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A unified microscopic theoretical framework for the calculation of optical excitations in molecular and
semiconductor materials is presented. The hierarchy of many-body density matrices for a
pair-conserving many-electron model and the Frenkel exciton model is rigorously truncated to a given
order in the radiation field. Closed equations of motion are derived for five generating functions
representing the dynamics up to third order in the laser field including phonon degrees of freedom as
well as all direct and exchange-type contributions to the Coulomb interaction. By eliminating the
phonons perturbatively the authors obtain equations that, in the case of the many-electron system,
generalize the semiconductor Bloch equations, are particularly suited for the analysis of the interplay
between coherent and incoherent dynamics including many-body correlations, and lead to
thermalized exciton (rather than single-particle) distributions at long times. A complete structural
equivalence with the Frenkel exciton model of molecular materials is established.
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I. INTRODUCTION

Optical measurements provide a tremendous insight
into the electronic structure of various materials (Muka-
mel and Chemla, 1996). At moderate excitation densi-
ties, the basic physics tested by such experiments per-
formed on semiconductors, conjugated polymers, and
molecular aggregates is the dynamics of photogenerated
carriers forming correlated structures such as excitons or
biexcitons in either bound or unbound states. In ideal
molecular crystals, intermolecular charge transfer is not
possible and each molecule retains its own electrons.
The elementary excitations in this case are tightly bound
electron-hole pairs known as Frenkel excitons (Davy-
dov, 1971). The loosely bound pairs in semiconductors
form hydrogen-atom-like Wannier excitons (Haken,
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1963; Stahl and Balslev, 1987; Haug and Koch, 1993).
Intermediate charge-transfer excitons exist in mixed
donor-acceptor crystals (Merrifield, 1961; Pope and
Swenberg, 1982; Haarer and Phillpott, 1983; Petelenz,
1989; Dubovsky and Mukamel, 1992) and in conjugated
molecules (Mukamel and Wang, 1992; Hartmann and
Mukamel, 1993; Mukamel et al., 1994; Takahashi and
Mukamel, 1994; Chernyak and Mukamel, 1995a, 1996a;
Hartmann et al., 1995; Bulović et al., 1996; Bulović and
Forrest, 1996).

Apart from the Coulomb interaction, which is mainly
responsible for correlations, the interaction of the carri-
ers with phonons is also crucial for a detailed under-
standing of the dynamics of these systems. A variety of
theoretical methods has been developed to address
these issues, including the conventional sum-over-states
approach,1 multiconfiguration self-consistent field
theories,2 Bogoliubov transformations,3 the Bethe-
Salpeter equation,4 ‘‘dressed’’-exciton theories,5 semi-
phenomenological few-level models,6 nonequilibrium

1For the sum-over-states approach, see Soos and Ramasesha,
1984, 1988; Yaron and Silbey, 1992; Abe et al., 1993; Soos
et al., 1993; Soos et al., 1994; Chen and Mukamel, 1995; Chen
et al., 1996; and Mukamel and Chemla, 1996.

2For multiconfiguration self-consistent field theories, see
Olsen and Jo”rgensen, 1985; Meyer et al., 1990; and Jaszuński
et al., 1993.

3For the Bogoliubov transformations, see Comte and Mahler,
1986, 1988.

4For the Bethe-Salpeter equation, see Schmitt-Rink and
Chemla, 1986; Chernyak et al., 1995.

5For the dressed-exciton theories, see Combescot and Comb-
escot, 1989; Combescot and Betbeder-Matibet, 1990; Combes-
cot, 1992.

6For the semi-phenomenological few-level models, see Dixit
et al., 1990; Bar-Ad and Bar-Joseph, 1991, 1992; Lucht et al.,
1992; Mazumdar et al., 1992; Wu et al., 1992; Guo et al. 1993;
Luo et al., 1993; Bott et al., 1993; Finkelstein et al., 1993; Guo,
1994; Mayer et al., 1994).
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Green’s functions,7 and density-matrix theory.8 Density-
matrix theory has become the method of choice in the
treatment of experiments with ultrashort pulses because
dealing with dynamic variables that are directly related
to observables and that depend only on a single time
argument provides a very intuitive picture of the time-
dependent material response.

The simplest level of theory is based on equations of
motion for the reduced single-particle (two-point) den-
sity matrix. The optical polarization may be calculated
using this density matrix, which constitutes the minimal
level of necessary information. The semiconductor
Bloch equations (Haug and Koch, 1993), which are at
the heart of semiconductor optics, are derived within
this framework. The treatment of intermediate (charge-
transfer) excitons in conjugated polymers using the
single-particle density matrix allowed the interpolation
between molecular (Frenkel) limits (Mukamel, 1994)
and semiconductor (Wannier) limits (Mukamel and
Wang, 1992; Hartmann and Mukamel, 1993; Mukamel
et al., 1994; Takahashi and Mukamel, 1994; Chernyak
and Mukamel, 1995a, 1995b, 1996b; Hartmann et al.,
1995; Tretiak et al., 1996a). One of the major obstacles
for a microscopic comparison of various materials is that
molecular systems are usually discussed using the global
(many-electron) eigenstates in real space, whereas semi-
conductors are analyzed using elementary excitations
(quasiparticles) in k space. Treating all systems accord-
ing to the same basic strategy yields equations of motion
whose structural similarities most clearly reflect the
common aspects of the underlying physics and thus al-
lows for a systematic comparison of the remaining dif-
ferences. An improved level of theory is obtained by
retaining higher-order (four-point, six-point, etc.) den-
sity matrices. This extension is essential in order to treat
two-exciton dynamics properly. Using a model Hamil-
tonian that conserves the number of electron-hole pairs,
it has been shown that for both Frenkel excitons
(Dubovsky and Mukamel, 1991; Knoester and Muka-
mel, 1991; Leegwater and Mukamel, 1992; Mukamel,
1994; Chernyak et al., 1995) and Wannier excitons (Axt
and Stahl, 1994a, 1994b; Lindberg et al., 1994; Maialle
and Sham, 1994; Victor et al., 1995; Axt, Victor, and
Stahl, 1996) it is possible to classify higher-order corre-
lation functions according to their leading order in the
laser field. This provides a convenient dynamics-
controlled truncation, which allows a systematic method
for closing the hierarchy rigorously at any desired order
in the radiation field.

7For the nonequilibrium Green’s functions, see Müller et al.,
1987; Haug, 1988; Hartmann et al., 1990; Bechstedt and Glut-
sch, 1991; Kuznetsov, 1991a; Haug and Jauho, 1996.

8For the density-matrix theory, see Huhn and Stahl, 1984;
Schmitt-Rink and Chemla, 1986; Stahl and Balslev, 1987; Lind-
berg and Koch, 1988; Mukamel and Wang, 1992; Hartmann
and Mukamel, 1993; Haug and Koch, 1993; Axt and Stahl,
1994a, 1994b; Mukamel et al., 1994; Takahashi and Mukamel,
1994; Hartmann et al., 1995; Victor et al., 1995.
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In the present paper we consider a general model of
many-electron systems whose Hamiltonian conserves
the number of electron-hole pairs and whose ground
state is therefore given by the Hartree-Fock ground
state (a single Slater determinant). The system is further
linearly coupled to a phonon bath. This model provides
a unified treatment of semiconductors, molecules with
weakly correlated electronic structure, and molecular
aggregates. We introduce a hierarchy of exciton-phonon
generating functions, each representing a given exciton
density matrix, and constituting a wave packet in pho-
non coordinates. We shall show that, to third order in
the radiation field, the hierarchy can be truncated at the
six-point-density-matrix level. We derive closed equa-
tions of motion for the relevant generating functions,
representing a formally rigorous description of the opti-
cal response up to third order in the laser field including
phonons. Taking these equations as a starting point, we
work out a reduced scheme, based on eliminating the
phonon degrees of freedom perturbatively.

Optical excitations of molecular crystals, superlattices,
and aggregates are usually formulated taking Frenkel
excitons rather than fermions as the basic entities. How-
ever, we shall demonstrate that the resulting dynamic
equations can be recast in a form structurally equivalent
to the dynamics of the many-electron model, thus re-
vealing most clearly the fundamental similarities be-
tween the underlying physics of molecular and semicon-
ductor materials. The Frenkel exciton model is simpler,
since each exciton is represented by a single degree of
freedom related to the center-of-mass motion of the
pair. In semiconductors we need an additional coordi-
nate representing the pair’s relative motion. The formal
equivalence of the underlying dynamics provides a sim-
pler view of semiconductor optics and allows the clear
interpretation of many effects and levels of reduction
using the Frenkel exciton Hamiltonian, which is consid-
erably simpler. Higher levels of modeling, which are
very tedious for semiconductors, are quite workable for
molecular systems. Consequently theoretical studies of
molecular materials are more advanced than their semi-
conductor counterparts. Experimental studies of semi-
conductor nanostructures are, on the other hand, more
advanced due to the superior methods of fabrication and
characterization. Both fields can benefit from a free flow
of information and ideas. Developing a common lan-
guage and eliminating the terminology barrier between
these two disciplines is the main goal of this article. Our
formulation further generalizes previous treatments by
including all exchange-type contributions to the Cou-
lomb interaction and keeping a general form for the
direct-type interaction, which is expected to be impor-
tant for a description of samples with strong confine-
ment, such as semiconductor nanocrystals (Brus, 1991;
Tolbert and Alivisatos, 1994; Alivisatos, 1995, 1996;
Norris and Bawendi, 1996; Norris et al., 1996; Yokojima
et al., 1997).

