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Electronic correlation effects which can be directly probed by ultrafast four-wave mixing are
predicted using the electronic-oscillator representation of conjugated polyenes. Comparison with
inorganic semiconductors is made possible since the semiconductor Bloch equations projected onto
the lowest exciton are obtained as a limiting case. A sign difference in a nonlinear scattering
potential clearly shows up in the Wigner spectrogram representing the time and frequency resolved
signal. [S0031-9007(96)01433-0]

PACS numbers: 78.66.Qn, 42.50.Md, 71.35.Cc
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The calculation of electronic excitations in conju
gated polyenes constitutes a complex many-body pro
lem due to the strong correlation effects expected f
one-dimensional electronically delocalized systems.Ab
initio quantum chemistry methods are limited to sma
systems [1,2]. One important consequence of electron
correlations is the reversal of the positions of the first e
cited 1Bu and 2Ag states [1–3]. This shows up in two-
photon resonances and affects the fluorescence quan
yield. In this Letter we demonstrate how ultrafast reso
nant four-wave mixing (FWM) can be used to provid
some alternative, dynamical, signatures of electronic co
relations in conjugated polyenes. We further compa
these with many-body effects observed in inorganic sem
conductor nanostructures [4,5]. Our analysis is based o
collective electronic-oscillator description for the respons
of many electron systems [6], which provides an intuitiv
picture for the optical response.

We start with the Pariser-Parr-Pople (PPP) Hamiltonia
[7], which is known to capture the essential electron
properties of thep electron system [1,8,9].
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m,s ĉn,s 1
X
n

Uĉ
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Here ĉy
m,s sĉn,sd is a creation (annihilation) operator for

an electron with spins at site m snd. The first term
is the tight-binding Hückel Hamiltonian, wheretmn is
the transfer matrix. The Coulomb interaction is give
by the next two terms,U is the on-site (Hubbard)
repulsion andnnm ­ f1 1 srnmya0d2g21y2 is given by
the Ohno formula, witha0 ­ 1.2935 Å, where rnm is
the distance between thenth and mth site. Within the
dipole approximation the coupling to an external fiel
polarized along the chain axis is given by2EstdP̂, which
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is the last term of the Hamiltonian; heree is the electron
charge andzsnd is thez coordinate of thenth atom along
the chain.

We consider a self-diffraction FWM experimen
where the system is excited by two laser pulses w
wave vectors k1 and k2, and the diffracted signal
is monitored in the directionkS ­ 2k2 2 k1. We
investigate this signal for excitation of the lowest res
nance. Using the time-dependent Hartree-Fock (TDH
scheme, we follow the time evolution of the reduce
single-electron density matrixrs

nm ­ kĉy
ms ĉnsl [9] by

solving a closed set of nonlinear equations. The nonline
polarization that generates the FWM signal is given
PSstd ­ 2e

P
l zsldrllskS , td. Within the TDHF, the

nonlinear optical response of many-electron syste
can be exactly mapped onto a coupled set of collect
classical oscillators, representing the electron-hole p
component of the single-electron density matrix. Th
oscillator representation has been used to establis
dominant mode picture for the off-resonant response
conjugated polyenes. Since the spacing between
oscillator frequencies in polyenes is large compared
the spectral width of even very short laser pulses, ve
few oscillators will contribute resonantly to the prese
x s3d signal. Our numerical calculations are done in re
space and include all oscillators. For the interpretati
of our numerical results, where we resonantly exc
the 1Bu oscillator, we found it sufficient to explicitly
consider only two oscillators, the lowestBu oscillator
with frequencyV1 and oneAg oscillator atV2 ø 2V1,
representing a two-photon resonance, explicitly. In se
ond order, otherAg oscillators contribute off-resonantly
to the response. The effects of thesevirtual oscillators
are included via renormalizations of the parameterss1

and V1 in Eq. (2). We decompose the equations for th
coordinates and the momenta of the oscillators given
Ref. [6] into clockwise and counterclockwise rotatin
complex parts, and perform a rotating-wave approx
mation. We then obtain the following equation
© 1996 The American Physical Society 3471
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for the two oscillators with coordinatesp1 and p2
sh̄ ­ 1d:

≠tp1 1

µ
iV1 1

1
T2

∂
p1 ­ iEstdsm1 2 s1jp1j

2d

2 iV1jp1j
2p1 1 im12Estdp2

2 iV12pp
1p2 , (2)

≠tp2 1

µ
iV2 1

1
T 0

2

∂
p2 ­ im21Estdp1 2 iV21p2

1 . (3)

