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A unified description of circular dichroism and optical rotation in small optically active molecules,
larger conjugated molecules, and molecular aggregates is developed using spatially nonlocal electric
and magnetic optical response tensorsx(r ,r 8,v). Making use of the time dependent Hartree Fock
equations, we express these tensors in terms of delocalized electronic oscillators. We avoid the
commonly-used long wavelength~dipole! approximationk–r!1 and include the full multipolar
form of the molecule–field interaction. The response of molecular aggregates is expressed in terms
of monomer response functions. Intermolecular Coulomb interactions are rigorously taken into
account thus eliminating the necessity to resort to the local field approximation or to a perturbative
calculation of the aggregate wave functions. Applications to naphthalene dimers and trimers show
significant corrections to the standard interacting point dipoles treatment.
© 1996 American Institute of Physics.@S0021-9606~96!01541-3#

I. INTRODUCTION

Circular dichroism~CD!, i.e., the difference in absorp-
tion of right and left circularly polarized light has long been
used in the investigation of structural properties of extended
chiral molecules or aggregates. This technique exploits the
spatial variation of the electromagnetic field across the mol-
ecule and yields valuable structural information, which is
missed by the ordinary linear absorption~LA !. It has been
used in the investigation of a variety of systems including
polythiophenes,1 polynucleotides,2,3 helical polymers,4–6mo-
lecular crystals,7,8 and antenna systems and the reaction cen-
ter of photosynthesis.9–12 Also commonly used are other re-
lated signatures of optical activity~OA!, i.e., optical rotation
~OR! and ellipticity.

A molecular theory for optical activity was first formu-
lated by Born,13 and almost simultaneously by Oseen.14 Born
attributed the origin of optical activity to the spatial variation
of the electromagnetic field over the system under investiga-
tion. Rosenfeld reformulated these ideas in terms of the
quantum-mechanical theory of dispersion.15 These results
were later derived as scattering problems in quantum field
theory.16 The next step was the development of polarizability
theories, which express the optical rotatory power~ORP! of a
molecule in terms of the configuration and polarizabilities of
its constituent groups.17–20 In transparent spectral regions,
Kirkwood achieved this goal by applying Borns’ theory to a
molecule which he separated into smaller units, and pertur-
batively calculating the wavefunctions modified by the inter-
action of these subunits. Moffitt and Moscowitz also studied
absorptive spectral regions. By using complex polarizabil-
ities they worked out a unified description of dispersive~re-
fraction, optical rotation! and absorptive~linear absorption,
circular dichroism! properties.21 They established Kramers–
Kronig relations between OR and CD and further discussed
the effects of vibrational degrees of freedom on these observ-
ables.

De Voe approached this many-body problem by apply-

ing the local field approximation~LFA! which accounts for
intermolecular electrostatic interactions via a local field
which—at a point like molecule in an aggregate—is the su-
perposition of the external field and the field induced by the
surrounding molecules modeled as point dipoles. He thus
expressed LA and OR of unaggregated monomers, aggre-
gates in solution, and molecular crystals in terms of the ag-
gregate geometry and the complex polarizabilities of the
constituent monomers. Using this method, Applequist calcu-
lated the polarizabilities of halomethanes,22 and presented a
normal mode analysis of polarizabilities and OR.23,24When
dealing with solvated molecules or aggregates, the local field
should also include the contribution from the solvent.25,26

In all models discussed since then, the spatial variation
of the field with wavevectork was accounted for by the
expansioneikr ' 1 1 ikr 1 ••• . Usually the series is trun-
cated after the second~dipole! or third ~quadrupole! term.
The molecule itself is modeled by an electric and a magnetic
transition dipole moment. Larger molecules or aggregates
are regarded as an assembly of point-like units, each having
an electric and a magnetic transition dipole moment. Charge
transfer between units is neglected and their mutual coupling
is given by the dipole–dipole interaction. De Voe also im-
proved the description of the interaction between units, re-
placing the dipole–dipole interaction termTi j by the inter-
molecular interaction of all point-charges~point monopole
approximation! contained in unitsi and j .25 This correction
is essential when the dimensions of the units are comparable
to their separation, as is the case in typical aggregates of
polynucleotides.2,3

The purpose of this paper is to develop a computation-
ally feasible procedure for the investigation of OA which
avoids the commonly used multipolar expansion and re-
places the LFA by a rigorous treatment of intermolecular
electrostatic interactions. To set the stage, we shall briefly
review the conventional theory of OA using the notation of
Moffitt and Moscowitz.21 It is based on the observation, that
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the induced electric dipole moment is not only proportional
to the electric field, but also to the magnetic field and its time
derivative. Analogously, the induced magnetic dipole mo-
ment is proportional to the magnetic field, as well as to the
electric field and its time derivative

mv5a~v!Ev1g~v!Hv2b~v!
]Hv

]t
, ~1!

mv5x~v!Hv1g~v!Ev2b~v!
]Ev

]t
, ~2!

wherea,k are the polarizability and magnetizability of the
molecule andEv ,Hv are monochromatic fields with fre-
quencyv. The coefficientg has no effect on OA, andb
which is responsible for OA, can be separated into real and
imaginary parts according to

b5b11 ib2 , ~3!

which are related to each other via the Kramers Kro¨nig rela-
tions @Eq. ~52! in Ref. 21#. For transparent regions one ob-
tains

b15
4pc

33\ (
i

Ri0

v i0
2 2v2 , ~4!

where the central quantities describing optical activity are
the rotational strengthsRi0 for transitions from the ground
state u0& to an excited stateu i & with transition frequency
v i0. For systems much smaller than the optical wavelength
they are given by

R0i5Im~^0um̂u i &•^ i um̂u0&!, ~5!

where m̂, m̂ denote the electric, and magnetic dipole mo-
ment operators of the entire system.

In an optically active medium, left and right circularly
polarized light propagate with different speeds and are ab-
sorbed differently. In transparent regions the polarization
vector of linearly polarized light is rotated by an angle which
is proportional to the propagation distance. The optical rota-
tion in radians per unit length is given by21

f5N
n0
212

3

4pv2

c
b1 , ~6!

whereN is the number density of molecules, and a correction
factor for the surrounding medium with refraction indexn0
has been added. In absorptive regions linearly polarized light
turns into elliptically polarized light after propagating
through the medium, andf denotes the angle between the
long axis of the ellipse and the direction of polarization of
the incident linearly polarized wave. The ellipticityQ per
unit length is given by21

Q5N
n0
212

3

4pv2

c
b2 . ~7!

It is directly proportional to the difference in absorption of
right and left circularly polarized lightDe, i.e., the CD signal

De533Q. ~8!

An early yet very instructive review on theories of opti-
cal rotatory power was written by Condon.27 A clear discus-
sion of CD at a minimum level of complexity~time depen-
dent perturbation theory with simple electric and magnetic
dipole interaction! can be found in Ref. 28. Finally there are
numerous textbooks covering theory and experiment
exhaustively.29–32

In order to develop a unified microscopic approach to
OA which applies to a broad class of molecular systems we
shall employ nonlocal response tensors, which relate the in-
duced linear polarization P̃(r ,v) and magnetization
M̃ (r ,v) to the driving electric and magnetic fields
Eext(r ,v),Hext(r ,v) via the linearized relationships

P̃~r ,v!5E dr 8 @a~r ,r 8;v!•Eext~r 8,v!

1b~r ,r 8;v!•Hext~r 8,v!#, ~9!

M̃ ~r ,v!5E dr 8 @g~r ,r 8;v!•Eext~r 8,v!

