Interplay of multiple vibrational spectral densities in femtosecond
nonlinear spectroscopy of liquids
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The multimode Brownian oscillator model of nonlinear response functions is generalized to include
a multielectronic level system interacting with several spectral densities representing solvent and
vibrational coupling to electronic energies, transition dipoles, and permanent dipoles. Applications
to resonant and off-resonant transient grating as well as to infrared and fifth-order Raman photon
echoes illustrate how the various spectral densities may be probed separatelp96GAmerican
Institute of Physicg.S0021-960806)51342-3

I. INTRODUCTION has been successfully applied to electronically resonant tech-

. o ) nigques such as pump-probe, transient grating, and three-pulse
Time-resolved vibrational spectroscopy is a powerfulphoton echd?®

tool for studying intermolecular and intramolecular nuclear  another limit of the model was applied to electronically

motions in condensed_ phasgs. U!trafeﬁO fs |gser pulses ¢ resonant measurements such as fifth- and seventh-order
are short compared with typical vibrational periods, and Cakaman experiment€:2>-22Here the coupling of nuclear co-

excn.eblnuizlejr mi)luons Ik? |IthISS Imzuljswely.. This ma!;es It{)rdinates to electronic energies makes a negligible contribu-
possible to directly probe stafic and dynamic properties Oion to the response functions, and the dominant coupling is

local structures. . . . . through the dipole momerinon-Condon coupling®’
The simplest nonlinear optical techniques used to inves- h ibuti f d b domi
tigate molecular motions in liquids are the optical Kerand The contribution of non-Condon terms becomes domi-
nant at off-resonant detunind$?® The leading term in the

. . 4 Ai H .
transient grating:* Both methods are one-dimensional: The signal is produced by the nonlinear dependence of the elec-

signal depends on a single time variable, the time delay bet(}g)nic polarizability on molecular vibratiorfs. A theoretical

tween pulses. As a result, these techniques cannot distinguis S .

between contributions to line broadening coming from slow, escription (.)f Off're_s"”"_’lf“ response that takes into account
molecular dynamicgstatic, inhomogeneous broadeningr the electronic polanzabmty.dependence on nuclear degrees
from fast relaxation processésomogeneous broadenirmy of frle e;thm was preszntgd in Refs. 6 anq 24. for th i

A deeper microscopic insight into the structure and dynamics N this paper we derive new expressions for the noniin-

of liquids can be achieved by multidimensional techniquesear response functions using the Brownian oscillator model.

in which independent control over several time intervals is/Ve recover the existing expressions as limiting cases and

maintained®~” These methods closely resemble their nuclea@€neralize them in several ways. First, we go beyond the
magnetic resonance counterpdrts two-electronic level model to include an arbitrary number of

The lowest nonlinear response in isotropic media in-€lectronic levels. Second, we incorporate transition as well as

volves three field-matter interactioréour-wave mixing. ~ Permanent dipole moments. The role of the permanent dipole
Photon echd and hole-burnin§ 17 techniques eliminate IS important in measurements such as electroabsorfisn.
the inhomogeneous broadeniriglow and static compo- Third, we allow. couplln.g of nuclear degrees of freedom
nents, and reveal dynamic information hidden underneathffrough electronic energies as well as through the dipole mo-
the broad envelopes typical for linear absorption spectraM€nts. In addition, we adopt a more compact bookkeeping
This is possible only when the system has well separateWhiCh allows us to represent all Liouville-space paths using a
time scales, and inhomogeneous contributions dominate tr@ngle Hilbert-space correlation function of dipole operators.
linewidth. In general, the signal depends on several spectral densi-
The multimode Brownian oscillator model provides a ties representing the coupling of nuclear degrees of freedom
convenient framework for analyzing a broad class of nonlinio transition dipoles, permanent dipoles, and electronic fre-
ear spectroscopic measuremefitdn this model, nuclear quencies. The analysis of experiments is complicated by the
motions are represented using a continuous distribution dhterplay of these spectral densities. We propose experimen-
harmonic degrees of freedom, which may be grouped into &l setups in which one of these spectral densities dominates
few collective Brownian oscillator coordinates. Explicit ex- the response so that the various contributions may be sorted
pressions for the nonlinear response functions calculatedut. Optical signals decrease as the external fields are tuned
within this model were given in two limiting cases. The first off resonance with respect to the electronic frequencies of
is a model of a two-level chromophore when the nucleathe system, in a manner that is different for contributions
coordinates couple to the electronic enerdidiagonal cou- coming from the various spectral densities. We show that it
pling), and the dipole operator is assumed independent d possible to pinpoint the signatures of different spectral
nuclear motions(the Condon approximation This model  densities by studying the variation of the heterodyne-de-
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tected transient gratingHDTG) signal with detuning. We .~ .~ .
also study the effect of the relative phagebetween the V(§=> |j>Mj(Q)<j|+Ek [15)Dji(G@) (K| +[K)D i (a)(jl].
heterodyne and the probe fields. The different scaling of the . . 2.3

¢=0 (dichroism) and ¢=7/2 (birefringence signals with

detuning is calculated. Finally, we discuss the close formaWe assume that the dipole operators depend exponentially
connection between {2+ 1)th-order off-resonanfRaman  on nuclear coordinates

optical response andth-order resonant infrared signafs.

Both are.given by a formal]y identical com_bination (_)f E)jk(q):Djk exp{E wngnan], (2.9
(n+1)-point correlation functions. The only difference is n

that the electronic polarizabilittRaman, appearing in these

correlation functions, should be replaced by the permanent M;(q)=M, exp{E @nnln
dipole (infrared.

