilibrium reduced wavepacket is the stationary point of the — B 1 w(Qﬁ/ Ya)
L_iouville equation with the Liouville operatdr, it has the Jap(@) = 5abMaQ§ w02+ (0 y,)?’ (B8)
orm
) where
O, P M Q502
— Cy
Po(P.Q)= H 27kT ex’{ (ZMakT+ oKkT )|’ Jab(w)z; 4; ZJ A s 80— w])— S+ o))].
i @i
(B2) (B9)

A straightforwgrd calculation shows that the !_iouville Equations(B6)—(B9) imply the following form of the corre-
space Green functions of the superoperaRys, Q. in the lation functions ofQ,.. operators in a system were the cou-

reduged sys_tem calculated with respect t_o the eqUiIibriurTbling of the electronic degrees of freedom to the nuclear is
density matrix of Eq.B2) reproduce the high temperature neglected

limit for the Green function of the corresponding super-

operators in the complete Liouville space, with the Liouville _ f‘” d_w—
operator (Qar(NQu+(0)= | 5 Jap(w)cot] 5| coswr),
(B10)
(M Pa+ Paf +M QaQa+ Qa)
(Qa+(7)Qp- (0)>=—|0(7)f 23,p(w)sin(w7).
Z p]a+p]a— (B11)
! The Liouville space operatdr=H,,  corresponding to
5 ( ) the HamiltonianH, of Eq. (2.1) can be presented in a form
ja®ja QJa+ m]awjza Qa+ L:Le+LB+Lint- (BlZ)
with L,=H._ and
X Qjaf m 2 Qa ) (BS)
lana

1
— 2
_ _ _ _ Lp= E ,pj+p17+m [ 0], qj_,
Since the secondary-oscillator variables are not involved in i

interactions with electronic degrees of freedom, this imme- (B13

diately yields the multi-state Fokker-Plank equatiffq. Lint= Z M deamn(B Bn):Qa-

(3.9)].
Equation(3.4) can be also written in a form of E¢3.9).

In this case, the vector of the variablesx,,,a=1,...,4 is — 2 Ma02da mn(BiBn) - Qas -

given byx=(P,Qq,...,P_,Q.) and non-zero components amn

of D,D,A, andB are given by The interaction of the bath with the electronic degrees of

— freedom involves the operatof3,. only. The correlation

Dmn,Za—lszn,Za:Maﬂidmn,av functions of these operators with respect to the Liouville
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operatorLg [Eq. (B13)] are given by Eqs(B10) and(B11)
and in the high-temperature limit adopt a form

KT
(Qa+(1)Qu+(0))= a7 &L — (0 va)l ],

(B14)
. leya 2
(Qu+(1)Qy-(0)) =~ 0pfi(7) = 13 exi — (0 70) 7).
: (B15)

V. Chernyak and S. Mukamel: Energy transfer and spectroscopy of molecular aggregates

5 exp(— Agl )

<Qa+(7')Qb+(0)> = Sap

. (C1)

+ 521 U'_as exp(— Aas| T|)

The correlation functionQ,, (7)Qp_(0)) still has a
form of Eq.(B15) and{Q,_(7)Qp_(0))=0. The parameters
04,M,,04s, and A, are defined in Section IIEgs. (3.9)].
To model the Green functions of EqEC1) we introduce

operators

i Qg/ Ya i
M.Q2 9Q,’

which act in the space of wavepacket®Q) with the free-

bath Liouville operatot g of a form

Qa+=Qa: Qa-= (B16)

Q.s representing the Matsubara frequencies terms in Eq.
(C1) given by the sum oves. To model the correlation func-
tions we define the operato€3,, by

Qar=Qa+ 521 Qas- (C2)

i3 o OI | The P, v he frn ofE9219, The et
" SubstittutiEg_ Eq.]EBl7) into Eq. (B12) yields the Liou- L, 5
ville operatorL in a form LB:IaZl Aap?Qa Q.+ Uaa_Qa)
L=Le= 2 Maida miQa(BrBy) - LN, B
3,2 R ) (€9