It should be noted that in principle it is possible to
formulate an exact theory at any level of reduction. The
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choice is between including certain variables explicitly
or incorporating their effects through self-energies in
equations of motion where these variables have been
eliminated. Thus the effects of four- and six-point den-
sity matrices may be incorporated in a reduction level of
two-point density matrices. The price to be paid for this
reduction is that the equations of motion become non-
local in time. When new resonances are associated with
higher-order density matrices, we are better off includ-
ing these variables explicitly. This allows direct control
of the approximations and provides a more transparent
physical picture.

The paper is organized as follows: In Sec. II we
specify the Hamiltonian commonly used in the micro-
scopic modeling of nonrelativistic many-electron sys-
tems. The standard starting points for direct-gap semi-
conductors and many organic materials, both bulk and
nanostructures (quantum wells, dots, and superlattices),
are obtained as special cases. The discussion in Secs.
III–VI concentrates on a model system in which the ma-
terial part of the Hamiltonian conserves the number of
electron-hole pairs. This applies to many weakly corre-
lated organic and semiconductor materials (conjugated
polyenes have some noticeable correlation effects and
do not fall into this category). We introduce the
dynamics-controlled truncation, identify the relevant dy-
namic variables, and relate them to observables in Sec.
III. In Sec. IV we study the coherent limit, i.e., the ide-
alized situation without phonon coupling. In this case
the problem is shown to reduce to the combined dynam-
ics of one- and two-pair interband transition densities.
When phonon interactions are taken into account, one
has to study in addition the dynamics of intraband co-
herences and occupation densities. For a system of Fren-
kel excitons it has been shown (Axt and Mukamel,
1997a) that a rigorous formulation of the dynamics can
be obtained by looking at the time evolution of a suit-
able set of generating functions. In Appendix A we ex-
tend this method to the many-electron system, deriving
closed equations of motion for the relevant generating
functions, representing a rigorous description of the op-
tical response up to third order in the laser field includ-
ing phonons. Taking these equations as a starting point,
we work out in Sec. V an approximate reduction
scheme, based on eliminating the phonon degrees of
freedom perturbatively. The resulting physical implica-
tions are discussed. Our final equations are formulated
in the exciton representation. This facilitates a compari-
son with the Frenkel exciton model (see Sec. VII) and
allows us to address long-time relaxation properties in a
very natural way. In particular, it is shown that our treat-
ment leads to a thermalization into excitonic occupation
densities at long times. Our specific implementation of
the exciton representation has the distinguishing feature
(Schäfer et al., 1996) that the anticommutation proper-
ties of the two-pair transition density, required by the
Pauli principle, are preserved even for a truncated
scheme that keeps only a finite number of excitons. In
Sec. VI we establish the connection with the widely used
semiconductor Bloch equations and discuss under which
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
circumstances the results of our approach are expected
to differ from the predictions of these equations. The
Hamiltonian for interacting Frenkel excitons commonly
used in modeling molecular materials is introduced in
Sec. VII. We demonstrate that the Frenkel exciton
model and its many-electron counterpart lead to for-
mally equivalent equations of motion, despite their dif-
ferent microscopic formulation. Section VIII offers
some concluding remarks.

II. THE MICROSCOPIC MANY-ELECTRON MODEL

A system of nonrelativistic electrons interacting with
nuclear degrees of freedom (phonons) and with a coher-
ent laser field can generally be represented by the
Hamiltonian

H[Hmat1Hph1Hep1Hopt , (1)

where Hmat and Hph are the Hamiltonians for isolated
electronic and phonon degrees of freedom, while Hep
and Hopt describe the interactions between electrons
and phonons and the coupling to the laser field, respec-
tively. The material part Hmat can be further decom-
posed into a hopping (transfer) contribution Hhop and
the electron-electron Coulomb interaction,

Hmat[Hhop1HCoul , (2)

Hhop[(
mn

tmncm
† cn , (3)

HCoul[
1
2 (

ijnm
Vijnmci

†cjcn
†cm , (4)

Vijnm[E d3xE d3yw i* ~x !w j~x !

3V~x2y !wn* ~y !wm~y !, (5)

where V(x) is the Coulomb potential. The fermion op-
erators cn

† and cn create and annihilate electrons in or-
thogonal single-particle atomic orbitals wn(x). The label
n represents in the most general case the sites jn , where
the orbitals are localized, as well as the spins sn and the
electronic state of the atom nn . This general formula-
tion of the material part is the basis for all standard
quantum chemistry treatments of molecular structure,
including ab initio and semiempirical methods (Szabo
and Ostlund, 1989; Fulde, 1991). A recent application to
the optical response of semiconductor nanocrystals
starting with this model has been worked out by
Yokojima et al. (1997). The semiempirical models com-
monly used for the p electrons in polyenes are obtained
as special cases, when the hopping-matrix element tnm is
restricted to nearest-neighbor coupling alternating from
site to site, and the atomic orbitals are strongly localized,
resulting in the approximation for the Coulomb matrix
element Vijnm'd ijdnmVjn . Furthermore, at each site
usually only one electronic state (with two possible di-
rections for the spin) is considered, making the index nn
redundant in this case. In the Pariser-Parr-Pople model
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the potential Vjn is taken to be of the Ohno form
Vjn5U/A11(rjn /a0)2 (Ohno, 1964; Soos, 1994), while
in extended Hubbard models only the interaction be-
tween next neighbors is retained (Baeriswyl et al., 1992).

The free phonon Hamiltonian reads

Hph5(
m

\vmbm
† bm , (6)

where bm
† (bm) are Bose operators creating (annihilating)

a phonon in mode m with energy \vm , and satisfying the
commutation relations

@bm ,bl
† #5dml . (7)

We assume that the electron-phonon interaction is lin-
ear in the phonon operators,

Hep5 (
nmm

~gnm
m cn

†cmbm
† 1gnm

m* cm
† cnbm!. (8)

In Eq. (8) we have followed the common practice of
retaining only the lowest-order contribution of an ex-
pansion of the transfer-coupling-matrix elements [tmn in
Eq. (3)] with respect to deviations of the nuclei positions
from their equilibrium values. These contributions are
expected to be dominant. A more general treatment
would take into account higher-order terms of this ex-
pansion as well as contributions resulting from the cor-
responding expansion of the Coulomb matrix elements
(Szabo and Ostlund, 1989). The latter would include in-
teractions involving four electronic operators and one or
more phonon operators.

Finally, the coupling to the optical field E(t) is repre-
sented by

Hopt52E~ t !P̂, (9)

with the polarization operator

P̂5(
nm

Mnmcn
†cm (10)

and the dipole matrix element

Mnm[2e^wnuXuwm& . (11)

For simplicity, we consider a spatially homogeneous
electric field. An extension to include the space depen-
dence of the field is straightforward (Huhn and Stahl,
1984; Axt and Stahl, 1994a, 1994b; Belleguie and Muka-
mel, 1994, 1995; Chernyak et al., 1995) and is important
for an analysis of propagation effects, examples of which
have been studied by Stahl and Balslev (1982, 1987),
Huhn (1986), Knorr et al. (1995), and Stroucken et al.
(1996).

It will be advantageous for our further analysis to re-
write the Hamiltonian using the Hartree-Fock molecular
orbital (HFMO) representation. To this end we intro-
duce the transformed fermion operators

c̄ k
†[(

j
w j

kcj
† , (12)

where w j
k are the orthonormal solutions of the Hartree-

Fock eigenvalue problem
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(
j

hajw j
k5ekwa

k , (13)

with the Fock matrix

hab[tab1(
ij

~Vijab2Vajib!r ij
0 , (14)

and r0 is the density matrix representing the Hartree-
Fock ground-state. Technical details of the transforma-
tions are explained by Hartmann and Mukamel (1993)
and Takahashi and Mukamel, 1994. The HFMO repre-
sentation allows for an easy distinction between occu-
pied and unoccupied states with respect to the Hartree-
Fock ground state. Hereafter we refer to initially
unoccupied states as electrons and initially occupied
states as holes. We shall introduce creation and annihi-
lation operators, d̄ † and d̄ , respectively, for holes by
setting d̄ q

†[ c̄ q for all initially occupied states q . The
material part of the Hamiltonian in this basis set reads

H̄mat5H̄mat
~0 ! 1H̄mat

~1 ! 1H̄mat
~2 ! 1E full , (15)

