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An iterative algorithm is developed for calculating nonlinear optical polarizabilities using a series of
generalized sum rules that resemble the Lanczos algorithm and connect spectral moments of the
driven single-electron density matrix to ground state charge distributions and bonding network. The
size scaling and saturation of off-resonant polarizabilities~up to seventh order! of polyacetylene
oligomers with up to 300 carbon atoms is analyzed in terms of collective electronic oscillators.
Simple analytical expressions for size and bond-length alternation dependence of off-resonant
polarizabilities are derived using a single-oscillator approximation. ©1996 American Institute of
Physics.@S0021-9606~96!02542-1#

I. INTRODUCTION

Relations between chemical and electronic structure and
linear and nonlinear optical polarizabilities of conjugated
molecule have drawn much attention of chemists and physi-
cists over the past 20 years.1–4 Resonant nonlinear spectros-
copy provides most valuable information on states that are
not accessible by linear techniques,5–9 whereas off-resonant
measurements probe the collective response of many mo-
lecular eigenstates.1–3

The size scaling of various optical properties has been
studied extensively, both theoretically10–12 and experi-
mentally.5,9,13,14 Linear absorption of short oligomers with
N,12–20 carbon atoms shows anV;N2m scaling of the
optical gap withm;0.4–0.6.5 The Hückel model yields
m51.12 An important relation is the scaling of nonlinear sus-
ceptibilities with molecular size. The power scaling law
g;Nb for the third-order polarizability, whereN is the num-
ber of carbon atoms, has been established experimentally in
the early 70s,15 and supported by theoretical calculations us-
ing the free electron model.16 Numerous subsequent studies
showed that for short chains, the exponentb can vary be-
tween 3 and 8, depending on the system and model, and
eventually approaches 1~saturates! for long molecules. The
crossover between these two behaviors is related to the ex-
citon coherence size.4,5,13 Calculations performed using the
Hückel model~which neglects Coulomb interactions! predict
saturation at long chains (N;50) andb;5–9,12,17whereas
calculations based on the Pariser–Parr–Pople~PPP! Hamil-
tonian, which includes electronic correlations, predict a
shorter saturation size (N;20–30) andb;4–5.1,4,18 Sum-
over-states calculations ofg in short oligomers yield a scal-
ing exponentsb'8 for symmetric linear cyanites andb'4
for linear polyenes.19 Difficulties with the controlled synthe-
sis and poor solubility of polyenic oligomers restricted early
experimental studies to molecules with up to 30–40 carbon
atoms,14,15,20 which showed no saturation. These problems
have been overcome, and the saturation ofg has been ob-
served experimentally at;200 double bonds,13 which is
much larger than early estimates.

Considerable attention has been also paid to the depen-

dencies of nonlinearities on other molecular parameters. It
has been argued that the bond-length alternation parameterD
is related to electron localization.21 In alternating chains the
Hückel model predictsg;D26 divergence at smallD.12 Fly-
tzanis and co-workers employed the Hu¨ckel model to study
the scaling of off-resonantg of large oligomers with the
saturated optical gapṼ.10,21 The resultingg;Ṽ26 scaling
law is in qualitative good agreement with experimental data
collected for both off-resonant and resonant third-order
polarizabilities of different conjugated polymers.22 Recent
resonant experiments show the following relation
g~23v;v,v,v!/amax;Ṽ210 ~Refs. 5 and 9!, where the scal-
ing of both g and amax ~absorption maximum! depends on
the concentration of chromophores in films, and the ratio is
approximately independent on dilution.

Calculations of optical hyperpolarizabilities usually in-
volve an extensive numerical effort. The sum-over-states
~SOS!3,23 method includes the calculations of both the
ground state and excited states wave functions and the tran-
sition dipole moments between them. The time-dependent
Hartree–Fock~TDHF! procedure4,24–26 which is based on
the solution of equations of motion for the single-electron
reduced density matrix,27 provides an oscillator~quasiparti-
cle! picture of the optical response.4,24 This allows the de-
scription of electronic motions in terms of collective elec-
tronic normal modes, in complete analogy with the standard
treatment of nuclear vibrations. Within this approximation,
the only relevant ground state information is the Hartree–
Fock ~HF! ground state reduced single-electron density ma-
trix, whose diagonal elements give electronic charges, and
the off-diagonal elements characterize the bond order.27 Im-
portant interference effects are naturally built in, and it re-
produces the correct scaling with system size. The TDHF has
tremendous computational advantages over the sum-over-
states method, but calculating the oscillators still requires the
diagonalization of aK23K2 matrix representing the linear-
ized TDHF equations,K being the basis set size. Even
though it has been established that only a few oscillators
eventually dominate the response, we cannot tell that before-
hand. We then need to first calculate all the oscillators and
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then sort them out to find the dominant ones. This poses a
severe computational problem since we end up calculating
much redundant information. The TDHF is a great improve-
ment over the sum over states; however, sorting out the os-
cillators is still a major difficulty.

In this paper we develop a simple and extremely power-
ful density-matrix-spectral-moment algorithm~DSMA! for
calculating linear and nonlinear optical response of a many-
electron system. The method allows us to focus on the rel-
evant oscillators from the outset, thus greatly reducing com-
putational cost and clearly establishing the origin of the
dominant mode picture. This is accomplished using a family
of sum rules which connect the short-time behavior of the
response function of many-electron systems to ground state
properties. By applying the closed expressions derived in
Ref. 28, we can then calculate the frequency-dependent op-
tical susceptibilities using a small number of parameters
characterizing the dominant modes. The short-time response
functions are determined by these parameters as well. By
solving these equations and substituting the parameters into
the expressions for the polarizabilities, we establish a con-
nection between the polarizabilities and the ground state re-
duced single-electron density matrix.

The DSMA has a close formal connection with other
short-time algorithms widely used in different contexts.
These include the Lanczos algorithm for computing the ei-
genvalues of a hermitian matrix,29 the Mori–Zwanzig proce-
dure of reduced dynamics,30 and the continued fraction rep-
resentation of correlation functions.31 In particular, we note
the analogy with the analysis of optical line shapes in terms
of spectral moments.32 The moments can be easily calculated
without going through a complex eigenvalue problem, and
often very few moments provide for an adequate representa-
tion of the line shape. We use the same ideas to compute
nonlinear optical susceptibilities. We calculate the spectral
moments of the density matrix induced by the external field,
and use them to construct the electronic modes relevant to
the optical response. Similar to conventional moment analy-
sis, convergence is verified by incrementally adding more
moments.

In Sec. II we introduce the tight-binding Hamiltonian for
p electrons and present the restricted TDHF equation4,24

which describes the time evolution of particle–hole~inter-
band! components of the reduced single-electron density ma-
trix r. In Appendix A we show how to express the intraband
components ofr in terms of the interband partj of the de-
viation of r from its ground stater̄. In Sec. III we express
the polarization using the eigenmodesjn of the linearized
TDHF equation. The DSMA which makes it possible to cal-
culate polarizabilities at any order, keeping as many modes
as necessary, is presented in Sec. IV. The relations necessary
for numerical applications of the DSMA are outlined in Ap-
pendix B. In Sec. V we present numerical calculations for
polyacetylene oligomers and discuss the computational ad-
vantages of the DSMA. We further give a simple analytical
expression for off-resonant polarizabilities obtained using a
crude single-oscillator approximation. The detailed deriva-
tions of this formula are given in Appendices C, D, and E.

This expression is in excellent agreement with the full TDHF
calculations, reproduces the correct scaling of observables,
and provides a simple and clear physical connection between
chemical and optical properties.

