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The multimode Brownian oscillator model of nonlinear response functions is generalized to include
a multielectronic level system interacting with several spectral densities representing solvent and
vibrational coupling to electronic energies, transition dipoles, and permanent dipoles. Applications
to resonant and off-resonant transient grating as well as to infrared and fifth-order Raman photon
echoes illustrate how the various spectral densities may be probed separately. ©1996 American
Institute of Physics.@S0021-9606~96!51342-5#

I. INTRODUCTION

Time-resolved vibrational spectroscopy is a powerful
tool for studying intermolecular and intramolecular nuclear
motions in condensed phases. Ultrafast;50 fs laser pulses
are short compared with typical vibrational periods, and can
excite nuclear motions in liquids impulsively. This makes it
possible to directly probe static and dynamic properties of
local structures.

The simplest nonlinear optical techniques used to inves-
tigate molecular motions in liquids are the optical Kerr1,2 and
transient grating.3,4 Both methods are one-dimensional: The
signal depends on a single time variable, the time delay be-
tween pulses. As a result, these techniques cannot distinguish
between contributions to line broadening coming from slow
molecular dynamics~static, inhomogeneous broadening!, or
from fast relaxation processes~homogeneous broadening!.5

A deeper microscopic insight into the structure and dynamics
of liquids can be achieved by multidimensional techniques,
in which independent control over several time intervals is
maintained.5–7 These methods closely resemble their nuclear
magnetic resonance counterparts.8

The lowest nonlinear response in isotropic media in-
volves three field-matter interactions~four-wave mixing!.
Photon echo9–14 and hole-burning15–17 techniques eliminate
the inhomogeneous broadening~slow and static compo-
nents!, and reveal dynamic information hidden underneath
the broad envelopes typical for linear absorption spectra.
This is possible only when the system has well separated
time scales, and inhomogeneous contributions dominate the
linewidth.

The multimode Brownian oscillator model provides a
convenient framework for analyzing a broad class of nonlin-
ear spectroscopic measurements.18 In this model, nuclear
motions are represented using a continuous distribution of
harmonic degrees of freedom, which may be grouped into a
few collective Brownian oscillator coordinates. Explicit ex-
pressions for the nonlinear response functions calculated
within this model were given in two limiting cases. The first
is a model of a two-level chromophore when the nuclear
coordinates couple to the electronic energies~diagonal cou-
pling!, and the dipole operator is assumed independent of
nuclear motions~the Condon approximation!. This model

has been successfully applied to electronically resonant tech-
niques such as pump-probe, transient grating, and three-pulse
photon echo.19

Another limit of the model was applied to electronically
off-resonant measurements such as fifth- and seventh-order
Raman experiments.10,20–22Here the coupling of nuclear co-
ordinates to electronic energies makes a negligible contribu-
tion to the response functions, and the dominant coupling is
through the dipole moment~non-Condon coupling!.6,7

The contribution of non-Condon terms becomes domi-
nant at off-resonant detunings.18,23 The leading term in the
signal is produced by the nonlinear dependence of the elec-
tronic polarizability on molecular vibrations.6,7 A theoretical
description of off-resonant response that takes into account
the electronic polarizability dependence on nuclear degrees
of freedom was presented in Refs. 6 and 24.

In this paper we derive new expressions for the nonlin-
ear response functions using the Brownian oscillator model.
We recover the existing expressions as limiting cases and
generalize them in several ways. First, we go beyond the
two-electronic level model to include an arbitrary number of
electronic levels. Second, we incorporate transition as well as
permanent dipole moments. The role of the permanent dipole
is important in measurements such as electroabsorption.25,26

Third, we allow coupling of nuclear degrees of freedom
through electronic energies as well as through the dipole mo-
ments. In addition, we adopt a more compact bookkeeping
which allows us to represent all Liouville-space paths using a
single Hilbert-space correlation function of dipole operators.

In general, the signal depends on several spectral densi-
ties representing the coupling of nuclear degrees of freedom
to transition dipoles, permanent dipoles, and electronic fre-
quencies. The analysis of experiments is complicated by the
interplay of these spectral densities. We propose experimen-
tal setups in which one of these spectral densities dominates
the response so that the various contributions may be sorted
out. Optical signals decrease as the external fields are tuned
off resonance with respect to the electronic frequencies of
the system, in a manner that is different for contributions
coming from the various spectral densities. We show that it
is possible to pinpoint the signatures of different spectral
densities by studying the variation of the heterodyne-de-
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tected transient grating~HDTG! signal with detuning. We
also study the effect of the relative phasew between the
heterodyne and the probe fields. The different scaling of the
w50 ~dichroism! and w5p/2 ~birefringence! signals with
detuning is calculated. Finally, we discuss the close formal
connection between (2n11)th-order off-resonant~Raman!
optical response andnth-order resonant infrared signals.27

Both are given by a formally identical combination of
(n11)-point correlation functions. The only difference is
that the electronic polarizability~Raman!, appearing in these
correlation functions, should be replaced by the permanent
dipole ~infrared!.

In Sec. II we introduce the model and express the linear
response in terms of a two-point dipole correlation function.
~This is generalized in Appendix A to nonlinear response of
arbitrary order.! We then express the two-point dipole corre-
lation function in terms of the four relevant nuclear spectral
densities. In Sec. III we calculate the dipole correlation func-
tions for the second- and third-order response, where addi-
tional spectral densities become relevant. In Sec. IV we ap-
ply these results to heterodyne-detected transient grating. We
further analyze the effects of using polarized light, and es-
tablish the connection to dichroism and birefringence spec-
troscopies. Finally, in Sec. V we calculate the fifth-order
off-resonant Raman signal for a two-electronic level system.
We demonstrate how the nature of the signal changes as the
optical frequency is tuned across an electronic transition,
since different spectral densities dominate at various detun-
ings. We further show how additional information about the
signal can be obtained by using a mixed time-frequency de-
tection.

II. LINEAR RESPONSE AND NUCLEAR SPECTRAL
DENSITIES

We consider a multi-electronic level solute in a solvent
described by the Hamiltonian

Ĥ5(
j

u j &Ĥ j~ p̂,q̂!^ j u2V̂~ q̂!E~ t !. ~2.1!

Here, Ĥ j is the adiabatic Hamiltonian for thej th electronic
level, andp̂ and q̂ denote nuclear momenta and coordinates.
We represent the molecular and solvent nuclear degrees of
freedom by a continuous distribution of harmonic coor-
dinates.28–32We thus have

Ĥ j~ p̂,q̂!5\V j
01(

n

\vn

2
@ p̂n

21~ q̂n1dn j!
2#. ~2.2!