In Sec. Il we introduce the model and express the linear
response in terms of a two-point dipole correlation function.
(This is generalized in Appendix A to nonlinear response o
arbitrary orden. We then express the two-point dipole corre-
lation function in terms of the four relevant nuclear spectral
densities. In Sec. Il we calculate the dipole correlation func-

tions for the second- and third-order response, where add|:
tions within the Condon approximatidfiSince we now con-

tional spectral densities become relevant. In Sec. IV we ap ider a multitude of electronic levels and take int nt
ply these results to heterodyne-detected transient grating. \Nsé er a mullitude ot electronic levels and take into accou
non-Condon effects, we need to define several types of spec-

further analyze the effects of using polarized light, and es-

tablish the connection to dichroism and birefringence spectral densities,
troscopies. Finally, in Sec. V we calculate the fifth-order
off-resonant Raman signal for a two-electronic level system.  C’,. (@)=, v 0 8(w—w,)— 8o+ wy)],

We demonstrate how the nature of the signal changes as the "

optical frequency is tuned across an electronic transition, , /_q4 ) (2.6)
since different spectral densities dominate at various detun- " " "7

ings. We further show how additional information about theThese represent all pairs df, 8, andu, wherej runs over
signal can be obtained by using a mixed time-frequency dethe electronic levels. The optical response functions will be

, (2.9

where the coefficientg,, and é,, do not depend on the elec-
1Ironlc levels. The factore,, in Egs.(2.4) and(2.5) allow a
compact notation for the spectral densities to be introduced
below. Consequentlyy,, and §,, have the units of time.

The spectral density function was originally introduced
or a two-electronic level system coupled to harmonic vibra-

tection. expressed in terms of the functions
* dw
IIl. LINEAR RESPONSE AND NUCLEAR SPECTRAL t :J Z2.C" (w)[coth Bhw/2)(1— cos wt
R Guo(t)= | - — Clg(w)[coth Bhw/2)( )
We consider a multi-electronic level solute in a solvent +i sin wt—iwt], 2.9

described by the Hamiltonian

i » dw
A= 1Ay - U@ ED. 0y 0= T Chlcomnanish ot
Here,H; is the adiabatic Hamiltonian for thgh electronic +i(cosot=1), 28
level, andp andq denote nuclear momenta and coordinates. o
We represent the molecular and solvent nuclear degrees of vi(t)zf dwC’ (w)[coth A w/2)cos wt
freedom by a continuous distribution of harmonic coor- 0
dinates’®~*2We thus have —i sin wt], 2.9

P+ (Gt dnj)?]. (2.2 v="4.u.

~A fiw
Hi(B,8)=h 0+ —=
Here, the dot denotes a time derivative. The function
d,,(t) coincides with the functiog(t) used in the standard
Brownian oscillator mode[Eqg. (8.25 of Ref. 1§, and the

the dimensionless coordinate and momentum of tiie . . .. . .
! ! ! u functionsgq,/(t) andg,, (t) represent additional contribu-

nuclear oscillator with the frequenay,, andd,; is the di-
mensionless coupling coefficient of the electronic andtlons due to the dependence of the dipole operator on nuclear

nuclear degrees of freedofhby definition,d,,,=0). The sec- coordinates. Combining Eq&2.6) and(2.7)—(2.9), we obtain

ond term in Eq.(2.1) represents the interaction with an ex-

ternal electric fieldE(t). The molecule is assumed to have gdjdj(t):; dij[ coth( Bfi wn/2) (1~ cos wpt)
both permanentNl) and transition D) dipoles, and the di-

pole operatolV is given by +i sinw,t—iw,t],

Here, hQO is the energy of th@th excited electronic state
(j=0s the ground state, and we ﬁg 0), g, andp, are
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is then overlapped withiz| to calculate the trace as given by

gdjv(t):; dhjvnwnl coth B w,/2)sin wpt Eq. (2.12. The coherent states form an overcomplete basis
set. The property that makes it particularly suitable for the
+i(coswt—1)], present calculation is that when an exponential operator such
asV acts on a coherent state, the result is also a coherent
g,,(t)= 2 vnvnwﬁ[cotl‘(ﬁﬁwn/Z)COSwnt state(and not a superpositi_on of state¥his eIianates thg
n numerous summations which appear when using the eigen-
i sinw,t] sta_lte basis.and provides a cqmpact expression for the corre-
n- lation function. We thus obtain
Yn= Onbn- F(z)(leTz):FE\AZ,\;(TlaTz)‘FF(DZD)(TlaTz),
The linear response is expressed in terms of the two- @ 2 . .
point correlation function of the dipole operaisee Appen- Fun(71:72)=Mg exp{0,,,,(0) +9,,.(720)}, (213

dix A)
i [ F(DZD)(leTz):Z Do exp{—i Q721+ 855(0) + G55 720)
P<1>(t)=%f dsF?(t,t—s)E(r,t—s)+c.c., (2.10 !
0 .
_gdjdj(721)+2igédj(721)}- (2.14

where 0 2 2 '

ED(t.t— )= (V(OV(t—S) 219 Here, Q;=0; +32jd{wf, 7=7,— 71, and the functions

9= ) g, 9,,,(7), andg,, (7) are given by Eqs2.7)~(2.9).

We assume that initially the system is in its ground elec-Four spectral densities contribute to the response function for
tronic state. Since only terms with even number of interac€ach electronic transitiojt 9a,d;» which reflects the depen-
tions with the transition dipole operator contribute to thedence of electronic transition frequency on nuclear coordi-
trace, we have two possibilities: Both interactions are eithenates;gs; and g,,,, which describes how nuclear coordi-
with the permanent or the transition dipole operator. Thenates affect the transition and permanent dipole moment; and
corresponding contributions to the correlation function, dethe mixed spectral densitysy .
notedF? andF?), may be calculated using an expansion j
in coherent state_s as outlined below. The correlation funct|0r|1“_ THE NONLINEAR RESPONSE FUNCTIONS
(2.11) can be written as

The nth-order nonlinear response can be expressed as a

(2) —
F'9 (71, 72) =T{V(71)V(72) po}, combination of the dipole correlation functions
wherepo=ePHo/Tr(e™#M0) is the equilibrium density ma- (n+1) _
. . . . F e =(V \Y -V , (3.1
trix. We calculate this trace using the basis set of coherent (711 Tne ) =V V(72) = V(Tne0)), - (3D
states z),%*3* defined by with various permutations of the time arguments. In the stan-
. dard density matrix Liouville-space formalism we maintain a
|z)=e |Q), complete bookkeeping of the time ordering of the various

interactions. Thenth-order response then contains' 2
rJ;erms.18 In Appendix A we outline an alternative bookkeep-
ing, which maintains only partial time ordering of the inter-
actions with the external fieldbased on the Schwinger—

wherez is a complex numbera® is the creation operator,
and() denotes the ground state of the harmonic oscillator. |
this basisF(?)(;,7,) can be written as