1k~r ,r 8;v!•Hext~r 8,v!#. ~10!

In this nonlocal response formulation~NLRF!, the tensors
x(r ,r 8;v),x5a,b,g,k are intrinsic molecular properties
that describe all linear optical phenomena. Structural and
chemical details of different systems enter through their ef-
fects on these tensors. By usingnonlocal response tensors
we completely avoid the commonly employed multipolar ex-
pansion, which uses the induced electric and magnetic di-
pole, quadrupole, octopole, etc. moments. If so desired, the
latter can be calculated by integrating Eqs.~9,10! over r and
expanding the driving electric and magnetic fields around a
reference point of the molecule. By formulating the problem
this way we can defer the introduction of details to the final
stage of the calculation. This enables us to unify many of the
treatments in the literature that are restricted to specific mod-
els ~e.g., aggregates of point dipoles, etc.!.

We already employed the nonlocal polarizability tensor
a(r ,r 8,v) for investigating the anisotropy of the linear ab-
sorption, and for gaining insight into the role of intramolecu-
lar coherences.33–36 When magnetic interactions contribute
to the linear response, the magnetizabilityk(r ,r 8,v) and the
cross response tensorsb(r ,r 8,v), g(r ,r 8,v) enter the pic-
ture as well. We will show that these tensors fully determine
the CD signal, so that the level of rigor is determined by the
approximations applied for their calculation. By using the
multipolar Hamiltonian and the time dependent Hartree Fock
~TDHF! procedure we derive general formulas for these re-
sponse tensors which contain the full multipolar expansion,
thus avoiding the dipole approximation (kr!1). When in-
vestigating molecular aggregates we will go beyond the
commonly used local field approximation@LFA, see Eqs.
~65, 67! below# and rigorously express the nonlocal response
tensors in terms of those of the monomers. Using this
method, intermolecular interactions are fully incorporated,
and the need for a perturbative expansion of the aggregate
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wavefunctions is eliminated, providing a clear advantage
over the commonly used point dipole or point monopole ap-
proximations.

In Sec. II we derive an expression for the CD signal of a
spatially extended molecular system using the electric and
magnetic nonlocal response tensors. We next calculate the
latter in Sec. III using the TDHF equations. In Sec. IV we
express the aggregate response in terms of the response func-
tions of its constituent monomers. Applying the point dipole
and local field approximations we retrieve Tinoccos’ formu-
las for the rotational strengths in Sec. V. We then apply these
results to naphthalene dimers and trimers in Sec. VI, and
summarize in Sec. VII.

II. NONLOCAL RESPONSE FORMULATION OF
CIRCULAR DICHROISM

The multipolar Hamiltonian describing a molecular sys-
tem interacting with a classical electromagnetic field is given
by32,37

Ĥsc5Ĥm1V̂inter1Ĥ8

2E dr @P̂„r …–E'
„r …1M̂ „r …–H'

„r …#.

HereHm denotes the molecular Hamiltonian, and

V̂inter5(
s,t

E drE dr 8@P̂sT~r2r 8!P̂t1M̂ sT~r2r 8!M̂ t#,

describes the interaction between the electric and magnetic
dipole densities of the electrons, defined as

P̂s~r !52e~ r̂ s2R!E
0

1

dl d~r2R2l~ r̂ s2R!!, ~11!

M̂ s~r !52e~ r̂ s2R!3p̂sE
0

1

dl ld~r2R2l~ r̂ s2R!!,

~12!

whereR is an arbitrary reference point,2e is the electron
charge,r̂ s denote the position operators of the charges la-
beled bys, and p̂s is the corresponding canonical momen-
tum. The polarizationP(r ,t)5^c(t)uP̂(r )uc(t)& is given by
the expectation value of the microscopic polarization
operator32

P̂~r !5(
s
P̂s~r !, ~13!

whereuc(t)& is the electronic wavefunction. The magnetiza-
tion M (r ,t)5^c(t)uM̂ (r )uc(t)& is similarly defined as the
expectation value of the microscopic magnetization
operator32

M̂ ~r !5(
s
M̂ s~r !, ~14!

andF' denotes the transverse part of a vector fieldF, defined
by

F'~r !5E dr 8d'~r2r 8!•F~r 8!,

with the transversed-function

d'~r !5
2

3
1d~r !2

1

4pr 3
~123r̂ r̂ !.

Here we use a dyadic notation for the tensor productr̂ r̂ .
Both polarization and magnetization depend on the ref-

erence pointR, but their transverse parts entering Maxwells’
equations for the observable fields~see below!, do not. This
follows from the gauge invariance of the observable trans-
verse fields.

The third term in the Hamiltonian

H85(
s
E dr ums

'~r !u21
2

3(s,t
8 E dr m s~r !•mt~r !,

is quadratic in the magnetization densitiesm̂s , and we have
omitted terms quadratic in the magnetic field, as they do not
contribute to the linear response. Finally, the last term in the
Hamiltonian represents the coupling of the system to the
external transverse electric and magnetic fields.

We start our analysis with the microscopic Maxwell
equations for the electric and magnetic fieldsE(r ,t) and
H(r ,t) ~Ref. 32!

¹3E'~r ,t !52
1

c

]

]t
@H~r ,t !14pM ~r ,t !#', ~15!

¹3H~r ,t !5
1

c

]

]t
@E~r ,t !14pP~r ,t !#'. ~16!

Herec is the vacuum speed of light. The rhs of Eqs.~15, 16!
are transverse, as¹•D5¹•B50 with D[E14pP and
B[H14pM . However, for the sake of clarity we add the
symbol' explicitly in the derivation below.

We shall switch to the frequency domain by the Fourier
transform

f̃ ~v!5E
2`

`

dt eivt f ~ t !,

f ~ t !5
1

2pE2`

`

dv e2vt f̃ ~v!.

The induced electric and magnetic dipole moment densities
can be expanded in a power series in the driving fields. For
linear absorption, the first terms Eq.~9, 10! in these expan-
sions are needed.a(r ,r 8;v) denotes the nonlocal electric
polarizability tensor,k(r ,r 8;v) the nonlocal magnetizability
tensor, and the remaining cross response tensors describe the
effects of the magnetic~electric! field on the polarization
~magnetization!. They have the symmetries

a i j ~r ,r 8;v!5a j i ~r 8,r ;v!, ~17!

k i j ~r ,r 8;v!5k j i ~r 8,r ;v!, ~18!

b i j ~r ,r 8;v!52g j i ~r 8,r ;v!, ~19!
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where the indicesi , j denote Cartesian components. Note
that we have defined these tensors with respect to the exter-
nal fieldsEext, Hext @Eqs.~9, 10!#.

The absorption cross sectionsA of an arbitrary system
can be calculated by integrating the Poynting vector of the
electromagnetic field over a closed surface encompassing it.
For a monochromatic field with frequencyv52p/T we find
~see Appendix!

sA5
1

F in

1

TE0
T

dtE
V
dr FE'~r ,t !•

]P~r ,t !

]t

1H'~r ,t !•
]M ~r ,t !

]t G , ~20!

where F in5(1/T)*dt(c/4p)uEext3Hextu is the time-
averaged incident energy flux. The solution of the coupled
Maxwell equations Eqs.~15, 16! can be written in the form
~see Appendix!

E'5Eext1E8,

H'5Hext1H8,

whereE8, H8 are the solutions of the inhomogeneous part
of the wave equations and can be expressed in terms of the
retarded Greens’ function. Consequently the absorption cross
section can be written as~see Appendix!

sA5sA
~0!1sA

~1! . ~21!

