Recursive density-matrix-spectral-moment algorithm for molecular
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An iterative algorithm is developed for calculating nonlinear optical polarizabilities using a series of
generalized sum rules that resemble the Lanczos algorithm and connect spectral moments of the
driven single-electron density matrix to ground state charge distributions and bonding network. The
size scaling and saturation of off-resonant polarizabilifigs to seventh ordgrof polyacetylene
oligomers with up to 300 carbon atoms is analyzed in terms of collective electronic oscillators.
Simple analytical expressions for size and bond-length alternation dependence of off-resonant
polarizabilities are derived using a single-oscillator approximation.19®6 American Institute of
Physics[S0021-960806)02542-1

I. INTRODUCTION dencies of nonlinearities on other molecular parameters. It
] ) ) has been argued that the bond-length alternation parareter
~ Relations between chemical and electronic structure ang ye|ated to electron localizatidi.In alternating chains the
linear and nonlinear optical polarizabilities of conjugated kel model predicts~A 8 divergence at smalh.'2 Fly-
molecule have drawn muc@ attention of chemists and physi, 4 nis and co-workers employed thé dkel model to study
cists over the past 20 years! Resonant nonlinear spectros- the scaling of off-resonany of large oligomers with the
copy provides most valuable information on states that arQ turated optical gaﬁ 1021 The resultingy~§‘6 scaling
not accessible by linear techniques,whereas off-resonant law is in qualitative good agreement with experimental data

measurements probe the collective response of many m%bllected for both off-resonant and resonant third-order

; <3
lecular egenstate’;. . . . polarizabilities of different conjugated polymérs Recent
The size scaling of various optical properties has bee . : .
resonant experiments show the following relation

studied extensively, both theoreticdfly'? and experi- _ =~
mentally>9131 Linear absorption of short oligomers with A=3w,0,0,0) ama = (Refs. 5 and 3 where the scal-
N<12-20 carbon atoms shows &n~N—* scaling of the "9 Of both ¥ and e, (absorption maximupndepends on

optical gap with 1~0.4—0.6> The Hickel model yields the concentration of chromophores in films, and the ratio is

#=1.2 An important relation is the scaling of nonlinear sus- appgxllmflalte_ly mdcipenc_zlerllthon d|Iut||on_. bilii v i
ceptibilities with molecular size. The power scaling law alculations of optica .ypl)erpf)fo ar|zah||t|es usually in-
y~NP for the third-order polarizability, wher is the num-  Volvé an extensive numerical effort. The sum-over-states

3,23 : :
ber of carbon atoms, has been established experimentally PO~ method includes the calculations of both the
the early 7025 and supported by theoretical calculations us-ground state and excited states wave functions and the tran-

ing the free electron modéf. Numerous subsequent studies Sition dipole moments between Zgrltzagn. The time-dependent
showed that for short chains, the exponénean vary be- Hartree—Fock(TDHF) proceduré_ which is based on
tween 3 and 8, depending on the system and model arige solution of equations of motion for the single-electron
eventually approaches (katuratesfor long molecules. The reduced density matri??, provides an oscillatofquasiparti-
crossover between these two behaviors is related to the e%l€) picture of the optical r.espo.néé. This allows the de-
citon coherence siZt>3 Calculations performed using the SCription of electronic motions in terms of collective elec-
Hiickel model(which neglects Coulomb interactionsredict tronic normal modes, in complete analogy with the standard
saturation at long chains\(~50) andb~5-9'"whereas treatment of nuclear vibrations. Within this approximation,
calculations based on the Pariser—Parr—P&pRP Hamil- the only relevant ground state information is the Hartree—

tonian, which includes electronic correlations, predict aFock (HF) ground state reduced single-electron density ma-
shorter saturation sizeN(~20-30) ancb~4-514sym-  trix, whose diagonal elements give electronic charges, and

over-states calculations afin short oligomers yield a scal- the off-diagonal elements characterize the bond oftlem-
ing exponentd~8 for symmetric linear cyanites arf=4  portant interference effects are naturally built in, and it re-
for linear polyened? Difficulties with the controlled synthe- produces the correct scaling with system size. The TDHF has
sis and poor solubility of polyenic oligomers restricted earlytremendous computational advantages over the sum-over-
experimental studies to molecules with up to 30—40 carboistates method, but calculating the oscillators still requires the
atoms'*152 which showed no saturation. These problemsdiagonalization of &?x K? matrix representing the linear-
have been overcome, and the saturationydfas been ob- ized TDHF equationsK being the basis set size. Even
served experimentally at-200 double bond$ which is  though it has been established that only a few oscillators
much larger than early estimates. eventually dominate the response, we cannot tell that before-
Considerable attention has been also paid to the depetrand. We then need to first calculate all the oscillators and
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then sort them out to find the dominant ones. This poses &his expression is in excellent agreement with the full TDHF
severe computational problem since we end up calculatingalculations, reproduces the correct scaling of observables,
much redundant information. The TDHF is a great improve-and provides a simple and clear physical connection between
ment over the sum over states; however, sorting out the oshemical and optical properties.
cillators is still a major difficulty.

In this paper we develop a simple and extremely power—II THE TIGHT-BINDING HAMILTONIAN AND THE
ful denglty-rpatrlx-spectral-.moment.aIgonthfﬁ)SMA) for SINGLE-ELECTRON DENSITY MATRIX
calculating linear and nonlinear optical response of a many-
electron system. The method allows us to focus on the rel- We consider ar-electron system described by the tight-
evant oscillators from the outset, thus greatly reducing combinding Pariser—Parr—Pop{BPP Hamiltonian which repro-
putational cost and clearly establishing the origin of theduces many important properties of conjugated poly&nes
dominant mode picture. This is accomplished using a family
of sum rules which connect the short-time behavior of the H= > tmncr;,ocn,(r"_% > Vnmcr;,a-

response function of many-electron systems to ground state m.n,o mn,o,o’

properties. By applying the closed expressions derived in

Ref. 28, we can then calculate the frequency-dependent op- XC. /CnorCmo— (1) HnnCroChic s 1
’ ' ' n,o ' '

tical susceptibilities using a small number of parameters

characterizing the dominant modes. The short-time responsgherec, ,(cy, ) is the annihilationcreation operator of a

functions are determined by these parameters as well. By electron on sitan with spin o, satisfying the Fermi anti-

solving these equations and substituting the parameters intmmutation fe|ati0|{|0r;,g,Cn,o'}=5m,n5o,g' )

the expressions for the polarizabilities, we establish a con- The first term is the Hckel hamiltonian, where

nection between the polarizabilities and the ground state re~ =3 V, . is the Coulomb integral at theth atom and,,,,,

duced single-electron density matrix. (m#n) is the nearest-neighbor transfer integral between the
The DSMA has a close formal connection with other nth andmth atomst,, ,.,=8-8'l, andl, is the deviation

short-time algorithms widely used in different contexts. of the nth bond length from the mean bond length along the

These include the Lanczos algorithm for computing the eichain. The second term represents electron—electron Cou-

genvalues of a hermitian matriX the Mori—Zwanzig proce- lomb interactions; the repulsion between thta and mth

dure of reduced dynamic8,and the continued fraction rep- sites is given by Ohno’s formula

resentation of correlation functiod$.In particular, we note

the analogy with the analysis of optical line shapes in terms _ U )

of spectral moment¥ The moments can be easily calculated "1+ (Fymlag)?

without going through a complex eigenvalue problem, and : . . .