H̄mat
~0 ! 5 (

q5e
eq

e c̄ q
† c̄ q2 (

q5h
eq

h d̄ q
† d̄ q

1 (
pq5h
kl5e

~V̄plkq
heeh 2V̄pqkl

hhee ! c̄ k
† d̄ q

† d̄ p c̄ l

1
1
2 F (

pqkl5e
V̄pqkl

eeee c̄ p
† c̄ k

† c̄ l c̄ q1 (
pqkl5h

V̄pqkl
hhhh d̄ q

† d̄ l
† d̄ k d̄

1V~0 !S (
q5e

c̄ q
† c̄ q2 (

q5h
d̄ q

† d̄ qD G , (16)

H̄mat
~1 ! 5

1
2 F (

qkl5h
p5e

~V̄kqpl
hheh2V̄pqkl

ehhh! c̄ p
† d̄ q

† d̄ l
† d̄ k

1 (
pkl5h

q5e

~V̄pqkl
hehh2V̄plkq

hhhe! d̄ l
† d̄ p d̄ k c̄ q

1 (
pql5e
k5h

~V̄pqkl
eehe 2V̄kqpl

heee ! c̄ p
† c̄ q d̄ k c̄ l

1 (
pkl5e
q5h

~V̄pqkl
ehee 2V̄plkq

eeeh ! c̄ p
† d̄ q

† c̄ k
† c̄ lG , (17)

H̄mat
~2 ! 5

1
2 F (

pk5e
ql5h

V̄pqkl
eheh c̄ p

† d̄ q
† c̄ k

† d̄ l
†1 (

pk5h
ql5e

V̄pqkl
hehe d̄ p c̄ q d̄ k c̄ lG ,

(18)

with

V̄pqkl[ (
ijnm

Vijnmw i
p* w j

qwn
k* wm

l . (19)

We have used Eq. (13) and the identity

(
k

V̄akkb5V~0 !dab , (20)

and V(x2y) was defined in Eq. (5). To make it easier to
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identify the type of particle (e or h), we have indicated
this information as upper indices of the matrix elements.
H̄mat can be naturally decomposed into three contribu-
tions H̄mat

(j) , j50,1,2, that change the number of electron-
hole pairs by j pairs. E full is a constant representing the
energy of the filled valence states. In the following sec-
tions we shall concentrate on a simpler model system, in
which only the pair-conserving part Hmat

(0) is retained.
Many-electron models that retain only pair-conserving
terms form the starting point for most calculations of the
optical response of direct-gap semiconductors (Stahl and
Balslev, 1987; Haug, 1988; Zimmermann, 1988; Haug
and Koch, 1993) and semiconductor nanocrystals (Hill
and Wahley, 1993, 1994, 1995). Non-pair-conserving
terms of course play a role in the dielectric screening,
but otherwise are not usually needed in dealing with
excitations in the vicinity of the gap (Haug, 1988). The
reason is that typically in direct-gap semiconductors the
optical gap (;eV) is large compared to the exciton bind-
ing energy (;meV), which implies that the Coulomb in-
teraction can be regarded as a small correction to the
single-particle energies. At high excitation non-pair-
conserving processes associated with impact ionization
or Auger recombination may take place (Quade et al.,
1992, 1994). Impact ionization is, however, effective only
when the excitation is at about twice the optical gap,
while Auger recombination requires higher excitation
densities.

Let us now take a closer look at the various contribu-
tions to H̄mat

(0) . First we note that the last term, propor-
tional to V(0), does not contribute to the dynamics,
since we are dealing with a system with a fixed number
of particles, so that the total number of electrons always
equals the total number of holes. The remaining terms
can be further classified into direct- and exchange-type.
When the site arguments in the Coulomb integral can be
combined to give electron or hole densities of the re-
spective atomic orbitals, we shall refer to the terms as
direct-type contributions. These correspond in our nota-
tion to matrix elements of the types V̄hhee , V̄eehh , V̄eeee ,
and V̄hhhh . Most calculations for direct-gap semiconduc-
tors neglect the remaining exchange contributions V̄heeh

and V̄ehhe . Observable effects related to exchange inter-
actions are the splitting between longitudinal and trans-
verse excitons and the details of the energy structure of
excitons and biexcitons (Haken, 1963; Bassani and Pas-
tori Parravicini, 1975, Egri, 1985; Ungier, 1989). For
direct-gap bulk semiconductors these are usually minor
corrections, while noticeable influences have been re-
ported for nanocrystals (Yokojima et al., 1997). A mea-
sure of the importance of exchange terms is provided by
the ratio between the transverse-longitudinal exciton
splitting and the exciton binding energy. The approxi-
mation of keeping only the direct Coulomb interaction
and neglecting non-pair-conserving as well as exchange-
type contributions is viewed in a slightly different per-
spective when the Coulomb matrix elements are ana-
lyzed in a real-space basis set defined, for example, by
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
the Wannier functions for bulk semiconductors (Huhn
and Stahl, 1984; Egri, 1985; Stahl, 1988) or more gener-
ally by localized molecular orbitals (Foster and Boys,
1960; Edmiston and Ruedenberg, 1963; Fulde, 1991).
One can then use the localization properties of the or-
bitals to perform a multipolar expansion of the Coulomb
integrals; the various contributions to the Coulomb in-
teraction can then be interpreted electrodynamically as
interactions between multipoles. To leading order the
direct interaction equals the monopole-monopole inter-
action, while the other contributions are, in leading or-
der, either of monopole-dipole or dipole-dipole type
(Huhn and Stahl, 1984; Egri, 1985; Stahl, 1988). The
monopole-monopole part is the only long-range contri-
bution and is consequently dominant in systems where
the electron-hole pairs are only loosely bound (i.e., spa-
tially well separated), as indicated by the large Bohr ra-
dii of typical Wannier excitons.

The parts of the Hamiltonian involving phonons in
the Hartree-Fock molecular orbital representation read

H̄ph5Hph5(
m

\vmbm
† bm , (21)

H̄ep5H̄ep
~0 !1H̄ep

~1 !1H̄ep
~f ! , (22)

H̄ep
~0 !5 (

pq5e,m
~ ḡ pq

m c̄ p
† c̄ qbm

† 1 ḡ pq
m* c̄ q

† c̄ pbm!

2 (
pq5h,m

~ ḡ pq
m d̄ q

† d̄ pbm
† 1 ḡ pq

m* d̄ p
† d̄ qbm!, (23)

H̄ep
~1 !5 (

p5h,m
q5e

~ ḡ pq
m d̄ p c̄ qbm

† 1 ḡ pq
m* c̄ q

† d̄ p
†bm!

1 (
p5e,m

q5h

~ ḡ pq
m c̄ p

† d̄ q
†bm

† 1 ḡ pq
m* d̄ q c̄ pbm!, (24)

H̄ep
~f !5 (

pq5h,m
~ ḡ pq

m bm
† 1 ḡ pq

m* bm!dpq , (25)

ḡ pq
m [(

nm
wn

p* wm
q gnm

m . (26)

First we note that H̄(f ), which acts only on the phonon
degrees of freedom, represents the interaction energy of
the phonons with the filled valence states and does not
contribute to the coupling with holes. We shall drop this
term. As in the Coulomb interaction case, we obtain
contributions H̄ep

(j) that may or may not conserve the
number of electron-hole pairs. In contrast to the Cou-
lomb case, however, there is no term that changes the
number of pairs by two. H̄ep

(1) changes the number of
electron-hole pairs by only one and describes phonon-
induced transitions across the gap between occupied and
unoccupied states. Such transitions are not energetically
favored in many materials and will be neglected as well
in the following discussion.

Finally, we obtain for the coupling to the laser field in
the HFMO representation

H̄opt52EP̂̄, (27)
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P̂̄5 (
p5h,q5e

M̄pq
he d̄ p c̄ q1 (

p5e,q5h
M̄pq

eh c̄ p
† d̄ q

†

1 (
pq5e

M̄pq
ee c̄ p

† c̄ q2 (
pq5h

M̄pq
hh d̄ q

† d̄ p1P̄stat , (28)

M̄pq[(
nm

wn
p* wm

q Mnm , (29)

where P̄stat is the static polarization of the system.
Although the above model is quite general, relativistic

effects are left out completely. The most important of
these is the spin-orbit coupling, which leads in many
semiconductors to splittings [350 meV in GaAs (Hilsum,
1966)] between the topmost and ‘‘split-off’’ bands. How-
ever, as the task of determining the single-particle ener-
gies (band structure) can be performed independently
from an analysis of the dynamics introduced by the laser
field, the main relativistic effects can be accounted for
by a simple renormalization of the single-particle ener-
gies.

III. GENERATING FUNCTIONS FOR COUPLED
EXCITON-PHONON VARIABLES

In this and in the following sections we shall analyze
the dynamics of a system described by our many-
electron model, when only the electron-hole pair-
conserving contributions are taken into account. This
will be done on various levels of sophistication. In the
present section we explain how the hierarchy of equa-
tions of motion can be systematically truncated, result-
ing in a rigorous scheme for calculating the third-order
nonlinear response including phonons. The relevant dy-
namical variables are introduced, while their coupled
equations of motion are given in Appendix A. In Secs.
IV and V this formulation will be used as a starting point
for the derivation of simplified schemes, better suited for
specific calculations.