The first term

sA
~0!5

1

F in

1

TE0
T

dtE
V
dr FEext~r ,t !•

]P~r ,t !

]t

1Hext~r ,t !•
]M ~r ,t !

]t G ~22!

is obtained from Eq.~20! by replacing the transverse Max-
well field by the external field.sA

(1) which is given in Eq.
~A15! contains the effects of multiple scattering in the
sample. It becomes important when scattering phenomena of
large particles such as proteins or DNA strands have to be
accounted for. Hereafter we shall only considersA

(0) . To
establish the connection with macroscopic observables we
assume a sample withrN noninteracting aggregates per unit
volume. The change of intensityI with the penetration depth
l is given bydI52IrNsAdl, resulting in

I ~ l !5I 0e
2rNsAl .

Substituting a linearly polarized incident plane wave propa-
gating in thez direction

Eext~r ,t !5
E0

A2
ex~e

i ~k•r2vt !1e2 i ~k•r2vt !!,

Hext~r ,t !5
H0

A2
ey~e

i ~k•r2vt !1e2 i ~k•r2vt !!,

with H05nE0, andey5ez3ex into Eq. ~22!, yields the ab-
sorption cross section for a molecule embedded in a medium
with refractive indexn

sA
~0!~v!5

4pv

nc
ImE drE dr 8 e2 ik•~r2r8!Faxx~r ,r 8,v!

n

1nkyy~r ,r 8,v!1gyx~r ,r 8,v!1bxy~r ,r 8,v!G .
~23!

Herea i j[ei•a•ej , etc. denote the tensor components. In the
long wavelength approximatione2 ik•(r2r8)'1 the cross
termsb,g cancel each other because of the symmetry Eq.
~19! and we obtain the familiar result38,37

lim
k→0

sA
~0!~v!5

4pv

c
ImFa tot~v!

n
1k totnG ,

with a tot(v)5*dr*dr 8e1•a(r ,r 8,v)•e1 , k tot(v)
5*dr*dr 8e2•k(r ,r 8,v)•e2.

By specializing to circularly polarized plane waves we
can express the CD signal in terms of the nonlocal electric
and magnetic response functions. A right (1) or left (2)
circularly polarized plane wave propagating inz direction
@k 5 (nv/c)ez , k 5 (2p/l)# can be represented in the form

Eext
6 ~r ,t !5E0@excos~k•r2vt !6eysin~k•r2vt !#, ~24!

Hext
6 ~r ,t !5H0@7exsin~k•r2vt !1eycos~k•r2vt !#.

~25!

It is customary to use the separation

sA65s̄A6DsA , ~26!

with

s̄A5
sA11sA2

2
,

DsA5
sA12sA2

2
.

Heres̄A denotes the average absorption, andDsA is the CD
signal. When substituting these fields into Eq.~22! we find
~see Appendix!

s̄A
~0!~v!5

4pv

c
ReE drE dr 8e2 ik–„r2r8…

3H axx~r ,r 8,v!1ayy~r ,r 8,v!

n

1@kxx~r ,r 8,v!2kyy~r ,r 8,v!#n2@byx~r ,r 8,v!

2bxy~r ,r 8,v!2gyx~r ,r 8,v!1gxy~r ,r 8,v!#J .
~27!
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DsA
~0!~v!5

4pv

c
ReE drE dr 8e2 ik–„r2r8…

3H ayx~r ,r 8,v!2axy~r ,r 8,v!

n

1@kyx~r ,r 8,v!2kxy~r ,r 8,v!#n2@bxx~r ,r 8,v!

1byy~r ,r 8,v!2gxx~r ,r 8,v!2gyy~r ,r 8,v!#J .
~28!

This exact expression which relates the CD signal of an ar-
bitrary molecular system to its nonlocal electric and mag-
netic response tensors@defined by Eqs.~9, 10!# forms the
basis for our subsequent analysis. Equation~28! is not re-
stricted to a specific order of the widely used multipolar ex-
pansion. The latter is completely avoided by usingnonlocal
response tensors, which implicitly includeall multipoles.
The problem of the unphysical origin dependence connected
with the electric quadrupole and higher moments, discussed
e.g., in Refs. 39,40, is naturally resolved with our approach.
As can be seen from Eq.~22!, our result does not depend on
the origin. The scalar product with the external fields
Eext,Hext which are intrinsically transverse, ensures, that
only the transverse part of the polarizationP and the magne-
tization M , respectively enter the absorption cross section,
and—as indicated earlier—they do not depend onR. No spe-
cific model of the system has been assumed yet~for example,
these expressions hold whether the molecular states are lo-
calized or delocalized!, and no assumptions were made on
the system-size in comparison with the optical wavelength.
All approximations will enter through the different levels of
rigor used in modeling the nonlocal response tensors.

In the long wavelength limitk(r2r 8)50 the CD signal
vanishes, which follows from Eqs.~17–19! and interchang-
ing the integration variablesr↔r 8. This is to be expected
since a finite spatial extent of the system~compared with the
optical wavelength! is necessary in order to observe chirality.
The leading term in a multipolar expansion is thus obtained
assuminge2 ik(r2r8)'12 ik(r2r 8) which will lead to the
celebrated Tinoco formulae.29,41

III. CALCULATION OF THE NONLOCAL RESPONSE
TENSORS USING THE TIME DEPENDENT
HARTREE FOCK EQUATIONS

Consider anN-electron system~a molecule or an aggre-
gate! which we describe using single electron basis functions
cm ,m51, . . . ,N. We defineĉm

† ( ĉm) as the creation~anni-
hilation! operators of an electron at sitem. We further intro-
duce the reduced single electron density matrixr with matrix
elementsrmn[^ ĉm

† ĉn&. Since the polarization and magneti-
zation are single-electron operators, their expectation values
can be expanded using the density matrix

P~r ,v!5(
mn

rmn~v!P mn~r !, ~29!

where

P mn~r !5^cmuP̂ucn&, ~30!

are the matrix elements of the polarization operator Eq.~13!.
Similarly, the expectation value of the magnetization is given
by

M ~r ,v!5(
mn

rmn~v!Mmn~r !, ~31!

where the matrix elements of the magnetization operator are
defined by

Mmn~r !5^cmuM̂ ucn&. ~32!

To calculate the linear optical response we expand the den-
sity matrix to first order in the driving fields setting
rmn(v)5 r̄mn(v)1drmn

(1)(v). Here r̄mn is the reduced one
electron ground state density matrix obtained by iterative
diagonalization.42 The dynamics of the linear response
drmn

(1)(v) in Liouville space will be calculated using the time
dependent Hartree Fock~TDHF! procedure, resulting in the
equation of motion35,36,42,43

\vdrmn
~1!~v!2(

kl
Amn,kldrkl

~1!~v!1 i(
kl

Gmn,kldrkl
~1!~v!

5Fmn~v!. ~33!

The sourceFmn is given by

Fmn~v!5@ r̄,V~v!#mn , ~34!

with

Vmn~v!5E dr @P mn~r !•E~r ,v!1Mmn~r !•H~r ,v!#,

~35!

and the matricesA,G are defined in Ref. 43. Terms quadratic
in the magnetic field have been neglected in Eq.~33!, as we
are interested in linear absorption. Equation~33! generalizes
the results of Refs. 35, 36, 43 to include the magnetic inter-
actionM–H as well as off-diagonal matrix elementsP mn in
Fmn . The TDHF procedure deals with physically relevant
quantities~chargesrnn and electronic coherencesrmn), and a
dominant mode picture can be developed which greatly re-
duces computational cost.44 By using position-dependent
electric and magnetic dipole densities which can be calcu-
lated from the electronic basis set we avoid the long wave-
length approximation and the following expressions for the
polarizabilities hold for arbitrary system size.