often ve?y fe%/]v momgnts provize for gn adequa?e representé(\-’h?reu - UO/_G Is the on-site Hubbard repulsion aqb the :

tion of the line shape. We use the same ideas to compu tatic dielectric constant. The last term r_ezpresents |n_teract|on

nonlinear optical susceptibilities. We calculate the spectra etween ele_ctron_s and an external f|el§(t) pola_nzed

moments of the density matrix induced by the external fieldalong the.chalrz axis. We assume a localized basis ;et S0

and use them to construct the electronic modes relevant t%]at the d|p_ole moment Is diagonghm=ezdm- The size

the optical response. Similar to conventional moment analy9'c the basis set is equal to the ”“'T‘ber of carbon atoms

sis, convergence is verified by incrementally adding moré<:N' The parameters used were adjusted to reproduce the

moments. energy gap for polyacetylen@.0 eV): U,=11.13 eV, 8=

— r—_ 1 _ 4

In Sec. Il we introduce the tight-binding Hamiltonian for 24 E\./"B =—3.0 e\{A , =15, aO—.1.29'35 A I'n al
= electrons and present the restricted TDHF equéfidn calculations we used fixed geometry with unit ce!l size along
which describes the time evolution of particle—hdgieter- the backbon@=1.22 A and bond-length alternation param-

band components of the reduced single-electron density ma(-ate”“:A:_o'07 A, . .

trix p. In Appendix A we show how to express the intraband . Analysis of our Paper IS based on fpllowmg the evolu-
components of in terms of the interband pagtof the de- tion of the reduced single-electron density matrix

viation of p from its ground s_,tatep_.ln Sec. Ill we express P =(T(t)[cy oCn.ol T(1)), (3
the polarization using the eigenmodés of the linearized
TDHF equation. The DSMA which makes it possible to cal-
culate polarizabilities at any order, keeping as many modegO
as necessary, is presented in Sec. IV. The relations necess
for numerical applications of the DSMA are outlined in Ap-
pendix B. In Sec. V we present numerical calculations for
polyacetylene oligomers and discuss the computational adj—
vantages of the DSMA. We further give a simple analytical  [h(p),p]=0. (4)
expression for off-resonant polarizabilities obtained using
crude single-oscillator approximation. The detailed deriv
tions of this formula are given in Appendices C, D, and E. h(p)=t+V(p), 5)

whereW (t) is the time-dependent many-electron wave func-
n. In the present model the wave function is a singlet at all
es, so that spin variables may be eliminatédive first

Ind the ground state HF single-electron density maprix,

by solving the stationary HF equation using iterative
iagonalizatiof

aﬁ—|ereh is the Fock operator
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andV(p) is the Coulomb operator

V(ﬁmn: _anEnn+25mn2| VmIpT- (6)
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the trace includes summation over spin variables. For a given
spinless systeffiit is twice the trace over space variab)es.

When the molecule is driven by an external field, the||l. THE NONLINEAR OPTICAL RESPONSE AND

density matrix acquires a time-dependent pirft) and we
have

p(t)=p+Sp(t)=p+ &)+ T(&(1)). 7

Here ¢ represents the particle—holmterband and T(¢) is
the particle—particle and the hole—hdiatraband parts of
Sp(t). The matrixT(£(t)) is given by the following expan-
sion, which can be derived using the relatip(t)?= p(t)
(see Appendix A

1
T(§)=<p—§)(|—\/|—4§2),

wherel is the unit matrix. Equatioit8) can be expanded in
powers ofé¢

T(E)=(1-2p)(+E+28%+-+),
or alternatively(see Appendix A

)

9

1 _ 1 _ _ _
(10
In Egs.(9) and (10), all ¢ are taken at time, é=£&(t). Ex-
pansions (9) and (10) are identical. For example, to

second order in ¢ Eq. (100 reads 3[[£,p], €]
=¢pé—Hp&2+ £%p). The projection property gf (Ref. 24

implies the following relations for any interband density ma-

trix & £=pé&+ &p andp&?= £%p (note, thai? is an intraband

ELECTRONIC NORMAL MODES

The equations of motiofil1l) may be solved by expand-
ing the interbandparticle—holé components of the reduced
single-electron density matrix in powers of the external field

=L@ pe®y .. (153

The intrabandparticle—particle and hole—hgleomponents
are similarly given by

T(O=T?(O+TIE+TH(E+---, (15b)

whereTU(t) is expressed in terms & by comparing Eq.
(9) [or Eqg. (10)] with the Egs.(15). TO(t)=0, T@(t)
=(1-2p)[£M(1)]?, etc. Polarization to th¢th order in the
external field#(t) is calculated by taking the expectation
value of the dipole operaton with respect to the time-
dependent density matrix

PU(t)=Tr(nsp (1)),
with
sp (1) =€V () +TI(1). (17

Using these equations, the original nonlinear equation
(11) is transformed into a hierarchy of linear inhomogeneous
equations. Tgth order we have

CaEW(t)
' Ta

(16)

—LeN®)=n0(1). (18)

matrix). Using these identities we recover the second-order

term in Eq.(9).

The formal solution of this equation in the frequency

The evolution of the reduced density matrix is describeddomain is

by the time-dependent Hartree—Fa@DHF) equation

a - —_—
i a—f:'—é— & [m.p]+[[R(&).p].p], (12)
whose linear part is
LE=[t+V(p),£1+[V(),p]. (12)

L is a linear operator in Liouville spadee., superoperatyt
and

R(&)=[V(&),E1+[V(T(£).£1+[V(T(€).p]

IV, T(O]— & [m, 6+ T(E)]. 13

()= Zo(w) (), (19)
where

B 1

Zolw)=—r, (20)

w—L

is a zero-order tetradic Green function, apf(t) is jth-
order term from the right-hand side of Eq(ll)
7M(t)=—Z(t)[ . p], etc. Throughout this paper, the Fou-
rier transform is defined by

f(w)=f:c dteif (1), 21)

R(&) contains both inter- and intraband components, and the

projection property ofp (Ref. 24 is used to projecR($)
onto the particle—hole subspaBg_,=[[R(£),p], p].

‘The optical polarizabilities are readily obtained using
5p(w). Following the procedure outlined in Appendix D

The time-dependent polarization, which determines alPf Ref. 4,79(w), TY(w), and¢")(w) contain permutations

optical properties, is finally given by

PO =Tr(u&(t)) +Tr(uT(1)), 14

whereT(t)=T(£&(t)), and the dipole operator is represented

by a diagonal matrix with elements, ,= €2,5,,- (Note that

over all frequencies of the applied fields, which are given by
Z(t)=2>, % coswyt. (22)
k