Here,\V j
0 is the energy of thej th excited electronic state

( j50 is the ground state, and we setV0
0[0), q̂n and p̂n are

the dimensionless coordinate and momentum of thenth
nuclear oscillator with the frequencyvn , anddn j is the di-
mensionless coupling coefficient of the electronic and
nuclear degrees of freedom~by definition,dn0[0). The sec-
ond term in Eq.~2.1! represents the interaction with an ex-
ternal electric fieldE(t). The molecule is assumed to have
both permanent (M ) and transition (D) dipoles, and the di-
pole operatorV̂ is given by

V̂~ q̂!5(
j

u j &M̂ j~ q̂!^ j u1(
jk

@ u j &D̂ jk~ q̂!^ku1uk&D̂ jk
† ~ q̂!^ j u#.

~2.3!

We assume that the dipole operators depend exponentially
on nuclear coordinates

D̂ jk~q!5Djk expH(
n

vndnq̂nJ , ~2.4!

M̂ j~q!5M j expH(
n

vnmnq̂nJ , ~2.5!

where the coefficientsmn anddn do not depend on the elec-
tronic levels. The factorsvn in Eqs.~2.4! and ~2.5! allow a
compact notation for the spectral densities to be introduced
below. Consequently,mn anddn have the units of time.

The spectral density function was originally introduced
for a two-electronic level system coupled to harmonic vibra-
tions within the Condon approximation.18 Since we now con-
sider a multitude of electronic levels and take into account
non-Condon effects, we need to define several types of spec-
tral densities,

Cnn8
9 ~v!5(

n
nnnn8vn

2@d~v2vn!2d~v1vn!#,

nn ,nn8[dn j ,mn ,dn . ~2.6!

These represent all pairs ofdj , d, andm, wherej runs over
the electronic levels. The optical response functions will be
expressed in terms of the functions

gdd~ t !5E
0

` dv

v2 Cdd9 ~v!@coth~b\v/2!~12cosvt !

1 i sin vt2 ivt#, ~2.7!

ġdn~ t !5E
0

` dv

v
Cdn9 ~v!@coth~b\v/2!sin vt

1 i ~cosvt21!, ~2.8!

g̈nn~ t !5E
0

`

dvCnn9 ~v!@coth~b\v/2!cosvt

2 i sin vt#, ~2.9!

n5d,m.

Here, the dot denotes a time derivative. The function
gnn8(t) coincides with the functiong(t) used in the standard
Brownian oscillator model@Eq. ~8.25! of Ref. 18#, and the
functions ġdn8(t) and g̈nn8(t) represent additional contribu-
tions due to the dependence of the dipole operator on nuclear
coordinates. Combining Eqs.~2.6! and~2.7!–~2.9!, we obtain

gdjdj~ t !5(
n

dn j
2 @coth~b\vn/2!~12cosvnt !

1 i sin vnt2 ivnt#,
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ġdjn~ t !5(
n

dn jnnvn@coth~b\vn/2!sin vnt

1 i ~cosvt21!#,

g̈nn~ t !5(
n

nnnnvn
2@coth~b\vn/2!cosvnt

2 i sin vnt#,

nn5dn ,mn .

The linear response is expressed in terms of the two-
point correlation function of the dipole operator~see Appen-
dix A!

P~1!~ t !5
i

\E0
`

dsF~2!~ t,t2s!E~r ,t2s!1c.c., ~2.10!

where

F ~2!~ t,t2s!5^V~ t !V~ t2s!&. ~2.11!

We assume that initially the system is in its ground elec-
tronic state. Since only terms with even number of interac-
tions with the transition dipole operator contribute to the
trace, we have two possibilities: Both interactions are either
with the permanent or the transition dipole operator. The
corresponding contributions to the correlation function, de-
notedF

MM

(2) andF
DD

(2) , may be calculated using an expansion
in coherent states as outlined below. The correlation function
~2.11! can be written as

F ~2!~t1 ,t2!5Tr$V~t1!V~t2!r0%,

wherer05e2bH0/Tr(e2bH0) is the equilibrium density ma-
trix. We calculate this trace using the basis set of coherent
statesuz&,33,34 defined by

uz&5eza
1
uV&,

wherez is a complex number,a1 is the creation operator,
andV denotes the ground state of the harmonic oscillator. In
this basisF (2)(t1 ,t2) can be written as

F ~2!~t1 ,t2!5
1

Tr~e2bH0!
E d2z

^zuz&

3^zuV~t1!V~t2!e
2bH0uz&, ~2.12!

with

Tr~e2bH0!5E d2z

^zuz&
^zue2bH0uz&.

Since the dipole operatorV(t) has an exponential depen-
dence on nuclear coordinates, we can easily calculate Eq.
~2.12! by acting on the coherent stateuz& successively by the
operatorse2bH0, V, the evolution operatore2 ( i /\) H0(t12t2),
and the second operatorV. The rules for acting with expo-
nential operators on a coherent state are summarized in Ref.
7. The resulting wave function, which retains its coherent
state form at all times,

uz8&5Ve2 ~ i /\! H0~t12t2!Ve2bH0uz&

is then overlapped witĥzu to calculate the trace as given by
Eq. ~2.12!. The coherent states form an overcomplete basis
set. The property that makes it particularly suitable for the
present calculation is that when an exponential operator such
asV acts on a coherent state, the result is also a coherent
state~and not a superposition of states!. This eliminates the
numerous summations which appear when using the eigen-
state basis and provides a compact expression for the corre-
lation function. We thus obtain

F ~2!~t1 ,t2!5F
MM

~2! ~t1 ,t2!1F
DD

~2!~t1 ,t2!,

F
MM

~2! ~t1 ,t2!5M0
2 exp$g̈mm~0!1g̈mm~t21!%, ~2.13!

F
DD

~2!~t1 ,t2!5(
j
D j0
2 exp$2 iV jt211g̈dd~0!1g̈dd~t21!

2gdjdj~t21!12i ġddj
~t21!%. ~2.14!

Here, V j[V j
01 1

2( jdj
2v j

2 , t21[t22t1, and the functions
gnn8(t), ġnn8(t), andg̈nn8(t) are given by Eqs.~2.7!–~2.9!.
Four spectral densities contribute to the response function for
each electronic transitionj : gdjdj , which reflects the depen-
dence of electronic transition frequency on nuclear coordi-
nates;g̈dd and g̈mm , which describes how nuclear coordi-
nates affect the transition and permanent dipole moment; and
the mixed spectral densityġddj

.