The solution of this TDHF equation can be written in the
form

drmn
~1!~v!5(

kl
ãmn,kl~v!Vkl~v!, ~36!

with the nonlocal response matrix

ãmn,kl~v!5(
n

(
t

Smn,n@Sn,t l
21 r̄ tk2Sn,kt

21 r̄ l t #

v2vn1 ign
. ~37!

HereSmn,n diagonalizes the matrixAmn,kl according to
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(
mnkl

Sn,mn
21 Amn,klSkl,n85\vndn,n8, ~38!

andgn are radiative damping constants. The expectation val-
ues of Eqs.~29, 31! then satisfy Eqs.~9, 10!, with

a~r,r 8,v!5 (
mn,kl

ãmn,kl~v!P mn~r !P kl~r 8!, ~39!

b~r,r 8,v!5 (
mn,kl

ãmn,kl~v!P mn~r !Mkl~r 8!, ~40!

g~r,r 8,v!5 (
mn,kl

ãmn,kl~v!Mmn~r !P kl~r 8!, ~41!

k~r,r 8,v!5 (
mn,kl

ãmn,kl~v!Mmn~r !Mkl~r 8!. ~42!

All response tensors factorize into the discrete nonlocal re-
sponse matrix Eq.~37! and position-dependent tensor prod-
ucts of electric and magnetic dipole densities such as
P mn(r )P kl(r 8). In practice these expressions are limited to
small systems, as the required memory scales with the fourth
power of the basis set size. This problem can be remedied by
the coupled electronic oscillator~CEO! picture.35,36,42–44The
matrixSkl,n can be regarded as a transformation matrix from
the site representation to a nonlocal mode representation.
SinceA is not symmetric,S is in general a complex matrix.
However, one can show that all eigenvaluesvn are real and
come in pairsvn , v n̄ 52vn .

43 Moreover, in applications to
conjugated polymers theS matrix is real.35,36 The transfor-
mations of the electric and magnetic transition dipole mo-
ment densities to this representation are given by

mn~r !5(
mn

P mn~r !Smn,n , ~43!

mn~r !5(
mn

Mmn~r !Smn,n . ~44!

Without loss of generality we can choose the basis functions
cn to be real. The polarization densitiesP mn(r ) are then
purely real, and the magnetization densitiesMmn(r ) are
zero form5n, and purely imaginary form Þ n. Conse-
quently the electric transition dipole momentsmn(r ) are real
and the magnetic transition dipole momentsmn(r ) are
imaginary.

One can therefore follow similar steps as in Ref. 43,
which finally yields

a~r ,r 8;v!5
2

\(
n

vnmn~r !mn* ~r 8!

~v1 ign!22vn
2 , ~45!

b~r ,r 8;v!5
2

\(
n

~v1 ign!mn~r !mn* ~r 8!

~v1 ign!22vn
2 , ~46!

g~r ,r 8;v!5
2

\(
n

~v1 ign!mn~r !mn* ~r 8!

~v1 ign!22vn
2 , ~47!

k~r ,r 8;v!5
2

\(
n

vnmn~r !mn* ~r 8!

~v1 ign!22vn
2 . ~48!

Here then summation runs over particle-hole oscillators
with frequencyvn.0. The advantage of this picture is that
typically very few oscillators contribute to the optical
response,42,44 leading to a drastic reduction in the number of
terms compared with the (mn) summation in the site repre-
sentation. Note that this form immediately yields the symme-
try Eq. ~19!.

IV. NONLOCAL POLARIZABILITIES OF SPATIALLY
EXTENDED AGGREGATES

We consider molecular aggregates with electrostatic in-
termolecular forces~no intermolecular charge exchange!. In
this case it is possible to rigorously express the global non-
local response tensors in terms of nonlocal response tensors
of the constituent monomers. These expressions greatly re-
duce computational cost and simplify the theoretical analy-
sis. Usually molecular aggregates are treated within the LFA
~Refs. 20, 25, 26, 22! which assume the individual molecules
as point dipoles. The nonlocal expressions derived here using
the TDHF equations are exact and provide a concrete means
for modeling aggregates when molecular sizes are compa-
rable to their separation so that the point dipole approxima-
tion is not expected to hold.

Consider an aggregate made out ofM molecules labeled
a,b,c, . . . , each described by a basis set ofNa , Nb ,...
orbitals indicated by subscriptsai ,bj ,... . Wehave shown
earlier,36 that all intermolecular coherences vanish (r̄aibj
5 draibj

(1) 50) when charge exchange is negligible. Eqs.~35,

29, 31, 36! lead to

a~r,r 8,v!5(
a,b

(
i , j ,k,l

ãaiaj ,bkbl
~v!P aiaj

~r !P bkbl
~r 8!,

~49!

b~r,r 8,v!5(
a,b

(
i , j ,k,l

ãaiaj ,bkbl
~v!P aiaj

~r !Mbkbl
~r 8!,

~50!

g~r,r 8,v!5(
a,b

(
i , j ,k,l

ãaiaj ,bkbl
~v!Maiaj

~r !P bkbl
~r 8!,

~51!

k~r,r 8,v!5(
a,b

(
i , j ,k,l

ãaiaj ,bkbl
~v!Maiaj

~r !Mbkbl
~r 8!,

~52!

where intermolecular componentsP aibj
,Maibj

were ne-
glected. Following similar steps as used in Ref. 36 we first
derive a closed EOM in the space of moleculea

\vdraiaj
~1! 2(

kl
Āaiaj ,akal

drakal
~1!

5(
l

r̄aialValaj
loc 2Vaial

loc r̄alaj , ~53!

where the generalized local potential is defined as
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Vaibj
loc 5Vaibj

22daibj (cÞa,l
Uaicl

drclcl. ~54!

The difference from Ref. 36 is that we now include nondi-
agonal matrix elementsVaibj

. The EOM is modified by the
ground state charge distribution of the surrounding mol-
ecules according to

Āaiaj ,akal
5Aaiaj ,akal

1d ikd j l (
cÞa,l

~Uaicl
2Uajcl

!~2r̄clcl21!, ~55!

whereUaicl
denotes the Coulomb interaction between orbit-

alsai andcl . The solution of Eq.~53! can then be expressed
in terms of the molecular response matricesāaiaj ,aras

draiaj
~1! ~v!5(

rs
āaiaj ,aras

Varas
loc . ~56!

Hereā is defined in analogy to Eq.~37!, with S replaced by
the matrixS̄ which diagonalizesĀ according to

(
i jkl

S̄an ,aiaj
21 Āaiaj ,akal

S̄akal ,an8
5\van

dn,n8. ~57!

Inserting the definition of the local field Eq.~54!, equating to
Eq. ~36!, and assuming further, thatVaibj

is negligible for
a Þ b yields an equation forã, whose solution is

ãaiaj ,bkbl
~v!5(

nm
S aiaj ,bnbm

~v!ābnbm ,bkbl
~v!, ~58!

with

S aiaj ,bkbl
21 ~v!5daibkdajbl12~12dab!

3(
m

āaiaj ,amam
Uambk

dkl . ~59!