The jth order frequency-dependent polarization is

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996
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P(j)(iw11~~1wl—;iwl,...,iwj) 9 _§V+§:r 5 —-igv_é: 31
= (j)(Ia)lI---ij;iwl,...,iwj)&{%l)---‘;'Oj), (23 o2 ' V2
and the optical polarizabilities assume the form The normalization of), and P, follows directly from Eqgs.
(e gy + + (29
X (+w1+ +wj,_w1,...,_w]-) e
1 Tr(p[Pa,Qpl)=16up, (323
- D F e ~+ _ _
Z g TP (F s oo, TH(p[P P51 =Tr(p[Q, Q1) =0. (320)
+w)). (24) The linearized TDHF equation thus reads,=-Q,P,,
: ~ P,=0,Q,.
Hereafter we focus on the off-resonant response. Setting all The coupled electronic oscillator representation maps the
frequencies to zero, we obtain calculation of the optical response onto the dynamics of a set
T (w=0)=0, of anharmonic oscillators representing the electron—hole pair
s components of the reduced single-electron density matrix.
T (w=0)=(1-2p)(£1)?, The linear polarizability then assumes the f6tm
TO(w=0)=(1-2p) (620 + £Ve), 29 i g 2
T (w=0)=(1-2p)(§PeV+ P2+ D), X S0~ (w+ie)?’
and wheree is a linewidth. Closed expressions fgf? and y©
7 D(0=0)=—Zo x,p], were given in Ref. 24. _ _
o Calculating the electronic modes is the most computa-
72(w=0)=[[([V(8pY),5pP]+[V(T?®),p] tionally demanding task of the TDHF scheme, since we re-
v SoDTy 5T T 26 tain the complete information about the single-electron den-
—Zolw.6p" 1)l ), (26) sity matrix. The procedure becomes numerically intractable
73 (0=0)=[[([V(8p?),8pV]+[V(5pD),5p?] f.orilong chains. Applications of the procedure. have been
o — gy limited to N~40 atoms. The DSMA developed in the next
+[V(T®),p]= Zol £, 5p@1) ], p]. section overcomes this difficulty.
Here ¢=¢0)(w=0) and sp'=6p")(w=0). The off-
resonant polarizabilities are given by
_ 1 _ _ IV. THE DENSITY-MATRIX-SPECTRAL-MOMENT
x!'== o (T (@=0)+ Tr(uT" (w=0)), ALGORITHM
(27 The DSMA allows us to calculatg!) from 7\ by solv-
wherex?, ¥?, ¥® denote the polarizabilities, 7, 8, etc. ing Eq. (19) without a direct diagonalization df. In prin-
To compute Eqs(19) we need to find all eigenmodes ciple we nged to expand the mterbaqd (.:omponeﬁ)fsof the
and eigenfrequencie’,, of the Liouville operatorL,* re_duced smgle-electro_n density matrix in the complete set of
eigenmodes olL. Typically, however, only a few modes
LE,=Q.E,. (28)  (4-5) contribute to the respon$éThe DSMA reduces the

The eigenmodes come in pairs: Each vecfprwith fre- computational effort considerably by calculating only these

quency(, has a counterpag_, =& with frequency—Q,.  relevant modes. .
Sincel is real, the electronic modes can be taken to be real. 1he interband component of the reduced single-electron

We shall adopt the following normalization for the eigenvec-density matrix tojth order in the fields)(w) [Eq. (19)] can

tors related to positive frequenciés be represented as

THPLES £p1)= 8up, (299 £0) () = f " dteesit,v), (39

I J— 0

Tr(p[é, €5 1) =Tr(p[€4,€5])=0. (29b) _ _

, , where we have introduced the mat&¥)(t, )
Using these modes, the Green function assumes the form ' o

£t SI(t,w)=—ie 0 w). (35

55)0((0):; pront (30 This matrix satisfies the equation
where we used a tensor notation, and the sum runs over all i ‘"73(”“’“’)_'_5(;)“ ©)=0 (36)
modes with positive as well as negative frequencies. at ’ ’

A classmgl mode picture qf optlc_al response is obtalneqNith the initial condition
by constructing the electronic oscillators defined by the ' ‘
coordinate-momentum variables SY0w)=—in"(w). (37)
J. Chem. Phys., Vol. 105, No. 19, 15 November 1996
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In Egs. (35) and (37) the S¥ matrix is viewed as a N2/4
vector in Liouville space. We next expand the solution of Eq.  Si)(t, )= >, w(w)[Q, sin(Q,t)+P, cogQ,1)].
(36) in a Taylor series v=1

s 49
Sh(t,w)=—i| S (w)+(—i) L (@) t4 .- The jth-order interband component of the reduced single-
1 electron density matrix can be expanded in the form
; : Sﬁwj)(“’) N2/4 :
:_Ingo (=i)" = tn (39 g(])(w)zzl M(Vj)(“’) QZ(inZ Q,— Qzlj)wZ PV}.
whereS{)(w) = 71 () andSP(w)=L*S{(w), k=1,2,.... ' ' (46)
This expansion, which describes the short-time evoJ%JL'[tion Ofhis resembles the response of a collection of electronic os-

initial vector n(w) in the subspace determined byie ',

: ; cillators with frequencies(), and effective (frequency-
allows us to calculat&y) ; recursively d i (frequency

dependenttransition dipolesu{(w).
D —1gi= -y s () o7 To find the normal coordinates and momenta, we expand
S = LS =t V(p) ST HIVS) ] 39 the cos and the sin functions in a Taylor series, and compare
Since the procedure involves merely matrix multiplication coefficients of the same powers bfwith Eq. (38). This
(no inversion or diagonalizationit can be readily applied yields
even for very large systemthousands of atoms
We will use the short-time expansidB8) to derive an

M
(j) —i n (i) - _
algorithm for computing the electronic normal modes. Sn'(@) ';1 Qo (0P, n=024.. . M=2,

7 (w) can be expressed in terms of the mofes. (4.163 (473
in Ref. 24 "
N2/4 SH(w)=2 O"u(w)Q,, n=1,35...,M—1.
n(w)= 3, (Tr(plE; 7V (w)])E, " 47h
~Tr(p[&,, 7V (w)])ED). (40)  These are closed equations fdviZparametergu, 1,), and

2M NXN matrices(P, andQ,). M is the desired number of
Using the mode representation, the solution of 8§ can  modes which can be controlled by the number of moments
be written as we keepM=1,2,....
Using identity (44), we can trace these equations with
0 o — et () ] the effective dipole moment, resulting in a nonlinear system
SP(tw)=—i 21 (Tr(pl&, 7V (w)])E, exp(—iQ,t) of 2M equations for thevl frequencied), andM effective
! | oscillator strength$()(w)=Q (19 (w))?
—Tr(pl&, 7V (@)])E, expiQ,h). (4D "

Since the electronic modes are real, the expansion coeffi- > fD(0)0*=K(w), k=012...M-1, (48

N2/4

cients can be taken to be real and we have e
et e, D) where
Tr(pl€S 7)) =Tr(p[£,, 7 (w)]) | -
0 K (0)=Tr(uW(0)SJ; 1(w)), (49)
B oy pir Mo (@)
=Tr(u(w)¢,)= \/5 , (42 are the even spectral momentsjtti-order nonlinear polar-
izability. Equationg49) and(39) provide an extremely con-
and venient algorithm of computing the higher-order spectral

. , _ moments. Alternative expressions for the spectral moments,
Tr(p(@)Q,)=p(w), Tr(u(w)P,)=0, (43  which provide a better physical insight, since they highlight

. . . the crucial role of the bond alternation in the spectral mo-
where we have introduced the effective dipole moment for

4 ! ) : ) ments, are given in Appendix C. However, E¢49) and
the jth-order nonlinear responge™’(w), using the projec- 39, 516 more suitable for numerical computations.
tion property ofp

~ The system(48) can be easily solved numerically for
1) =7 (0) 0], (@) =[uV(w)p]. (@4 [V ()andQ,, as shown in Appendix B. This results in the
dominant mode frequencies and their oscillator strengths.
In particular, for the linear response we hay€”(w)  We start with a single mode approximation, and by succes-
=—4(ow)u. sively adding new modes we obtain improved approxima-
Making use of the oscillator coordinates and momentaions for frequencies and oscillator strengths of the dominant
[Eq. (3D)], we can finally recast Eq41) in terms of normal modes, until some convergence criteria are satisfied. At each
modes level of the hierarchydetermined byM) the resulting oscil-