III. THE NONLINEAR RESPONSE FUNCTIONS

The nth-order nonlinear response can be expressed as a
combination of the dipole correlation functions

F ~n11!~t1 ,...,tn11!5^V~t1!V~t2!•••V~tn11!&, ~3.1!

with various permutations of the time arguments. In the stan-
dard density matrix Liouville-space formalism we maintain a
complete bookkeeping of the time ordering of the various
interactions. Thenth-order response then contains 2n

terms.18 In Appendix A we outline an alternative bookkeep-
ing, which maintains only partial time ordering of the inter-
actions with the external field~based on the Schwinger–
Keldysh time loop.35–37! This scheme results in fewer terms
and assumes a more compact form compared with the fully
time-ordered density matrix formalism. It is straighforward
to switch between the two pictures: By separating the various
terms in Appendix A to different components, we can re-
cover the density matrix expressions.18 For impulsive mea-
surements with very short pulses, the fully time ordered ex-
pressions are most appropriate, whereas when the time
ordering is partially lost, e.g., by using finite and overlapping
pulses, then the form given in Appendix A may be more
adequate. In any event, the building blocks of both formal-
isms are the correlation functions~3.1!, which will be evalu-
ated below.

The second-order response is given by a three-time cor-
relation function of dipole operators. It includes either three
or one interactions with the permanent dipole operator. The
corresponding contributions to the response functions will be
denotedF

MM

(3) andF
MD

(3) . We then have
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F ~3!~t1 ,t2 ,t3!

5F
MM

~3! ~t1 ,t2 ,t3!1F
MD

~3!~t1 ,t2 ,t3!,

F
MM

~3! ~t1 ,t2 ,t3!

5M0
3 exp$~3/2!g̈mm~0!1g̈mm~t21!

1g̈mm~t32!1g̈mm~t31!%, ~3.2!

F
MD

~3!~t1 ,t2 ,t3!

5 (
k51

3

(
j
MkD j0

2 exp$2 iV jtDD
1g̈mm~0!1g̈dd~0!

1g̈dd~t
DD

!2gdjdj~t
DD

!12i ġddj
~t

DD
!1g̈dm~t

MD

~1!!

1g̈dm~t
MD

~2!!1 i ġdjm~t
MD

~1!!1 i«kġdjm~t
MD

~2!!%, ~3.3!

Here,t i j[t i2t j , i , j51,2,3, and the time variablest
DD
and

t
MD

in ~3.3! denote the intervals between the two
D-interactions and between theD- andM -interactions, re-
spectively. Thek summation in Eq.~3.3! represents the three
possible choices of the intervalt

DD
: t22t1, t32t2, and

t32t1; these choices are depicted in Figs. 1~a!–1~c!. The
subscriptk of Mk denotes whether the ground- or excited-
state permanent dipole operator is involved. This also deter-
mines the parameter«k . The time intervals and the param-
eters used in Eq.~3.3! are listed in Table I.

The third order response involves four interactions with
the dipole operator; in this case there are three possibilities
corresponding to 4, 2, or 0 interactions with the permanent
dipole operator. The last case, in turn, is divided into two:
Either all four transitions involve only a single pair of elec-
tronic levels, or three levels participate, i.e., the system is
excited twice and then returns to the ground state. We denote
these contributions byF

MM

(4) , F
MD

(4) , F
DD

(4) , andF
DD8
(4) respec-

tively. They are given in Appendix B@Eqs.~B1!–~B5!#, and
all relevant permutations of transition and permanent dipoles
for F

MD

(4) are given in Fig. 2.

IV. HETERODYNE-DETECTED TRANSIENT GRATING;
NON-CONDON EFFECTS IN BIREFRINGENCE
AND DICHROISM

In this section we show how to distinguish experimen-
tally between the contributions of spectral densities related to
different types of coupling of electronic and nuclear degrees
of freedom. We consider a two-electronic level solute with
the Hamiltonian given by Eq.~2.2! with j51. We neglect
the permanent dipole, and non-Condon effects are incorpo-
rated through the dependence of the transition dipole opera-
tor on nuclear coordinates@Eq. ~2.4!#.

We start with the normalized linear absorption line
shape,

sa~v!5
1

p\
ReE

0

`

F
DD

~2!~ t,0!eivtdt, ~4.1!

where F
DD

(2) is given by Eq.~2.14!. Neglecting the mixed

spectral densityCdd9 (v)50, Eq. ~2.14! becomes

F
DD

~2!~ t,0!5D2 exp$2 iVt1g̈dd~0!1g̈dd~ t !2gdd~ t !%.
~4.2!

The time dependence of this correlation function is governed
by the following combination of the two spectral densities:
g̈dd(t)2gdd(t), and we cannot therefore differentiate be-
tween the two. We assume that both spectral densities repre-
sent a single overdamped Brownian oscillator,

Cdd9 ~v!52ld

vLd

v21Ld
, Cdd9 ~v!52ld

vLd

v21Ld
2 . ~4.3!

Note that the coupling parametersld andld have the units
of frequency and time respectively. Using Eqs.~2.7!–~2.9!,
we obtain in the high-temperature limitb\L!1,

gdd~ t !5
ld

Ld
S 2

b\Ld
@e2Ldutu1Ldutu21#

2 i sign t@e2Ldutu21# D ,
g̈dd~ t !5LdldS 2

b\Ld
2 i sign t De2Ldutu.

FIG. 1. All possible permutations of the permanent and transition dipole
operators for the second-order response functionF

MD

(3) @Eq. ~ 3.3#.

TABLE I. The parameters corresponding to three terms of the sumF
MD

(3) @Eq.
~3.3!, the diagrams~a!–~c! in Fig. 1#.

k Diagram t
DD

t
MD

(1) t
MD

(2) «k Mk

1 ~a! t32 t31 t21 21 M 0

2 ~b! t21 t31 t32 21 M 0

3 ~c! t31 t21 t32 1 M j

FIG. 2. All possible permutations of the permanent and transition dipole
operators for the third-order response functionF

MD

(4) @Eq. ~B3!#.
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In Fig. 3 we show the absorption line shape for this
model. We use the following parameters for the
Brownian oscillator spectral densities:Ld5Ld50.5 ps21,
ld52.5 ps21, b\L j50.025. The parameterld reflects the
strength on the non-Condon effects;ld50 corresponds to
the Condon limit, in which the dipole operator does not de-
pend on nuclear coordinates~solid line!, and the dotted and
dashed lines are calculated forld50.2 ps andld50.5 ps,
respectively. For these parameters, the spectral density
Cdd9 (v), associated with the coupling between the dipole op-
erator and nuclear coordinates, hardly affects the line shape:
it only produces a small shift without changing its profile.
We therefore cannot infer from linear measurements whether
non-Condon effects are important and what is the origin of
the line broadening.

To differentiate between the two contributions, we will
consider the heterodyne-detected transient grating~HDTG!,
and show how the presence of the spectral densityCdd9 (v)
can be easily established experimentally. This technique can
therefore be used to identify whether the line broadening
comes from the coupling between the electronic and nuclear

degrees of freedom, or from the dependence of the dipole
operator on nuclear degrees of freedom.