This exact result~provided intermolecular charge exchange
as well asVaibj

are negligible!, together with Eq.~49! allows
the calculation of aggregate response tensors using the
monomer response tensors. Since off diagonal~intramolecu-
lar! matrix elementsP aman

,Maman
are included, the num-

ber of indices ina andV doubled.
Switching to the CEO representation leads to

ãan ,bn8
~v!5(

n9
San ,bn9

~v!ābn9,bn8
~v!,

S an ,bn8

21 ~v!5S̄an ,aiaj
21

S aiaj ,bkbl
21 ~v!S̄bkbl ,bn

, ~60!

wherean denotes then-th oscillator of moleculea ~note that
ai denotes thei -th site in moleculea). The nonlocal re-
sponse tensors finally assume the form

a~r,r 8,v!5(
a,b

(
n,n8

ãan ,bn8
~v!man

~r !mbn8
~r 8!,

b~r,r 8,v!5(
a,b

(
n,n8

ãan ,bn8
~v!man

~r !mbn8
~r 8!, ~61!

g~r,r 8,v!5(
a,b

(
n,n8

ãan ,bn8
~v!man

~r !mbn8
~r 8!,

k~r,r 8,v!5(
a,b

(
n,n8

ãan ,bn8
~v!man

~r !mbn8
~r 8!. ~62!

The CEO representation greatly reduces computational ef-
fort, as the number of dominant oscillators is generally much
smaller than the square of the basis set dimensionality.
Moreover, the matrixãan ,bn8

provides information regarding
the coupling between electronic oscillators of different mol-
ecules.

V. OPTICAL ACTIVITY IN THE POINT DIPOLE
APPROXIMATION

So far we have formulated optical activity in terms of
nonlocal response functions, completely avoiding the multi-
polar expansion. We also paved the way for computational
applications by rigorously expressing aggregate response
functions in terms of monomer response functions, provided
that exchange interactions between the monomers are negli-
gible. In order to establish the connection to commonly em-
ployed approximations in the investigation of optical activity
we now specialize to the lowest order in the multipolar ex-
pansion of the polarization and magnetization densitiesP ,
M. This amounts to keeping only the lowest order term in
thed functions appearing in Eqs.~13, 14!, resulting in

P mn~r !'mmnd~r !,

Mmn~r !'mmnd~r !,

with

mmn52eE dr 8cm* ~r 8!r 8cn~r 8!,

mmn5 ie\E dr 8cm* ~r 8!r 83¹8cn~r 8!,

where we have setR50, and the dipole densities in the CEO
representation Eqs.~43, 44! assume the form

mn~r !5mnd~r !,

mn~r !5mnd~r !,

with

mn5(
mn

mmnSmn,n ,

mn5(
mn

mmnSmn,n .

Under these assumptions the nonlocal polarizability Eq.~45!
becomes

a~r ,r 8;v!5(
n

an~v!d~r !d~r 8!, ~63!

where the contribution of then-th oscillator to the polariz-
ability tensor~labeled by Greek subscripts! is
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an~v!5
2vn

\

mnmn

~v1 ign!22vn
2 . ~64!

Analogous expressions hold for the other response tensors
b,g, andk.

We now consider an aggregate made ofN point-like
molecules located atra ,rb , . . . which are characterized by
their linear response tensorsx̄a ,x̄b , . . . with x5a,b,g,k.
The labeln in Eq. ~64! is then replaced by the double index
an denoting the contribution from then-th oscillator of mol-
eculea. Intermolecular charge transfer is neglected, so that
dipole-dipole coupling is the only interaction. The polariza-
tion and magnetization can then be written as

P~r !5(
a

Pad~r2ra!,

M ~r !5(
a

Mad~r2ra!.

The induced electric and magnetic dipole moments at the
a-th molecule can be calculated from the molecular response
functions by employing the LFA

Pa5āa•Ea
loc1b̄a•Ha

loc , ~65!

Ma5k̄a•Ha
loc1ḡa•Ea

loc , ~66!

where the local electric and magnetic fields are given by the
sum of the external fields and the fields induced by the sur-
rounding molecules

Ea
loc5Ea1(

b
Tab•Pb , ~67!

Ha
loc5Ha1(

b
Tab•Mb . ~68!

HereTab is given by

Tab5~12dab!
3eabeab21

uRabu3
.

Substitution of Eqs.~67, 68! into Eqs.~65, 66! yields a linear
system of equations forPa andMa , whose solution is

Pa5(
d

~aad•Ed1bad•Hd!, ~69!

Ma5(
d

~gad•Ed1kad•Hd!, ~70!

with the nonlocal response matrices

aad5(
be

Xae•Seb~ ā !•Fdbdād1(
c

b̄b•Tbc•Scd~ k̄ !•ḡdG ,
~71!

bad5(
be

Xae•Seb~ ā !•Fdbdb̄d1(
c

b̄b•Tbc•Scd~ k̄ !•k̄dG ,
~72!

gad5(
be

Yae•Seb~ k̄ !•Fdbdḡd1(
c

ḡb•Tbc•Scd~ ā !•ādG ,
~73!

kad5(
be

Yae•Seb~ k̄ !•Fdbdk̄d1(
c

ḡb•Tbc•Scd~ ā !•b̄dG .
~74!

The various tensors appearing in these equations are defined
as follows:

Sab
21~ x̄ !51dab2x̄a•Tab , x5a,k,

Xae
2151dae2(

bcd
Sab~ ā !•b̄b•Tbc•Scd~ k̄ !•ḡd•Tde

Yae
2151dae2(

bcd
Sab~ k̄ !•ḡb•Tbc•Scd~ ā !•b̄d•Tde ,

where Rab5ra2rb , eab5Rab /uRabu. By comparing Eqs.
~69, 70! with Eqs. ~9, 10! we obtain the nonlocal response
tensors for this model

x~r .r 8;v!5(
ab

d~r2ra!d~r 82rb!xab~v!,

x5a,b,g,k,

so that the difference in absorption cross section for right and
left circularly polarized light Eq.~28! becomes

DsA
~0!~v!5

4pv

c
Re(

ab
e2 ik–RabH aab

yx~v!2aab
xy~v!

n

1@kab
yx~v!2kab

xy~v!#n2@bab
xx~v!1bab

yy~v!

2gab
xx~v!2gab

yy~v!#J . ~75!

The response tensorsxab ,x5a,b,g,k can be computed by
numerical inversion of 3N33N matrices, whereN is the
basis set dimensionality. However, this expression is simpli-
fied by expanding the matricesS,X,Y to first order inT and
neglecting terms of the orderumu2, which results in

aab5dabāa1āa•Tab•āb , ~76!

bab5dabb̄a1āa•Tab•b̄b , ~77!

gab5dabḡa1ḡa•Tab•āb , ~78!

kab50. ~79!

Settinge2 ik–r'12 ik–r , performing orientational averaging
^(A–k̂)(B–k̂)& k̂5

1
3 A–B, and usingbab

i j 52gba
ji gives

DsA
~0!5

32v3

3nc(
a

(
n

Rangan

@v22van
2 2gan

2 #214gan
2 van

2 ,

~80!

where we have defined therotational strength Ran for the
n-th transition of moleculea

8002 T. Wagersreiter and S. Mukamel: Optical activity of molecular aggregates

J. Chem. Phys., Vol. 105, No. 18, 8 November 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



Ran5(
a

Im~man•man!

22(
bÞa

(
nÞn8

Im@Vab
nn8~vaman•mbn81vbmbn8•man!#

van
2 2vbn8

2

2
2p

c (
bÞa

(
n8Þn

vanvbn8Vab
nn8man3mbn8•Rab

@van
2 2vbn8

2
#

, ~81!

with

Vab
nn85man•Tab•mbn8. ~82!