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996
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FIG. 2. Convergence of the linear absorptitime imaginary part ot [Eq.
FIG. 1. Variation of electronic oscillator frequencié),, effective dipole (31)]) with the number of modes used fdr=40 atom oligomer. The line-
momentsu!Y , and first(a), third (y), fifth (8), and seventt)) off-resonant  width is e=0.2 eV. Note, that the fundamental band at 2.57 eV with strength
polarizabilities with the number of modes used for octateragve §). 109 e&/V (1.57x10 2 esy remains basically the same in all panels.
Convergence to the full TDHF calculatioM(= 16) is demonstrated. The
magnitudes of polarizabilities are normalized at their converged values:
a=3.2xX10"% esu, y=6.6xX10"% esu, 6=1.4x107%0 esu, {=2.3x107%°

esu. expansion coefficients &) (t)=<(t) )(w), and the

momentsK)(w), n=0,1,...,[Egs.(37), (39), (49)];

lators are natural collective variables which describe in thd2) Solving the nonlinear system of equatiof#) for the

best way the contribution of all electronic oscillators to the fr(]e)quenmesﬂy and the effective oscillator strengths
optical response. i (w); _ _

The convergence as a function of the number of mode§3) Solving the linear systems of equatio@) for the ma-
M, M=1-6 is shown in Fig. 1 for octatetraendl£8). trices representing the dominate modgsandQ, ;
Only few (3—4 modes contribute significantly to the re- (4 Calculating t_heg_t)h—order term in the expansion of the
sponse, but to calculate them accurately we need to include density matrixé?’(w) [Eq. (46)]

some additional high frequency modes with very small 0s-  For the third-order response we uge and T¢® given
cillator strengths. Using six modes we reproduce the frehy Egs.(26) and (25). After some algebraic transformations
quencies and the first-order effective dipole§(w=0) to  and expanding in the modes, we obtain the eight term ex-
10~® of the values for the full TDHR16-modg calculation.  pression fory derived in Ref. 24 which represents the re-
The figure also shows that the polarizabilities converge muclponse in terms of quasiparticle scattering.
faster than the frequencies and dipoles of individual modes.  An alternative form for thg th-order nonlinear response
The convergence of the linear absorptitime imaginary part () js obtained by rewriting Eq(27) as
of ¥V [Eq. (33)] with the number of modes for Bl=40
atom oligomers is displayed in Fig. 2. Note that the strong )_ 1 " 0 )
band edge transition is reproduced well eveMat 4. The Xo= 7 [Tr(uZo(@) 7 (@) +Tr(uTH)]. (50)
weaker transitions at higher frequencies require more modes.

Once(}, and u, are calculated and substituted in Egs. We next make use of the fact that for any linear operators
(47), we can then solve these linear equations for the elef(w) and $(w)
ments of matrice$, and Q, representing the momeng, _ _
and coordinate®), of the desired modes. The calculation is Tr({(®), Zo(w)H(w))=TrH([Zo(w)([{(w),p]) I (w)]p)
first performed for the linear responge=1. The resulting Sl
modes are used to calculate the modes for the second—ordt%r recast Eq(50) in the form
response j(=2) and so forth.

In summary, the DSMA for computing the off-resonant 1 ' o '
jth-order response involves four steps: xW=- 7 (Tr([£P(w), 7D (@0)],p) + Tr(uTD(w))).

,’)O

(1) Finding the matricesS{)(w) defined as the short-time (52)
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Note thatz(w) and T4 (w) can be expressed in terms of .

lower order intra- and interband components of the off- 1.0 1
resonant density matrigp™ (o), k<j. Equation(52), there- a
fore, allows us to computg’ using ¢, ....£07 1, avoid- Y
ing the explicit calculation of). ¢
In concluding this section we comment on the connec- 0.5F 1

tion of the DSMA with the Lanczos algorithm convention-
ally used for calculating the eigenmodes of Hermitian matri-
ces. The Lanczos algorithm is based on following the short-
time evolution determined by a Hermitian operatari.e., o0p =~
looking at the quantitye™ '*'¢ where¢ is the initial vector, 0 50 100 150 200 250 300
and reducing the space of states t&-dimensional Krylov
subspac® generated by, L£,...,L¥ £ We assume that the

initial vector £ can be expanded using a finite number offiG. 3. Scaling of linear, third-ordery, fifth-order 8, and seventh-ordey
eigenmodes of., say, &oy- b1 The Krylov subspace polarizabilities with size. Shown are the magnitudes of po!arizability nor-
then coincides with the subspace generated:gyy.. &,  Malized at its Saturatﬁd Va'w“?('\é)/Nxé‘?)t, Where)ij‘s21=)l<('f(Nt))(lN_ at
and i§ in\_/ariant with reskplelct th, &,....& 1 being linear ';:zocl‘j:&é!fa’SgS@;;zlr.n&gfégse;u? 5552’[5;§2074g0easrllfz;|:tl5e.s,2 are
combination ofg, L¢,... L “£. The problem is now reduced 10752 esu.
to working in ak-dimensional Krylov subspace, which in
many cases is much smaller than the original space. There-
fore, the succes§.e., fast convergengef the Lanczos type cal effort. Moreover, the computational time of™ scales
schemes depends on the number of eigenmodes with nonze®sly linearly withm, which allows us to calculate high-order
projection onto the initial vectog ; the smaller the number, nonlinearities without major difficulty.
the faster the convergence. This depends crucially on the We have calculated the off-resonant polarizabilities up
choice of initial vector. A formally similar procedure is the to seventh order, for polyacetylene oligomers with up to 300
continued fraction representation §f dte“(£e '{|¢)3t  carbon atoms. The variation of the lowest four nonvanishing
which is also a resummed short-time expansion. polarizabilities «, vy, 8, and ¢ with the number of carbon
In our case the linearized TDHF operatoris nonher- ~ atomsN is displayed in the Fig. 3. Since the molecules have
mitian, and our approach is based on an important observa&n inversion symmetry, antisymmetri8() modes contrib-
tion that the operatok is simplectic, i.e., “hermitian” with ~ ute to the odd order responseg=(1,3,5,7), whereas the
respect to an assymetric “scalar product” introduced in Ref.symmetric Aj) oscillators appear only in the even order
24 and given by Eq(29). This “scalar product” plays the responsesj2,4,6). Only 11B, and 10A, modes(see Fig.
same role in the DSMA as the usual scalar product in the}) were required to obtain a 0.1% accuracy compared with
Lanczos scheme. In the DSMA we apply the Lanczos typdhe full (N?/4) modes TDHF calculationgomparisons were
scheme in each order of the response, with the effective dimade for chains with up to 40 carbon atoms and up to the
pole momeniu{!) playing the role of the initial vectof. The  third-order response, where the full TDHF calculations were
effective dipole moment is expressed in terms of modes
which show up in lower responses and can be computed by

Number of atoms

applying the short-time propagation for the lower responses. 150
To accomplish this program we need to calculate the eigen-
values as well as the eigenmodes of the Liouville operator. 12¢

This is done by solving the linear problem whose dimension-
ality is the number of modes showing up in the expansion of
an effective dipole moment. It is at this point that we exploit

the dominant mode character of the response, namely that 3t ¥

only a few modes show up in this expansion at each order of -

Q, (eV)

3 12} B

the response. 3 u
€ 9 Ag
o

V. RESULTS AND DISCUSSION 5 6
o]

We have utilized the collective nature of the electronic E 4l

z

optical response in conjugated polyenes to construct an effi-
cient algorithm for computing optical nonlinearities using the 020 40 60 B0
electronic dominant modes. Since we only need few modes,
computational time scales very favorably with system size
~ 2 i 6 -

(~N compared with~N® for the TDHF‘L)' We can, there FIG. 4. Upper panel: size dependence of mode frequencies. Lower panel:

fore, Cak?Ulate nonlinear polarizabilities qf very large mol- the number of dominant modes, needed to compute susceptibilities with
ecules with hundreds of carbon atoms using modest numerg-1% accuracy compared with the fiN?/4 modes TDHF calculations.