F@) _ 1 d’z Keldysh time loop®®~%) This scheme results in fewer terms

(71,72) Tr(e PHo) ) (z]2) and assumes a more compact form compared with the fully

_BH time-ordered density matrix formalism. It is straighforward

X(2ZV(1)V(r2)e”o[2), (212 {0 switch between the two pictures: By separating the various

with terms in Appendix A to different components, we can re-

5 cover the density matrix expressiofisFor impulsive mea-

Tr(e—BHO):J d“z (z]e~FHo|z). surements with very short pulses, the fully time ordered ex-

(2]2) pressions are most appropriate, whereas when the time

; ; : _ ordering is partially lost, e.g., by using finite and overlapping
Since the dipole operatov(t) has an exponential depen ulses, then the form given in Appendix A may be more

dence on nuclear coordinates, we can easily calculate Ed. o
(2.12) by acting on the coherent std successively by the dequate. In any event, the building blocks of both formal-
operatorse Ao, /. the evolution operatoe (il%) Ho(r— 1) isms are the correlation functio3.1), which will be evalu-
and the second operatdt. The rules for acting with expo- ated below.

nential operators on a coherent state are summarized in Ref. The second-order response is given by a three-time cor-

7. The resulting wave function, which retains its Coherentrelation function of dipole operators. It includes either three
stlate form at all times ' or one interactions with the permanent dipole operator. The

A corresponding contributions to the response functions will be
|2')y=Ve (/M) Ho(ri= )\ g~ AHo| 7) denotedr®) andF®. We then have
J. Chem. Phys., Vol. 105, No. 19, 15 November 1996
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FIG. 1. All possible permutations of the permanent and transition dipole
operators for the second-order response fundigh [Eq. ( 3.3]. FIG. 2. All possible permutations of the permanent and transition dipole
operators for the third-order response functﬁfrﬁg [Eq. (B3)].

FO(ry,7,,73) tively. They are given in Appendix BEgs.(B1)—(B5)], and
@) - all relevant permutations of transition and permanent dipoles
=F (7172, 73) T F (71, 73,73), for F§A4D) are given in Fig. 2.

F(3)(711721T3)
MM IV. HETERODYNE-DETECTED TRANSIENT GRATING:
= M2 exp((3/2)8,,,(0)+8,.( 721 NON-CONDON EFFECTS IN BIREFRINGENCE
s . AND DICHROISM

9732 + 0,730} 32 In this section we show how to distinguish experimen-
F®(r1,75,73) tally between the contributions of spectral densities related to
different types of coupling of electronic and nuclear degrees

of freedom. We consider a two-electronic level solute with

- 2 2 MkDJO exp{—iQ; DD+@W(O)+@65(O) the Hamiltonian given by Eq2.2) with j=1. We neglect
the permanent dipole, and non-Condon effects are incorpo-
+s5( TDD)—dedj(TDDHZiQ,;dj(TDD)nggM(T;AlD)) rated through the dependence of the transition dipole opera-
tor on nuclear coordinatd&q. (2.4)].
+Q5M(T,(\/|2D))+igdj,u(T:\/|1|3))+i8kgdj“(TI(\/IZD))}’ (3.3 ) We start with the normalized linear absorption line
shape,

Here,r;=7,— 1, 1,j=1,2,3, and the time variablesDD and 1 B

7,, N (3.3 denote the intervals between the two oo(©)= — ReJ' F(t,00e'tdt, (4.2)

D-interactions and between th2- and M -interactions, re- wh o

spectively. Thek summation in Eq(3.3) represents the three where |:(2) is given by Eq.(2.14. Neglecting the mixed

possible choices of the mtervai o T2T T T3T T2, and spectral densn)C S(@)=0, Eq.(2.14 becomes

73— 71; these choices are deplcted in Figga):1(c). The 2 o . . ..

subscriptk of M, denotes whether the ground- or excited-  Fpp(£:0)=D% exp{—iQt+7;5(0) +gss(t) — Gaa(t)}-

state permanent dipole operator is involved. This also deter- (4.2)

mines the parameter,. The time intervals and the param- The time dependence of this correlation function is governed

eters used in E¢3.3) are listed in Table I. by the following combination of the two spectral densities:
The third order response involves four interactions With@a&(t)—gdd(t), and we cannot therefore differentiate be-

the dipole operator; in this case there are three possibilitiefveen the two. We assume that both spectral densities repre-
corresponding to 4, 2, or 0 interactions with the permanengent a single overdamped Brownian oscillator,

dipole operator. The last case, in turn, is divided into two:

Either all four transitions involve only a single pair of elec- c” (w)=2)\dw—Ad 1 (0) =2\ s~ sy whs 4.3
tronic levels, or three levels participate, i.e., the system is d w’+ A 20 2+A2
excited twice and then returns to the ground state. We deno

ﬁote that the coupling parametexg and\ s have the units
these contributions bf®, F(4), F) and ) respec- ping P 8 °

of frequency and time respectively. Using E¢R.7)—(2.9),
we obtain in the high-temperature limhi A <1,

TABLE I. The parameters corresponding to three terms of thel%ﬁgr[Eq. gdd(t) ( A [e*Adm + Ad|t| — 1]
(3.3), the diagramga)—(c) in Fig. 1]. B

k Diagram Too Tﬁ}@ wa? £ My —i sign t[e—Ad\t\ _ 1]) ,

1 @ 732 T31 721 -1 Mo

2 (b) To1 T31 T32 -1 Mg 2 o

3 © Ta1 ™ Ta 1 M; Jss(t)=A s\ 5 A signt|e Aaltl,
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degrees of freedom, or from the dependence of the dipole
operator on nuclear degrees of freedom.

In the HDTG technique, the system is subjected to two
pump pulses propagating in the directidnsandk,. These
pulses create a transient grating in the medium. The probe
pulse(with wave vectoiks) then undergoes a Bragg diffrac-
tion, and the signal, generated in the directikp=k;,

— ky+Kks, is finally mixed with a fourth, heterodyne, field
with frequencyw;,, and phasep relative to the probe pulse.
Hereafter we assume that both pump pulses have the same
1500 -1000  -500 500 1000 1500 temporal envelope and frequeneay; the frequency of the
w=9Q em™ probe and heterodyne fields is,, and they too have the
same envelope. We denote the delay between the probe pulse

FIG. 3. Linear absorption spectrum for a two-level system. Solid line: Theand the two pump pulses by. The total field can then be
Condon limitA s=0; dotted line:\ 5=0.2 ps, dashed linexs=0.5 ps. For  written as
other parameters see the text.