II. THE TIGHT-BINDING HAMILTONIAN AND THE
SINGLE-ELECTRON DENSITY MATRIX

We consider ap-electron system described by the tight-
binding Pariser–Parr–Pople~PPP! Hamiltonian which repro-
duces many important properties of conjugated polyenes33

Ĥ5 (
m,n,s

tmncm,s
1 cn,s1 1

2 (
m,n,s,s8

Vnmcm,s
1

3cn,s8
1 cn,s8cm,s2E~ t !(

n,s
mnncn,s

1 cn,s , ~1!

wherecm,s
1 (cm,s) is the annihilation~creation! operator of a

p electron on sitem with spin s, satisfying the Fermi anti-
commutation relation$cm,s

1 ,cn,s8%5dm,nds,s8 .
The first term is the Hu¨ckel hamiltonian, where

tnn5(mVnm is the Coulomb integral at thenth atom andtmn

(mÞn) is the nearest-neighbor transfer integral between the
nth andmth atoms:tn,n615b2b8l n and l n is the deviation
of thenth bond length from the mean bond length along the
chain. The second term represents electron–electron Cou-
lomb interactions; the repulsion between thenth andmth
sites is given by Ohno’s formula

Vnm5
U

A11~r nm /a0!
2
, ~2!

whereU5U0/e is the on-site Hubbard repulsion ande is the
static dielectric constant. The last term represents interaction
betweenp electrons and an external fieldE~t! polarized
along the chainz axis. We assume a localized basis set so
that the dipole moment is diagonalmnm5ezndnm . The size
of the basis set is equal to the number of carbon atoms
K5N. The parameters used were adjusted to reproduce the
energy gap for polyacetylene~2.0 eV!: U0511.13 eV,b5
22.4 eV, b8523.0 eV Å21, e51.5, a051.2935 Å.4 In all
calculations we used fixed geometry with unit cell size along
the backbonea51.22 Å and bond-length alternation param-
eter l n5D50.07 Å.

Analysis of our paper is based on following the evolu-
tion of the reduced single-electron density matrix

rnm
s ~ t !5^C~ t !ucm,s

1 cn,suC~ t !&, ~3!

whereC(t) is the time-dependent many-electron wave func-
tion. In the present model the wave function is a singlet at all
times, so that spin variables may be eliminated.24 We first
find the ground state HF single-electron density matrixr̄nm
by solving the stationary HF equation using iterative
diagonalization4

@h~ r̄ !,r̄ #50. ~4!

Hereh is the Fock operator

h~ r̄ !5t1V~ r̄ !, ~5!
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andV( r̄) is the Coulomb operator

V~ r̄ !mn52Vmnr̄mn12dmn(
l
Vmlr̄ l l . ~6!

When the molecule is driven by an external field, the
density matrix acquires a time-dependent partdr(t) and we
have

r~ t !5 r̄1dr~ t !5 r̄1j~ t !1T~j~ t !!. ~7!

Here j represents the particle–hole~interband! andT(j) is
the particle–particle and the hole–hole~intraband! parts of
dr(t). The matrixT(j(t)) is given by the following expan-
sion, which can be derived using the relationr(t)25r(t)
~see Appendix A!

T~j!5S r̄2
I

2D ~ I2AI24j2!, ~8!

whereI is the unit matrix. Equation~8! can be expanded in
powers ofj

T~j!5~ I22r̄ !~j21j412j61••• !, ~9!

or alternatively~see Appendix A!

T~j!5
1

2!
@@j,r̄ #,j#1

1

4!
@@j,r̄ #,@@j,r̄ #,@@j,r̄ #,j###1••• .

~10!

In Eqs. ~9! and ~10!, all j are taken at timet, j5j(t). Ex-
pansions ~9! and ~10! are identical. For example, to
second order in j, Eq. ~10! reads 1

2![[ j,r̄],j]
5jr̄j2 1

2( r̄j21j2r̄). The projection property ofr̄ ~Ref. 24!
implies the following relations for any interband density ma-
trix j: j5 r̄j1jr̄ andr̄j25j2r̄ ~note, thatj2 is an intraband
matrix!. Using these identities we recover the second-order
term in Eq.~9!.

The evolution of the reduced density matrix is described
by the time-dependent Hartree–Fock~TDHF! equation

i
]j

]t
5Lj2E @m,r̄ #1@@R~j!,r̄ #,r̄ #, ~11!

whose linear part is

Lj5@ t1V~ r̄ !,j#1@V~j!,r̄ #. ~12!

L is a linear operator in Liouville space~i.e., superoperator!4

and

R~j!5@V~j!,j#1@V~T~j!!,j#1@V~T~j!!,r̄ #

1@V~j!,T~j!#2E @m,j1T~j!#. ~13!

R(j) contains both inter- and intraband components, and the
projection property ofr̄ ~Ref. 24! is used to projectR(j)
onto the particle–hole subspaceRp2h5[[R(j),r̄], r̄].

The time-dependent polarization, which determines all
optical properties, is finally given by

P~ t !5Tr~mj~ t !!1Tr~mT~ t !!, ~14!

whereT(t)[T(j(t)), and the dipole operator is represented
by a diagonal matrix with elementsmnm5ezndnm . ~Note that

the trace includes summation over spin variables. For a given
spinless system24 it is twice the trace over space variables.!

III. THE NONLINEAR OPTICAL RESPONSE AND
ELECTRONIC NORMAL MODES

The equations of motion~11! may be solved by expand-
ing the interband~particle–hole! components of the reduced
single-electron density matrix in powers of the external field

j5j~1!1j~2!1j~3!1••• . ~15a!

The intraband~particle–particle and hole–hole! components
are similarly given by

T~j!5T~2!~j !1T~3!~j !1T~4!~j !1••• , ~15b!

whereT( j )(t) is expressed in terms ofj ( j ) by comparing Eq.
~9! @or Eq. ~10!# with the Eqs. ~15!. T(1)(t)[0, T(2)(t)
5(I22r̄)[ j (1)(t)] 2, etc. Polarization to thej th order in the
external fieldE(t) is calculated by taking the expectation
value of the dipole operatorm with respect to the time-
dependent density matrix

P~ j !~ t !5Tr~mdr~ j !~ t !!, ~16!

with

dr~ j !~ t !5j~ j !~ t !1T~ j !~ t !. ~17!

Using these equations, the original nonlinear equation
~11! is transformed into a hierarchy of linear inhomogeneous
equations. Toj th order we have

i
]j~ j !~ t !

]t
2Lj~ j !~ t !5h~ j !~ t !. ~18!

The formal solution of this equation in the frequency
domain is

j~ j !~v!5G 0~v!h~ j !~v!, ~19!

where

G 0~v!5
1

v2L
, ~20!

is a zero-order tetradic Green function, andh ( j )(t) is j th-
order term from the right-hand side of Eq.~11!
h (1)(t)52E(t)[m,r̄], etc. Throughout this paper, the Fou-
rier transform is defined by

f ~v!5E
2`

`

dteivt f ~ t !. ~21!

The optical polarizabilities are readily obtained using
dr ( j )(v). Following the procedure outlined in Appendix D
of Ref. 4,h ( j )(v), T( j )(v), andj ( j )(v) contain permutations
over all frequencies of the applied fields, which are given by

E~ t !5(
k
E0

~k! cosvkt. ~22!

The j th order frequency-dependent polarization is
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P~ j !~7v17•••7v j ;6v1 ,...,6v j !

5x~ j !~7v17•••7v j ;6v1 ,...,6v j !E0
~1!•••E0

~ j ! , ~23!

and the optical polarizabilities assume the form

x~ j !~7v17•••7v j ;6v1 ,...,6v j !

52
1

E0
~1!•••E0

~ j ! Tr~mdr~ j !~7v17•••7v j ;6v1 ,...,

6v j !!. ~24!

Hereafter we focus on the off-resonant response. Setting all
frequencies to zero, we obtain

T~1!~v50![0,

T~2!~v50!5~ I22r̄ !~j~1!!2,
~25!

T~3!~v50!5~ I22r̄ !~j~2!j~1!1j~1!j~2!!,

T~4!~v50!5~ I22r̄ !~j~3!j~1!1j~2!j~2!1j~1!j~3!!,

and

h~1!~v50!52E0@m,r̄ #,

h~2!~v50!5@@~@V~dr~1!!,dr~1!#1@V~T~2!!,r̄ #

2E0@m,dr~1!#),r̄], r̄], ~26!

h~3!~v50!5@@~@V~dr~2!!,dr~1!#1@V~dr~1!!,dr~2!#

1@V~T~3!!,r̄ #2E0@m,dr~2!#),r̄], r̄].