The CD-signal vanishes as the damping rates go to zero, and
it scales asv21 for large frequencies. The first term in the
rotational strengths, describing the intrinsic CD of the indi-
vidual molecules stems from the diagonal terms in Eqs.~77,
78!. The second term in Eq.~81! is due to the mixed terms in
Eqs.~77, 78!, and the third term comes from the second term
in Eq. ~76!. Terms including molecular magnetic transition
dipole moments are finite even when settinge2 ikr'1,
whereas the last term in Eq.~81! requirese2 ikr'12 ikr .
This last term can also be identified with Kirkwoods polar-
izability approximation20

DsA'
4pv

nc
Im(

ab,i j
@āa

yiTab
i j āb

jx2āa
xiTab

i j āb
jy#k•Rab ,

5
8pv

nc
Im(

ab,i j
āa
yiTab

i j āb
jxk•Rab .

The celebrated Tinocco formulas29,41 for the rotation of
the polarization plane of linearly polarized incident light per
unit lengthf are readily obtained using the Kramers Kro¨nig
relation

f~v!5
2v2

p
P E

0

`

dv8
sA~v8!

v8~v822v2!
,

whereP denotes the principal part of the integral. Neglect-
ing damping (gn→0) results in the familiar expression for
OR in transparent regions of the aggregate

f~v!5
16v2

3nc(
a

(
n

Ran

v22van
2 .

The remaining two terms in Tinoccos’ result~see e.g., p. 70
in Ref. 29! representing interactions with the ground state
charge distribution are included implicitly in Eq.~81!, as we
use molecular response tensorsxa ,x5a,b,g,k modified by
the ground state charge distribution of the neighboring
molecules.36 They can be retrieved by a perturbative expan-
sion ofxa in the interaction Hamiltonian.

VI. CD SPECTROSCOPY OF NAPHTHALENE
CLUSTERS

We have applied the present nonlocal formalism to cal-
culate the CD spectrum of naphthalene dimers and trimers.
Comparison with the standard~local! formulation shows sig-
nificant differences, which illustrates the need for a nonlocal
formulation. Small naphthalene clusters have been investi-
gated by studying isotopically mixed crystals45 and by super-
sonic molecular beam techniques46 revealing insight into
their geometry. Although CD spectra of these systems are
not available, they were chosen for their simplicity. They
also serve as models for more complex conjugated systems
that appear in biological aggregates.4–6,9–12

We assume circularly polarized light propagating in
z-direction and investigate the trimer geometry suggested in
Fig. 7 of Ref. 46. Using theSPARTAN package for a HFab
initio calculation with geometry optimization in an STG6-
11* basis set yields the monomer geometry. The dimer is
constructed from a monomer in thexz-plane shown in Fig. 1
by a 60° rotation around thez-axis and a translation of 3.7 Å
in thez-direction. The trimer is obtained by adding one more
molecule rotated by 120° around thez-axis and translated by
7.4 Å in thez-direction relative to the first molecule. Instead
of the absorption cross section, we switch to the absorption
coefficient via the relation37

sA5
4pv

c
e,

so that Eq.~26! becomes

e65 ē6De. ~83!

In the NLRF calculation we have considered only the
polarization terma in Eq. ~28! and neglected the magnetic
terms b,g,k. Neglecting further nondiagonal matrix ele-
mentsP aiaj

, settingn51, and substituting Eq.~49! into Eq.
~28! leads to

ē ~0!~v!5Im(
ab,i j

ãaiai ,bjbj
~v!@P aiai

x ~k!P bjbj
x ~2k!

1P aiai
y ~k!P bjbj

y ~2k!#,FIG. 1. Orientation of the monomer in thex–z plane and labeling of the
atom, used in Fig. 3.
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De~0!~v!52Re(
ab,i j

ãaiai ,bjbj
~v! P aiai

~k!

3P bjbj
~2k!•ek ,

where we have defined the Fourier transform of the polariza-
tion densities

P aiaj
~k!5E dr 8e2 ik–rP aiaj

~r !.

Assuming point chargescai
2 (r )5d(r2rai) results in

P aiai
~k!52erai

sin
k–rai
2

k–rai
2

e2 i
k–rai
2 ,

and the matrixã is calculated using Eq.~58!. This point-
monopole approximation is widely used for the calculation
of intermolecular interactions.3,4,25,26However, here we also
keep the full matter-field interaction to all orders in the mul-
tipolar expansion by using nonlocal response functions,
which have a non-trivialr or k dependence.

Since Tinoccos’ formulae Eqs.~80–82! ~which are de-
rived using the approximative matrix inversion (12aS)21

' 11aS) are not applicable for the small intermolecular dis-
tances of the investigated aggregates, we resort to the more
accurate precursor, Eq.~75! for an oriented sample as a com-
parison. Neglecting again magnetic contributions (man50)
results inb5g5k50, andXae51dae , so that

ēLFA~v!'Im(
ab

e2 ik–Rab@aab
xx~v!1aab

yy~v!#,

DeLFA~v!'2Re(
ab

e2 ik–Rab@aab
xy~v!2aab

yx~v!#,

with

aad5Sad~a!ad ,

Sad
21~a!51dad2aa•Tad .

In Fig. 2 we display the average absorption coefficient
ē(v) @see Eq. ~26!# for the naphthalene monomer~top
panel!, the dimer ~middle panel!, and the trimer~bottom
panel! calculated via the NLRF approach~solid lines!. For
the dimer and trimer we also show the LFA results for com-
parison~dashed lines!. We only show the region of the low-
est absorption band. Other bands are smaller by a factor of
. 20. We further choose a small dampingg 5 0.001 eV. The
monomer has one absorption peak at 5.58 eV. In case of the
dimer the exact calculation yields four peaks. Approximating
the monomers by point dipoles leads to two absorption
peaks. Their separation exceeds the absorption range as ob-
tained by the NLRF. For the trimer the NLRF calculation
also yields four peaks, and the LFA results in three. The LFA
results can be understood with a simple two or three dimen-

sional model Hamiltonian. For the dimer the monomer peak
splits into two peaks which are symmetrically positioned
around the monomer peak. Assuming

Ht5S EM a b

a EM a

b a EM
D

for the trimer yields the eigenvalues

l15EM1b, ~84!

l2,35EM1
2b6A8a21b2

2
, ~85!

which explains the position of the peaks observed in Fig. 2.
The additional peaks in the NLRF reflect the fact that this
calculation fully accounts for the intermolecular interactions,
whereas the LFA result retains only the leading dipole-dipole
interaction.

In order to study inter and intramolecular coherences, we
depict the nonlocal response matrixã at the frequencies of
the four peaks of the NLRF in Fig. 3. The real part~left
panel! is naturally considerable smaller than the imaginary
part ~right panel! near resonances. Resorting to Fig. 1 for the
labeling of the atoms we find that the second and third tran-
sitions predominantly correlate the closest sites of each
monomer, whereas the first and fourth transitions correlate
the most distant ones.