E(r,t): gi(t)eiklrfiwlt_l_ gfl(t)eikzrfiwlt
In Fig. 3 we show the absorption line shape for this 2ot mo)elar e
model. We use the following parameters for the + Zo(t— rp)elks Tt tie 4 o ¢, (4.4
Brownian oscillator spectral densitied:q=A s=0.5 ps %, i , , is qivens
Ag=2.5ps?, BhA;=0.025. The parametex; reflects the The transient grating signal is given By
strength on the non-Condon effects;=0 corresponds to o
the Condon limit, in which the dipole operator does not de- ~ S(@1,®2;70)=—2 Imﬁme"/’k{;(t)P(3)(ks,t)dt. 4.9
pend on nuclear coordinatésolid ling), and the dotted and
dashed lines are calculated fag=0.2 ps and\ ;=0.5 ps, In Appendix C we calculate the HDTG signal assuming
respectively. For these parameters, the spectral densifjulses short compared with the nuclear dynamics but long

" s(w), associated with the coupling between the dipole opcompared with the electronic dephasing timesdafés is
erator and nuclear coordinates, hardly affects the line shap&nown as the snapshot limit> We express the signal in
it only produces a small shift without changing its profile. terms of the four-point correlation functidh(*) [Eq. (B4)],
We therefore cannot infer from linear measurements whethewhich is factorized into a fast-oscillating term
non-Condon effects are important and what is the origin oexg{—iQ(t,—t; + t,—t;)} and a slowly-varying function
the line broadening. D(tq,ty,t3,1,),

To differentiate between the two contributions, we will 2 A it —tat tot

consider the heterodyne-detected transient grattipTG), Fop(t1:tz g ta) =De a2 W (ty 1y 3, ta).-
and show how the presence of the spectral der@jy w) (4.6
can be easily established experimentally. This technique can In the rotating-wave approximation, which holds when
therefore be used to identify whether the line broadeninghe detuningso;— () are much smaller than the optical fre-
comes from the coupling between the electronic and nucleajuencies, we obtain

[

2 ® . .
S(wlva;TO): ﬁElEz Reffo el(pdTj_de{el(wl_Q>Tle_I(wZ_Q)TZ[(I)(_71,0,70,7'02)_(1)(_7'1,7'0,7'02,0)]

+e o= Wne=iw2 D7 (0,7, 799, — 71) =[P (70, 702,0,— T1)}, 4.7

where we used the notatiaf,= 79— 7». electronic transition frequency are shown. The delay between
In the following calculations we assume that all laserthe pulses was varied fromy=0.5 ps tor,=2 ps.

pulses have the same frequeney,=w,=w, and calculate It is clear from Fig. 4 that the HDTG signals are far
the signal(C4) for the model used in Fig. 3. We shall be in- more sensitive to non-Condon contributions compared with
terested primarily in the dependence of this signal on deturthe linear absorption line shape. The same parameters that
ing, because this should reveal the origin of the spectral derkardly produced any effect for linear absorption, consider-
sities. We further study how the phagaffects the signal. In  ably change the behavior of transient grating signals, making
Figs. 4a) and 4b) we present the dichroisif=0) and the it possible to immediately recognize the signatures of the
birefringence(o=n/2) signals, respectively. The variation of non-Condon contributions. The changes are clearly seen both
the signals with the detuning of both laser pulses from thdor the dependence on the detuning and on the delay between
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-1,300 o] 1,300 -1,300 0 1,300
w—1, cm™!

(a) (b)
FIG. 4. The dichroism(a) and birefringenceb) signals as a function of the detuning between the laser pulses and the electronic transition frequency. The
delay between the pulses is shown on each panel. The parameters of the Brownian oscillator model used are the same as in Fig. 3. Solid line: the Condon limit
(N s=0); dotted line:\ s=0.2 ps; dashed linex ;=0.5 ps. The curves in each panel are normalized to have the same maximum.

the pulses. These effects are especially pronounced for birsubjected to two pairs of short laser pulses followed by a
fringence, which appears to be more sensitive to non-Condoprobe pulsdFig. 6@]. The signal is then overlapped with
effects than dichroism. The oscillatory dependence of thehe heterodyne puls@vith the frequencywg), and the signal
signal on the delay between the pulses can also serve as a tesgiven by

for non-Condon effects: This arises from interference
between terms corresponding to different Liouville-space
paths.

The signals for large detuninggompared with line-
width) are displayed in Fig. 5 for dichroisiftop panel and
birefringence(bottom panel All curves are given for the
delay o= 1.5 ps. The solid lines represent the Condon limit
(N s=0), the dashed lines\(;= 0.5 pg show how the signal
changes as non-Condon effects are switched on. This gives
us one more way to recognize non-Condon contributions:
The manner with which the signal decreases with the detun-
ing changes drastically. In the Condon limit the line shape of
an overdamped Brownian oscillator in the slow modulation
limit has a Gaussian profif€ and we see the fast decay of
solid lines in Fig. 5(the solid curves bend down, which
reflects their exponential dependence on detuniBgce we
include a non-Condon coupling, the dependence switches to
a power law. We can deduce from the slope of dashed lines

that the signal scales approximately/s ~2 for dichroism, 1 3 ‘fog(u,_‘g) 1# ¥

and A w~? for birefringence, as predicted in Ref. 18.

FIG. 5. The dichroism(top panel and the birefringencébottom panel
V. FIFTH-ORDER RAMAN ECHO signals in the logarithmic scale for the detunings large compared with the

. . . linewidth. The delay between the pulsesris=1.5 ps. Solid lines represent
In this section we study heterodyne-detected fifth-ordekne condon limit 45=0), and the dashed lines are calculatedXg= 0.5

Raman spectroscopic measurements, in which the system gs. All other parameters are the same as in Fig. 3.