According to Eqs. (15), (21), (22), and (27), our model
is defined by the Hamiltonian

H̄[H̄mat
~0 ! 1H̄ph1H̄ep

~0 !1H̄opt . (30)

The most interesting dynamical variables for the opti-
cal response are the components of the one-particle
(two-point) density matrix. Using the definitions

Yab[^ d̄ a c̄ b&, Cab[^ c̄ a
† c̄ b&, Dab[^ d̄ a

† d̄ b&, (31)

we can decompose the one-particle density matrix as

r̄ ab5 r̄ ab
0 1da

edb
eCab2da

hdb
hDba1da

hdb
eYab

1da
edb

hYba* , (32)

with

da
e/h[ H 1 when a refers to an electron/hole,

0 otherwise,
(33)
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where r̄ ab
0 5da

hdb
hdab is the ground-state Hartree-Fock

density matrix. The quantum-mechanical average repre-
sented by the brackets ^•••& in Eq. (31) is defined in the
usual way as a trace over the respective operators times
the density matrix of the many-body system. In the
Heisenberg picture the many-body density matrix is in-
dependent of time while the operators are time depen-
dent. In the definition (31) a common time argument is
assumed.

The electron-hole component Yab describes transi-
tions across the optical gap, while Cab and Dab repre-
sent, respectively, electron and hole densities and coher-
ences. All optical observables can be calculated from the
polarization [cf. Eq. (28)], which in terms of these dy-
namical variables is given by

P̄[^ P̂̄&5(
pq

M̄pq r̄ pq

5 (
p5h,q5e

M̄pq
he Ypq1 (

p5e,q5h
M̄pq

eh Yqp*

1 (
p ,q5e

M̄pq
ee Cpq2 (

p ,q5h
M̄pq

hh Dqp1P̄stat . (34)

Apart from the static part, we obtain two fundamentally
different types of contributions: those arising from the
creation of electron-hole pairs (interband transitions
} Y ,Y* ) and those involving transitions within the elec-
tron or hole manifold (intraband transitions } C ,D). For
many systems, especially bulk semiconductors, the intra-
band dipole matrix elements are either forbidden by
symmetry or significantly smaller than their interband
counterparts and are therefore often neglected. How-
ever, for geometrically restricted systems such as quan-
tum wells, superlattices, or nanocrystals, these terms can
be important.

Our goal is to calculate the polarization, which is a
complicated many-body problem. The equations of mo-
tion for the one-particle density matrix are not closed,
coupling to higher density matrices in an infinite hierar-
chy. The functions on each level are coupled to more
complicated dynamical objects (higher-order density
matrices), forming the next higher level of the hierarchy.
Any practical method derived from this hierarchy must
provide a recipe for truncation in order to obtain a
closed set of equations. The dynamics-controlled trunca-
tion relies on the fact that, in a model defined by Eq.
(30), all higher-order correlations are ultimately induced
by the optical field. As a consequence, there is a close
relation between the leading order in the laser field of
any given density matrix and the level where this func-
tion first enters the hierarchy. For the many-electron
system described by the Hamiltonian (30), this relation
can be summarized as follows.

Let Ân denote the normal-ordered product of
n5ne1nh Fermi operators c̄ †, c̄ , d̄ †, and d̄ and an
arbitrary number of phonon operators b†,b , where the
normal ordering is understood with respect to the
electron-hole representation (i.e., all operators c̄ †, d̄ †

stand to the left of c̄ , d̄ ), ne is the total number of elec-
tron operators c̄ †, c̄ , and nh is the total number of hole
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operators d̄ †, d̄ . When the system is initially in the
Hartree-Fock ground state, it then follows for the expec-
tation value of Ân that

^Ân&5O~Em!, with m5max~ne ,nh!. (35)

A formal proof can be found in Axt and Stahl (1994a). It
is analogous to a similar relation proven for Frenkel ex-
citons [Spano and Mukamel, 1991a, 1991b; Mukamel,
1994; see also Eq. (102)]. The significance of this obser-
vation is that higher-order correlation functions are also
of higher order in the laser field, and thus only a finite
number of electronic density matrices contributes to the
optical response at any prescribed order. In the
dynamics-controlled truncation approach this is used to
truncate the hierarchy, retaining only those density ma-
trices that contribute to a given order. Applications have
been worked out taking the cut at either the third order
(Dubovsky and Mukamel, 1991; Knoester and Muka-
mel, 1991; Leegwater and Mukamel, 1992; Axt and
Stahl, 1994b; Axt et al., 1995; Östreich et al., 1995a,
1995b; Axt, Victor, and Stahl, 1996; Schäfer et al., 1996)
or the fifth order (Bartels et al., 1995).

The influence of the phonon system on the coupled
dynamics of higher-order density matrices is often ac-
counted for by phenomenological damping constants or
by simple stochastic approaches such as the Haken-
Strobl model (Leegwater and Mukamel, 1992). Pertur-
bative calculations of these effects using phonon-
induced self-energies have been made in some cases
(Dubovsky and Mukamel, 1991; Chernyak et al., 1995;
Axt, Victor, and Stahl, 1996). In this section we develop
a rigorous procedure for the derivation of a closed set of
equations of motion for a finite number of dynamical
variables when phonons are taken into account to third
order in the radiation field. This is done by introducing
the following five generating functions for phonon-
assisted electronic density matrices:

Yab
ab[^ d̄ a c̄ bF̂ab&, (36)

Babcd
ab [^ d̄ a c̄ b d̄ c c̄ dF̂ab&, (37)

Nabcd
ab [^ c̄ a

† d̄ b
† d̄ c c̄ dF̂ab&, (38)

Zabcdef
ab [^ c̄ a

† d̄ b
† d̄ c c̄ d d̄ e c̄ fF̂

ab&, (39)

Fab[^F̂ab&[^F̂~$am%,$bm%!&

[K S expS (
m

ambm
† D D S expS (

m
bmbmD D L . (40)

where $am% and $bm% represent arbitrary sets of real pa-
rameters. The shorthand notation a,b in the arguments
of these functions denotes the respective sets of param-
eters. Each of these variables represents a phonon wave
packet associated with a given electronic density matrix.
The generating-function property implies that all
phonon-assisted electronic density matrices can be ob-
tained as derivatives of these functions taken at
am5bm50, e.g.,
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]k

]am1
•••]amk

] l

]bl1
•••]bl l

Yab
abua5b50

5^ d̄ a c̄ bbm1

† •••bmk

† bl1
•••bl l

&. (41)

Starting with the Heisenberg equations i\Ȧ5@A ,H# ,
using the Hamiltonian (30), it is straightforward to de-
rive equations of motion for these functions. Neglecting
terms that do not contribute to the third-order response,
we obtain a closed set of nonlinear partial differential
equations coupling the generating functions (36)–(40).
The resulting equations [Eqs. (A1)–(A5) given in Ap-
pendix A] constitute our most general result and form
the basis for the various approximation schemes to be
developed in this article. It should be noted that these
equations contain the electron-hole variable Y but do
not include the intraband variables C and D necessary
for computing the intraband part of the polarization
(34). However, once solutions to Eqs. (A1)–(A5) are
found, the components of the one-particle density ma-
trix are obtained from the corresponding generating
functions at the point a5b50,

Yab5Yab
a5b50, (42)

Cab5Cab
a5b505 (

k5h
Nakkb

a5b50, (43)

Dab5Dab
a5b505 (

k5e
Nkabk

a5b50, (44)

where we have used the identities (A21) and (A22).

IV. COHERENT DYNAMICS OF THE PURELY
ELECTRONIC SYSTEM

In this section we treat the idealized limiting case of
vanishing electron-phonon interaction ḡ m→0. This case
is of interest for two reasons. First, the coherent dynam-
ics represented by this limit dominates the early stages
of optical experiments, in which the incoherent parts of
the signal have not yet built up. In many types of mate-
rials, this time regime has become accessible in recent
years due to the advent of femtosecond laser systems.
Second, it is desirable to establish a clear understanding
of this part of the dynamics in order to identify unam-
biguously signatures of incoherent processes. For van-
ishing electron-phonon coupling, a closed set of equa-
tions involving only the generating functions at a5b50
can be obtained from Eqs. (A1)–(A5). However, instead
of having to deal with five density matrices, it turns out
that we need only two functions to describe the com-
plete dynamics in this case (Axt and Stahl, 1994a, 1994b;
Mukamel, 1994, 1995; Chernyak and Mukamel, 1995b,
1996b; Victor et al., 1995). These are the one- and two-
pair transition densities (Yab ,Babcd[Babcd

a5b50). F is
trivially redundant, because at a5b50 this function has
the constant value of one. The remaining functions can
be eliminated using the relations
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Nabcd[Nabcd
a5b505Yba* Ycd1O~E4!, (45)

Zabcdef[Zabcdef
a5b505Yba* Bcdef1O~E4!. (46)

These can easily be verified using the equations of mo-
tion (A1) and (A2) for Y and B in the limit ḡ m→0 and
a5b50, to show that the equations of motion (A3) and
(A4) for N and Z are solved by the right-hand sides of
Eqs. (45) and (46) in this limit. Equations (45) and (46)
are the lowest-order results of a more general theorem
(Victor et al., 1995) in which, in the phonon-free case, all
density matrices to any order in the laser field can be
expressed by suitable combinations of transition ampli-
tudes. For boson fields, like the electromagnetic field, it
is common practice to take this fundamental character-
istic of coherent dynamics—that variables representing
intensities like Nabcd can be factorized into transition
amplitudes—as a definition of coherence. A measure of
the degree of coherence can then be defined using (nor-
malized) deviations from the factorized values (Loudon,
1982; Mandel and Wolf, 1995). Because electron-hole
pairs behave like bosons only in the low-intensity limit,
there are corrections of higher order in the laser field to
the simple factorizations (45) and (46), accounting for
the deviations from Bose statistics. Nevertheless, all of
these corrections can be expressed by transition ampli-
tudes alone (Victor et al., 1995). Thus this property
could be used to generalize the common definition of
coherence, used for Bose systems, to systems of
electron-hole pairs. These considerations justify the
identification of the phonon-free dynamics as the coher-
ent limit.