< O d
=1 2 _da,mn(Br;Bn)Jr @

2
a
mna Ya Strictly speaking, we need to uséN,=o for

a2 g KT o a=1,...L; however, in practice it is suffice enough to keep
+i E _a _( Qut —— _) ) a finite number of Matsubara frequencisse the discussion
a Ya 9Qa Mo 9Qa in Section 1). Substituting the bath Liouville operator from
By including the external field, the Liouville equation with Ed- (C3) into Eq.(B12) we obtain Eq(3.7).
L given by Eq.(B18) yields the multi-state Smoluchowski ~ TO represent Eq.(3.7) in a form of Eq. (3.9 we
equation[Eq. (3.5)] that can also be represented in the formintroduce the vector  x of variables
of Eq. (3.9 Xor =21, . L+N;+...+N_ by X=(Q1,Q11,---

In the case described by E¢3.5 the vector ofx of  Qin;;Q2,Qz1,---Qa2n,i--- QL Quay---Qun,)- The non-zero

(B18)

variablesx,,a=1,... L is represented byx=(Q,...,Q.)  components oD are
with the parameters of Eq3.9) given by 02
QZ - Dn V(a):_admnav (C4)
Dmn,a:_admn,aa Dmn,a:Maﬂgdmn,aa Ya
Qg KT (B19) where
Aa=—, Bs;= .
Ya YaMa v(a)=a+N;+--+N,_;. (C5)
Forv(a)=sa<wv(a+1) we have
APPENDIX C: EQUATIONS OF MOTION FOR _
OVERDAMPED PRIMARY MODES Dine=MaQ2dmna- (C6)
I_n this appendix we develop a r_eduction scheme whichrpa non-zero components &fandB are
applies when the primary bath oscillators are overdamped,
but, the tem_pergture is not necessarily hlgh.. . Ava var=Aas Bv(a)zAaU—ar (C7)
The derivation follows the steps used in obtaining the
Smoluchowski equatiofsee Appendix B The only differ-  gnd
ence is that instead of calculating the Liouville space Green o o
functions of the operato®,- [Egs.(B10) and(B11)] in the Aa)s @ +s=Nas Bv(a)-%—s:AasO'—aSv (C8)

high temperature limifleading to Eqs(B14) and(B15)], we

evaluate these correlation functions exactly, resulting in ~ where 0<s<N,.
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APPENDIX D: TIME EVOLUTION OF GAUSSIAN

dU’ a d (X)
WAVEPACKETS IN PHASE SPACE _Zmnaf Pmn

dr aan' dX(X ~ Xmn, a)(xﬁ an,B)T
In this appendix we derive equations of motion for the

parameters of the Gaussian wavepackets (4.13] assum- _ i o j dpmn(X) (D3)
ing that Eq.(4.2) holds for the first and the second moments amp P dr ~
of collective coordinatesg,, .

The time derivatives of the wavepacket paramefEg Combining Eqs.(D1)—(D3) with Eg. (4.2, we obtain,

(4.13] are related to the time derivatives of its moments asfier a straightforward calculation,
follows:

damn dpmn(X) da,
dr =de dr ' (Dl) Tn:_izk: (Emkakn_Eknamk)
dxmn,a_i d dpmn(x) ) _ _
dr XX —sz (Dmk,,uxkn,,u.akn_Dkn,,u.xmk,,uamk)- (D4)
M
d
anaf dx pmn( ), (D2) .
amn The equations for the parameteqg, , have the form
den,a
dr - _a_E [Emkakn(xkna ana) Eknamk(xmka Xmna ]+a_2 (Dmkaakn+Dkn aamk) 2 Aa;/,xmn,u
mn mn

+a z DmKM[O'knaM+(ana ana)xknu]akn a Z Dkny[o'mkay+(xmka ana)xmku]amk (D5)
mnKku mnKu