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996
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N'l ) Jt(am'z
J\flml J\lizmz

F(D@(tl,tlytz,ta,tsytz)
=D® exp(60 55(0) +4055(t21) + 4 Redss(tsn)
+ 47 55(ta) — 4 1M (o)},

(6)
FDD(tl !tZ 1t2 ut3 |t3 ytj_)

oo ww'_
e
L.

[
.

: 5
£
Y

4 ) 13 =D° exp{6§,55(0) +4 RE G ss(t21) — Gss(tsn)]
@ . — 40 55(t3p) =4 IM[ g 5(t20) + Ypa(taD 1},
J\ilml Jtzmz E“Eksms FO(t,tp,t5,t3,t0,t1)
i o
p . P = D® exp(6355(0) +4 Re §55(t20) + § 55(ta)

®) +Gs5(ta)]— 4 1M 0 55(t21) — Osa(tar) + saltan) I}-

FIG. 6. Pulse configuration fdi@) fifth-order Raman andb) second-order with tij =1 _tJ ' i’j : 1,2,3. . . .
infrared spectroscopy. We shall now discuss the contributions of different paths

(Fig. 7) to the signal(5.1), paying particular attention to the
dependence on the detuning between the field and the elec-
tronic transition frequency. We start with patt@ and (b).

9 Imf“’ These paths contain no excited-state evolution periods, and

S= ZE(t—t5) A (1)dt. (5.2

— in the off-resonant regime we can integrate over the time
intervals during which the system is in an electronic coher-
The fifth-order optical response function is ence and obtain
expressed in terms of the six-point correlation function

6 . . . 1 o0 t3 ty
Fg;(71,72,73,74,75,76). Since the pulses come in pairs Sa:ﬁj dtgf dtzf dty| £(t)]2 £(t,)|2
[Fig. 6@], and are assumed to be short compared with - - -
nuclear dynamics, we will be able to express the response in x| #(t )|2F(6)(t t oty e t) 5.2
terms of six-point correlation function containing only three CV Tppt it t2t2nsns '
time argumentst,, t,, andts, each taken twice. The relevant 1 (e t t,
Liouville-space paths are given in Fig. 7, and the necessary Sb:_SJ dt3J dtzJ dty| £(ty) |2 #(t,)|2
six-point correlation functions corresponding to these paths h>) = - -
are X Z(tg) PRt by b b, 2 o), (5.3
FO (L, bttt 1) where we assumed that the third pulse is the heterodyne field

_ps 66 (0 + 46 T T 4E and wj=w; It was shown in Ref. 38 that in off-resonant
=D exp{69,55(0) + 49 55(t21) + 49 55(t32) + 4955130} Raman spectroscopy each pair of interactions with the tran-

© sition dipole can be replaced by an effective interaction with
Fop (Tt t3,t3,15,10) the electronic polarizabilityr defined as

=D® exp{60 55(0) + 47 55(t21) — 40 55(tan) + 4 55(ta1)}, 1

Q—w+Q+w

. (5.9

a(w,9)=[D(q)]?

We thus see that O)(ty,t1,t5,t5,t3,t3) reduces to the three-
1) (el 12 (el le) (el le) (el i) (el point correlation functior %) (ty,t,,t3) [Eq. (3.2] provided
we replaceg ;5 by g,,,/4 and change in the latter for « as
defined in(5.4). Clearly, as we tune the frequency off reso-
nance,S, andS, scale as Q — ») 3.
i $ ] *———1 Consider now the scaling of path) whose contribution
to the signal is given by

—_———t

lg) le) e lg)

lg) le) le) ey | [¢el . t t t
] o———1 _ * 3 2 I A
s——f dtf dtf dtf dtf dt, | 2 dt
lg) (sl lg) (sl l8) (sl lg) (gl lg) (sl LA Rl B B R T
® ® © @ © X £(tg) At £(ty) £* (15) £* (15) £* (1)

(6) ’ ’ ’
FIG. 7. The Liouville-space paths for fifth-order Raman spectroscopy. X FDD(tl APRENCRENEIR (5.9
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FIG. 8. Fifth-order Raman echo signals for a single inhomogeneously broadened oscillator in the undefdapgrecw and overdampeottom row
limits of the inhomogeneous distributidiq. (5.6)]. (a)—(c) correspond to off-resonanf\@~ (1), near resonant, and resonant excitation, respectively. The
time is given in ps.

Since the light pulses are short and do not overlap, théQ)—w) 2. The integrals with respect tt;,t; are treated
t,,t5,t,, andt; integrations can be extended te f,). We  similar to pathga) and(b) and bring an additional factor of
assume that the pulse envelopes are given by a smooth fun@@ — ») ~1. ConsequentlyS, will scale as 0 — w) ~°.

tion with at least one continuous time derivative. It follows Finally, we consider path€) and(d). Each involves two
from the general properties of Fourier integrals that the resulpairs of interactions with the fieldas in(a) and(b)] and two
of each of these four integrations vanishes at least asingle interactiongas in(e)]. Each pair results in the factor
(Q—w) %, and each single interaction if(— w) 2. Hence,
the overall scaling of these term8 ¢ w) ~ .

These arguments show that pathas and (b) are domi-
nant at off resonance. The signal is then determined by
0s5. related to the coupling of the transition dipole to
nuclear motions. When the field is tuned closer to the elec-
tronic transition frequency, the picture changes drastically.
The excited-state evolution becomes essential, and ggths
(d), and (e) start to contribute to the signal. The signal will
now depend on the relative magnitude of the dipole and elec-
tronic energy coupling of electronic and nuclear degrees of
freedom. If dipole coupling effects are dominant, the signal

s
TH7K R
24 Illll'e
Wi i
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=

’ .

! "

I ¢
s;l—] T S]
= =~
85 Sy
t32 4]
2 4 6 8 10 -40 40

®) (c) Y 1

FIG. 9. (a) Wigner spectrogram of the off-resonant Raman g¢tig. 8(a)]

for the overdamped Brownian oscillatdiy) the (a) signal integrated over

frequency;(c) the (a) signal integrated over time. The time units on the axes FIG. 10. The Keldysh time loop representing the two sides of the density
are ps, the frequency is in crh. matrix.
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does not change its character as it is tuned near resonance, [«

and its amplitude will scale a<X— ) 3. In the other ex- fﬁx%”(t,w)dt=|P(w)|2, P(w)Ef
treme, when non-Condon effects are weak, the contribution

of paths(a) and (b) in the near-resonance region become

o]

P(t)e'“'dt.