100
Number of atoms
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FIG. 6. The effective dipole moments, vs electronic oscillator frequencies
), for an N=100 polyacetylene chain. Shown are the dominant modes in

FIG. 5. The effective dipole moments, vs electronic oscillator frequencies second, forth, and sixth orders of nonlinearity.

Q, for an N=100 polyacetylene chain. Shown are the dominant modes in
first, third, fifth, and seventh orders of nonlinearity. ) ) ]
resembles Fig. 7 with a maximurh,=2.5 for N,=60

double bonds.
We note that the various terms in the effective dipole

0) i ibuti
feasible. Comparison of the absolute magnitudes of the calmoment7"” [Eq. (29] make different contributions to the
culated polarizabilities withab initio coupled perturbed effective oscillator strengths and to the nonlinear response.

Hartree—Fock theof§ show an agreement to within a factor This allows us to separate the relative contributions of dif-
of 1.5 for linear and 2.5 for third-order static polarizabilities. [er€Nt Processes to the response. As an example, the ratio

B . . . . . =,0) () i ibuti _
This agreement is very encouraging, in particular given thaf®=Xp-n/x"") of interband contribution to the total polar
izability y, 6, and{ for oligomers with up to 150 atoms is

the present calculations did not employ any geometry opti-““* el : ,
mization. depicted in Fig. 8. For small chains, the particle—hole con-
The effective dipole moment) [Eq. (46)] of anti- tri_bution i§ ne_gative in all cases. With incre_ased chain length
symmetric 8,) and symmetric &) oscillators of aN=100 thls_contnbunon char_wges 5|4gn, and for chains longer than the
polyacetylene chain are displayed versus mode frequenciéXCiton coherence size-30)" the ratio saturates to the val-
Q, in Figs. 5 and 6, respectively. An important observation isY®58y~ 0.4;a,=0.26;a,=0.19.
that the same modes dominate at all orders. These modes
manifest themselves in the response with different effective
oscillator strengths at each order. The higher-frequency

modes make more significant contributions to the higher or- 8r ¢ 1
der response. The mode size measured by the off-diagonal

electronic coherence of its eigenvector grows with its 6 .
frequency and, therefore, the coherence size increases for L 0

higher-order nonlinearities. This can be seen in Fig. 7 where Q4| _

we display the variation of the scaling exponemtsd[In x|/
dlin N], x=«a, 7, 6, and with size. The curves shown in
Fig. 5 attain a maximumsé,=3.5 atN,=8; b;=5.7 at 2o\ 1
N;=10; b,=7.9 atN,=12 (b attains a larger maximum
value for calculations Wlth geometry optimizatjoe note 0 5 20 100 150 200
that b reaches a maximum and eventually approaches 1 Numb £ at
(saturates This saturation occurs at longer sizes with in- umber of atoms
creased order of nonlinearity. Measurements @f solution FIG. 7. Variation of the scaling exponertis=d[In xJ/d[In N], y=a, 7 &

as a function of chain I'ength in long chaifup tp 240 double and ¢ with size. Note that both the maximum valuetfind the size where
bonds were reported in Ref. 13. The experimentaturve  the maximum is attained increase with the degree of nonlinearity.
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monicity constants introduced in Ref. 24 which contain all

0.4+ relevant information about the resonant respafeth time
b/ and frequency domajnThe accuracy of the DSMA depends
0.2F ) heavily on the accuracy of the ground state density matrix

because we apply a commutator wigh[or with V(p)] 8k
times for calculatingk{. This leads to increased errors in
-0.21 the higher moments, especially in long chains and for high-
order responses. Using double precision we obtained very
I accurate results for the optical response and the most domi-
061 nant (1-2 modes contributing to this response. Resonant
: s ' calculations performed with a frequency-dependent dipole
0 50 100 150 moment should allow us to focus on the desired spectral
Number of atoms range and obtain a good accuracy. Another way to accom-
FIG. 8. The ratio of the interband contributioa= {2 ./x) to v, &, and plish that s to use a cru_de apprOXimatior-] @ro-btained in
gpo.lar.izabilities. Note that for small chain Iengthspt;lr]e particle—’hc;le contri-3 off-resonant calculations as an effective dipole moment.

butions to the high order polarizabilities are negative, and the interbandl his dipole moment will be coupled strongly with the de-

contribution decreases with increased degree of nonlinearity. The ratio satgired single mode, which can then be extracted accurately
rates to the valuea,=0.4;a,=0.26;a,=0.19. using the DSMA.

0.0l g

Since the same modes are dominant at low and high
In addition to its clear numerical advantages, the oscil-orders, we anticipate that this set of modes may be used to
lator representation may be used to develop simple rules afompute the response to all orders. In Ref. 24 the restricted
thumb for the scaling of optical polarizabilities with molecu- TDHF equations were written in the oscillator representa-
lar size and chemical bonding. To that end, we have derivetlon. By combining these equations with the present domi-
in Appendix C analytical expressions for the lowest two non-nant modes picture, one can find the nonlinear response by
zero spectral moments of linear absorptig§” and K§.  solving a closed system of equations with only small number
These two moments are then used in Appendix D to conpf variables. This means that the equations of motion of Ref.
struct a single-oscillator analytical approximation for the off-24 in the mode representation, derived using the modes
resonant linear polarizabilitg. In Appendix E we repeat this \ynich dominate the response up to third order, can be ap-

calculation for the third-order poIaringiIity. Based on the plied to calculate the response to a strong external field.
results ofa and y, we make the following conjecture for the Another interesting future direction is to extend the

jth-order off-resonant polarizability DSMA beyond the TDHF scheme, to treat electron correla-
0 j(ea)t? NI+t tions more rigorously. This extension is based on the
X = o@p Ay ST INTLA T (53 observatiof* that the TDHF approximation is the classical
. ) _ ) analog of the original model. The dominant picture of the
Heree s the .electron charge, is the unit cell size glong the response in all orders implies that evolution of the classical
backbone A is the average bond-length alternation param- ystem occurs in the reduced phase space. Quantizing the

eter (i.e., the difference between nearest-neighbor bon . . . .

lengths, B’ is the electron—phonon coupling constamind .DH'.: equatlor!s. written in the dom'”"?‘”‘ mode rgpresenta—
L is the effective coherence sidzesee Appendix € This tion (i.e., quantizing th.e reduced_ cla}sswal sys)te;rsmg_ the
approximation, which lumps the contribution of all elec- procgdure of-geometrlcal qqanﬂzaﬂ%one can C’,bta'” .an
tronic oscillators into a single effective oscillator, reproduces_effec’['ve multilevel system with space of §tates dimensional-
the main features of the scaling exponéntand compares Y that depends on the number of dominant TDHF modes
well with full TDHF calculations3® rather then the molecule size. This effective quantum system