Using Eqs. (A21)–(A24), (45), (46), (A1), and (A2),
we obtain the following equations in the coherent limit:

i\] tYab5\VY~Y !ab

2 (
pq5e,kl5h

~V̄pqka
eehh 2V̄kqpa

heeh !Ylp* Blqkb

1 (
pqk5e,l5h

V̄bqkp
eeee Ylk* Blpaq

1 (
pqk5h,l5e

V̄kpqa
hhhh Ypl* Bklqb

2 (
pq5h,kl5e

~V̄bkpq
eehh 2V̄bqpk

ehhe !Yql* Bplak

2ES M̄ba
eh 2 (

k5h,l5e
M̄bk

eh Ykl* Yal

2 (
k5e,l5h

M̄ka
eh Ylk* Ylb1 (

k5 e
M̄bk

ee Yak

2 (
k5h

M̄ka
hhYkbD , (47)
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i\] tBabcd5\VB~B !abcd

2E~M̄dc
ehYab2M̄da

ehYcb2M̄bc
ehYad1M̄ba

ehYcd!

2EF (
k5e

~M̄dk
ee Babck1M̄bk

ee Bakcd!

2 (
k5h

~M̄kc
hhBabkd1M̄ka

hhBkbcd!G , (48)

where the linear operators \VY and \VB are defined in
Eqs. (A8) and (A9) and the polarization is given by

P̄coh5 (
p5h,q5e

M̄pq
he Ypq1 (

p5e,q5h
M̄pq

eh Yqp*

1 (
p ,q5e,k5h

M̄pq
ee Ykp* Ykq

2 (
p ,q5h,k5e

M̄pq
hh Yqk* Ypk1P̄stat . (49)

In these equations Y represents transitions involving
single electron-hole pairs, while B accounts for two-pair
transitions. Analogous equations have been derived for
Frenkel excitons (Spano and Mukamel, 1991a, 1991b;
Leegwater and Mukamel, 1992; Mukamel, 1994; see also
Sec. VII).

Expanding these equations in the optical field, we find
that the linear response can be derived from

i\] tYab
~1 !5\VY~Y ~1 !!ab2EM̄ba

eh . (50)

We thus obtain

Yab
~1 !5

i

\ (
x
E

2`

t
dt8e2iv̄x~ t2t8!c̄ ab

x M̄xE~ t8!, (51)

where the excitonic eigenfunctions c̄ and eigenenergies
Ēx5\v̄x are defined by the eigenvalue problem

\VY~ c̄ x!ab5~eb
e2ea

h!c̄ ab
x 1 (

p5h,q5e
~V̄pqba

heeh 2V̄pabq
hhee !c̄pq

x

5Ēxc̄ ab
x , (52)

and the excitonic dipole matrix elements are given by

M̄x[(
ab

c̄ ab
x* M̄ba

eh . (53)

Inserting this solution into Eq. (49) for the polarization
and retaining only the linear part results in the classical
Elliot formula for the linear susceptibility of exciton sys-
tems (Elliot, 1957; Stahl and Balslev, 1987; Haug and
Koch, 1993). This simple formula already describes in a
unified way many different physical situations. For small
aggregates with only a few molecules, Eq. (52) can have
only a limited number of eigenvalues, thus leading to a
spectrum with only a few discrete lines. Another ex-
treme is marked by bulk semiconductors. In this case
Eq. (50) reduces to the Wannier equation, provided the
exchange-type contributions } V̄heeh to Eq. (52) are ne-
glected and the direct-type Coulomb matrix elements
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are treated according to standard approximations
(Haken, 1973; Haug and Koch, 1993). We thus expect a
spectrum consisting of a series of discrete lines and a
continuum resulting from unbound (scattering) solu-
tions. This continuum provides an intrinsic line broaden-
ing and will therefore lead to electronic dephasing due
to destructive interference. Closed-form Green’s-
function solutions of the Wannier equation are avail-
able, thus avoiding the explicit determination of exciton
eigenfunctions (Hostler, 1970; Stahl and Balslev, 1987).
Nanocrystals are intermediate cases, in which the linear
spectrum comprises a large number of lines, some of
which are clustered energetically, eventually forming the
continua characteristic of bulk crystals (Yokojima et al.,
1997).

We shall now turn to a discussion of two-pair transi-
tions. Under the same conditions, whereby Eq. (50) re-
duces to an inhomogeneous hydrogenlike, Schrödinger-
type equation (the Wannier equation), Eq. (48)
transforms into an equation resembling a driven hydro-
gen molecule (Axt and Stahl, 1994a, 1994b). A typical
spectrum of the operator \VB for bulk semiconductors
consists of a very small number of discrete lines repre-
senting bound two-electron-hole pair states (biexcitons)
and a continuum representing scattering of excitons.
Formally it should be possible at this point to introduce
eigenstates of \VB and recast the theory using coupled
equations for exciton and biexciton amplitudes. How-
ever, this procedure is practical only when the response
is dominated by few two-pair states (e.g., bound biexci-
tons), and provided reasonable approximations for the
corresponding wave functions are available. For most
systems the explicit determination of biexcitonic wave
functions is numerically very demanding. It is therefore
more useful to treat the two-pair transitions in terms of
interacting excitons. Instead of dealing directly with the
density matrix B , it is advantageous to remove uncorre-
lated (mean-field or unlinked) contributions by defining
a new dynamic object B̄ that carries the information on
genuine many-particle correlations according to the
‘‘cluster’’ decomposition (Wang and Cassing, 1985; Bar-
tels et al., 1995; Axt, Victor, and Stahl, 1996; Schäfer
et al., 1996; Axt and Mukamel, 1997b)

Babcd5YabYcd2YcbYad1B̄abcd . (54)

Using an exciton eigenfunction representation of Y and
B̄ [and according to Eq. (54) of B] in the form

Yab5(
x

c̄ ab
x yx , (55)

B̄abcd5(
x̄ x

~ c̄ ab
x̄ c̄ cd

x 2 c̄ cb
x̄ c̄ ad

x !b x̄ x , (56)

Babcd5(
x̄ x

~ c̄ ab
x̄ c̄ cd

x 2 c̄ cb
x̄ c̄ ad

x !~b x̄ x1y x̄ yx!, (57)

we find that Eqs. (47) and (48) transform into
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i\] tyx5Ēxyx1 (
x̄ x̄ 8x8

V̄x
x̄ x̄ 8x8y x̄

* ~y x̄ 8yx81b x̄ 8x8!

2ES M̄x2 (
x 8̄x8

M̄x
x̄ 8x8y x̄ 8

* yx82(
x8

M̄x
x8yx8D ,

(58)

i\] tb x̄ x5~Ē x̄ 1Ēx!b x̄ x1 (
x̄ 8x8

V̄ x̄ x
x̄ 8x8~b x̄ 8x81y x̄ 8yx8!

1ES (
x8

M̄x
x8b x̄ x81(

x̄ 8
M̄ x̄

x̄ 8b x̄ 8xD , (59)

where the derivation as well as the coefficients V̄x
x̄ x̄ 8x8 ,

V̄ x̄ x
x̄ 8x8 , M̄x

x̄ 8x8 and M̄x
x8 are given in Appendix C. It is

worth noting that the fundamental anticommutation
property

B̄abcd52B̄cbad52B̄adcb5B̄cdab (60)

is satisfied in Eq. (57) by each term of the expansion
separately (note, that b x̄ x5bx x̄ in this representation).
This property is particularly important when, instead of
using the complete set of exciton eigenfunctions, one
truncates the summation in Eq. (57), keeping only a lim-
ited set of basis functions. Approximations of this type
are necessary for many systems in order to keep the
numerics manageable.