Here j ( j )[j ( j )(v50) and dr ( j )[dr ( j )(v50). The off-
resonant polarizabilities are given by

x~ j !52
1

E0
j ~Tr~mj~ j !~v50!!1Tr~mT~ j !~v50!!!,

~27!

wherex~1!, x~3!, x~5! denote the polarizabilitiesa, g, d, etc.
To compute Eqs.~19! we need to find all eigenmodesjn

and eigenfrequenciesVn of the Liouville operatorL,4

Ljn5Vnjn . ~28!

The eigenmodes come in pairs: Each vectorjn with fre-
quencyVn has a counterpartj2n5jn

1 with frequency2Vn .
SinceL is real, the electronic modes can be taken to be real.
We shall adopt the following normalization for the eigenvec-
tors related to positive frequencies24

Tr~ r̄@ja
1 ,jb#!5dab , ~29a!

Tr~ r̄@ja
1 ,jb

1# !5Tr~ r̄@ja ,jb#!50. ~29b!

Using these modes, the Green function assumes the form

G 0~v!5(
n

jn
1jn

v2Vn
, ~30!

where we used a tensor notation, and the sum runs over all
modes with positive as well as negative frequencies.

A classical mode picture of optical response is obtained
by constructing the electronic oscillators defined by the
coordinate-momentum variables

Qn5
jn1jn

1

A2
, Pn52 i

jn2jn
1

A2
. ~31!

The normalization ofQn andPn follows directly from Eqs.
~29!

Tr~ r̄@Pa ,Qb#!5 idab , ~32a!

Tr~ r̄@Pa ,Pb#!5Tr~ r̄@Qa ,Qb#!50. ~32b!

The linearized TDHF equation thus readsQ̇n52VnPn ,
Ṗn5VnQn .

The coupled electronic oscillator representation maps the
calculation of the optical response onto the dynamics of a set
of anharmonic oscillators representing the electron–hole pair
components of the reduced single-electron density matrix.
The linear polarizability then assumes the form24

x~1!~v!5 (
n51

N2/4
Vn@Tr~mQn!#2

Vn
22~v1 i e!2

, ~33!

wheree is a linewidth. Closed expressions forx~2! andx~3!

were given in Ref. 24.
Calculating the electronic modes is the most computa-

tionally demanding task of the TDHF scheme, since we re-
tain the complete information about the single-electron den-
sity matrix. The procedure becomes numerically intractable
for long chains. Applications of the procedure have been
limited to N;40 atoms. The DSMA developed in the next
section overcomes this difficulty.

IV. THE DENSITY-MATRIX-SPECTRAL-MOMENT
ALGORITHM

The DSMA allows us to calculatej ( j ) from h ( j ) by solv-
ing Eq. ~19! without a direct diagonalization ofL. In prin-
ciple we need to expand the interband componentsj ( j ) of the
reduced single-electron density matrix in the complete set of
eigenmodes ofL. Typically, however, only a few modes
~4–5! contribute to the response.34 The DSMA reduces the
computational effort considerably by calculating only these
relevant modes.

The interband component of the reduced single-electron
density matrix toj th order in the fieldj ( j )(v) @Eq. ~19!# can
be represented as

j~ j !~v!5E
0

1`

dteivtS~ j !~ t,v!, ~34!

where we have introduced the matrixS( j )(t,v)

S~ j !~ t,v![2 ie2 iLth~ j !~v!. ~35!

This matrix satisfies the equation

i
]S~ j !~ t,v!

]t
2LS~ j !~ t,v!50, ~36!

with the initial condition

S~ j !~0,v!52 ih~ j !~v!. ~37!
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In Eqs. ~35! and ~37! the S( j ) matrix is viewed as a
vector in Liouville space. We next expand the solution of Eq.
~36! in a Taylor series

S~ j !~ t,v!52 i SS0~ j !~v!1~2 i !
S1

~ j !~v!

1!
t1••• D

52 i(
n50

~2 i !n
Sn

~ j !~v!

n!
tn, ~38!

whereS0
( j )(v)5h ( j )(v) andSk

( j )(v)5LkS0
( j )(v), k51,2,... .

This expansion, which describes the short-time evolution of
initial vector h~v! in the subspace determined by2 ie2 iLt ,
allows us to calculateSk11

( j ) recursively

Sk11
~ j ! 5LSk

~ j !5@ t1V~ r̄ !,Sk
~ j !#1@V~Sk

~ j !!,r̄ #. ~39!

Since the procedure involves merely matrix multiplication
~no inversion or diagonalization!, it can be readily applied
even for very large systems~thousands of atoms!.

We will use the short-time expansion~38! to derive an
algorithm for computing the electronic normal modes.
h ( j )(v) can be expressed in terms of the modes@Eq. ~4.16a!
in Ref. 24#

h~ j !~v!5 (
n51

N2/4

~Tr~ r̄@jn
1 ,h~ j !~v!#!jn

2Tr~ r̄@jn ,h
~ j !~v!#!jn

1!. ~40!

Using the mode representation, the solution of Eq.~36! can
be written as

S~ j !~ t,v!52 i(
n51

N2/4

~Tr~ r̄@jn
1 ,h~ j !~v!#!jn exp~2 iVnt !

2Tr~ r̄@jn ,h
~ j !~v!#!jn

1 exp~ iVnt !!. ~41!

Since the electronic modes are real, the expansion coeffi-
cients can be taken to be real and we have

Tr~ r̄@jn
1 ,h~ j !~v!#!5Tr~ r̄@jn ,h

~ j !~v!#!

5Tr~m~ j !~v!jn
1![

mn
~ j !~v!

A2
, ~42!

and

Tr~m~ j !~v!Qn![mn
~ j !~v!, Tr~m~ j !~v!Pn![0, ~43!

where we have introduced the effective dipole moment for
the j th-order nonlinear responsem ( j )(v), using the projec-
tion property ofr̄

m~ j !~v!5@h~ j !~v!,r̄ #, h~ j !~v!5@m~ j !~v!,r̄ #. ~44!

In particular, for the linear response we havem~1!~v!
52E~v!m.

Making use of the oscillator coordinates and momenta
@Eq. ~31!#, we can finally recast Eq.~41! in terms of normal
modes

S~ j !~ t,v!5 (
n51

N2/4

mn
~ j !~v!@Qn sin~Vnt !1Pn cos~Vnt !#.

~45!

The j th-order interband component of the reduced single-
electron density matrix can be expanded in the form

j~ j !~v!5 (
n51

N2/4

mn
~ j !~v!F Vn

Vn
22v2 Qn2

iv

Vn
22v2 PnG .

~46!

This resembles the response of a collection of electronic os-
cillators with frequenciesVn and effective ~frequency-
dependent! transition dipolesmn

( j )(v).
To find the normal coordinates and momenta, we expand

the cos and the sin functions in a Taylor series, and compare
coefficients of the same powers oft with Eq. ~38!. This
yields

Sn
~ j !~v!5 i(

n51

M

Vn
nmn

~ j !~v!Pn , n50,2,4,...,2M22,

~47a!

Sn
~ j !~v!5 (

n51

M

Vn
nmn

~ j !~v!Qn , n51,3,5,...,2M21.

~47b!

These are closed equations for 2M parameters~mn ,Vn!, and
2M N3N matrices~Pn andQn!. M is the desired number of
modes which can be controlled by the number of moments
we keep,M51,2,....