In concluding this article we discuss some possible fu-Should maintain all the important features of the original one,

ture extensions of DMSA. First, the algorithm is not limited @nd should allow a nonperturbative calculation of strong
to the semiempirical PPP model and it can be combined witi¢lectron correlations, by treating explicitly the quantum evo-
ab initio electronic structure calculations using different ba-lution of relevantdominani variables, which is achieved by
sis sets, and applied to more complicated molecules as weWorking in the effective multilevel quantum space.
as to semiconductor nanostructutés>®

In this paper we only reported numerical calculations for
the off-resonant polarizabilities; however, the extension to
the resonant regime is straightforward. One can use the pro-
cedure described in Appendix D of Ref. 4 to compute theACKNOWLEDGMENTS
frequency-dependent effective dipole moment8(w), and
the intraband component§!)(w) of the density matrix The support of the U.S. Air Force Office of Scientific
5pW(w), or calculate the dominant modes first using theResearch and the National Science Foundation is gratefully
DSMA for off-resonant response and then obtain the anharacknowledged.
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APPENDIX A: THE INTRABAND COMPONENTS T(£&)
OF THE DENSITY MATRIX [EQS. (8)—(10)]

The single-electron reduced density matrix in the TDHF

approximation satisfies the conditiop?(t)=p(t) at all
times*?42°Using Eq.(7) this results in

(p+EM+T(EW))?=p+ &) +T(L(L)). (A1)
The intraband part of this matrix equation is
(T(&)*+(2p— 1T (&) +&=0. (A2)

The solution of this equation, with the conditidii¢=0)=0
yields Eq.(8).

To obtain Eq.(10) we first note that the algebraZ of
reduced density matrices can be decompassda vector
space into a direct sum of intraband 7,;) and interband
(.7,) density matrices

A= AD A, (A3)
with the following properties of the commutators:

[&€,n]e. 4y, for Eme. 2y, or Enme.ty, (A4)
and

[¢£,n]e.#,, for ée.7y and ne. 4. (A5)

Any density matrixp satisfying the constrainp®=p, i.e.,
pe.7, where.Z is the Grassman manifdiibecomes
p=9pg ", (A6)

whereg is a unitary matrix. Since ang in a vicinity of a
unit matrix can be represented in a forgr=exp(7) with
ne.Z EqQ. (A6) can be represented in a form

p=exp(n)p exp —7), (A7)

or adopting the language of superoperatrns., operators
acting in Liouville space

p=exp(n)p, (A8)
where for anyne. # the superoperatos is defined by
né=[n,&] for ée. 2. (A9)

Expanding the exponent in ECA8) in the superoperaton
and making use of EqA9) we obtain

1 1 _
p=p+[77,p]+§[n,[n,p]]+§[n,[n,[ﬂ,p]]]Jr“' :
(A10)

Comparing Eqgs(7) with (A10) results in the linear approxi-
mations inyp

é=[n,p]. (A11)

Since [p,[p.£€]] = & for any ée. 71,24 Eq. (A10) constitutes a
one-to-one mapping betweer?; and the tangent space to

.7 at the pointp. This implies that we can always choose

ne. 7, in the expansion of EqA10). For this choice, the
even-order terms in the expansion belong-4g, the odd to
.74 [this follows from Eqgs.(A4) and(A5) and the fact that
pe.7y]. Combining Eqs(A10) and (A4) then yields

8923
1 _
§=[n,p]+§[77,[77,[77./3]]]+"' . (A12)
1 _
T=§[n,[n,p]]+ﬂ[77,[77,[77,/)]]]]+“'- (A13)

To derive Eq.(10) we solve Eq(A12) to expressy in terms
of ¢, and then substitutey into Eq. (A13). Equation(A12)

may be solved iteratively leading to an expansionzoin

powers of¢ which can be calculated to any orderdand has
a form

1
77=[§,p]—§[f<,p]+"' (A14)

with

k=[[£p).[[£p].€]]. (A15)

Substituting Eq(A14) into Eq. (A13) finally yields the ex-
pansion of Eq(10).

APPENDIX B: SOLUTION OF EQS. (48)

The system of nonlinear equatio@8) may be solved as
follows. Let us consider the following system oh2qua-
tions with respect tn “nonlinear” frequency (1, andn
“linear” oscillator strengthf, variables

Ko=fi+fotfat - +f,,
K= Q2+ 1,05+ +f,02,
Ko=f,QF+f,Q5+ - +f,Q8,

(B1)
Kp 1= Q5" V41,050 Yo 020070

Kn=f05"+,Q5"+ - +,02",

—_ 2(2n—-1 2(2n—1 2(2n—1
Kopo 1= Q2@ Dy £,03@0 Vg f 2201

The frequency variableQ2=x are the roots of the polyno-
mial

x"—ax"l—ax"2—--—a,_ x—a,, (B2)
where the coefficients;, i=1, --,n are the solution of sys-
tem of n linear equations

Kn=Kn-1a8h+ K28y 1t Kp_gan_o+ - +Kia,

+Kopay,
Kn+1=KpantKpo1ap-1+Kpsa, 2+ +Kza,
+K1a1,
(B3)

Kni2=Kps1antKpap— 1+ Kno1@n-ot - +Ksa,

+Ksay,

Kaon—1=Kaon—2an+Kon_gan 1+ Ko _gan o+ -+

+Kpat K, 21a;.

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996

Downloaded-07-Mar-2001-t0-128.151.176.185.-Redistribution-subject-to~AlP-copyright,~see-http://ojps.aip.org/jcpo/jcpcpyrts.html



8924 Tretiak, Chernyak, and Mukamel: Molecular nonlinear polarizabilities

To rationalize Eqs(B2) and (B3) we note that Viet's APPENDIX C: EVALUATION OF THE LOWEST TWO
theorent® establishes the relationship between the polynoMOMENTS OF LINEAR ABSORPTION

mial roots and coefficients . . .
In Appendices C—E we will introduce renormalized

a;=XptXp+ - +X, spectral moments which are independent on the applied
static field
ar=— 2 Xi X, 1
i 0= — Ky, (C1)
(B4) -
and the oscillator strengths
a,=(—1)k+D Xi Xi X, 1
== i1<iZZ--<ik 172 'k fVE—Tf(l). (C2
%o
We can then recast a family of sum rules for the linear re-
a,=(—1) M Dy xp X, sponsgEq. (48)] as
M
To verify Egs.(B3) we simply substitute EqgB4) in the n_ n _
expression foiK,, (B3) f _2 (@,)",, n=024..,
(C3

- E fiXin_l)(Z_ Xj>—(2 fiXin_z) fW=0, n=135....
! ! ' To invoke the single-oscillator approximatioM&1) for
the off-resonant response, we need to express the lowest two
spectral moments for the linear respori$® and f? in
terms of the Hamiltonian parameters and the ground state
reduced density matrig,,,-
— -1 -2 mn
_Zi fix{‘+§j fixi Xj_(zi fixi ) In the Hamiltonian[Eq. (1)] we recast a nearest-
neighbor hopping Su—Schrieffer—Heed&SH model and