S . . . .
o ) A discussion of Wigner spectrograms and their measure-
negligible compared with the background of the tegs- ments is given in Refs. 39—42. The second-order polarization

(€), which involve excited-state evolution. The signal thenp(2) i \elated to three-point correlation function in Appen-

depends on the spectral density; . . o .
) ; . ix A [Eg.(A12)], and the latter is given by E¢3.2). In Fig.
As an illustration, we calculated the Raman echo S|gnag(a) we display the Wigner spectrogram in the impulsive

for a model that includes a single nuclear mode coupled t(r’egime calculated using an overdamped Brownian oscillator.

the electronic transit.ion frequgncy and one mode coup.led t(;fhe parameters for the spectral denﬁ;y are the same as
dipole moment. We introduce inhomogeneous broadening bYor ds5 in Fig. 8a), bottom graph. In Figs.(b) and (c) we
assuming that the frequencies of these modes are distributeS ow the time—reéolved signdintegrated over frequengy
around some C‘?””?" fr_equene% with half-width Yo The . and the frequency-resolved sigriaitegrated over timke re-
form of the distribution is taken to be of the Brownian oscil- spectively. By comparing the time- and frequency-resolved
18 .
lator form,; with the integrated signals, one can clearly see the additional
information contained in the former. For example, for
1 t3o=t,, the spectrum in Fig. @) shows a maximum at zero
f )=— @70 =d.s (5.6)  frequency, which becomes narrower as time increases. This
Vv(w 2 2 2\2 2.2 4 » - . . . . . . i . .
7 (0"~ wp)*+ 0y effect is missed in the integrated sigria), which is domi-
nated by highly oscillating terms.

We have expandeB® to fourth order ind and 8 using the
expressions given in Sec. Il for a single oscillator. We then
averaged the result using the distributi6) of the oscil-
lator’s frequency. The results are presented in Fig. 8, where
the Raman echo signal is calculated in the underdarfyged
per row, ¥,=0.6 ps!) and overdamped regime®ottom
row, yo=3 ps 1). We also uset,=1.5 ps’. The param-
eters are chosen so that near resonance the ®yaad S,
are negligible compared wit8, . The signalga), (b), and(c)
correspond to off-resonant, intermediate, and resonant ca
respectively. We see that in the former case we observe X :
echo(a peak ats,=t,;) produced by the terms, and S, . dent of the .electronlc !evels. Allowing,, and §, .to depeqd
The echo gradually disappears as the electronic resonancqun)dec_tron'? I_evels will not affect the correlatlo_n functions
approached, and other contributions become dominant.  Fyw SINCe it involves only the ground electronic state, but
It should be noted that in the off-resonant case the Rawill bring additional terms td=(™ andF (" . As a result, the
man echo is analogous to the infrared resonant ¢€iqp ~ number of relevant spectral densities will increase.
6(b)]. All the formulas remain the same, we should only The choice of the exponential form of the dipole opera-
replace the polarizability/(w,q) by dipole operatoM(q). tors[Egs. (2.4 and (2.5] was made for mathematical con-
We next study the time- and frequency-resolved secondvenience in evaluating the correlation functioi2s1?. The
order infrared resonant photon echo signals. We fix the delapresent results can, however, be used to derive expressions
between the first and the second pulsgsand vary the in- for an arbitrary dependence of the dipole on nuclear coordi-
tervalty,. The Wigner spectrogram, defined%® nate. This may be done using derivatives of the result with
respect to the paramete®, and u,. In that sense the
. present results may serve as generation functions for dipole
%/(tsziw):J P@" (tgy— 7/2) PP(tay+ 7/2)€*7d, operators of arbitrary forrft’
- Another possible generalization of the Raman and infra-
red signals calculated in the previous section is to consider

can be interpreted as the time-dependent spectrum. Integrdtdite (rather than impulsivelight pulses. Let us consider

ing the Wigner spectrogram over frequencies gives the timefour-wave mixing with nonoverlapping pulses that are short
dependent intensity compared with nuclear motions. The external field is given

by

VI. DISCUSSION

We calculated the correlation functiofé?), F®), and
F*) assuming that the permanent and transition dipole op-
Lrators depend exponentially on nuclear coordirj&igs.
a(g.4) and(2.5] and the coefficientg.,, and 5, are indepen-

4

1 .
E(T):Egl ZOsectia;(r—t))]eki i @iT+c.c., (6.1)

f 7 (t,w)dw=2m|P(1)|?,
while integrating it over time gives the spectral distribution where the pulsg is centered at time;. The heterodyne-
of the field. detected signal in the directidq=Kk;,—k,+k5 is
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2 x ) ) ) _
Ston0z.05.00= 3 Re| [ [ | drmdradnstrin(r) 5 (r 2 23 (e o tiontosmstionn
X[F(DAD)(T]_!TZIT3!T4)_F(D4D)(71172!7-4IT3)_Ff)4D)(T117-31T4172)_F(D4D)(T2;7-31T4!Tl)]|

where the four-point correlation functidﬁg‘g is given by Eq.(B4). We factorize the fast-oscillating part of the four-point

correlation function as in Eq4.6), and assuming that nuclear motions are slow, we can take the slowly-varying function
® out of the integral, setting in it;=t;. We then have