Using identity ~44!, we can trace these equations with
the effective dipole moment, resulting in a nonlinear system
of 2M equations for theM frequenciesVn andM effective
oscillator strengthsf n

( j )(v)[Vn(mn
( j )(v))2

(
n51

M

f n
~ j !~v!Vn

2k5Kk
~ j !~v!, k50,1,2,...,2M21, ~48!

where

Kk
~ j !~v![Tr~m~ j !~v!S2k11

~ j ! ~v!!, ~49!

are the even spectral moments ofj th-order nonlinear polar-
izability. Equations~49! and~39! provide an extremely con-
venient algorithm of computing the higher-order spectral
moments. Alternative expressions for the spectral moments,
which provide a better physical insight, since they highlight
the crucial role of the bond alternation in the spectral mo-
ments, are given in Appendix C. However, Eqs.~49! and
~39! are more suitable for numerical computations.

The system~48! can be easily solved numerically for
f n
( j )(v) andVn , as shown in Appendix B. This results in the
dominant mode frequencies and their oscillator strengths.
We start with a single mode approximation, and by succes-
sively adding new modes we obtain improved approxima-
tions for frequencies and oscillator strengths of the dominant
modes, until some convergence criteria are satisfied. At each
level of the hierarchy~determined byM ! the resulting oscil-
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lators are natural collective variables which describe in the
best way the contribution of all electronic oscillators to the
optical response.

The convergence as a function of the number of modes
M , M51–6 is shown in Fig. 1 for octatetraene (N58).
Only few ~3–4! modes contribute significantly to the re-
sponse, but to calculate them accurately we need to include
some additional high frequency modes with very small os-
cillator strengths. Using six modes we reproduce the fre-
quencies and the first-order effective dipolesmn

~1!~v50! to
1028 of the values for the full TDHF~16-mode! calculation.
The figure also shows that the polarizabilities converge much
faster than the frequencies and dipoles of individual modes.
The convergence of the linear absorption~the imaginary part
of x~1! @Eq. ~33!# with the number of modes for aN540
atom oligomers is displayed in Fig. 2. Note that the strong
band edge transition is reproduced well even atM54. The
weaker transitions at higher frequencies require more modes.

OnceVn andmn are calculated and substituted in Eqs.
~47!, we can then solve these linear equations for the ele-
ments of matricesPn andQn representing the momentaPn

and coordinatesQn of the desired modes. The calculation is
first performed for the linear responsej51. The resulting
modes are used to calculate the modes for the second-order
response (j52) and so forth.

In summary, the DSMA for computing the off-resonant
j th-order response involves four steps:

~1! Finding the matricesSn
( j )(v) defined as the short-time

expansion coefficients ofS( j )(t)5G 0(t)h
( j )(v), and the

momentsKn
( j )(v), n50,1,...,@Eqs.~37!, ~39!, ~49!#;

~2! Solving the nonlinear system of equations~48! for the
frequenciesVn and the effective oscillator strengths
f n
( j )(v);

~3! Solving the linear systems of equations~47! for the ma-
trices representing the dominate modesPn andQn ;

~4! Calculating thej th-order term in the expansion of the
density matrixj ( j )(v) @Eq. ~46!#.

For the third-order response we useh~3! andT(3) given
by Eqs.~26! and ~25!. After some algebraic transformations
and expanding in the modes, we obtain the eight term ex-
pression forg derived in Ref. 24 which represents the re-
sponse in terms of quasiparticle scattering.

An alternative form for thej th-order nonlinear response
x ( j ) is obtained by rewriting Eq.~27! as

x~ j !52
1

E0
j @Tr~mG 0~v!h~ j !~v!!1Tr~mT~ j !!#. ~50!

We next make use of the fact that for any linear operators
z~v! andq~v!

Tr~z~v!, G 0~v!q~v!!5Tr~@G 0~v!~@z~v!,r̄ # !q~v!#,r̄ !
~51!

to recast Eq.~50! in the form

x~ j !52
1

E0
j ~Tr~@j~1!~v!,h~ j !~v!#,r̄ !1Tr~mT~ j !~v!!!.

~52!

FIG. 1. Variation of electronic oscillator frequenciesVn , effective dipole
momentsmn

~1! , and first~a!, third ~g!, fifth ~d!, and seventh~z! off-resonant
polarizabilities with the number of modes used for octateraene (N58).
Convergence to the full TDHF calculation (M516) is demonstrated. The
magnitudes of polarizabilities are normalized at their converged values:
a53.2310223 esu, g56.6310235 esu, d51.4310246 esu, z52.3310259

esu.

FIG. 2. Convergence of the linear absorption~the imaginary part ofa @Eq.
~31!#! with the number of modes used forN540 atom oligomer. The line-
width is e50.2 eV. Note, that the fundamental band at 2.57 eV with strength
109 eÅ2/V ~1.57310221 esu! remains basically the same in all panels.
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Note thath ( j )(v) andT( j )(v) can be expressed in terms of
lower order intra- and interband components of the off-
resonant density matrixdr (k)(v), k, j . Equation~52!, there-
fore, allows us to computex ( j ) using j (1),...,j ( j21), avoid-
ing the explicit calculation ofj ( j ).

In concluding this section we comment on the connec-
tion of the DSMA with the Lanczos algorithm convention-
ally used for calculating the eigenmodes of Hermitian matri-
ces. The Lanczos algorithm is based on following the short-
time evolution determined by a Hermitian operatorL, i.e.,
looking at the quantitye2 iLtj wherej is the initial vector,
and reducing the space of states to ak-dimensional Krylov
subspace29 generated byj, Lj,...,Lk21j. We assume that the
initial vector j can be expanded using a finite number of
eigenmodes ofL, say, j0 ,...,jk21. The Krylov subspace
then coincides with the subspace generated byj0 ,...,jk21,
and is invariant with respect toL, j0 ,...,jk21 being linear
combination ofj, Lj,...,Lk21j. The problem is now reduced
to working in a k-dimensional Krylov subspace, which in
many cases is much smaller than the original space. There-
fore, the success~i.e., fast convergence! of the Lanczos type
schemes depends on the number of eigenmodes with nonzero
projection onto the initial vectorj ; the smaller the number,
the faster the convergence. This depends crucially on the
choice of initial vector. A formally similar procedure is the
continued fraction representation of*0

` dteivt^jue2 iLt uj&,31

which is also a resummed short-time expansion.
In our case the linearized TDHF operatorL is nonher-

mitian, and our approach is based on an important observa-
tion that the operatorL is simplectic, i.e., ‘‘hermitian’’ with
respect to an assymetric ‘‘scalar product’’ introduced in Ref.
24 and given by Eq.~29!. This ‘‘scalar product’’ plays the
same role in the DSMA as the usual scalar product in the
Lanczos scheme. In the DSMA we apply the Lanczos type
scheme in each order of the response, with the effective di-
pole momentmn

( j ) playing the role of the initial vectorj. The
effective dipole moment is expressed in terms of modes
which show up in lower responses and can be computed by
applying the short-time propagation for the lower responses.
To accomplish this program we need to calculate the eigen-
values as well as the eigenmodes of the Liouville operator.
This is done by solving the linear problem whose dimension-
ality is the number of modes showing up in the expansion of
an effective dipole moment. It is at this point that we exploit
the dominant mode character of the response, namely that
only a few modes show up in this expansion at each order of
the response.

V. RESULTS AND DISCUSSION

We have utilized the collective nature of the electronic
optical response in conjugated polyenes to construct an effi-
cient algorithm for computing optical nonlinearities using the
electronic dominant modes. Since we only need few modes,
computational time scales very favorably with system size
~;N2 compared with;N6 for the TDHF4!. We can, there-
fore, calculate nonlinear polarizabilities of very large mol-
ecules with hundreds of carbon atoms using modest numeri-

cal effort. Moreover, the computational time ofx (m) scales
only linearly withm, which allows us to calculate high-order
nonlinearities without major difficulty.