FIG. 2. Absorption spectrumē(v) of a naphthalene monomer~top panel!,
the dimer~middle panel! and the trimer~bottom panel!. The solid lines show
the NLRF calculations, and dashed lines depict the LFA results for the
dimer and trimer.g50.001 eV, and for the other parameters see the text.
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Figure 4 shows CD of the dimer~left panel! and the
trimer ~right panel! calculated in the NLRF~solid lines! and
the LFA ~dashed lines!. Each absorption peak leads to a dis-
tinct peak in the CD signal, whose amplitude reflects the
rotational strength of the optical transition. Apart from the
magnitude of these peaks, their sign carries important infor-
mation, reflecting the handedness of the molecule. In Fig. 5
we used a larger dampingg50.08 eV which yielded reason-

able absorption line shapes for PPV oligomers.35,36 The top
panels show the absorption coefficientē of the dimer~left!
and the trimer~right!, calculated using the NLRF~solid! and
the LFA ~dashed!. The bottom panels display the CD signal
De(v). The absorption coefficients for both systems are now
characterized by a single peak with internal structure. In or-
der to show the transitions involved we also plot the results
for small damping. In case of the dimer the zero of the CD

FIG. 3. Real~left! and imaginary~right! part of the nonlocal response matrixã(v) of a naphthalene dimer for the four peaks shown in Fig. 2 from top to
bottom (v55.37,5.50,5.61,5.72 eV). Atoms 1–10, 11–20, 21–30 correspond to the three monomers~see Fig. 1!. For aggregate geometry see the text.
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signal coincides with the monomer frequencyvM . In the
LFA the two rotational strengths are equal in magnitude and
opposite in sign, so that the signal for finite damping is sym-
metric with respect tovM . For the trimer such a relation
does not hold, because of the form of the transition frequen-
cies Eqs.~84, 85!.

Due to the small intermolecular separation~smaller than
the monomer size! the LFA gives markedly different results
compared to the LFA. However, as shown in Fig. 6 the LFA
convergences towards the NLRF results with increasing in-
termolecular separation. This series clearly demonstrates the
breakdown of the LFA, as the intermolecular separation ap-
proaches molecular dimensions. The NLRF must be em-
ployed for distances smaller than 10 Å.

Since we used Ohnos’ formula
FIG. 4. CD signalDe(v) calculated with the NLRF of the naphthalene
dimer ~left! and trimer~right! for a damping rate ofg50.001 eV.

FIG. 5. Comparison of linear absorptionē(v) ~top panels! and CDDe(v) ~bottom panels! calculated with the NLRF~solid line! and the LFA~dashed line!
of a naphthalene dimer~left panels! and trimer~right panels! for a damping rateg50.08 eV. The vertical lines show the small damping results.
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Umn5
U8

A11~rmn /a0!
2

~86!

with UI 8 5 7.4200 eV,a0 5 1.2935 Å for the electrostatic
interactions in the PPP Hamiltonian,35 the long distance be-
haviour is k/r with k59.5977 eV Å. Considering the ap-
proximation (11B)21'12B ~which applies at large separa-
tions and is necessary to obtain Tinoccos’ formula!, the CD
signal is determined to first order by the second term in Eq.
~59!, so thatk enters the CD signal as an overall scaling
factor. In order to obtain agreement with the LFA results
~which assume 1/rmn for the Coulomb interaction! for large
intermolecular separation we divided the NLRFs result
by k.

Naphthalene molecules do not have a permanent dipole
moment and the ground state charges are identical for all
sites (r̄nn50.5!. Therefore the modifications of the molecu-
lar response functions by the ground state charge distribution
of the surrounding molecules cancel@see Eq.~55!#, and the
response matrixā coincides with that of isolated molecules.
This is not expected to be the case for donor acceptor sub-
stituted molecules, in which the ground state charge distribu-
tion is nonuniform.

VII. SUMMARY

The conventional approach to the description of optical
activity is based on the multipolar expansion. Circular di-
chroism or optical rotation are calculated term by term for
systems much smaller than the optical wavelength. The
present theory is based on the concept of nonlocal response
tensors and completely avoids these approximations.

We first calculated circular dichroism~CD! defined as
the difference in absorption cross section for right and left
circularly polarized light. Eq.~20! contains the polarization
P„r …, the magnetizationM „r … and the electric and magnetic
fields E„r …, H„r …. Utilizing the linearized relationships
P„E,H…, M „E,H… Eqs. ~9, 10! lead to our final expression
Eq. ~28! which holds for arbitrary wavelengths and system
sizes. With this result the theory of optical activity~OA! is
fully captured through four nonlocal response tensors
a(r,r 8,v), b(r,r 8,v), g(r,r 8,v), k(r,r 8,v) which relate po-
larization and magnetization to the driving external fields.
It is formally exact; approximations necessary for practical
computations enter in the calculation of the response
tensorsx.

We then focused on electronically delocalized conju-
gated systems described by a Pariser–Parr–Pople Hamil-
tonian. Using the time dependent Hartree Fock equations and
the multipolar form of the interaction Hamiltonian we de-
rived the expressions Eqs.~39–42! for the response tensors.
They factorize into a central, nonlocal response matrixã and
dyadicsP (r )P (r ), P (r )M(r ), etc. Once a convenient
electronic basis set has been chosen, the polarization and
magnetization densitiesP „r …,M(r ) can be calculated with-
out any further approximations. In particular, our final ex-
pression Eq.~28! implicitly includesall multipolar moments,
such as electric and magnetic dipole, quadrupole, octopole,

etc. Moreover we could show easily the independence of the
absorption cross section, and hence of the CD-signal of the
choice of origin.

A considerable reduction of computational cost in the
investigation of spatially extended molecular aggregates is
possible if intermolecular charge exchange is negligible. In
this case, intermolecular electronic coherences, i.e., off-
diagonal elements of the single electron density matrix be-
tween basis functions located at different monomers, vanish
identically. This makes it possible to rigorously express the
aggregate response in terms of monomer response tensors.
The exact relationship Eq.~58! derived in this article elimi-
nates the need for the commonly used local field approxima-
tion which completely neglects the molecular internal struc-
ture. The calculation was carried out by deriving molecular
equations of motion for the reduced one electron density
matrix in Liouville space, which fully account for intermo-
lecular Coulomb interactions. This way we completely
avoided a perturbative calculation of aggregate wavefunc-
tions. To account for exchange interactions and charge trans-
fer, intermolecular electronic coherences need to be included
in the calculation of the nonlocal response tensors. Note that
the nonlocal response tensorsx(r,r 8,v), wherer andr 8 are
at different monomers imply the existence ofexcitonicco-
herences, whereby electron–hole pairs can hop among
monomers retaining their phase.Electronic coherences on
the other hand imply coherent motion of electrons between
monomers and reflects a phase between an electron at one

FIG. 6. Convergence of the LFA~dashed! towards the NLRF~solid! with
increasing intermolecular distance (3.7,5,10 Å from top to bottom! for a
naphthalene dimer. Shown are the absorption coefficientē ~left panels! and
the CD signalDe ~right panels!.
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monomer and a hole at another. Electronic coherence is not
required to attain excitonic coherence which can arise from
purely electrostatic interactions. However, the presence of
intermolecular charge exchange does affect the excitonic co-
herence and the optical response.35,36

We have further formulated the response functions using
the coupled electronic oscillator representation@see Eqs.
~45–48, 61–62!#. As demonstrated in Refs. 42, 44 only very
few oscillators contribute significantly to the optical response
which leads to a drastic reduction in computational cost, as
can be inferred from the dimension of the matrices
ãaiaj ,bkbl

and ãan ,bn8
. Moreover, the latter quantities carry

information about the coupling between oscillators of differ-
ent molecules and thus provide most valuable insight into
intermolecular interactions.