In the HDTG technique, the system is subjected to two
pump pulses propagating in the directionsk1 andk2. These
pulses create a transient grating in the medium. The probe
pulse~with wave vectork3) then undergoes a Bragg diffrac-
tion, and the signal, generated in the directionks5k1
2 k21k3, is finally mixed with a fourth, heterodyne, field
with frequencyvh and phasew relative to the probe pulse.
Hereafter we assume that both pump pulses have the same
temporal envelope and frequencyv1; the frequency of the
probe and heterodyne fields isv2, and they too have the
same envelope. We denote the delay between the probe pulse
and the two pump pulses byt0. The total field can then be
written as

E~r ,t !5E1~ t !e
ik1r2 iv1t1E1~ t !e

ik2r2 iv1t

1E2~ t2t0!e
ik3r2 iv2t

1E2~ t2t0!e
iksr2 iv2t1 iw1c.c. ~4.4!

The transient grating signal is given by18

S~v1 ,v2 ;t0!522 ImE
2`

`

eiwE2* ~ t !P~3!~ks ,t !dt. ~4.5!

In Appendix C we calculate the HDTG signal assuming
pulses short compared with the nuclear dynamics but long
compared with the electronic dephasing timescale~this is
known as the snapshot limit!.18 We express the signal in
terms of the four-point correlation functionF

DD

(4) @Eq. ~B4!#,
which is factorized into a fast-oscillating term
exp$2iV(t42t3 1 t22t1)% and a slowly-varying function
F(t1 ,t2 ,t3 ,t4),

F
DD

~4!~ t1 ,t2 ,t3 ,t4![D4e2 iV~ t42t31t22t1!F~ t1 ,t2 ,t3 ,t4!.
~4.6!

In the rotating-wave approximation, which holds when
the detuningsv j2V are much smaller than the optical fre-
quencies, we obtain

S~v1 ,v2 ;t0!5
2

\3E1E2 ReEE
0

`

eiwdt1dt2$e
i ~v12V!t1e2 i ~v22V!t2@F~2t1 ,0,t0 ,t02!2F~2t1 ,t0 ,t02,0!#

1e2 i ~v12V!t1e2 i ~v22V!t2@F~0,t0 ,t02,2t1!2@F~t0 ,t02,0,2t1!%, ~4.7!

where we used the notationt02[t02t2.
In the following calculations we assume that all laser

pulses have the same frequency,v15v2[v, and calculate
the signal~C4! for the model used in Fig. 3. We shall be in-
terested primarily in the dependence of this signal on detun-
ing, because this should reveal the origin of the spectral den-
sities. We further study how the phasew affects the signal. In
Figs. 4~a! and 4~b! we present the dichroism~w50! and the
birefringence~w5p/2! signals, respectively. The variation of
the signals with the detuning of both laser pulses from the

electronic transition frequency are shown. The delay between
the pulses was varied fromt050.5 ps tot052 ps.

It is clear from Fig. 4 that the HDTG signals are far
more sensitive to non-Condon contributions compared with
the linear absorption line shape. The same parameters that
hardly produced any effect for linear absorption, consider-
ably change the behavior of transient grating signals, making
it possible to immediately recognize the signatures of the
non-Condon contributions. The changes are clearly seen both
for the dependence on the detuning and on the delay between

FIG. 3. Linear absorption spectrum for a two-level system. Solid line: The
Condon limitld50; dotted line:ld50.2 ps, dashed line:ld50.5 ps. For
other parameters see the text.
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the pulses. These effects are especially pronounced for bire-
fringence, which appears to be more sensitive to non-Condon
effects than dichroism. The oscillatory dependence of the
signal on the delay between the pulses can also serve as a test
for non-Condon effects: This arises from interference
between terms corresponding to different Liouville-space
paths.

The signals for large detunings~compared with line-
width! are displayed in Fig. 5 for dichroism~top panel! and
birefringence~bottom panel!. All curves are given for the
delayt051.5 ps. The solid lines represent the Condon limit
(ld50), the dashed lines (ld50.5 ps! show how the signal
changes as non-Condon effects are switched on. This gives
us one more way to recognize non-Condon contributions:
The manner with which the signal decreases with the detun-
ing changes drastically. In the Condon limit the line shape of
an overdamped Brownian oscillator in the slow modulation
limit has a Gaussian profile,18 and we see the fast decay of
solid lines in Fig. 5~the solid curves bend down, which
reflects their exponential dependence on detuning!. Once we
include a non-Condon coupling, the dependence switches to
a power law. We can deduce from the slope of dashed lines
that the signal scales approximately asDv23 for dichroism,
andDv22 for birefringence, as predicted in Ref. 18.

V. FIFTH-ORDER RAMAN ECHO

In this section we study heterodyne-detected fifth-order
Raman spectroscopic measurements, in which the system is

subjected to two pairs of short laser pulses followed by a
probe pulse@Fig. 6~a!#. The signal is then overlapped with
the heterodyne pulse~with the frequencyvs), and the signal
is given by

FIG. 4. The dichroism~a! and birefringence~b! signals as a function of the detuning between the laser pulses and the electronic transition frequency. The
delay between the pulses is shown on each panel. The parameters of the Brownian oscillator model used are the same as in Fig. 3. Solid line: the Condon limit
(ld50); dotted line:ld50.2 ps; dashed line:ld50.5 ps. The curves in each panel are normalized to have the same maximum.

FIG. 5. The dichroism~top panel! and the birefringence~bottom panel!
signals in the logarithmic scale for the detunings large compared with the
linewidth. The delay between the pulses ist051.5 ps. Solid lines represent
the Condon limit (ld50), and the dashed lines are calculated forld50.5
ps. All other parameters are the same as in Fig. 3.
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S522 ImE
2`

`

Eh* ~ t2t3!P
~5!~ t !dt. ~5.1!

The fifth-order optical response function is
expressed in terms of the six-point correlation function
F
DD

(6)(t1 ,t2 ,t3 ,t4 ,t5 ,t6). Since the pulses come in pairs
@Fig. 6~a!#, and are assumed to be short compared with
nuclear dynamics, we will be able to express the response in
terms of six-point correlation function containing only three
time arguments:t1, t2, andt3, each taken twice. The relevant
Liouville-space paths are given in Fig. 7, and the necessary
six-point correlation functions corresponding to these paths
are

F
DD

~6!~ t1 ,t1 ,t2 ,t2 ,t3 ,t3!

5D6 exp$6g̈dd~0!14g̈dd~ t21!14g̈dd~ t32!14g̈dd~ t31!%,

F
DD

~6!~ t1 ,t1 ,t3 ,t3 ,t2 ,t2!