1
Sw1,0;7,03,0,4) = — 73 Rl (w1)l5 (w2)13 (03)l4 ()P (ty,t5,t3,t) =11 (01)15 (w2)15 (03)l 4 (0g) D(ty,5,t4,t3)

— 11 (015 (02)l5 (@3)14 (0 P(ty,ts, L, 1) — 11 (1)1 ()3 (wg)l 4 (0a) P (ts,t5,ta,t1)], (6.2

where results in an additional aéj—Q)*Z factor coming from
Ij (wj). If the envelope has a continuooth derivative, the
I (w))= 1secfﬁ7r(wj—ﬂ)/(2aj)], 6.3 factorsl; (w;) scale as ©;— Q) ""1. Finally, if the enve-
Q; lopes are given by infinitely differentiable functions, the
scaling becomes much more rapélg., exponential for sech
Ij+(wj)=lsecrﬁw(ijrQ)/(Zaj)]. (6.4  pulses. The asymptotic off-resonant scaling of four-wave
@j mixing signals is thus very sensitive to the pulse envelopes.
If the field frequency is close to resonanee,~(), then =~ Smooth envelopes result in a fastg., exponentialscaling
Ij_(a)j)>|j+(wj); this means that the terms in E@.2) that ~ with frequency, whereas less smooth envelopes will show a
involve the counter-rotating factorﬁ(wj) can be neglected. more gradual scaling, reflecting their broader spectral distri-
When the field frequency; is tuned off the resonance fre- bution.
quency Q, the factorsl; (»;) vanish exponentially. Note
that this scaling depends on the pulse shape. In the fifth-ordétCKNOWLEDGMENTS
Raman signals calculated in the preceding section we as- The support of the National Science Foundation and the
sumed that the pulse envelopes have only one continuousir Force Office of Scientific Research is gratefully ac-
time derivative. In that case, each convolution with the fieldknowledged.

APPENDIX A: PARTIALLY TIME ORDERED EXPRESSIONS FOR RESPONSE FUNCTIONS
Optical signals are related to the induced polarization by the external radiation field

P()=TrVp(1)]. (A1)
Expanding the density matrix(t) in powers of the electric field, we obtain for tmh-order contribution

PM(t) =T Vp™(1)]. (A2)

The density matrix can be represented in the form

p()=2 P(@)|ga(O)¥a(D)], (A3)
where|#,) are the eigenvalues of the molecular Hamiltonian. Hence,

n

P (0=2 P@ 2 Jug X, (A4)

where

. i J o) oo oo}
|w§>(t>>=(,'i—) [Tas | ds | CdsEtes) B0t - —s06)VELS ) Glsnlua(-=),  (a8)

and Eqg.(Al1) becomes

PMV(t)= ;i—) ; P(a)jzo :dsl---f:dsn_jj:dsi---f:dsj’ (AB)
XE(r,t=s,_j)---E(r,t=s,_j— - —s)E(r,t—s{)---E(r,t—s{ —...—s})
XTF[VG(Sn—j)V"'VG(51)|1//a(—°°)><l/fa(—°°)|GT(Si)V'"VGT(SJ-')]- (A7)
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In this expression the ket and the bra time intergals.. s, andsi,...,sj’, respectively, are independent. We next use the
cyclic invariance of the trace and move all the operators that act on the \egfor )| to the left. This results in

e ([~ . . .
ﬁ) 21" fo dslmfo dsﬂ*ifo dsi«--fo ds/E(r,t—s;)---E(r,t=s,_j— ---—sy)

XE(r,t—sp ) E(rt—s/ — - —s)TIG(S)V---VG(S) )VG(s,-))V++-VG($1)p( — )], (A8)

PM(t)=

where

p(—oo>=§ P(a)] ¢ral — ) W thal — )|

Defining the time-dependent dipole operatwi)=G'(t)VG(t) and recalling that Ti,p) =(A), we finally obtain

i\" o * * *
X(V(t=s{— - =s1) - V(=8 )V()V(t=S,_j) - V(t—8,_j— - —$y))
XE(r,t—sy_j)--E(r,t—s,_j— ---—sl)E(r,t—sj’)---E(r,t—sj'— cee—sg). (A9)

The calculation of the dipole correlation function is illustrated by Fig. 10. In contrast to the Liouville-space representation,
we consider the evolution of the bra and ket of the density matrix independently and do not maintain time-ordering of all
interactions with the external field; only the interactions on the bra and ket separately are time-ordered. The Liouville-space
representation provides a deep physical insight and is particularly suitable for calculating time-domain response with short
non-overlapping pulses, since it follows the fully time-ordered evolution of the density matrix. In the case of overlapping
pulses, keeping the time order separately for bra and(gattial time-ordering may allow us to significantly reduce the
number of terms necessary to calculate the si¢fh@ihis bookkeeping corresponds to the wave function representéstien
Ref. 18 and is similar to the Keldysh-Schwinger time loop technitié’ The only difference is that in the latter, the two
sides of the path diagram are connected at infinite fiwigich is convenient for a frequency-domain analysighereas we
close the loop at the time of last interaction with the field. We move along the left side of the path diagram and then return to
the starting point along the right side. In doing so we can naturally write all the dipole operators in a properly time-ordered
form. We define then-point dipole correlation function

FO(71, 75, . ) =(V(T) V() V(7)) (A10)
and all correlation functions in E4A9) can be expressed in terms of this function by a specific choice of time arguments.

We present below the explicit expressions for the first, second, and third order response

i )
P(l)(t):ﬁj dsF2(t,t—s)E(r,t—s)+c.c., (A11)
0
i\2 ([
P<2)(t)=<g) ff ds,ds,F(t,t—s,,t—s;—,)E(r,t—s;—S,)E(r,t—s,)
0
1(i\2 ([~
+5l 7 fJ' ds,dsjF®(t—s,,t,t—s])E(r,t—s,)E(r,t—s]) +c.c., (A12)
0

i\3 o
P(3)(t)=(%) ij ds;ds,dssF@(t,t—s3,t—S3—S,,t—S3—S,—S1)E(r,t—S3—S,— S;)E(r,t—S3— S,) E(r,t—S3)
0

2 oo
+ ff dsldszdsiFM)(t—si,t,t—sz,t—sz—sl)E(r,t—sz—sl)E(r,t—sz)E(r,t—si)+c.c., (A13)
0

i
h

The calculation of theath-order nonlinear response is thus reduced to the computation ofi th&)¢point dipole correlation
function F" (7, L mgg).
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TABLE Il. The parameters corresponding to six terms of the ﬁJMﬁé [the diagramga)—(f) in Fig. 2].

k _k k k 2
k Path Too Tm walr: Tr(vlzr: Tﬁ,ﬁ; Tﬁndcg €182 €3 Ea Mi
1 @ 743 21 T42 Ta1 732 731 1 -1 -1 M (2,
2 (b) Ta2 T31 T32 Ta1 T21 743 1 -1 1 MoM;
3 (©) Ta1 732 T21 Ta2 T31 Ta3 1 1 1 M 12
4 (d) To1 T43 Ta1 731 732 T42 1 -1 -1 M (2J
5 (C)] 731 Ta2 721 732 743 Ta1 1 -1 1 MoM;
6 () 732 Ta1 743 731 To1 743 1 -1 -1 M g

APPENDIX B: FOUR-POINT CORRELATION FUNCTIONS FOR THE THIRD-ORDER RESPONSE

We present here the four-point correlation functions calculated for the model introduced in Sec. Il.