The physical origin of the various contributions to
Eqs. (58) and (59) is readily understood. The homoge-
neous parts represent the quasiparticle energies of exci-
tons and two-exciton states (unbound and bound biexci-
tons). Since we are working in the exciton basis set, the
former is diagonal, while the latter also comprises off-
diagonal parts [} V̄b in Eq. (59)], describing the interac-
tion between excitons. The sources to y proportional to
the optical field can be classified as linear and nonlinear.
The source } Ey* y is known as ‘‘phase-space filling’’
and describes saturation effects due to Pauli blocking.
The term } Ey accounts for intraband transitions, in-
cluding the effects of quasistatic fields on the linear ab-
sorption; corresponding terms also appear in the equa-
tions for b . The y* yy term is the coherent limit of the
mean-field contribution to the Coulomb interaction (cf.
Sec. VI); it has been called a ‘‘static exciton-exciton in-
teraction’’ by Schäfer et al. (1996). For bulk semiconduc-
tors treated in k-space, this term is usually split into two
contributions that can be combined with the linear Cou-
lomb interaction in a form suggesting an interpretation
as renormalizations of the band gap and the optical field
(Rabi frequency), respectively (Kuhn and Rossi, 1992;
Haug and Koch, 1993; Kuhn et al., 1994). A simplified
treatment of this term is also known as the ‘‘local-field
model’’ (Mukamel et al., 1988; Wegener et al., 1990;
Spano et al., 1991; Weiss et al., 1992; Chemla et al.,
1994). The contribution } y* b accounts for genuine
many-particle correlations arising from the interaction
between excitons, including the formation of bound
biexcitons. Furthermore, it has been shown by Schäfer
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et al. (1996) that the continuum part of b can be under-
stood as a microscopic description of processes referred
to as ‘‘excitation-induced dephasing,’’ a feature dis-
cussed by Wang et al. (1993, 1994), Hu et al. (1994), and
Rappen et al. (1994). Physical issues that can be ad-
dressed on this level of sophistication include the obser-
vation of a signal for negative delays in standard four-
wave-mixing (FWM) experiments (Leo et al., 1990, 1991;
Wegener et al., 1990; Schmitt-Rink et al., 1991) and the
deviation of time-resolved FWM signals from the free-
induction decay expected from a two-level description
(Wegener et al., 1990; Kim et al., 1992; Schäfer et al.,
1993). Contributions to these effects arise from the
mean-field part as well as from two-pair correlations.
The influence of the two-particle correlations b is most
pronounced in experiments that probe biexcitonic reso-
nances (Miller et al., 1982; Cingolani et al., 1988; Hulin
and Joffre, 1990; Feuerbacher et al., 1991; Lovering
et al., 1992; Raj et al., 1992; Carmel and Bar-Joseph,
1993; Axt and Stahl, 1994b; Kim et al., 1994; Pantke and
Hvam, 1994; Saiki et al., 1994; Vengurlikar et al., 1994;
Bartels et al., 1995; Kreller et al., 1995; Häupl et al., 1996;
Nickolaus et al., 1996). Apart from that, bound biexci-
tons as well as two-exciton scattering states (excitation-
induced dephasing contributions) are necessary for in-
terpreting the dependence of four-wave-mixing and
pump-probe measurements on the polarization of light
(Schmitt-Rink et al., 1992; Bennhardt et al., 1993; Wang
et al., 1993, 1994; Hu et al., 1994; Rappen et al., 1994;
Smith et al., 1994; Axt et al., 1995; Axt, Victor, and
Stahl, 1996).

V. PHONON-INDUCED INCOHERENT DYNAMICS

Adding phonons to the system fundamentally alters
the exciton dynamics. Two aspects of this alteration are
particularly striking: First, phonons introduce relaxation
rates of the various dynamic variables. Second, new
electronic variables become relevant since the factoriza-
tions (45) and (46) no longer hold (Dubovsky and
Mukamel, 1991; Knoester and Mukamel, 1991; Axt, Vic-
tor, and Stahl, 1996). The generating-function approach
presented in Appendices A and B provides a compact
rigorous formulation of the coupled electron-phonon
dynamics both for the pair-conserving many-electron
model and for the Frenkel exciton model. It thus covers
in principle the whole range of phonon-related phenom-
ena, including the generation of non-equilibrium (hot)
phonon distributions (Hohenester et al., 1993) and co-
herent phonon effects (Cho et al., 1990; Kütt, 1992; Kuz-
netsov and Stanton, 1994, 1995). In practice, however,
these equations are usually too complicated for a direct
numerical integration, except for models of the electron-
phonon coupling that are simple enough to allow for
analytic solutions (this is illustrated by an example in
Axt and Mukamel, 1997a) or provided only a very lim-
ited set of phonons is dominantly coupled e.g., when the
system contains a few high-frequency Raman-active
modes or when the effect of the phonon bath can be
represented using a few collective oscillators. A wave-
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packet description, particularly suited to deal with the
latter case, has been worked out (Chernyak and Muka-
mel, 1996c). In all other cases, in order to obtain numeri-
cally manageable equations, it is necessary to adopt less
demanding reduction schemes that focus on selected as-
pects of the phonon interaction. In this section we shall
consider the incoherent aspect of electron-phonon cou-
pling. Our goal is to derive equations for purely
electronic-density matrices by eliminating the phonons
perturbatively. This level of theory provides a simple
microscopic treatment of dephasing and will enable us
to study the generation and subsequent thermalization
of incoherent exciton occupation densities, i.e., densities
that cannot be expressed as products of coherent transi-
tion amplitudes.

A systematic procedure for incorporating the phonon
contributions is based on expanding Eqs. (A1)–(A5) in a
Taylor series around am5bm50. This results in an infi-
nite hierarchy of equations of motion for all derivatives
of the five generating functions with respect to am and
bm taken at the point am5bm50. From the generating-
function property, it is clear that these derivatives are
nothing but the set of all phonon-assisted variables. To
lowest order (i.e., a5b50), we obtain equations of mo-
tion for the four electronic density matrices Y , B , N ,
and Z . The combined dynamics of these quantities is
our primary target. Besides the transition densities Y ,B
that govern the coherent limit, we now have to deal with
the partially occupationlike density matrices N and Z .
In contrast to the procedure for the coherent limit, Eqs.
(45) and (46) can no longer be used to eliminate these
variables, because of the partial loss of coherence caused
by the coupling to the phonon system. As in the case of
the two-pair transition density B , it is useful to remove
uncorrelated parts from N and Z by defining (Wang and
Cassing, 1985; Axt, Victor, and Stahl, 1996; Axt and
Mukamel, 1997b)

Nabcd5Yba* Ycd1N̄abcd , (61)

Zabcdef5Yba* B̄cdef1YcdN̄abef2YcfN̄abed1YefN̄abcd

2YedN̄abcf1Yba* ~YcdYef2YcfYed!

1Z̄abcdef . (62)

We have written down only those terms of the cluster
decomposition for N and Z that belong to the lowest
order in the driving field (Axt and Stahl, 1994a; Axt,
Victor, and Stahl, 1996) and contribute to x(3). The new
variables N̄ and Z̄ are a measure of the partial loss of
coherence in the system and vanish in the phonon-free
limit. Z̄ represents transitions between incoherent
phonon-induced exciton densities and two-pair states
(scattering states as well as bound biexcitons; Axt, Vic-
tor, and Stahl, 1996). These transitions show up, for ex-
ample, as excited-state absorption. It may be justified to
neglect Z̄ in situations where either these transitions are
off resonance with respect to any of the driving fields or
the response is dominated by competing coherent sig-
nals arising from the direct two-pair transitions repre-
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sented by B (Axt, Victor, and Stahl, 1996). In the fol-
lowing we shall concentrate on this situation, in which N̄
is the only new electronic density matrix responsible for
incoherent processes. Combining Eq. (61) with the rela-
tions (A21) and (A22) leads to a natural decomposition
of the carrier densities C and D into coherent and inco-
herent contributions according to

Cab5Cab
coh1Cab

inc , Dab5Dab
coh1Dab

inc , (63)

Cab
coh[ (

k5h
Yka* Ykb , Dab

coh[ (
k5e

Yak* Ybk , (64)

Cab
inc[ (

k5h
N̄akkb , Dab

inc[ (
k5e

N̄kabk . (65)

We shall also represent N̄ , as we did the transitions Y
and B , in the exciton basis set using the expansion

N̄abcd5(
x̄ x

c̄ba
x̄* c̄ cd

x n̄ x̄ x . (66)

Following standard procedures, we can incorporate the
influence of phonons on the dynamics of electronic den-
sity matrices approximately through phonon-induced
self-energies (Zimmermann, 1990; Kuhn and Rossi,
1992; Kuhn et al., 1994; Schilp et al., 1994, 1995; Axt,
Victor, and Stahl, 1996; Axt and Mukamel, 1997a). De-
tails of the specific scheme used here are given in Ap-
pendix D. When the definitions (61) and (62) are in-
serted into the equations of motion (A1)–(A3), taken at
a5b50, and the results of Appendix D are used for the
phonon-induced self-energies, we obtain the following
set of equations in the exciton representation:

i\] tyx5Ēxyx1i\(
x8

Im~VY
ph!x

x8yx8

1 (
x̄ x̄ 8x8

V̄x
x̄ x̄ 8x8@y x̄

* ~y x̄ 8yx81b x̄ 8x8!1 n̄ x̄ x8y x̄ 8

1 n̄ x̄ x̄ 8yx8#2EF M̄x2 (
x̄ 8x8

M̄x
x̄ 8x8~y x̄ 8

* yx81 n̄ x̄ 8x8!