5D6 exp$6g̈dd~0!14g̈dd~ t21!24g̈dd~ t32!14g̈dd~ t31!%,

F
DD

~6!~ t1 ,t1 ,t2 ,t3 ,t3 ,t2!

5D6 exp$6g̈dd~0!14g̈dd~ t21!14 Re g̈dd~ t32!

14g̈dd~ t31!24 Im ġdd~ t21!%,

F
DD

~6!~ t1 ,t2 ,t2 ,t3 ,t3 ,t1!

5D6 exp$6g̈dd~0!14 Re@ g̈dd~ t21!2g̈dd~ t31!#

24g̈dd~ t32!24 Im@ ġdd~ t21!1ġdd~ t31!#%,

F
DD

~6!~ t1 ,t2 ,t3 ,t3 ,t2 ,t1!

5D6 exp$6g̈dd~0!14 Re@ g̈dd~ t21!1g̈dd~ t32!

1g̈dd~ t31!#24 Im@ ġdd~ t21!2ġdd~ t32!1ġdd~ t31!#%.

with t i j[t i2t j , i , j51,2,3.
We shall now discuss the contributions of different paths

~Fig. 7! to the signal~5.1!, paying particular attention to the
dependence on the detuning between the field and the elec-
tronic transition frequency. We start with paths~a! and ~b!.
These paths contain no excited-state evolution periods, and
in the off-resonant regime we can integrate over the time
intervals during which the system is in an electronic coher-
ence and obtain

Sa5
1

\5E
2`

`

dt3E
2`

t3
dt2E

2`

t2
dt1uE~ t1!u2uE~ t2!u2

3uE~ t3!u2FDD

~6!~ t1 ,t1 ,t2 ,t2 ,t3 ,t3!, ~5.2!

Sb5
1

\5E
2`

`

dt3E
2`

t3
dt2E

2`

t2
dt1uE~ t1!u2uE~ t2!u2

3uE~ t3!u2FDD

~6!~ t1 ,t1 ,t3 ,t3 ,t2 ,t2!, ~5.3!

where we assumed that the third pulse is the heterodyne field
and v i5v i8 It was shown in Ref. 38 that in off-resonant
Raman spectroscopy each pair of interactions with the tran-
sition dipole can be replaced by an effective interaction with
the electronic polarizabilitya defined as

a~v,q![@D~q!#2S 1

V2v
1

1

V1v D . ~5.4!

We thus see thatF
DD

(6)(t1 ,t1 ,t2 ,t2 ,t3 ,t3) reduces to the three-
point correlation functionF

MM

(3) (t1 ,t2 ,t3) @Eq. ~3.2!# provided
we replaceg̈dd by g̈mm/4 and change in the latterm for a as
defined in~5.4!. Clearly, as we tune the frequency off reso-
nance,Sa andSb scale as (V2v)23.

Consider now the scaling of path~e! whose contribution
to the signal is given by

Se5
1

\5E
2`

`

dt3E
2`

t3
dt2E

2`

t2
dt1E

2`

t3
dt38E

2`

t38 dt28E
2`

t28 dt18

3E~ t3!E~ t2!E~ t1!E* ~ t38!E* ~ t28!E* ~ t18!

3F
DD

~6!~ t1 ,t2 ,t3 ,t38 ,t28 ,t18!. ~5.5!

FIG. 6. Pulse configuration for~a! fifth-order Raman and~b! second-order
infrared spectroscopy.

FIG. 7. The Liouville-space paths for fifth-order Raman spectroscopy.
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Since the light pulses are short and do not overlap, the
t2 ,t28 ,t1, andt18 integrations can be extended to (2`,`). We
assume that the pulse envelopes are given by a smooth func-
tion with at least one continuous time derivative. It follows
from the general properties of Fourier integrals that the result
of each of these four integrations vanishes at least as

(V2v)22. The integrals with respect tot3 ,t38 are treated
similar to paths~a! and~b! and bring an additional factor of
(V2v)21. Consequently,Se will scale as (V2v)29.

Finally, we consider paths~c! and~d!. Each involves two
pairs of interactions with the field@as in~a! and~b!# and two
single interactions@as in ~e!#. Each pair results in the factor
(V2v)21, and each single interaction in (V2v)22. Hence,
the overall scaling of these terms (V2v)26.

These arguments show that paths~a! and ~b! are domi-
nant at off resonance. The signal is then determined by
g̈dd , related to the coupling of the transition dipole to
nuclear motions. When the field is tuned closer to the elec-
tronic transition frequency, the picture changes drastically.
The excited-state evolution becomes essential, and paths~c!,
~d!, and ~e! start to contribute to the signal. The signal will
now depend on the relative magnitude of the dipole and elec-
tronic energy coupling of electronic and nuclear degrees of
freedom. If dipole coupling effects are dominant, the signal

FIG. 8. Fifth-order Raman echo signals for a single inhomogeneously broadened oscillator in the underdamped~upper row! and overdamped~bottom row!
limits of the inhomogeneous distribution@Eq. ~5.6!#. ~a!–~c! correspond to off-resonant (Dv;V), near resonant, and resonant excitation, respectively. The
time is given in ps.

FIG. 9. ~a! Wigner spectrogram of the off-resonant Raman echo@Fig. 8~a!#
for the overdamped Brownian oscillator;~b! the ~a! signal integrated over
frequency;~c! the ~a! signal integrated over time. The time units on the axes
are ps, the frequency is in cm21.

FIG. 10. The Keldysh time loop representing the two sides of the density
matrix.
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does not change its character as it is tuned near resonance,
and its amplitude will scale as (V2v)23. In the other ex-
treme, when non-Condon effects are weak, the contribution
of paths~a! and ~b! in the near-resonance region becomes
negligible compared with the background of the terms~c!–
~e!, which involve excited-state evolution. The signal then
depends on the spectral densitygdd .

As an illustration, we calculated the Raman echo signal
for a model that includes a single nuclear mode coupled to
the electronic transition frequency and one mode coupled to
dipole moment. We introduce inhomogeneous broadening by
assuming that the frequencies of these modes are distributed
around some central frequencyv0 with half-width g0. The
form of the distribution is taken to be of the Brownian oscil-
lator form,18

f nn~v!5
1

2p

vg0

~v22v0
2!21v2g0

2 , n5d,d. ~5.6!