F(4)(’Tl,7'2,’7'3,7'4):Fﬁ/l4'3|(7'1,7'2,7'3,7'4)+F(M4D)(Tl,7'2,’7'3,7'4)+F(D‘E)(Tl,Tz,T3,’T4)+F(D?,(Tl,72,7'3,’7'4), (Bl)
F'(\A4’\;(T1,7'2,7'3,T4): Mg exngﬂﬂ(o)+gﬂﬂ( 721)+g,u,,u,(732)+g,u/1( 7-43) +g/./,;1,( 7-31) +g/.L,u( T42)+gp,,u,( 7.4].)}! (82)

6

Fr(vl4o)(71’72’73’74):gl 2,: M{D%, eXP{ _iQTDD+@MM(O)+@W(TMM)+@55(0)+Qa&(TDD)_9djdj(TDD)

4 4
20950 (70 T1 2, 9ol i 2 0 (1) (B3)

A1
Fé§(71172173,74):2 Difo exp{—iQ(rygt 721)+2i[gadj(Tzﬂ_gadj(Taz)+gadj(743)+gadj(7'41)]

+2055(0) + 055720 T G55( 732) + G 56( Ta3) + 55 T31) + O 55( 742) + A 55( T42)

—0d,d,(720) ~ 9a,0,(732) ~9a,a,(743) T Ga;a, (T30 + G a,( 742) ~ oy, (T4} (B4)
F(D4D),(71172173,T4):; DfDf exp{—iQ( 745t 721)—iQi(732)+2ig5dj(721)—igadi(Tzl)_2igadj(73z)+2igadi(73z)

+Zigédj(743)_ig&di(743)+ig&di(731)+ig&di(7'42)+2igb‘dj(7'41)+2@65(0)+g55(721)+g55(732)
+§155(7'43)+§155(7'31)+§]55(7'42)+g55(741)_gdjdj(Tzl)+gdjdi(7'21)_gdjdj(Taz)"’ngjdi(Tsz)
~04,0,(732) ~a,d,(743) T Y a,( 743) T Yoo, (730) ~ Qa0 (T30) T (742 — Ga,0,(742) ~Guya, (740}
(B5)
Here, mj=7—7;, i,j=1,...,4, and thevariables Toor Tan’ and Too in Eq. (B3) denote time intervals between two
D-interactions, twaM -interactions, and ®- and anM -interactions, respectively. The sum odem Eg. (B3) runs over six

choices of the intervai-DD; these terms are given in Figsiaz-2(f). The subscript& of M indicate whether the ground or
excited state permanent dipole operator is involved. All relevant time intervals and parameters are listed in Table II.

APPENDIX C: THE HETERODYNE-DETECTED TRANSIENT GRATING (HDTG) SIGNAL

To derive a correlation-function expression for the HDTG signal, we start with(&£f.. Expressing the polarization
through four-point correlation function, we obtain

2 0 o 0 0 . .
S(wl,(vz;To):ggReJ’ dt]_J dTlJ’ dtzJ drzé‘é(tz—70)25’2’('[2—7'0—7'2)8_""272+"P
— o 0 — o0 0

X[£1(t) £ (ty— 1)@ 1T+ £ (1) £4(ty— 7)€ T {FUD (b — 7t o — 72, 10)
- F(D‘Q(tl_ Tttt = T2) - F(D‘Q(tl,tz_ T2t 1= 7))+ F(D‘Q(tl,tzytz_ T2,ty— 1) —C.Ccl. (C1)

We next factorize the four-point correlation functioﬁé‘g [Eg. (B4)] into two parts: the fast-oscillating term
exp{—iQ(t,—tz3+t,—t;))} and a slowly-varying functiod(t,,t,,t3,t,)
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FO(ty,t,t3,t) =D 12 s 2 (1 1y, t,ty). (c2

Using the functiond defined in Eq(C2), we can recast EqC1) in the form
2 © © © © . .
S(wl,wZ;To):pRef dtlf dTlf dtzf degz(tz_To)g;(tz_TO_Tz)e_lw272+l<P
— oo 0 — o0 0

X[£1(t) ZF (ty— 7)€ 17+ 27 (ty) £ty — 7p)€'171]
X{e_iQTze_iQTl(D(tl_ T1 ltl ,tz_ T ,t2) - eiQTZG_iQTl(1>(t1— T1 !tl ,t2 ,tz_ 7'2)
—e_iQTZe_iml(D(tl,tz— To bt — Tl)+eiQTze_i“Tl(D(t1,t2,t2_ Ty, b — 7-1)— C_C_}_ (C3)

We further assume the snapshot Iiffjitin which (i) the durations of the pulses are short compared with the nuclear
dynamics andii) the pulses are long compared with the electronic dephasing time. The first assumption allows us to neglect
the variation of the functiod on the timescale of the pulse duration and put ityit 7y andt;=0. The second assumption
yields

f Z1(t) 41 (ty— m)dty~ f_ |£1(ty)]?dt, =E;,

f 25 (ta— 79) £a(ty— 19— 1) dip~ f_ | £5(ty— 7o) [2dt,=E,.
Equation(C3) then assumes the form
4 » . . ) )
S(wy,w5;,79)= PElEZ Re ff d7,d7, cogwyry)e w22t el 102 10N (— 71 0,705,70)
0

— &6 10D (— 1,0,79, 7g) — € 1 272€' 171D (0,709, 7o, — 71) + €/ 726' 41D (0,70, 795 — 7)) —C.CY, (C4)

where we used the notatiag,= 7o— 7,. This equation can be further simplified by invoking the rotating-wave approximation,
resulting in Eq.(4.7).
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