We have calculated the off-resonant polarizabilities up
to seventh order, for polyacetylene oligomers with up to 300
carbon atoms. The variation of the lowest four nonvanishing
polarizabilitiesa, g, d, and z with the number of carbon
atomsN is displayed in the Fig. 3. Since the molecules have
an inversion symmetry, antisymmetric (Bu) modes contrib-
ute to the odd order responses (j51,3,5,7), whereas the
symmetric (Ag) oscillators appear only in the even order
responses (j52,4,6). Only 11Bu and 10Ag modes~see Fig.
4! were required to obtain a 0.1% accuracy compared with
the full (N2/4) modes TDHF calculations~comparisons were
made for chains with up to 40 carbon atoms and up to the
third-order response, where the full TDHF calculations were

FIG. 3. Scaling of lineara, third-orderg, fifth-orderd, and seventh-orderz
polarizabilities with size. Shown are the magnitudes of polarizability nor-
malized at its saturated valuex ( j )(N)/Nxsat

( j ) , where xsat
( j ) 5 x ( j )(N)/N at

N→`, j51,3,5,7. The magnitudes of saturated polarizabilities are
asat51.7310223 esu, gsat51.1310233 esu, dsat51.9310243 esu, zsat55.2
310253 esu.

FIG. 4. Upper panel: size dependence of mode frequencies. Lower panel:
the number of dominant modes, needed to compute susceptibilities with
0.1% accuracy compared with the fullN2/4 modes TDHF calculations.
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feasible!. Comparison of the absolute magnitudes of the cal-
culated polarizabilities withab initio coupled perturbed
Hartree–Fock theory35 show an agreement to within a factor
of 1.5 for linear and 2.5 for third-order static polarizabilities.
This agreement is very encouraging, in particular given that
the present calculations did not employ any geometry opti-
mization.

The effective dipole moments,mn
( j ) @Eq. ~46!# of anti-

symmetric (Bu) and symmetric (Ag) oscillators of aN5100
polyacetylene chain are displayed versus mode frequencies
Vn in Figs. 5 and 6, respectively. An important observation is
that the same modes dominate at all orders. These modes
manifest themselves in the response with different effective
oscillator strengths at each order. The higher-frequency
modes make more significant contributions to the higher or-
der response. The mode size measured by the off-diagonal
electronic coherence of its eigenvector grows with its
frequency,4 and, therefore, the coherence size increases for
higher-order nonlinearities. This can be seen in Fig. 7 where
we display the variation of the scaling exponentsb[d@ln x#/
d@ln N#, x5a, g, d, and z with size. The curves shown in
Fig. 5 attain a maximumsbg53.5 at Ng58; bd55.7 at
Nd510; bz57.9 at Nz512 ~b attains a larger maximum
value for calculations with geometry optimization!. We note
that b reaches a maximum and eventually approaches 1
~saturates!. This saturation occurs at longer sizes with in-
creased order of nonlinearity. Measurements ofg in solution
as a function of chain length in long chains~up to 240 double
bonds! were reported in Ref. 13. The experimentalb-curve

resembles Fig. 7 with a maximumbg52.5 for Ng560
double bonds.

We note that the various terms in the effective dipole
momenth ( i ) @Eq. ~29!# make different contributions to the
effective oscillator strengths and to the nonlinear response.
This allows us to separate the relative contributions of dif-
ferent processes to the response. As an example, the ratio
(a[xp2h

( j ) /x ( j )) of interband contribution to the total polar-
izability g, d, andz for oligomers with up to 150 atoms is
depicted in Fig. 8. For small chains, the particle–hole con-
tribution is negative in all cases. With increased chain length
this contribution changes sign, and for chains longer than the
exciton coherence size~;30!4 the ratio saturates to the val-
uesag50.4; ad50.26;az50.19.

FIG. 5. The effective dipole momentsmn vs electronic oscillator frequencies
Vn for anN5100 polyacetylene chain. Shown are the dominant modes in
first, third, fifth, and seventh orders of nonlinearity.

FIG. 6. The effective dipole momentsmn vs electronic oscillator frequencies
Vn for anN5100 polyacetylene chain. Shown are the dominant modes in
second, forth, and sixth orders of nonlinearity.

FIG. 7. Variation of the scaling exponentsb[d@ln x#/d@ln N#, x5a, g, d,
andz with size. Note that both the maximum value ofb and the size where
the maximum is attained increase with the degree of nonlinearity.
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In addition to its clear numerical advantages, the oscil-
lator representation may be used to develop simple rules of
thumb for the scaling of optical polarizabilities with molecu-
lar size and chemical bonding. To that end, we have derived
in Appendix C analytical expressions for the lowest two non-
zero spectral moments of linear absorptionK0

(1) and K2
(1).

These two moments are then used in Appendix D to con-
struct a single-oscillator analytical approximation for the off-
resonant linear polarizabilitya. In Appendix E we repeat this
calculation for the third-order polarizabilityg. Based on the
results ofa andg, we make the following conjecture for the
j th-order off-resonant polarizability

x~ j !5
j ~ea! j11

2~4b8D! j
kj

Nj11

@N1L~D!# j
. ~53!

Heree is the electron charge,a is the unit cell size along the
backbone,D is the average bond-length alternation param-
eter ~i.e., the difference between nearest-neighbor bond
lengths!, b8 is the electron–phonon coupling constant,4 and
L is the effective coherence size~see Appendix C!. This
approximation, which lumps the contribution of all elec-
tronic oscillators into a single effective oscillator, reproduces
the main features of the scaling exponentb, and compares
well with full TDHF calculations.36

In concluding this article we discuss some possible fu-
ture extensions of DMSA. First, the algorithm is not limited
to the semiempirical PPP model and it can be combined with
ab initio electronic structure calculations using different ba-
sis sets, and applied to more complicated molecules as well
as to semiconductor nanostructures.37–39

In this paper we only reported numerical calculations for
the off-resonant polarizabilities; however, the extension to
the resonant regime is straightforward. One can use the pro-
cedure described in Appendix D of Ref. 4 to compute the
frequency-dependent effective dipole momentsm ( j )(v), and
the intraband componentsT( j )(v) of the density matrix
dr ( j )(v), or calculate the dominant modes first using the
DSMA for off-resonant response and then obtain the anhar-

monicity constants introduced in Ref. 24 which contain all
relevant information about the resonant response~both time
and frequency domain!. The accuracy of the DSMA depends
heavily on the accuracy of the ground state density matrixr̄,
because we apply a commutator withr̄ @or with V( r̄)# 8k
times for calculatingKk

( j ). This leads to increased errors in
the higher moments, especially in long chains and for high-
order responses. Using double precision we obtained very
accurate results for the optical response and the most domi-
nant ~1–2! modes contributing to this response. Resonant
calculations performed with a frequency-dependent dipole
moment should allow us to focus on the desired spectral
range and obtain a good accuracy. Another way to accom-
plish that is to use a crude approximation forjn obtained in
an off-resonant calculations as an effective dipole moment.
This dipole moment will be coupled strongly with the de-
sired single mode, which can then be extracted accurately
using the DSMA.

Since the same modes are dominant at low and high
orders, we anticipate that this set of modes may be used to
compute the response to all orders. In Ref. 24 the restricted
TDHF equations were written in the oscillator representa-
tion. By combining these equations with the present domi-
nant modes picture, one can find the nonlinear response by
solving a closed system of equations with only small number
of variables. This means that the equations of motion of Ref.
24 in the mode representation, derived using the modes
which dominate the response up to third order, can be ap-
plied to calculate the response to a strong external field.

Another interesting future direction is to extend the
DSMA beyond the TDHF scheme, to treat electron correla-
tions more rigorously. This extension is based on the
observation24 that the TDHF approximation is the classical
analog of the original model. The dominant picture of the
response in all orders implies that evolution of the classical
system occurs in the reduced phase space. Quantizing the
TDHF equations written in the dominant mode representa-
tion ~i.e., quantizing the reduced classical system! using the
procedure of geometrical quantization,40 one can obtain an
effective multilevel system with space of states dimensional-
ity that depends on the number of dominant TDHF modes
rather then the molecule size. This effective quantum system
should maintain all the important features of the original one,
and should allow a nonperturbative calculation of strong
electron correlations, by treating explicitly the quantum evo-
lution of relevant~dominant! variables, which is achieved by
working in the effective multilevel quantum space.
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FIG. 8. The ratio of the interband contribution (a5xp2h
( j ) /x ( j )) to g, d, and

z polarizabilities. Note that for small chain lengths the particle–hole contri-
butions to the high order polarizabilities are negative, and the interband
contribution decreases with increased degree of nonlinearity. The ratio satu-
rates to the valuesag50.4; ad50.26;az50.19.
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APPENDIX A: THE INTRABAND COMPONENTS T(j)
OF THE DENSITY MATRIX [EQS. (8)–(10)]

The single-electron reduced density matrix in the TDHF
approximation satisfies the conditionr2(t)5r(t) at all
times.4,24,25Using Eq.~7! this results in

~ r̄1j~ t !1T~j~ t !!!25 r̄1j~ t !1T~j~ t !!. ~A1!