We have expandedF ~6! to fourth order ind andd using the
expressions given in Sec. II for a single oscillator. We then
averaged the result using the distribution~5.6! of the oscil-
lator’s frequency.7 The results are presented in Fig. 8, where
the Raman echo signal is calculated in the underdamped~up-
per row, g050.6 ps21) and overdamped regimes~bottom
row, g053 ps21). We also usedv051.5 ps21. The param-
eters are chosen so that near resonance the termsSa andSb
are negligible compared withSe . The signals~a!, ~b!, and~c!
correspond to off-resonant, intermediate, and resonant case,
respectively. We see that in the former case we observe an
echo~a peak att325t21) produced by the termsSa andSb .
The echo gradually disappears as the electronic resonance is
approached, and other contributions become dominant.

It should be noted that in the off-resonant case the Ra-
man echo is analogous to the infrared resonant echo@Fig.
6~b!#. All the formulas remain the same, we should only
replace the polarizabilitya(v,q) by dipole operatorM (q).

We next study the time- and frequency-resolved second-
order infrared resonant photon echo signals. We fix the delay
between the first and the second pulsest21 and vary the in-
terval t32. The Wigner spectrogram, defined as39,40

W ~ t32,v!5E
2`

`

P~2!* ~ t322t/2!P~2!~ t321t/2!eivtdt,

can be interpreted as the time-dependent spectrum. Integrat-
ing the Wigner spectrogram over frequencies gives the time-
dependent intensity

E
2`

`

W ~ t,v!dv52puP~ t !u2,

while integrating it over time gives the spectral distribution
of the field.

E
2`

`

W ~ t,v!dt5uP~v!u2, P~v![E
2`

`

P~ t !eivtdt.

A discussion of Wigner spectrograms and their measure-
ments is given in Refs. 39–42. The second-order polarization
P(2) is related to three-point correlation function in Appen-
dix A @Eq. ~A12!#, and the latter is given by Eq.~3.2!. In Fig.
9~a! we display the Wigner spectrogram in the impulsive
regime calculated using an overdamped Brownian oscillator.
The parameters for the spectral densityg̈mm are the same as
for g̈dd in Fig. 8~a!, bottom graph. In Figs. 9~b! and ~c! we
show the time-resolved signal~integrated over frequency!
and the frequency-resolved signal~integrated over time!, re-
spectively. By comparing the time- and frequency-resolved
with the integrated signals, one can clearly see the additional
information contained in the former. For example, for
t32*t21 the spectrum in Fig. 9~a! shows a maximum at zero
frequency, which becomes narrower as time increases. This
effect is missed in the integrated signal~c!, which is domi-
nated by highly oscillating terms.

VI. DISCUSSION

We calculated the correlation functionsF (2), F (3), and
F (4) assuming that the permanent and transition dipole op-
erators depend exponentially on nuclear coordinate@Eqs.
~2.4! and ~2.5!# and the coefficientsmn anddn are indepen-
dent of the electronic levels. Allowingmn anddn to depend
on electronic levels will not affect the correlation functions
F
MM

(n) , since it involves only the ground electronic state, but
will bring additional terms toF

MD

(n) andF
DD

(n) . As a result, the
number of relevant spectral densities will increase.

The choice of the exponential form of the dipole opera-
tors @Eqs. ~2.4! and ~2.5!# was made for mathematical con-
venience in evaluating the correlation functions~2.12!. The
present results can, however, be used to derive expressions
for an arbitrary dependence of the dipole on nuclear coordi-
nate. This may be done using derivatives of the result with
respect to the parametersdn and mn . In that sense the
present results may serve as generation functions for dipole
operators of arbitrary form.6,7

Another possible generalization of the Raman and infra-
red signals calculated in the previous section is to consider
finite ~rather than impulsive! light pulses. Let us consider
four-wave mixing with nonoverlapping pulses that are short
compared with nuclear motions. The external field is given
by

E~t!5
1

2p (
j51

4

E j
0sech@a j~t2t j !#e

ik j r2 iv jt1c.c., ~6.1!

where the pulsej is centered at timet j . The heterodyne-
detected signal in the directionks5k12k21k3 is
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S~v1 ,v2 ,v3 ,v4!5
2

\3 ReEEEE
2`

}

dt1dt2dt3dt4E1~t1!E2* ~t2!E3~t3!E4* ~t4!e
2 iv1t11 iv2t22 iv3t31 iv4t4

3@F
DD

~4!~t1 ,t2 ,t3 ,t4!2F
DD

~4!~t1 ,t2 ,t4 ,t3!2F
DD

~4!~t1 ,t3 ,t4 ,t2!2F
DD

~4!~t2 ,t3 ,t4 ,t1!#,

where the four-point correlation functionF
DD

(4) is given by Eq.~B4!. We factorize the fast-oscillating part of the four-point
correlation function as in Eq.~4.6!, and assuming that nuclear motions are slow, we can take the slowly-varying function
F out of the integral, setting in itt j5t j . We then have

S~v1 ,v2 ,v3 ,v4!52
1

\3 Re@ I 1
2~v1!I 2

2~v2!I 3
1~v3!I 4

1~v4!F~ t1 ,t2 ,t3 ,t4!2I 1
2~v1!I 2

2~v2!I 3
2~v3!I 4

2~v4!F~ t1 ,t2 ,t4 ,t3!

2I 1
2~v1!I 2

2~v2!I 3
2~v3!I 4

2~v4!F~ t1 ,t3 ,t4 ,t2!2I 1
1~v1!I 2

1~v2!I 3
2~v3!I 4

2~v4!F~ t2 ,t3 ,t4 ,t1!#, ~6.2!

where

I j
2~v j !5

E j
0

a j
sech@p~v j2V!/~2a j !#, ~6.3!

I j
1~v j !5

E j
0

a j
sech@p~v j1V!/~2a j !#. ~6.4!

If the field frequency is close to resonance,v j'V, then
I j

2(v j )@I j
1(v j ); this means that the terms in Eq.~6.2! that

involve the counter-rotating factorsI j
1(v j ) can be neglected.

When the field frequencyv j is tuned off the resonance fre-
quencyV, the factorsI j

2(v j ) vanish exponentially. Note
that this scaling depends on the pulse shape. In the fifth-order
Raman signals calculated in the preceding section we as-
sumed that the pulse envelopes have only one continuous
time derivative. In that case, each convolution with the field

results in an additional (v j2V)22 factor coming from
I j

2(v j ). If the envelope has a continuousnth derivative, the
factors I j

2(v j ) scale as (v j2V)2n11. Finally, if the enve-
lopes are given by infinitely differentiable functions, the
scaling becomes much more rapid~e.g., exponential for sech
pulses!. The asymptotic off-resonant scaling of four-wave
mixing signals is thus very sensitive to the pulse envelopes.
Smooth envelopes result in a fast~e.g., exponential! scaling
with frequency, whereas less smooth envelopes will show a
more gradual scaling, reflecting their broader spectral distri-
bution.
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APPENDIX A: PARTIALLY TIME ORDERED EXPRESSIONS FOR RESPONSE FUNCTIONS

Optical signals are related to the induced polarization by the external radiation field

P~ t !5Tr@Vr~ t !#. ~A1!