The well known Tinocco formula Eq.~81! for the rota-
tional strengths was recovered by introducing the local field
approximation, the long wavelength approximation, and an
approximative matrix inversion (12aT)21'11aT to our
general result forDsA

(0)(v).
Finally we compared our results with those obtained

from Tinoccos’ formulae by application to naphthalene
dimers and trimers. The aggregate geometries were taken
from Ref. 46, and we first chose a damping rate small
enough to reveal the involved electronic transitions. The re-
sulting spectra then reflect the structure of the oscillator and
rotational strengths. For the monomer, the average frequency
dependent absorption coefficientē of circularly polarized
light is characterized by one absorption peak at 5.58 eV@see
Fig. 2#. This peak splits up into two~three! peaks for the
dimer ~trimer! when calculated with the LFA, which can be
understood with a simple two~three! dimensional exciton
Hamiltonian. The exact NLRF yields four absorption peaks
for the dimer and the trimer, which are not as much separated
as the LFA indicates. Each absorption peak has a corre-
sponding peak in the CD spectrum~Fig. 4!. This figure also
contains the sign information of the rotational strengths,
which is essential for differentiating between right or left
handed geometries. The increased number of transitions re-
flects the corrections due to nonlocal interactions between
spatially extended molecules. We finally demonstrated the
breakdown of the LFA for intermolecular separations com-
parable to molecular dimensions in Fig. 6. For intermolecu-
lar distances smaller than 10 Å the NLRF has to be em-
ployed.
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APPENDIX: THE ABSORPTION CROSS SECTION OF
AN AGGREGATE

The energy flux density of an electromagnetic wave in a
dielectric is given by the pointing vector~see Sec. 61 in Ref.
38!

S~r ,v!5
c

4p
E~r ,v!3H~r ,v!. ~A1!

Integrating¹S 5 (c/4p)(H•¹3E2E•¹3H) over a vol-
umeV with surfaceO and making use of Maxwells’ equa-
tions ~15, 16! leads to

2 R
O
dF •S5

1

8p

d

dtEVdr @~H'!21~E'!2#

1E
V
dr FE• ]P'

]t
1H•

]M'

]t G . ~A2!

In this energy balance equation the left-hand side is the de-
crease of energy per unit time, due to the flux through the
surfaceO , and the right hand side has been separated into the
time derivative of the energy of the fieldsE, H, and a dis-
sipation term due to the induced electric and magnetic di-
poles. We now assumeV to be the entire space, and apply
this result to an isolated aggregate. The absorbed energy per
unit time is then given by the time average of Eq.~A2!.
Dividing by the time averaged incident energy flux

F in5
1

TE0
T

dt
c

4p
uEext3Hextu ~A3!

yields the effective absorption cross sectionsA . For mono-
chromatic fields with frequencyv52p/T the time average
of the first term on the rhs of Eq.~A2! vanishes~as the fields
have the same values att50 and t5T), and using
*dr f „r …–g'

„r …5*dr f'„r …–g„r … we arrive at

sA5
1

F in

1

TE0
T

dtE
V
dr FE'

•

]P

]t
1H'

•

]M

]t G . ~A4!

The transverse electric and magnetic Maxwell fieldsE' and
H' are solutions of the wave equations

DE'2
1

c2
]2

]t2
E'5

4p

c2
]

]t F ]

]t
P'1c¹3M G , ~A5!

DH'2
1

c2
]2

]t2
H'52

4p

c2
]

]t Fc¹3P2
]

]t
M'G , ~A6!

which follow from the Maxwell Eqs.~15, 16!. These linear
equations can be solved using Greens’ functions. The Max-
well fields are given to lowest order by the external fields
Eext(r ,t),Hext(r ,t), and corrections are due to multiple scat-
tering of the incoming wave by the charge distribution:

E'~r ,t !5Eext~r ,t !1E8~r ,t !, ~A7!

H'~r ,t !5Hext~r ,t !1H8~r ,t !. ~A8!

The primed fields can be obtained from Eqs.~A5, A6! after
transforming tok,v space via
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f ~k,v!5E drE dt f~r ,t !e2 i ~kr2vt !, ~A9!

resulting in

E8~k,v!5
24pv2

v22k2c2
@P'~k,v!2 k̂3M ~k,v!#, ~A10!

H8~k,v!5
24pv2

v22k2c2
@ k̂3P~k,v!1M'~k,v!#, ~A11!

wherek̂5k/uku. Equations~9, 10! become

P̃~k,v!5
1

~2p!3
E dk8@a~k,2k8;v!•Eext~k8,v!

1b~k,2k8;v!•Hext~k8,v!#, ~A12!

M̃ ~k,v!5
1

~2p!3
E dk8@g~k,2k8;v!•Eext~k8,v!

1k~k,2k8;v!•Hext~k8,v!#, ~A13!

and the transverse vector components ink–space are ob-
tained by multiplication with the projector (12 k̂k̂). Substi-
tuting Eqs.~A7, A8! into Eq. ~A4! yields to the separation
Eq. ~21!

sA5sA
~0!1sA

~1! , ~A14!

wheresA
(0) is given by Eq.~22!, and

sA
~1!5

1

F in

1

TE0
T

dtE dkFE8~k,t !•
]P~2k,t !

]t

1H8~k,t !•
]M ~2k,t !

]t G . ~A15!

A linearly polarized plane wave with wavevectork 5 (nv/
c) ek and polarization directione1 perpendicular toek can be
represented by

Eext~r ,t !5
E0

A2
e1~e

i ~kr2vt !1e2 i ~kr2vt !!, ~A16!

Hext~r ,t !5
H0

A2
e2~e

i ~kr2vt !1e2 i ~kr2vt !!, ~A17!

with H05nE0, ande25ek3e1. Upon substitution into Eq.
~20! we findF in 5 (cE0H0/4p), which results in Eq.~23!
Choosinge15ex and k̂5ez, this assumes the form

sA
~0!~v!5

4pv

nc
ImE drE dr 8 e2 ik~r2r8! ~A18!

3F1naxx~r ,r 8,v!1nkyy~r ,r 8,v!

1gyx~r ,r 8,v!1bxy~r ,r 8,v!G . ~A19!

Circularly polarized fields can be written as

Eext
6 ~r ,t !5

E0

A2
~e6e

i ~kr2vt !1e7e
2 i ~kr2vt !!, ~A20!

Hext
6 ~r ,t !56 i

H0

A2
~e6e

i ~kr2vt !2e7e
2 i ~kr2vt !!, ~A21!

where the complex unit vectors are defined as32

e15
ex2 iey

A2
, ~A22!

e25
ex1 iey

A2
. ~A23!

We find againF in 5 (c/4p)E0H0 and the difference in ab-
sorption cross sections for right and left circularly polarized
light Eq. ~22! becomes

DsA
~0!~v!5sA1

~0! 2sA2
~0! ~A24!

5
8pv

nc
ImE drE dr 8~e1* •a~r ,r 8,v!•e12e2* •a~r ,r 8,v!•e2!e2 ik„r2r8…1

8pv

c
ReE drE dr 8

3~e1* •b~r ,r 8,v!•e11e2* •b~r ,r 8,v!•e2!e2 ik„r2r8…2
8pv

c
ReE drE dr 8~e1* •g~r ,r 8,v!•e11e2*

•g~r ,r 8,v!•e2!e2 ik„r2r8…1
8pvn

c
ImE drE dr 8~e1* •k~r ,r 8,v!•e12e2* •k~r ,r 8,v!•e2!e2 ik„r2r8…. ~A25!

Switching back to the real basis vectorsex ,ey we recover Eq.
~28!.
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