The intraband part of this matrix equation is

~T~j!!21~2r̄2I !T~j!1j250. ~A2!

The solution of this equation, with the conditionT(j50)50
yields Eq.~8!.

To obtain Eq.~10! we first note that the algebraA of
reduced density matrices can be decomposed~as a vector
space! into a direct sum of intraband~A0! and interband
~A1! density matrices

A5A0%A1 , ~A3!

with the following properties of the commutators:

@j,h#PA0 , for j,hPA0 , or j,hPA1 , ~A4!

and

@j,h#PA1 , for jPA0 and hPA1 . ~A5!

Any density matrixr satisfying the constraintr25r, i.e.,
rPM, whereM is the Grassman manifold24 becomes

r5gr̄g21, ~A6!

whereg is a unitary matrix. Since anyg in a vicinity of a
unit matrix can be represented in a formg5exp~h! with
hPA Eq. ~A6! can be represented in a form

r5exp~h!r̄ exp~2h!, ~A7!

or adopting the language of superoperators~i.e., operators
acting in Liouville space!

r5exp~ h̃ !r̄, ~A8!

where for anyhPA the superoperatorh̃ is defined by

h̃j[@h,j# for jPA. ~A9!

Expanding the exponent in Eq.~A8! in the superoperatorh̃
and making use of Eq.~A9! we obtain

r5 r̄1@h,r̄ #1
1

2
@h,@h,r̄ ##1

1

3!
@h,@h,@h,r̄ ###1••• .

~A10!

Comparing Eqs.~7! with ~A10! results in the linear approxi-
mations inh

j>@h,r̄ #. ~A11!

Since [r̄,[ r̄,j]]5j for anyjPA1,
24 Eq. ~A10! constitutes a

one-to-one mapping betweenA1 and the tangent space to
M at the pointr̄. This implies that we can always choose
hPA1 in the expansion of Eq.~A10!. For this choice, the
even-order terms in the expansion belong toA0, the odd to
A1 @this follows from Eqs.~A4! and ~A5! and the fact that
r̄PA0#. Combining Eqs.~A10! and ~A4! then yields

j5@h,r̄ #1
1

3!
@h,@h,@h,r̄ ###1••• . ~A12!

T5
1

2
@h,@h,r̄ ##1

1

4!
@h,@h,@h,r̄ ###]1••• . ~A13!

To derive Eq.~10! we solve Eq.~A12! to expressh in terms
of j, and then substituteh into Eq. ~A13!. Equation~A12!
may be solved iteratively leading to an expansion ofh in
powers ofj which can be calculated to any order inj and has
a form

h5@j,r̄ #2
1

3!
@k,r̄ #1••• ~A14!

with

k[@@j,r#,@@j,r̄ #,j##. ~A15!

Substituting Eq.~A14! into Eq. ~A13! finally yields the ex-
pansion of Eq.~10!.

APPENDIX B: SOLUTION OF EQS. (48)

The system of nonlinear equations~48! may be solved as
follows. Let us consider the following system of 2n equa-
tions with respect ton ‘‘nonlinear’’ frequencyVn and n
‘‘linear’’ oscillator strengthf n variables

K05 f 11 f 21 f 31•••1 f n ,

K15 f 1V1
21 f 2V2

21•••1 f nVn
2 ,

K25 f 1V1
41 f 2V2

41•••1 f nVn
4 ,

••• ~B1!

Kn215 f 1V1
2~n21!1 f 2V2

2~n21!1•••1 f nVn
2~n21! ,

Kn5 f 1V1
2n1 f 2V2

2n1•••1 f nVn
2n ,

•••

K2n215 f 1V1
2~2n21!1 f 2V2

2~2n21!1•••1 f nVn
2~2n21! .

The frequency variablesV25x are the roots of the polyno-
mial

xn2a1x
n212a2x

n222•••2an21x2an , ~B2!

where the coefficientsai , i51,•••,n are the solution of sys-
tem ofn linear equations

Kn5Kn21an1Kn22an211Kn23an221•••1K1a2

1K0a1 ,

Kn115Knan1Kn21an211Kn22an221•••1K2a2

1K1a1 ,
~B3!

Kn125Kn11an1Knan211Kn21an221•••1K3a2

1K2a1 ,

•••

K2n215K2n22an1K2n23an211K2n24an221•••

1Kna21Kn21a1 .

8923Tretiak, Chernyak, and Mukamel: Molecular nonlinear polarizabilities

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



To rationalize Eqs.~B2! and ~B3! we note that Viet’s
theorem41 establishes the relationship between the polyno-
mial roots and coefficients

a15x11x21•••1xn ,

a252 (
i1, i2

xi1xi2 ,

••• ~B4!

ak5~21!~k11! (
i1, i2,•••, i k

xi1xi2•••xi k ,

•••

an5~21!~n11!x1x2•••xn .

To verify Eqs. ~B3! we simply substitute Eqs.~B4! in the
expression forKn ~B3!

Kn5S (
i
f ixi

n21D S (
j
xj D 2S (

i
f ixi

n22D
3S (

j 1, j 2
xj 1xj 2D 1•••

5(
i
f ixi

n1(
iÞ j

f ixi
n21xj2S (

i
f ixi

n22D
3S (

j 1, j 2
xj 1xj 2D 1•••

~B5!

5Kn2 (
iÞ~ j 1, j 2!

f ixi
n22xj 1xj 21S (

i
f ixi

n23D
3S (

j 1, j 2, j 3
xj 1xj 2xj 3D 2•••

5•••5Kn1~21!n (
iÞ~ j 1,•••, j n21!

f ixixj 1•••xj n21

1~21!n11(
i
f ix1x2•••xn5Kn .

Thus, all terms~exceptKn! in the right-hand side of Eq.~B5!
vanish, leaving the identityKn[Kn .

Equations~B3! is known as the Toeplitz linear system.
The inversion of the Toeplitz matrices is straightforward42

and poses no numerical difficulties.
Once the frequencies are found, the oscillator strengths

can be computed by solving the linear system of the firstn
equations of~B1! for the variablesf n . Thus, the solution of
the nonlinear system~B1! is obtained in three steps: two sets
of linear equations, and finding the zeros of a polynomial
with real coefficients~the only nonlinear task!.

Sincef 1! f 2! f 3!•••! f n , andV1
n@V2

n@•••@Vn
n, the

lower frequency terms are dominant in the first equations of
system~B1! and the higher frequency terms dominate the
higher ones. This allows us to increase the accuracy of the
low frequencies by adding new high frequency modes~and
the necessary higher moments!.

APPENDIX C: EVALUATION OF THE LOWEST TWO
MOMENTS OF LINEAR ABSORPTION

In Appendices C–E we will introduce renormalized
spectral moments which are independent on the applied
static field

f ~2k![2
1

E0
Kk

~1! , ~C1!

and the oscillator strengths

f n[2
1

E0
f n

~1! . ~C2!

We can then recast a family of sum rules for the linear re-
sponse@Eq. ~48!# as

f ~n!5 (
n51

M

~Vn!nf n , n50,2,4,...,

~C3!
f ~n![0, n51,3,5,... .