Expanding the density matrixr(t) in powers of the electric field, we obtain for thenth-order contribution

P~n!~ t !5Tr@Vr~n!~ t !#. ~A2!

The density matrix can be represented in the form

r~ t !5(
a

P~a!uca~ t !&^ca~ t !u, ~A3!

whereuca& are the eigenvalues of the molecular Hamiltonian. Hence,

r~n!~ t !5(
a

P~a!(
j50

n

uca
~n2 j !~ t !&^ca

j ~ t !u, ~A4!

where

uca
~ j !~ t !&5S i\ D jE

0

`

dsjE
0

`

dsj21•••E
0

`

ds1E~r ,t2sj !•••E~r ,t2sj2•••2s1!G~sj !VG~sj21!•••G~s1!uca~2`!&, ~A5!

and Eq.~A1! becomes

P~n!~ t !5S i\ D n(
a

P~a!(
j50

n E
0

`

ds1•••E
0

`

dsn2 jE
0

`

ds18•••E
0

`

dsj8 ~A6!

3E~r ,t2sn2 j !•••E~r ,t2sn2 j2•••2s1!E~r ,t2sj8!•••E~r ,t2sj82...2s18!

3Tr@VG~sn2 j !V•••VG~s1!uca~2`!&^ca~2`!uG†~s18!V•••VG†~sj8!#. ~A7!

8552 Khidekel, Chernyak, and Mukamel: Femtosecond nonlinear spectroscopy

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



In this expression the ket and the bra time intervalss1 ,... ,sn2 j ands18 ,...,sj8, respectively, are independent. We next use the
cyclic invariance of the trace and move all the operators that act on the vector^ca(2`)u to the left. This results in

P~n!~ t !5S i\ D n(
j
E
0

`

ds1•••E
0

`

dsn2 jE
0

`

ds18•••E
0

`

dsj8E~r ,t2sj !•••E~r ,t2sn2 j2 •••2s1!

3E~r ,t2sn2 j8 !•••E~r ,t2sj82 •••2s18!Tr@G†~s18!V•••VG~sj8!VG~sn2 j !V•••VG~s1!r~2`!#, ~A8!

where

r~2`!5(
a

P~a!uca~2`!&^ca~2`!u.

Defining the time-dependent dipole operatorsV(t)[G†(t)VG(t) and recalling that Tr(A,r)5^A&, we finally obtain

P~n!~ t !5S i\ D n(
j
E
0

`

ds1•••E
0

`

dsn2 jE
0

`

ds18•••E
0

`

dsj8

3^V~ t2sj82 •••2s18!•••V~ t2sj8!V~ t !V~ t2sn2 j !•••V~ t2sn2 j2 •••2s1!&

3E~r ,t2sn2 j !•••E~r ,t2sn2 j2 •••2s1!E~r ,t2sj8!•••E~r ,t2sj82 •••2s18!. ~A9!

The calculation of the dipole correlation function is illustrated by Fig. 10. In contrast to the Liouville-space representation,
we consider the evolution of the bra and ket of the density matrix independently and do not maintain time-ordering of all
interactions with the external field; only the interactions on the bra and ket separately are time-ordered. The Liouville-space
representation provides a deep physical insight and is particularly suitable for calculating time-domain response with short
non-overlapping pulses, since it follows the fully time-ordered evolution of the density matrix. In the case of overlapping
pulses, keeping the time order separately for bra and ket~partial time-ordering! may allow us to significantly reduce the
number of terms necessary to calculate the signal.40 This bookkeeping corresponds to the wave function representation~see
Ref. 18! and is similar to the Keldysh-Schwinger time loop technique.35–37 The only difference is that in the latter, the two
sides of the path diagram are connected at infinite time~which is convenient for a frequency-domain analysis!, whereas we
close the loop at the time of last interaction with the field. We move along the left side of the path diagram and then return to
the starting point along the right side. In doing so we can naturally write all the dipole operators in a properly time-ordered
form. We define then-point dipole correlation function

F ~n!~t1 ,t2 , . . . ,tn![^V~t1!V~t2!•••V~tn!&, ~A10!

and all correlation functions in Eq.~A9! can be expressed in terms of this function by a specific choice of time arguments.
We present below the explicit expressions for the first, second, and third order response

P~1!~ t !5
i

\E0
`

dsF~2!~ t,t2s!E~r ,t2s!1c.c., ~A11!

P~2!~ t !5S i\ D 2EE
0

`

ds1ds2F
~3!~ t,t2s2 ,t2s12s2!E~r ,t2s12s2!E~r ,t2s2!

1
1

2 S i\ D 2EE
0

`

ds1ds18F
~3!~ t2s1 ,t,t2s18!E~r ,t2s1!E~r ,t2s18!1c.c., ~A12!

P~3!~ t !5S i\ D 3EEE
0

`

ds1ds2ds3F
~4!~ t,t2s3 ,t2s32s2 ,t2s32s22s1!E~r ,t2s32s22s1!E~r ,t2s32s2!E~r ,t2s3!

1S i\ D 2EEE
0

`

ds1ds2ds18F
~4!

~ t2s18 ,t,t2s2 ,t2s22s1!E~r ,t2s22s1!E~r ,t2s2!E~r ,t2s18!1c.c., ~A13!

The calculation of thenth-order nonlinear response is thus reduced to the computation of the (n11)-point dipole correlation
functionF (n11)(t1 , . . . ,tn11).
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APPENDIX B: FOUR-POINT CORRELATION FUNCTIONS FOR THE THIRD-ORDER RESPONSE

We present here the four-point correlation functions calculated for the model introduced in Sec. II.

F ~4!~t1 ,t2 ,t3 ,t4!5F
MM

~4! ~t1 ,t2 ,t3 ,t4!1F
MD

~4!~t1 ,t2 ,t3 ,t4!1F
DD

~4!~t1 ,t2 ,t3 ,t4!1F
DD8
~4! ~t1 ,t2 ,t3 ,t4!, ~B1!

F
MM

~4! ~t1 ,t2 ,t3 ,t4!5M0
4 exp$2g̈mm~0!1g̈mm~t21!1g̈mm~t32!1g̈mm~t43!1g̈mm~t31!1g̈mm~t42!1g̈mm~t41!%, ~B2!

F
MD

~4!~t1 ,t2 ,t3 ,t4!5 (
k51

6

(
j
Mk

2Dj0
2 expH 2 iVt

DD
1g̈mm~0!1g̈mm~t

MM
!1g̈dd~0!1g̈dd~t

DD
!2gdjdj~t

DD
!