X NP

E leij

11<l2

electron—electron Coulomb interactio@hno formula as
x| 3 x|+
1=l (B5) thnz1= =B+ (- 1" B'A, Vom=Uv,_m, (C4
K= S X" 2% x + 2 Fxi whereA is the bond-length alternation parameter and,,
oo i+(1%iy) Xi 1172 : is a dimensionless functiomvith v = 1). We assume that the
bond-length alternation only enters through the hopping ma-
X E Xi X X | —e- trix given by Eq.(C4) and neglect its effect on the Coulomb
<<y (1128 interaction. For simplicity we shall neglect, when possible,

the alternation in the transfer parameter making usk<sf.
==Ky (—=1)" > XX X This is justified when the electron—phonon contribution to
i#(j1<<in_1) 1 In-1 the gap is much smaller than the Coulomb contributibn.
Applying the results of Ref. 28 to the system described
+(_1)n+12 fiX X0 Xn =K. by Egs.(C4) and(2) we obtain
| fO=AB;  12=Bop3+B1B2, (e
Thus, all termgexceptK,,) in the right-hand side of E4B5) )
vanish, leaving the identiti,, =K. with

Equations(B3) is known as the Toeplitz linear system. P b
The inversion of the Toeplitz matrices is straightforwfard A=4e‘a ; Pnn+1, Bo=8e%@pn n 41,
and poses no numerical difficulties.

Once the frequencies are found, the oscillator strengths - - —
can be computed by solving the linear system of the first Bi=2e"a Zn;n Um—n5pn5pm+; (op)
equations of B1) for the variables,,. Thus, the solution of
the nonlinear systerB1) is obtained in three steps: two sets B — 5 —
of linear equations, and finding the zeros of a polynomial n;n Um-n(Pmn) %‘ OPmnd7mn -
with real coefficientgthe only nonlinear tagk . .

Sincef;<f,<fs<---<f,, andQI>00>--->Q" the Heren, , ng denote the chain edges, and we have introduced

n» n» . .y
lower frequency terms are dominant in the first equations of "€ following definitions
system(Bl) and' the higher frequency terms dominate the Dn=—Um—nPmr(1— Smr)
higher ones. This allows us to increase the accuracy of the
low frequencies by adding new high frequency mo¢asd
the necessary higher moments

(C6)

+ zkzn Unfkﬁk"'an Smn» (C7
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and for an arbitrary matrix,,,, we define
m +(8p1)%— 2 vl (pmo)2+(8p r2n+l,l)]

5§nE§n+1,n_§n,n—l; m#0

5§mn5(§m—1,n_gm,n+l)_(§m+1,n_§m,n—1)- (C8) _E (55m05;mo+ gl;m+l,15n7;m+l,1) , (C13)
To analyze the size scaling of the moments, we note that "

for large sizes we hav&™~N for all n. Numerical results -

for p,n, Show that boundary effects qn,, are short rang, By=4e‘a ; bn,

and only affect it when the distance wfandn from an edge

is one or two atoms. This suggests that boundary effects on

the sum rules are also short range, andMor 10 say,f(™

can be written in a form

£ = N 4 () (C9) = 2 Omn(9p )= 2 P 107

wheref{" is related to theN— behavior, and{" repre-
sent edge effects in the sum rules. Careful examination of the
sum rules shows that the largest corrections to (E§) are
~N~*and~N"*In N, which can be neglected f&i=10.  |n Eq.(C13 we have formally extended (1) to arbitrarym
Expressions fof§” and f{" can be obtained by inspecting andn settingp X)=0 whenm<0, orn<0.

the behavior off™ for largeN: f{ are expressed in terms On the other hand, making use of the stationary HF
of the saturated components @f,,, i.e., the values op,,,  equation for an infinite chain, we obtain the following rela-

for largeN whenm andn are far from the edges, vv_hiié”) tion between the parametef=8—(— 1)Ig’A, j=0, 1,
involves the values op,,, near the edge&ote thatp,,, IS  andU

strongly localized inm—n). Making use of Egqs(C5) and

by=20p 1 2, vm-ndp '+ (P )7

1
~ a2 Bov

—c-1 -

(C6), we obtain from the first momenn&0) Bi=C; U, =01 (C14
fO-A B (=01, C10 The expansion of EqC12 can be obtained from the sum
! i# ] (€19 rules for a chain. The easiest way to obtain Eg14) and

with calculateC; is to apply the stationary HF equatigwhich is

~ ~ a matrix equationto then, n+1 component. This yields
AOE26232(Pn,n+1+f’n+1,n+2)1

C11 —1_ = ~ - ~ ~
2.0 —1) ~ (€13 C Y= [Pis2j—Pj+1j-1] > (Pom+j+1j+1— Poam+j,j)
A=4e“a En: (p n,n+1_Pn,n+1)- m

- _ X (pom+j+1j+2V2m-1"Pam+j+1j-102m)- (C1H
Herep.,, are the saturated values of the ground state denS|t¥ ] ) -
matrix in a large chainN— <) whenm andn are far from he most important fact is that the coefficiedtsB, andC
the edges, andng. Thereforep,.,, can be formally treated 90 not explicitly ’dep(.and oM or on the parameters of the
as the ground state reduced density matrix of an infinitdtamiltonian 8, g, U; they are expressed in terms of the
chain(—<m, N< +%). =Pt okmiok p ) denote the bond-length alternation and the ground state density matrix
saturated values @f,,in a large chainl@—mo) whenmand  Pmn in a long chain, which can be obtained in practice by
n are far from one of the edges, namely. We can put performing a single calculation for a large chaisay
n.=0 and for ng=N—1— formally treatp (&) (with ~N~50. _
m,n=0) as the ground state density matrix in a semi-infinite_ Combining Egs.(C9Y), (C12, and (C14) and setting
chain. Note that neithg..,, norp () depend o since they ~Co~C1=C, we obtain

P m L _
represent the saturated valuesogf,. p 73, however, carries FO= A B(N+Ly), (C16)
information about the near-edge valuesmf, when N is
large enough and it is not affected by the other edge. For f®=(Bgy+Bop;C)B3(N+L;) (C17
m,n>1 we havep H~p.,. with
For the third momentr{=2) we obtain
A1 Biot+B11C
(2-B. .83+ B, B2 =_= =—— -
fi”=BjoB°+B;18°U, (C12 Lo A’ L, Boot BoC (C18
with Equations(C5—(C18) express the linear spectral mo-
Boo=0, ments of density matrix in terms of the parameters of the
Hamiltonian andg,,,,. This constitutes an important structure
B1o—8e%a’pyy, polarizability relationship, which predicts the magnitude of
the optical response using detailed information regarding the
By =e%a?| 2 0 5508Pm+ 8918Pms 1)+ (670)2 chemlca}l structure and bonding. These results will be used in
m=n Appendix D.
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APPENDIX D: SINGLE-OSCILLATOR parameteBy,+ By;,C in Eqg. (C17) is small provided effects
APPROXIMATION FOR THE LINEAR RESPONSE of alternation are weak. Numerical calculations of Ref. 36
show it scales a8yy+By;C~ B’ A with bond-length alter-

By employing the identities43) and (C2) to Eq. (33) nation. We can then recast the paramatém the form

we can write the off-resonant linear polarizability as
M (ea)’B
f, k= —=—+— Ky
a(w=0)=2, o (D1) 88'A
v=1 v
with k; weakly dependent oA. Combining Eqs(D3), (D4),