The polarization is given by

PSstd ­ m1p1std 1 m12pp
1stdp2std . (4)

m1 is the dipole moment of oscillatorp1. The nonlinear
character of Eqs. (2) and (3) is given by the parameterss1,
V1, m12, m21, V12, andV21, all of which are uniquely de-
termined by the PPP Hamiltonian [6].s1 determines the
magnitude of the phase space filling, which is the on
nonlinearity present in a simple two-level system [10
The nonlinear potentialsV are induced by many-body in
teractions. By considering a collection of coupled tw
level systems within the local-field approximation, on
obtains the nonlinear coupling termV1 [11]. It describes
the scattering of oscillatorp1 off itself. Alternatively, in
terms of the global eigenstates of the system, this te
may be derived from a single three-level system. Th
two nonlinearities,s1 andV1, are included in the semicon
ductor Bloch equations (SBE) [12,13], extensively us
for the description of optical properties in inorganic sem
conductors. Recent time-resolved [4] and phase-sens
experiments [5] have been interpreted using a Ginzbu
Landau-like nonlinear wave equation for the1s exciton
amplitude [4,10]. It is equivalent to the ordinary Bloc
equations with local-field corrections [10,11]. Formall
this equation can be derived by projecting the SBE
the 1s exciton level, neglecting coupling to other stat
and pure dephasing, i.e., assuming that the populatio
given by the absolute square of the polarization [5]. T
wave equation for the exciton amplitude is a special c
of Eq. (2), if the second oscillatorp2 is neglected. Note
that, for a linearly driven harmonic three-level syste
(i.e., equal energy spacing and dipole moments sca
as

p
2), all nonlinear terms cancel identically, and the o

tical response is purely linear. The PPP Hamiltonian
polyenes requires a multimode extension of Eq. (2).
the present picture we have one additionalp2 oscillator
with V2 ø 2V1, representing a two-photon resonance
4.52 eV . m12 and m21 are dipole moments between th
two oscillators, whileV12 andV21 are potentials describ
ing their scattering.

The numerical studies shown below compare th
models. The first (a) is the Hückel model whe
electronic correlations are neglected from the outs
V1 ­ V12 ­ V21 ­ 0. We use the following parameters
tnn ­ U

P
m nnm, tnn11 ­ b̄ 2 b0Dzn, with b̄ ­ 22.4 eV ,

b0 ­ 25.0 eV Å21, whereDzn is the deviation of the bond
length from its equilibrium value, andU ­ 0 eV . For the
3472
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PPP model (c) we useb0 ­ 23.5 eV , U ­ 11.13 eVye,
with a dielectric constante ­ 1.5 [14]. These parameters
reproduce the correct band gap of2 eV for polyacetylene
in the long chain limit. However, the effects predicte
in this Letter should apply to other conjugated systems
well. For model (c) all coupling terms in Eqs. (2) and (3
are finite. Calculation (b) is an intermediate case, whe
we use the PPP parameters but neglect thep2 oscillator
and all contributions from virtual oscillators appearing a
two-photon resonances. This calculation, in which only
single oscillator is considered explicitly, is performed i
order to trace the origin of correlations and to establish
connection with the SBE [12,13].

In the following calculations we investigate a linear30
carbon atom chain. The two laser pulses have Gauss
envelopes, i.e.,̂E expf2styt̄d2g, with t̄ ­ 20 fs. We have
used phenomenological lifetime-induced dephasing tim
of T2 ­ 80 fs andT 0

2 ­ 40 fs for oscillatorsp1 andp2,
respectively. For the observation of the effects discuss
below it is required to have laser pulses shorter than t
dephasing time.

When thek1 pulse comes first (positive delay), this tech
nique is known as photon echo. The simplest signature
electronic correlations is the presence of FWM signals f
negative time delays (pulsek2 first), which are absent in a
simple two-level system [10,11]. Figure 1 shows the tim
integrated FWM signal,Sintstd ­

R`

2` jPSstdj2dt, for the
three models. In all cases, the signal decays exponenti
with the same rate, which is determined by the dephas
time, for positive time delays. For negative delays the si
nals of models (b) and (c) also decay exponentially wi
about twice this rate, while the signal (a) is only induced b
finite pulse effects and decays much faster, on a time sc
determined by the width of the incident pulses (see das
dotted line in Fig. 1). The time-integrated signal (a) is i
agreement with a description based on a simple two-le

FIG. 1. Time-integrated FWM signals of a 30 carbon ato
polyacetylene chain as a function of the time delay for resona
excitation of the lowest resonance atV1 ­ 2.28 eV ; three
models are shown (for parameters, see text): (a) Hückel mo
(dotted), (b) PPP model neglecting two-photon contributio
(dashed), (c) full PPP model (solid); also shown is the envelo
of the laser pulse (dash-dotted).
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system, which, in the ultrashort pulse limit only shows
FWM signal for positive delays [10,11]. For model (
our calculations show no transition in the vicinity of2V1,
and also the contributions from virtual oscillators can
neglected. Therefore the signal is determined by the e
tation of just the lowestBu state. As in a simple two-leve
system [10,11], the only source of nonlinearity is given
s1 in Eq. (2), reflecting the phase space filling of the osc
lator. The strong signals for negative delays within mod
(b) and (c) result from electronic correlations.

A more detailed insight on electronic correlation effec
is obtained by examining the Wigner spectrogram (W
which keeps track of both spectral and temporal inform
tion contained in an optical signal [15,16].