2(
x8

M̄x
x8yx8G , (67)

i\] tb x̄ x5~Ēx1Ē x̄ !b x̄ x

1 (
x̄ 8x8

@V̄ x̄ x
x̄ 8x81i\ Im~VB

ph! x̄ x
x̄ 8x8#~b x̄ 8x8

1y x̄ 8yx8!

2i\(
x8

@y x̄ Im~VY
ph!x

x8yx81yx Im~VY
ph! x̄

x8yx8#

1ES (
x8

M̄x
x8b x̄ x81(

x̄ 8
M̄ x̄

x̄ 8b x̄ 8xD , (68)
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i\] t n̄ x̄ x5~Ēx2Ē x̄ ! n̄ x̄ x

1i\ (
x̄ 8x8

Im~VN
ph! x̄ x

x̄ 8x8~ n̄ x̄ 8x81y x̄ 8
* yx8!

2i\(
x8

@y x̄
* Im~VY

ph!x
x8yx81yx Im~Vph! x̄

x8yx8
* #

1ES (
x8

M̄x
x8 n̄ x̄ x82(

x̄ 8
M̄ x̄

x̄ 8* n̄ x̄ 8xD , (69)

where the self-energies \Vph are defined in Eqs. (D7),
(D11), and (D28). Expressed in terms of the new vari-
ables yx and n̄ x̄ x , the polarization (34) now reads

P̄5(
x

~M̄x* yx1M̄xyx* !2(
x̄ x

M̄ x̄
x
~y x̄

* yx1 n̄ x̄ x!1P̄stat .

(70)

The equation for the one-pair transition density y is
modified by the phonon coupling in three ways: (i) the
phonon-induced self-energy VY

ph , which is responsible
for phonon-induced dephasing of the transition density;
(ii) the Pauli blocking now contains an additional term
resulting from incoherent exciton densities; and (iii) in-
coherent exciton densities, which are coupled to y also
via the Coulomb potential. The structure of the latter
terms may be interpreted as a contribution to density-
induced dephasing. The two-pair transition density b has
also acquired a self-energy leading to dephasing. In ad-
dition, two new phonon-induced source terms (} VB

phyy
and } VY

phyy) show up. These contributions are compet-
ing with the source } V̄yy , already present in the coher-
ent limit. This coherent source is expected to be domi-
nant when the perturbative treatment of phonons, used
to derive the self-energies, applies. In contrast, the inco-
herent exciton density n̄ has only sources proportional
to the phonon coupling, reflecting the fact that n̄ has to
vanish in the phonon-free limit. The first of the two
sources (}VN

phy* y) does not affect the total incoherent
exciton occupation density n̄ tot[(xn̄xx . This can be seen
by summing this term over all exciton states x and using
the identity (x Im(VN)xx

x̄8x850, which follows directly
from the expression for the self-energy VN given in Ap-
pendix D. This term describes the scattering of coherent
exciton densities by phonons. The source } VY

phy* y is
therefore the only term leading to a net generation of
incoherent exciton densities. This generation rate equals
the loss rate representing the decrease of the corre-
sponding coherent density—in agreement with the prop-
erty that our model of the electron-phonon interaction
conserves separately the total densities of electrons or
holes. The density matrix n̄ x̄ x carries information about
incoherent exciton populations ( x̄ 5x) as well as intra-
band coherences ( x̄ Þ x). As the driving source in Eq.
(69) is given by the loss rate of the coherent carrier den-
sities, we have to conclude that intraband coherences
cannot vanish before the coherent densities have de-
cayed due to the dephasing action of the phonon bath.
In fact, they will usually influence the dynamics on a
time scale longer than the decay time of coherent den-
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sities, because of the finite memory resulting from Eq.
(69). This interpretation is supported by recent measure-
ments performed on an Al0.35GaAs0.65 /GaAs superlat-
tice (Haring Bolivar et al., 1997), in which oscillations
with differences of excitonic energies (Ēx2Ē x̄ ) had
been observed in a THz experiment for times longer
than the simultaneously determined interband dephas-
ing time T2 , as predicted by Axt, Bartels, and Stahl
(1996). At longer times after the interband transition
density Y has vanished, often the intraband coherences
start to dephase as well and eventually may vanish. The
exciton occupation densities n̄ x[ n̄ xx are then the only
active variables, and we find from Eq. (69) and the defi-
nition of the self-energy VN that their dynamics are gov-
erned by the master equation

\] t n̄ x5(
x8

~Rxx8 n̄ x82Rx8x n̄ x!, (71)

with

Rxx8[22 Im~Gx8xxx8
N

!, (72)

where GN is defined in Appendix D. GN depends on the
relaxation rate gN , accounting for the coupling of exci-
ton densities with one phonon assistance to those with
double assistance [collisional broadening (Schilp et al.,
1994, 1995)]. When this rate approaches zero, it is easy
to verify that the rates Rxx8 obey the detailed balance
condition

Rxx85expS \~vx82vx!

kT DRx8x , (73)

reflecting the conservation of energy in a completed
scattering event between excitons and phonons. Finite
values of gN correspond to an uncertainty in the phonon
energies introduced by the coupling with electrons,
which in a more complete microscopic treatment would
be accounted for by the multiple-phonon-assisted den-
sity matrices. The stationary point of the rate equation
(71) is, because of Eq. (73), a canonical distribution over
the exciton states x . This demonstrates that our model
predicts in the long-time regime charge densities corre-
sponding to a thermalized distribution of excitons. In-
stead of vanishing asymptotically in time, the intraband
coherences more generally will eventually reach a
steady-state value. In this case, improved expressions for
the rates Rxx8 may be obtained by setting the time de-
rivative of these coherences in Eq. (69) to zero, solving
for the coherences, and substituting in the equation for
the diagonal elements (Mukamel, 1995).

The following schematic picture of the dynamics in-
duced by a short laser pulse as predicted by Eqs. (67)–
(69) emerges from these considerations: starting with
the arrival of the laser pulse, the signals will initially be
dominated by the coherent dynamics represented by the
variables y and b . At the same time incoherent densities
start to build up, driven by the loss rate of coherent
carrier densities. This regime is followed by a period in
which coherent densities are on the decline, while intra-
band coherences and incoherent populations take over.
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Finally, the incoherent populations are the only active
variables left at longer times and their dynamics will
eventually result in a thermalized distribution of exci-
tons.

VI. COMPARISON WITH THE SEMICONDUCTOR
BLOCH EQUATIONS

In the traditional approach to truncating the hierarchy
of equations of motion, which leads to the semiconduc-
tor Bloch equations, the electronic part of the dynamics
is formulated entirely in terms of the two-point density-
matrices Y , C , and D (Haug and Koch, 1993). In con-
trast, when one institutes the requirement to obtain ex-
act results up to third order, one selects the density
matrices Y , B , N , and Z (or, after switching to the clus-
ter representation, Y , B̄ , N̄ , and Z̄) as the relevant dy-
namic variables to represent the purely electronic de-
grees of freedom. These are two-point, four-point, and
six-point density matrices, making the third-order
dynamics-controlled truncation a six-point density ma-
trix theory. It should be noted, however, that this does
not imply that all possible four- and six-point density
matrices are taken into account in the third-order
dynamics-controlled scheme; e.g., the four-point func-
tion ^ c̄ a

† c̄ b
† c̄ c c̄ d& is not considered, because it is of

O(E4), while the six-point function ^ d̄ a c̄ b d̄ c c̄ d d̄ e c̄ f& is
of third order, but it is not considered because the low-
est order at which it contributes to the polarization is the
fifth order (Bartels et al., 1995; Victor et al., 1995). In
this section we compare the semiconductor Bloch equa-
tions with the third-order dynamics-controlled trunca-
tion and explore circumstances whereby the two may
lead to different predictions. In order to make the con-
nection, we have to compare the dynamics of the vari-
ables Y , C , and D entering the semiconductor Bloch
equations. We shall explicitly discuss the transition den-
sity Y and the electronic density C . The discussion of
the hole density D is analogous to that for C and does
not lead to new qualitative insights. When we apply the
truncation scheme used to derive the semiconductor
Bloch equations (Haug and Koch, 1993) to our model,
defined by Eq. (30), we obtain

i\] tYab5\VY~Y !ab1 (
pqk5e

V̄bqkp
eeee ~CkpYaq2CkqYap!

2 (
pq5e,k5h

~V̄pqka
eehh 2V̄kqpa

heeh !~CpqYkb2CpbYkq!

2 (
pq5h,k5e

~V̄bkpq
eehh 2V̄bqpk

ehhe !~DqpYak2DqaYpk!

1 (
pqk5h

V̄kpqa
hhhh ~DpkYqb2DpqYkb!