We now consider the lowest approximatiol €1) of the 54 (D6) and making use of the above arguments we finally
hierarchy Eqs(D1) and(C3), where we retain only a single piain:

oscillator. This approximation is exact if the oscillator

(D6)

strength is concentrated in one oscillator. However, its range N+ |—1 =~
- : ) ) i Q(N)= Q, (D7)
of validity goes far beyond this case since it approximates
the contributions of all oscillators by a single effective one. 5 N2
Making use of Eq(C3) for k=0, 1 and Eq(D1) we obtain (N)= ﬂ Ky ——, (D8)
for the off-resonant polarizabilitg=c(w=0) and the optical 8B"'A " N+L,
gapQ with the following scaling ofQ) and L, with A: Q?~A,
[£(07]2 f(2)7272 L,~A~1. Numerical calculations of Ref. 36 sholy~1.
a= = —{m} (D2)  EquationgD7) and(D8) imply that for largeN, f(O(N)~N,
a(N)~N, andQ(N) is independent oN whereas for small
Substituting Eqs(C16) and (C17) into Eq. (D2) yields N, f(N)~N, a(N)~N? and Q(N)~N"Y2
2 This establishes a direct relation between the scaling
x (N+Lo) ) - .
a(N)=—- ———, (D3) properties of the off-resonant polarizability to chemical prop-
B N+l erties of conjugated moleculds; is thus the coherence size
N+L, |\ Y2 which determines the crossover of the short and long chain
Q(N)= N+ L, (D4)  behaviors ofa(N) andQ(N). The simple relations of Egs.

(D7) and (D8) are in a good agreement with full TDHF
where the parametersandﬂ which characterize the values calculations®

of the linear response and the optical gap in long molecules,

have the form
, " APPENDIX E: SIZE SCALING OF THE THIRD-ORDER
Ao ~ [Boot BOlc> 5 RESPONSE

T TR (D5)
Boot BoiC Ao The calculation of the third-order nonlinear polarizabil-
Equations(D3) and (D4) together with Eqs(C18 and (D5) ity v is much more tedious thaa, even when only a few
express the off-resonant linear polarizabil?gN) in terms  modes dominate. The TDHF expression fgrhas eight
of ground state properties of large molecules. contributions?* and each dominant oscillatercontains two

At this point we estimate the coherence sikgsandL,  variables(¢, and &, or P, andQ,). The number of coeffi-
and connect ; with the magnitude of bond alternation. The cients becomes very large, and we need a large number of
coherence sizk is related tof ©), and since edge effects of sum rules to determine them, which greatly complicates the
p are short rangd, ,~ 1. The situation is quite different for picture. To derive a simple yet qualitatively correct expres-
the coherence size; related tof(®). It follows from Egs. sion, we make some additional assumptions. Numerical
(C6)—(C?), that in a translationally invariant systefff’=0.  TDHF calculations of the optical response show that pro-
This also follows immediately from the corresponding sumcesses which do not conserve the number of electron—hole
rule presented in Ref. 28, which is written in terms of com-pairs can be treated perturbatively. Neglecting these pro-
mutators, since translationally invariant matrices commutecesses leads to the following relevant level scheme for the
Two factors may break the translational symmetry in finitethird-order response: the groun@acuum state with no
chains: spontaneous symmetry breaking, which leads to thelectron—hole pairgexcitons, one-exciton states witlB,,
alternation in parameters, and boundéeylge effects. The symmetry, and two-exciton states wiffy symmetry, which
first mechanisnfwhich exists even in an infinite chaiteads are made out of twd, excitons. Processes which do not
to a~N contribution tof ® which decreases with decreased conserve the number of excitons mix the two-exciton states
bond alternation. The second mechanism leads to a finiteonsisting of twoB,, excitons and one-excitoA, states’
(i.e., ~N°) contribution tof® which is independent of the There are two klnds oA, states contributing tey (i) 2B,
alternation parameter. Equatio(@13 show thatfgz) has an states with a small component ofAd, and (ii) 1A, states
extra small factor compared f§”) related to the bond-length with a small component of B, states. The Iatter lead to
alternation parameter in an infinite chdimnd for weak al-  sharp two-photon resonances;rrand show up in the TDHF
ternations we have,>L,, which means that we can neglect approximation as resonances relatedAfp oscillators. The
Lo while retainingL, in Egs.(D3) and (D4). On the other former states to a certain extend are taken into account by the
hand the fact tha1f(()2) has small a factor means that the TDHF approximation, which fails near two-photon reso-

K=
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nances on these states. This is, however, not important fdahe A, oscillators?* This still leaves us with a large number
the off-resonant response. The contribution of staiigsis  of terms related to summations over indices denoting the
essential for the resonant propertiespfe.g., two-photon  momentum and coordinate variables of each oscillator. This

absorption; however, their contribution to the off-resonant nymper can be considerably reduced when the terms induced
response is small provided the processes which do not cor;

h b ¢ . K. Adobii Yy processes which do not conserve the number of excitons
serve the number of excitons are weak. Adopting TDHF ter-, neglectedformally this means that the eigenmodés
minology, the contributions afi) and(ii) states are related to ~

N . o e )
the terms in the expressions of Ref. 24 which do not and dgnd €. contain the particle—hole and hole—particle compo

contain respectivelyA, oscillators (which further lead to nents of the_ density matrlx respectlv)alyf n ad.dltlon we
sharp two-photon resonangesAssuming that processes 2SSUme a single dominaBt, oscillator, we obtain the con-
which do not conserve the number of excitons are weak, wélderably simplified form of the third-order response func-

will take into account only those terms which do not containtion:

1 1 1 1 1
y(—ws,wl,wz,w3)=gperm Ilwl—Q-l—inwz—i-Q-l—in w1+w2+w3—Q+i77_ w1t wytwz+Q+iyg
N 1 1 1 1
20— 0417 0,7 Q+in 03— Q+i7 w1t wy+ 03— Q+iy
1 1

+c.'c.’, (ED

+ - -
w3t Q+in o1t wytwz+Q+iy

whereX ., stands for a sum of six permutations of the fre- above. First, we need to include the higher order moments of
guenciesw;, w,, andws; c.'c.’ denotes complex conjugation the nonlinear response. Second, instead of using the dipole
and changing the signs of all frequencies w,, and w;. operatoru in the sum rules for the third-order response given

v is now expressed in terms of two parametgrandl,  in Ref. 28 we will consider its interband and intraband com-
which may be determined by applying two sum rules.ponents given by 4,[p,x]] and uw—[p,[p,u]], respec-
Switching Eq.(E1) to the time domain and substituting it tively. New sum rules apply not to the third-order polariabil-
into the sum rules of Ref. 28 we obtain the following systemity y but rather for each of eight contributions titself

of equations forl ; andl,. presented in Ref. 24. The procedure is lengthy and rather
36242 tedious and will not be given here. The result is that khe
Qly—1,= £(0), andA dependence of each contribution is given by &)
2 with b assuming valuem= 3,4,5 for different contributions.
36232 (E2  we have fitted the results fop(N) obtained by the TDHF
02?l,= f(2), calculations using the full DSMA described with the expres-

sion of Eq.(E4) for different values ofA usingk; andb as
Solving Egs.(E2), substitutingl; and |, into Eqg.(E1), and fitting parameters. We found that=4 applies over a broad
further settingw;=w,=w;=0 we obtain for the off-resonant range of variation of\, k; is order 1 and has a weak depen-

hyperpolarizabilityy: dence oM. Numerical results are presented in Ref. 36.
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