WSst, vd ­
Z `

2`

Pp
Sst 2 t0y2dPSst 1 t0y2deivt0

dt0. (5)

Upon integrating the WS over time (frequency), w
obtain the ordinary frequency-resolved (time-resolve
FWM signals [15]. It can be easily constructed fro
experiments [5] in which both the amplitude and the ph
of the signal are measured. The WS of the FWM sign
for our three models are shown in Fig. 2. For model
it is completely symmetric with respect to the detuni
sv 2 V1d. For short times the signal is spectrally broa
while for longer times only the resonant terms contribu
As a function of time, for zero detuning, it represents
free-induction decay. A two-level model explains ve
well the temporal and spectral profiles of the WS.

For model (b) the maximum of the WS at zero detuni
as a function of time appears to be shifted towards lon
times compared to (a); the WS shows an asymmetry w
respect to the detuning, with a high frequency (blue) t
Both of these effects have been observed in inorganic se
conductors. Analytical solutions of the nonlinear wa
equation for the1s exciton have shown that it is the sca
tering of the polarization off itself that explains, in agre
ment with experimental results, the origin of the delay
time-resolved signal [4,17]. This interaction-induced co
tribution to the signal has been characterized by a non
ear scattering potential [4,10], identical to theV1 term in
Eq. (2). The interaction-induced contributionsV1d is phase
shifted bypy2 with respect to the phase space filling co
tribution ss1d. The presence of two contributions, with di
ferent temporal envelopes, explains the spectral asymm
of the WS. There is, however, an important difference
tween inorganic semiconductors and polyenes. While
semiconductors the experimental power spectra are usu
asymmetric with a low frequency (red) tail [5], the WS
Fig. 2(b) shows a high frequency tail. Using the expr
sions for the FWM signal given in Refs. [5] and [10], it ca
easily be shown that the sign ofV1 determines the direction
of the asymmetry of the FWM spectra. Within the SB
the interaction-induced contribution to the FWM signal
determined by the difference between the field and ene
renormalization type many-particle nonlinearities [10,1
In this language the sign of the potentialV1 implies that,
in inorganic semiconductors, usually the field renormali
a
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FIG. 2(color). Normalized WS of FWM signals for zero time
delay. Shown are models (a), (b), and (c), as indicated (f
parameters, see text).

tion dominates. In polyenes, if only the1Bu oscillator is
considered,V1 is also positive. The sign change of the ef
fective potentialV1 is induced by virtualAg oscillators.

We now discuss the full PPP model (c), i.e. including
the second oscillatorp2. The WS has about the same
temporal profile as the WS of model (b), but shows a re
verse spectral asymmetry, with higher values for negativ
detuning. Our calculations indicate that the many-bod
contributions to the FWM signal involving the second
oscillator p2, given by the termV12 in Eq. (2), have a
different sign than the interaction-induced contribution
involving p1. Additionally, the virtual oscillators
representing two-photon resonances change the sign
V1. Both of these effects result in a phase shift ofp of
3473
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the interaction-induced contribution to the FWM signal
which, in turn, explains the change of the spectral profile

In Fig. 3(a) we show the time-resolved amplitude o
the FWM signal, which can be obtained from the WS
by an integral along the frequency axis [15]. As alread
pointed out, using the WS, the signal for model (a) has i
maximum immediately after the excitation process, whil
the maxima for the models (b) and (c) are delayed. I
all models the time-resolved signals decay exponentiall
with a long time rate determined by the dephasing time
In Fig. 3(b) the dynamics of the phase of the FWM signa
relative to the phase of the exciting pulses is displaye
Within model (a), such as in a classical driven harmon
oscillator, there is a phase difference ofpy2 between the
system response and the exciting force. Formally, it mea
that the signal, apart from the rotation withe2iV1t , has
a complex prefactor, which can be seen from the ter
2iEstds1jP1j

2 in Eq. (2). For models (b) and (c) the
interaction-induced nonlinearities dominate, leading to
phase difference of aboutp and 0, respectively. These
phase shifts indicate that the interaction-induced signa
have a real prefactor. This can be seen by analyzing t
V1 andV12 terms in Eq. (2), which have a real prefactor
since the linearp1 has a purely imaginary prefactor. The
difference in sign of the dominant contributions explain
why, in model (c), the FWM signal is basically in phase
with the exciting laser pulses, while model (b) exhibits a
phase shift.

FIG. 3. (a) Normalized time-resolved amplitude and (b) rela
tive phase of the FWM signal for the same models as Fig.
The relative amplitudes between the models (a), (b), and (c) a
0.12, 0.55, and 1.0. Models: dotted (a), dashed (b), solid (c
also shown is the envelope of the laser pulse (dash-dotted).
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In summary, our analysis shows how amplitude an
phase measurements of FWM signals, as displayed in
WS, can be used to measure electronic correlation
fects in conjugated polyenes and inorganic semicondu
tors. The electronic-oscillator representation allows t
interpretation of optical nonlinearities in terms of nonlin
ear scattering potentials and provides a unified descript
of both types of materials.
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