To invoke the single-oscillator approximation (M51) for
the off-resonant response, we need to express the lowest two
spectral moments for the linear responsef (0) and f (2) in
terms of the Hamiltonian parameters and the ground state
reduced density matrixr̄mn .

In the Hamiltonian @Eq. ~1!# we recast a nearest-
neighbor hopping Su–Schrieffer–Heeger~SSH! model and
electron–electron Coulomb interactions~Ohno formula! as

tn,n615b1~21!nb8D, Vnm5Uvn2m , ~C4!

whereD is the bond-length alternation parameter andvn2m

is a dimensionless function~with v051!. We assume that the
bond-length alternation only enters through the hopping ma-
trix given by Eq.~C4! and neglect its effect on the Coulomb
interaction. For simplicity we shall neglect, when possible,
the alternation in the transfer parameter making use ofD!a.
This is justified when the electron–phonon contribution to
the gap is much smaller than the Coulomb contribution.34

Applying the results of Ref. 28 to the system described
by Eqs.~C4! and ~2! we obtain

f ~0!5Ab; f ~2!5B0b
31B1b

2U, ~C5!

with

A[4e2a2(
n

r̄n,n11 , B0[8e2a2r̄nL ,nL11 ,

~C6!

B1[2e2a2H 2(
mÞn

vm2ndr̄ndr̄m1(
n

~dr̄ !2

2 (
mÞn

vm2n~dr̄mn!
22(

mn
dr̄mndhmnJ .

HerenL , nR denote the chain edges, and we have introduced
the following definitions

hmn[2vm2nr̄mn~12dmn!

1S 2(
kÞn

vn2kr̄kk1 r̄nnD dmn , ~C7!

8924 Tretiak, Chernyak, and Mukamel: Molecular nonlinear polarizabilities

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996

Downloaded¬07¬Mar¬2001¬to¬128.151.176.185.¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



and for an arbitrary matrixjmn we define

djn[jn11,n2jn,n21 ;

djmn[~jm21,n2jm,n11!2~jm11,n2jm,n21!. ~C8!

To analyze the size scaling of the moments, we note that
for large sizes we havef (n);N for all n. Numerical results
for r̄mn show that boundary effects onr̄mn are short range,4

and only affect it when the distance ofm andn from an edge
is one or two atoms. This suggests that boundary effects on
the sum rules are also short range, and forN.10 say,f (n)

can be written in a form

f ~n!5Nf0
~n!1 f 1

~n! , ~C9!

where f 0
(n) is related to theN→` behavior, andf 1

(n) repre-
sent edge effects in the sum rules. Careful examination of the
sum rules shows that the largest corrections to Eq.~C9! are
;N21 and;N21 ln N, which can be neglected forN>10.
Expressions forf 0

(n) and f 1
(n) can be obtained by inspecting

the behavior off (n) for largeN: f 0
(n) are expressed in terms

of the saturated components ofr̄mn , i.e., the values ofr̄mn

for largeN whenm andn are far from the edges, whilef 1
(n)

involves the values ofr̄mn near the edges~note thatr̄mn is
strongly localized inm2n!. Making use of Eqs.~C5! and
~C6!, we obtain from the first moment (n50)

f j
~0!5Ajb; j50,1, ~C10!

with

A0[2e2a2~ r̃n,n111 r̃n11,n12!,
~C11!

A1[4e2a2(
n

~ r̄ n,n11
~1! 2 r̃n,n11!.

Herer̃mn are the saturated values of the ground state density
matrix in a large chain (N→`) whenm andn are far from
the edgesnL andnR . Therefore,r̃mn can be formally treated
as the ground state reduced density matrix of an infinite
chain~2`,m, n,1`!. r̃mn5 r̃n12k,m12k. r̃ mn

(1) denote the
saturated values ofr̄mn in a large chain (N→`) whenm and
n are far from one of the edges, namelynR . We can put
nL50 and for nR5N21→` formally treat r̄ mn

(1) ~with
m,n>0! as the ground state density matrix in a semi-infinite
chain. Note that neitherr̃mn nor r̄ mn

(1) depend onN since they
represent the saturated values ofr̄mn . r̄ mn

(1), however, carries
information about the near-edge values ofr̄mn when N is
large enough and it is not affected by the other edge. For
m,n@1 we haver̄ mn

(1)'r̃mn .
For the third moment (n52) we obtain

f j
~2!5Bj0b

31Bj1b
2U, ~C12!

with

B0050,

B1058e2a2r̄0,1
~1! ,

B01[e2a2H 2(
mÞn

vm~dr̃0dr̃m1dr̃1dr̃m11!1~dr̃0!
2

1~dr̃1!
22 (

mÞ0
vm@~dr̃m0!

21~dr̃ m11,1
2 !#

2(
m

~dr̃m0dh̃m01dr̃m11,1dh̃m11,1!J , ~C13!

B1154e2a2(
n

bn ,

bn[2dr̄ n
~1! (

mÞn
vm2ndr̄ m

~1!1~dr̄ n
~1!!2

2 (
mÞn

vm2n~dr̄ mn
~1!!22(

m
dr̄ mn

~1!dhmn
~1!

2
1

e2a2
B01.

In Eq. ~C13! we have formally extendedr̄ mn
(1) to arbitrarym

andn settingr̄ mn
(1)50 whenm,0, or n,0.

On the other hand, making use of the stationary HF
equation for an infinite chain, we obtain the following rela-
tion between the parametersb j[b2(21) jb8D, j50, 1,
andU

b j5Cj
21U, j50,1. ~C14!

The expansion of Eq.~C12! can be obtained from the sum
rules for a chain. The easiest way to obtain Eq.~C14! and
calculateCj is to apply the stationary HF equation~which is
a matrix equation! to then, n11 component. This yields

Cj
215@ r̃ j12,j2 r̃ j11,j21#

21(
m

~ r̃2m1 j11,j112 r̃2m1 j , j !

3~ r̃2m1 j11,j12v2m212 r̃2m1 j11,j21v2m!. ~C15!

The most important fact is that the coefficientsA, B, andC
do not explicitly depend onN or on the parameters of the
Hamiltonianb, b8, U; they are expressed in terms of the
bond-length alternation and the ground state density matrix
r̄mn in a long chain, which can be obtained in practice by
performing a single calculation for a large chain~say
N;50!.

Combining Eqs.~C9!, ~C12!, and ~C14! and setting
C0'C1[C, we obtain

f ~0!5A0b~N1L0!, ~C16!

f ~2!5~B001B01C!b3~N1L1! ~C17!

with

L0[
A1

A0
, L1[

B101B11C

B001B01C
. ~C18!

Equations~C5!–~C18! express the linear spectral mo-
ments of density matrix in terms of the parameters of the
Hamiltonian andr̄mn . This constitutes an important structure
polarizability relationship, which predicts the magnitude of
the optical response using detailed information regarding the
chemical structure and bonding. These results will be used in
Appendix D.
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APPENDIX D: SINGLE-OSCILLATOR
APPROXIMATION FOR THE LINEAR RESPONSE

By employing the identities~43! and ~C2! to Eq. ~33!,
we can write the off-resonant linear polarizability as

a~v50!5 (
n51

M
f n

Vn
2 . ~D1!

We now consider the lowest approximation (M51) of the
hierarchy Eqs.~D1! and~C3!, where we retain only a single
oscillator. This approximation is exact if the oscillator
strength is concentrated in one oscillator. However, its range
of validity goes far beyond this case since it approximates
the contributions of all oscillators by a single effective one.
Making use of Eq.~C3! for k50, 1 and Eq.~D1! we obtain
for the off-resonant polarizabilitya[a~v50! and the optical
gapV

a5
@ f ~0!#2

f ~2! , V5F f ~2!

f ~0!G1/2. ~D2!

Substituting Eqs.~C16! and ~C17! into Eq. ~D2! yields

a~N!5
k

b

~N1L0!
2

N1L1
, ~D3!

V~N!5SN1L1
N1L0

D 1/2Ṽ, ~D4!

where the parametersk andṼ, which characterize the values
of the linear response and the optical gap in long molecules,
have the form

k5
A0
2

B001B01C
, Ṽ5SB001B01C

A0
D 1/2b. ~D5!