Finally we have for the parametess, .z

do—mn,aﬁ i
BT _2 (Aa,uo'mn,ﬁﬂ"'AB,uo'mn,ap)+25aﬁBa_ _E Emkakn[o'kn,aﬁ_o'mn,aﬁ+(an,a_xkn,a)(xmn,ﬁ
dr o a-mn k
i 1 1
_an,ﬁ)]+ a_E Eknamk[o'mk,aﬁ_o'mn,aﬁ+(an,a_ka,a)(xmn,ﬁ_xmk,ﬁ)]+ _E E[Dmk,a(xkn,ﬁ
mn k Amn Kk
1 1
_an,ﬁ)+ Dmk,ﬁ(xkn,a_xmn,a)]akn+ a_; E[Dkn,a(xmk,ﬁ_xmn,ﬁ)+ Dkn,ﬁ(xmka_xmn,a)]amk
mn
+ _2 Dmk,u[o'kn aﬂ(xkn w2~ Xmn, ,u) + oy, a,u(xkn 8~ Xmn, ,8) + oy, ﬁ,u(xkn a” Xmn, o)+ (Ukn afB
~ Omn, a,B)an,u]akn_ a_E Dkn ,u[o'mkaﬁ(xmkﬂ an,u)_l_o-mk,a,u,(xmk,ﬁ anﬁ)+UmK,3/L(XmKa Xmn, )
mn I-t
+(0'mka3 Omn, a,B)an M]amk"' 2 [Dmk,u(xkna Xmn, a)(xknB an,B)an wQkn™ Dkn ,u(ka,a Xmn, @)
X(kaﬁ_xmn,ﬁ)xmk,uamk]- (D6)
|
APPENDIX E: EQUATIONS OF MOTION FOR dCImmj
WAVEPACKET PARAMETERS IN THE SPECTRAL dr _qumm,J
DIFFUSION LIMIT
_ _ _ _ £ 2 (7) (Can — Ao
In this appendix we present equations of motion for the m Amm nniHmm
wavepacket parameters=(q,, j,0nn,;) and the initial con- i
ditions which describe the evolution of the system in the _Zkioji,iji(”)Wmi(’?)a
spectral diffusion limit(see Section \Jl The collective co- — 20T Tim( D) Wim( 7) (E1)

ordinates satisfy the equations
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forj # mand
dQmm,m nn
dT _Am(qmmm 1)+2 mn(ﬂ)(qnn,m_qmmm)'l'; 2)\m0'nn,men(77)Wmn(77)a_
mm
+; 2)\mo'mm,anm( 77)an( 77)1 (E2

where we have defined

T ( )= m_2)\mqnn,m_En+2)\nqnn,n
mnt 7= (2)\m)20nn,m+(2)\n)2‘7nn,n

For the second moments we have

(E3)

dO'mmj — AJ 2 Ann
T:_ZAj Ommj— N +E [( qnnj qmmj) tonnj— O'mmJ]Wmn(W) —4\; iTii.i m](77)
J
a..
X (5, = G Wing (1) = — (2803 DA Ti) (1) 1P~ [ Tmy()] 2}wm,w (2N o) TR P
mm
~[Tim( M1 Wjm(7), (E4)
forj # mand
do 2
—nn _ZA Ommm™ e +E [(an,m_qmmm)2+(O'nn,m_o'mmm)]w mo'nn,men(n)
Cdr 2\m n mm

Ann Ann
X(qnn,m_ qmmm)Wmn( n amm ma'nn,m)z{[T(rr}%( 77)]2_ [Tmn( 77)]2}Wmn( 77) a_

+§ (2N mmm) LT 2= [Tom( M) 12 Wom( 7), (E5)

where we have introduced the notation
1

Ton(m)= [(2hm) 20t (2N 2ol 72 (E6)
The initial conditions are
- . A
anm(0)= j_md’r’dr” eX[{IQm(W— ') — 7(7’”— )2 e m( em(7'), (E7)
- A2 | An
Ommj(0)= mjlam O)Lde/dT”m(qﬂ_ 7') ex;{mm(qﬂ—r’)— 7(%’—7’)2 em(7NeN(T),
2 (E9

em(7)en(7').

AJ 2 1 '’ ! A
Tmmj(0)= 2_)\1 mJamm(O)—Zj dr'd7 (7" —7)? expiQun(7'—7')— — (7'—7')
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