12i ġddj
~t

DD
!1 i(

n51

4

ġdm~t
MD

~n!!1 i(
n51

4

«n
kġdjm~t

MD

~n!!J ~B3!

F
DD

~4!~t1 ,t2 ,t3 ,t4!5(
j
D j ,0
4 exp$2 iV j~t431t21!12i @ ġddj

~t21!2ġddj
~t32!1ġddj

~t43!1ġddj
~t41!#

12g̈dd~0!1g̈dd~t21!1g̈dd~t32!1g̈dd~t43!1g̈dd~t31!1g̈dd~t42!1g̈dd~t41!

2gdjdj~t21!2gdjdj~t32!2gdjdj~t43!1gdjdj~t31!1gdjdj~t42!2gdjdj~t41!%, ~B4!

F
DD8
~4! ~t1 ,t2 ,t3 ,t4!5(

j ,i
Di j
2Dj0

2 exp$2 iV j~t431t21!2 iV i~t32!12i ġddj
~t21!2 i ġddi

~t21!22i ġddj
~t32!12i ġddi

~t32!

12i ġddj
~t43!2 i ġddi

~t43!1 i ġddi
~t31!1 i ġddi

~t42!12i ġddj
~t41!12g̈dd~0!1g̈dd~t21!1g̈dd~t32!

1g̈dd~t43!1g̈dd~t31!1g̈dd~t42!1g̈dd~t41!2gdjdj~t21!1gdjdi~t21!2gdjdj~t32!12gdjdi~t32!

2gdidi~t32!2gdjdj~t43!1gdjdi~t43!1gdjdj~t31!2gdjdi~t31!1gdjdj~t42!2gdjdi~t42!2gdjdj~t41!%.

~B5!

Here, t i j[t i2t j , i , j51, . . . ,4, and thevariablest
DD
, t

MM
, and t

MD
in Eq. ~B3! denote time intervals between two

D-interactions, twoM -interactions, and aD- and anM -interactions, respectively. The sum overk in Eq. ~B3! runs over six
choices of the intervalt

DD
; these terms are given in Figs. 2~a!–2~f!. The subscriptsk of Mk indicate whether the ground or

excited state permanent dipole operator is involved. All relevant time intervals and parameters are listed in Table II.

APPENDIX C: THE HETERODYNE-DETECTED TRANSIENT GRATING (HDTG) SIGNAL

To derive a correlation-function expression for the HDTG signal, we start with Eq.~4.5!. Expressing the polarization
through four-point correlation function, we obtain

S~v1 ,v2 ;t0!5
2

\3 ReE
2`

`

dt1E
0

`

dt1E
2`

`

dt2E
0

`

dt2E2~ t22t0!E2* ~ t22t02t2!e
2 iv2t21 iw

3@E1~ t1!E1* ~ t12t1!e
2 iv1t11E1* ~ t1!E1~ t12t1!e

iv1t1#$F
DD

~4!~ t12t1 ,t1 ,t22t2 ,t2!

2F
DD

~4!~ t12t1 ,t1 ,t2 ,t22t2!2F
DD

~4!~ t1 ,t22t2 ,t2 ,t12t1!1F
DD

~4!~ t1 ,t2 ,t22t2 ,t12t1!2c.c.%. ~C1!

We next factorize the four-point correlation functionF
DD

(4) @Eq. ~B4!# into two parts: the fast-oscillating term
exp$2iV(t42t31t22t1)% and a slowly-varying functionF(t1 ,t2 ,t3 ,t4)

TABLE II. The parameters corresponding to six terms of the sumF
MD

(4) @the diagrams~a!–~f! in Fig. 2#.

k Path t
DD

t
MM

t
MD

(1) t
MD

(2) t
MD

(3) t
MD

(4) «1
k ,«2

k «3
k «4

k Mk
2

1 ~a! t43 t21 t42 t41 t32 t31 1 -1 -1 M 0
2

2 ~b! t42 t31 t32 t41 t21 t43 1 -1 1 M 0M j

3 ~c! t41 t32 t21 t42 t31 t43 1 1 1 M j
2

4 ~d! t21 t43 t41 t31 t32 t42 1 -1 -1 M 0
2

5 ~e! t31 t42 t21 t32 t43 t41 1 -1 1 M 0M j

6 ~f! t32 t41 t43 t31 t21 t43 1 -1 -1 M 0
2
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F
DD

~4!~ t1 ,t2 ,t3 ,t4![D4e2 iV~ t42t31t22t1!F~ t1 ,t2 ,t3 ,t4!. ~C2!

Using the functionF defined in Eq.~C2!, we can recast Eq.~C1! in the form

S~v1 ,v2 ;t0!5
2

\2 ReE
2`

`

dt1E
0

`

dt1E
2`

`

dt2E
0

`

dt2E2~ t22t0!E2* ~ t22t02t2!e
2 iv2t21 iw

3@E1~ t1!E1* ~ t12t1!e
2 iv1t11E1* ~ t1!E1~ t12t1!e

iv1t1#

3$e2 iVt2e2 iVt1F~ t12t1 ,t1 ,t22t2 ,t2!2eiVt2e2 iVt1F~ t12t1 ,t1 ,t2 ,t22t2!

2e2 iVt2e2 iVt1F~ t1 ,t22t2 ,t2 ,t12t1!1eiVt2e2 iVt1F~ t1 ,t2 ,t22t2 ,t12t1!2c.c.%. ~C3!

We further assume the snapshot limit38, in which ~i! the durations of the pulses are short compared with the nuclear
dynamics and~ii ! the pulses are long compared with the electronic dephasing time. The first assumption allows us to neglect
the variation of the functionF on the timescale of the pulse duration and put in itt25t0 and t150. The second assumption
yields

E
2`

`

E1~ t1!E1* ~ t12t1!dt1'E
2`

`

uE1~ t1!u2dt1[E1 ,

E
2`

`

E2* ~ t22t0!E2~ t22t02t2!dt2'E
2`

`

uE2~ t22t0!u2dt2[E2 .

Equation~C3! then assumes the form

S~v1 ,v2 ;t0!5
4

\2E1E2 Re EE
0

`

dt1dt2 cos~v1t1!e
2 iv2t21 iw$e2 iVt2e2 iVt1F~2t1 ,0,t02,t0!

2eiVt2e2iVt1F~2t1,0,t0 ,t02!2e2 iVt2eiVt1F~0,t02,t0 ,2t1!1eiVt2eiVt1F~0,t0 ,t02,2t1!2c.c.%, ~C4!

where we used the notationt02[t02t2. This equation can be further simplified by invoking the rotating-wave approximation,
resulting in Eq.~4.7!.
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