Equations~D3! and~D4! together with Eqs.~C18! and~D5!
express the off-resonant linear polarizabilitya(N) in terms
of ground state properties of large molecules.

At this point we estimate the coherence sizesL0 andL1
and connectL1 with the magnitude of bond alternation. The
coherence sizeL0 is related tof

(0), and since edge effects of
r̄ are short range,L0;1. The situation is quite different for
the coherence sizeL1 related to f (2). It follows from Eqs.
~C6!–~C8!, that in a translationally invariant systemf (2)50.
This also follows immediately from the corresponding sum
rule presented in Ref. 28, which is written in terms of com-
mutators, since translationally invariant matrices commute.
Two factors may break the translational symmetry in finite
chains: spontaneous symmetry breaking, which leads to the
alternation in parameters, and boundary~edge! effects. The
first mechanism~which exists even in an infinite chain! leads
to a;N contribution tof (2) which decreases with decreased
bond alternation. The second mechanism leads to a finite
~i.e., ;N0! contribution tof (2) which is independent of the
alternation parameter. Equations~C13! show thatf 0

(2) has an
extra small factor compared tof 1

(2) related to the bond-length
alternation parameter in an infinite chain,4 and for weak al-
ternations we haveL1@L0 , which means that we can neglect
L0 while retainingL1 in Eqs. ~D3! and ~D4!. On the other
hand the fact thatf 0

(2) has small a factor means that the

parameterB001B01C in Eq. ~C17! is small provided effects
of alternation are weak. Numerical calculations of Ref. 36
show it scales asB001B01C;b8D with bond-length alter-
nation. We can then recast the parameterk in the form

k5
~ea!2b

8b8D
k1 ~D6!

with k1 weakly dependent onD. Combining Eqs.~D3!, ~D4!,
and~D6! and making use of the above arguments we finally
obtain:

V~N!5SN1L1
N D 1/2Ṽ, ~D7!

a~N!5
~ea!2

8b8D
k1

N2

N1L1
, ~D8!

with the following scaling ofṼ and L1 with D: Ṽ2;D,
L1;D21. Numerical calculations of Ref. 36 showk1;1.
Equations~D7! and~D8! imply that for largeN, f (0)(N);N,
a(N);N, andV(N) is independent ofN whereas for small
N, f (N);N, a(N);N2 andV(N);N21/2.

This establishes a direct relation between the scaling
properties of the off-resonant polarizability to chemical prop-
erties of conjugated molecules.L1 is thus the coherence size
which determines the crossover of the short and long chain
behaviors ofa(N) andV(N). The simple relations of Eqs.
~D7! and ~D8! are in a good agreement with full TDHF
calculations.36

APPENDIX E: SIZE SCALING OF THE THIRD-ORDER
RESPONSE

The calculation of the third-order nonlinear polarizabil-
ity g is much more tedious thana, even when only a few
modes dominate. The TDHF expression forg has eight
contributions,24 and each dominant oscillatorn contains two
variables~ĵn and ĵn

1 or P̂n and Q̂n!. The number of coeffi-
cients becomes very large, and we need a large number of
sum rules to determine them, which greatly complicates the
picture. To derive a simple yet qualitatively correct expres-
sion, we make some additional assumptions. Numerical
TDHF calculations of the optical response show that pro-
cesses which do not conserve the number of electron–hole
pairs can be treated perturbatively. Neglecting these pro-
cesses leads to the following relevant level scheme for the
third-order response: the ground~vacuum! state with no
electron–hole pairs~excitons!, one-exciton states withBu

symmetry, and two-exciton states withAg symmetry, which
are made out of twoBu excitons. Processes which do not
conserve the number of excitons mix the two-exciton states
consisting of twoBu excitons and one-excitonAg states.

43

There are two kinds ofAg states contributing tog: ~i! 2Bu

states with a small component of 1Ag , and ~ii ! 1Ag states
with a small component of 2Bu states. The latter lead to
sharp two-photon resonances ing and show up in the TDHF
approximation as resonances related toAg oscillators. The
former states to a certain extend are taken into account by the
TDHF approximation, which fails near two-photon reso-
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nances on these states. This is, however, not important for
the off-resonant response. The contribution of states~ii ! is
essential for the resonant properties ofg ~e.g., two-photon
absorption!; however, their contribution to the off-resonant
response is small provided the processes which do not con-
serve the number of excitons are weak. Adopting TDHF ter-
minology, the contributions of~i! and~ii ! states are related to
the terms in the expressions of Ref. 24 which do not and do
contain respectivelyAg oscillators ~which further lead to
sharp two-photon resonances!. Assuming that processes
which do not conserve the number of excitons are weak, we
will take into account only those terms which do not contain

theAg oscillators.
24 This still leaves us with a large number

of terms related to summations over indices denoting the
momentum and coordinate variables of each oscillator. This
number can be considerably reduced when the terms induced
by processes which do not conserve the number of excitons
are neglected~formally this means that the eigenmodesĵa

and ĵa
1 contain the particle–hole and hole–particle compo-

nents of the density matrix respectively!. If in addition we
assume a single dominantBu oscillator, we obtain the con-
siderably simplified form of the third-order response func-
tion:

g~2vs ;v1 ,v2 ,v3!5
1

6 (
perm

H I 1 1

v12V1 ih

1

v21V1 ih F 1

v11v21v32V1 ih
2

1

v11v21v31V1 ih G
1I 2

1

v12V1 ih

1

v21V1 ih F 1

v32V1 ih

1

v11v21v32V1 ih

1
1

v31V1 ih

1

v11v21v31V1 ih G J 1c.8c.8, ~E1!

where(perm stands for a sum of six permutations of the fre-
quenciesv1, v2, andv3; c.8c.8 denotes complex conjugation
and changing the signs of all frequenciesv1, v2, andv3.

g is now expressed in terms of two parametersI 1 andI 2
which may be determined by applying two sum rules.
Switching Eq.~E1! to the time domain and substituting it
into the sum rules of Ref. 28 we obtain the following system
of equations forI 1 and I 2 .

VI 12I 25
3e2a2

2
f ~0!,

~E2!

V2I 25
3e2a2

4
f ~2!.

Solving Eqs.~E2!, substitutingI 1 and I 2 into Eq. ~E1!, and
further settingv15v25v350 we obtain for the off-resonant
hyperpolarizabilityg:

g5
3e2a2f ~0!

V4 . ~E3!

Finally, making use of Eqs.~C16!, ~D7!, and the fact that
Ṽ2;D we express the off-resonant third-order hyperpolariz-
ability g in terms ofD and the ground state reduced density
matrix in a large molecule

g5
3e4a4

2~4b8D!m21 k3
Nm

~N1L1!
m21 , ~E4!

with m53, and the dimensionless coefficientk3 depends on
the ground state single-electron density matrix.

One can apply similar arguments individually to each of
the eight contributions to the third order polarizability.24 This
will involve two generalizations of the procedure presented

above. First, we need to include the higher order moments of
the nonlinear response. Second, instead of using the dipole
operatorm in the sum rules for the third-order response given
in Ref. 28 we will consider its interband and intraband com-
ponents given by [r̄,[ r̄,m]] and m2[ r̄,[ r̄,m]], respec-
tively. New sum rules apply not to the third-order polariabil-
ity g but rather for each of eight contributions tog itself
presented in Ref. 24. The procedure is lengthy and rather
tedious and will not be given here. The result is that theN
andD dependence of each contribution is given by Eq.~E4!
with b assuming valuesm53,4,5 for different contributions.
We have fitted the results forg(N) obtained by the TDHF
calculations using the full DSMA described with the expres-
sion of Eq.~E4! for different values ofD usingk3 andb as
fitting parameters. We found thatm54 applies over a broad
range of variation ofD, k3 is order 1 and has a weak depen-
dence onD. Numerical results are presented in Ref. 36.
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