2ES M̄ba
eh 2 (

k5h
M̄bk

eh Dka2 (
k5e

M̄ka
eh Ckb

1 (
k5e

M̄bk
ee Yak2 (

k5h
M̄ka

hhYkbD 1i\] t
phYab ,

(74)



157Axt and Mukamel: Nonlinear optics of semiconductor . . .
i\] tCab5~eb
e2ea

e!Cab1 (
pq5h,k5e

@~V̄pkbq
heeh 2V̄pqbk

hhee !

3Yqa* Ypk2~V̄pakq
heeh 2V̄pqka

hhee !Yqk* Ypb#

2EF (
k5h

~M̄bk
eh Yka* 2M̄ka

he Ykb!1 (
k5e

~M̄bk
ee Cak

2M̄ka
ee Ckb!G1i\] t

phCab1O~E4!, (75)

where the optical response has to be derived from Eq.
(34) for the polarization. The semiconductor Bloch
equation for D has a structure similar to that of Eq. (75).
Equations (74) and (75) assume the form familiar from
the semiconductor Bloch equations for bulk semicon-
ductors (Haug and Koch, 1993),

i\] tYk5~ek
e2ek

h!Yk2EMk
eh~12Dk2Ck!2(

q
V̄k2q

3@Yq~12Ck2Dk!1~Cq1Dq!Yk#1i\] t
phYk ,

(76)

i\] tCk5(
q

V̄q2k~Yq* Yk2Yk* Yq!2E~M̄k
ehYk*

2M̄k
eh* Yk!1i\] t

phCk , (77)

provided the homogeneity of the system in the bulk limit
is used to write Ypq5dpqYq , Cpq5dpqCq , and
Dpq5dpqDq (the index, here has to be identified with
the k-vector of the corresponding bulk Bloch function)
and provided that after we neglect exchange-type con-
tributions to the Coulomb interaction, the remaining
direct-type matrix elements are approximated as
V̄pqkl'd(p1k2q2l)V̄q2p (Haken, 1973). Further-
more, only the interband dipole matrix element
Mk

eh5Mkk
eh is retained. We shall refer to Eqs. (74) and

(75) as the semiconductor Bloch equations although
they are slightly more general than the more familiar
versions (76) and (77).

Truncation of the electronic part of the hierarchy has
been achieved in Eqs. (74) and (75) by factorization of
the higher-order electronic density matrices entering the
Heisenberg equations of motion for Y and C ,

Sabcd5^ c̄ a
† c̄ b d̄ c c̄ d&'CabYcd2CadYcb , (78)

Tabcd5^ d̄ a
† d̄ b d̄ c c̄ d&'DabYcd2DacYbd , (79)

Nabcd5^ c̄ a
† d̄ b

† d̄ c c̄ d&'Yba* Ycd1CadDbc

5Yba* Ycd1O~E4!. (80)

As factorizations like Eqs. (78)–(80) have a long tradi-
tion, motivated by many needs, they are known by many
names. For example, one can think of Eqs. (78)–(80) as
the lowest level of approximation [SUB(2); cf. Axt and
Mukamel (1997b)] resulting from the cluster decompo-
sition hierarchy, also known as the quantum
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hi-
erarchy. Another way to obtain these factorizations is by
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replacing the corresponding contributions to the Cou-
lomb interaction by their mean-field counterparts in Eq.
(15). The deviations from these mean-field contributions
have been suspected to have rapidly oscillating (ran-
dom) phases, leading to no macroscopic contributions.
That is why the name random phase approximation
(RPA) has been used too (Stahl, 1988; Haug and Koch,
1993). The assumption that the wave function can be
represented as a single Slater determinant also leads to
Eqs. (78)–(80). This approach is known as the time-
dependent Hartree-Fock (TDHF) theory (Ring and
Schuck, 1976). The TDHF assumption also implies that
the one-particle density matrix is a projection operator

r25r . (81)

When Eq. (81) is written in components according to
Eq. (32), we obtain

Cab5 (
k5h

Yka* Ykb1O~E4!, (82)

Dab5 (
k5e

Yak* Ybk1O~E4!, (83)

which coincides with our fundamental equation (63)
only in the coherent limit. The assumption that the sys-
tem may be represented by a single Slater determinant,
therefore, no longer holds when phonons are added.

When phonons are taken into account, Eqs. (74) and
(75) are not closed; instead these variables are coupled
to their phonon-assisted counterparts. This is repre-
sented by the terms i\] t

phYab and i\] t
phCab . To deal

with phonon-assisted variables within the framework of
the semiconductor Bloch equations it is common prac-
tice to use strategies of the type described in Appendix
D. Details of these procedures can be found in Zimmer-
mann (1990), Kuhn and Rossi (1992), Kuhn et al. (1994),
and Schilp et al. (1994, 1995).

The semiconductor Bloch treatment of Y and C re-
sulting from Eqs. (74) and (75) has to be compared with
the dynamics of these variables predicted by the third-
order dynamics-controlled truncation. Equations (67)–
(69) constitute our final result, expressed using the exci-
ton representation. The comparison will, however, be
more transparent if we start with Eqs. (A1)–(A5) since,
like the semiconductor Bloch equations [Eqs. (74) and
(75)], they are written in the single-particle basis. We
note, of course, that Eqs. (A1)–(A5) still contain the
phonon degrees of freedom that were eliminated in the
semiconductor Bloch equations. In the following we
shall use Eqs. (A1)–(A5) to derive equations of motion
as close as possible to Eqs. (74) and (75) in order to
facilitate the comparison. The equation of motion for Y
in the third-order dynamics-controlled truncation is ob-
tained as the special case a5b50 of Eq. (A1):
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i\] tYab5\VY~Y !ab1 (
pqk5e

V̄bqkp
eeee Skpaq

2 (
pq5e,k5h

~V̄pqka
eehh 2V̄kqpa

heeh !Spqkb

1 (
pqk5h

V̄kpqa
hhhh Tpkqb

2 (
pq5h,k5e

~V̄bkpq
eehh 2V̄bqpk

ehhe !Tqpak

2ES M̄ba
eh 2 (

k5h
M̄bk

eh Dka2 (
k5e

M̄ka
eh Ckb

1 (
k5e

M̄bk
ee Yak2 (

k5h
M̄ka

hhYkbD 1i\] t
phYab .

(84)

The variable C is redundant, since in the third-order
dynamics-controlled treatment the dynamics of popula-
tions and intraband coherences is obtained from a single
variable, the pair density N . The particle densities C and
D can be eliminated using the identities

Cab5 (
k5h

Nakkb1O~E4!, (85)

Dab5 (
k5e

Nkabk1O~E4!. (86)

Nevertheless, it is illustrative to set up the equation of
motion for C in order to compare it with the semicon-
ductor Bloch equations. The Heisenberg equation for C
reads

i\] tCab5~eb
e2ea

e!Cab1 (
pq5h,k5e

@~V̄pkbq
heeh 2V̄pqbk

hhee !Naqpk

2~V̄pakq
heeh 2V̄pqka

hhee !Nkqpb#2EF (
k5h

~M̄bk
eh Yka*

2M̄ka
he Ykb!1 (

k5e
~M̄bk

ee Cak2M̄ka
ee Ckb!G

1i\] t
phCab1O~E4!. (87)

This equation is redundant in the dynamics-controlled
approach, because it is solved identically by Eq. (85).

The fundamental difference between the dynamics-
controlled truncation and semiconductor Bloch treat-
ment of Y and C is that within the latter the four-point
functions S , T , and N , appearing as sources for Y and
C , are factorized according to Eqs. (78)–(80). Let us
discuss the implications of this approximation for inter-
band dynamics. In order to compare the semiconductor
Bloch factorizations (78) and (79) with the correspond-
ing dynamics-controlled results, let us take a closer look
at the formulas used in the latter case for the density
matrices S and T [see Eqs. (A23) and (A24)].

Sabcd5 (
k5h

Zakkbcd1O~E5!, (88)

Tabcd5 (
k5e

Zkabkcd1O~E5!. (89)
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These equations can be recast by switching to the cluster
representation. Using Eq. (62) we find

Sabcd5 (
k5h

@Yka* ~B̄kbcd1YkbYcd2YkdYcb!

1YkbN̄akcd2YkdN̄akcb1YcdN̄akkb

2YcbN̄akkb1Z̄akkbcd#

5CabYcd2CadYcb1 (
k5h

@Yka* B̄kbcd

1YkbN̄akcd2YkdN̄akcb1Z̄akkbcd# , (90)

and analogously

Tabcd5DabYcd2DacYbd1 (
k5e

@Yak* B̄bkcd

1YbkN̄kacd2YckN̄kabd1Z̄kabkcd# , (91)

where we have used the identities (85) and (86). The
first two terms in each equation reproduce the semicon-
ductor Bloch equations. In addition the terms } Y* B̄
and } Z̄ represent genuine many-body correlations. The
part } Y* B̄ results from two-photon absorption pro-
cesses to bound biexcitons and exciton-exciton scatter-
ing states, while the part } Z̄ accounts for excited-state
absorption from incoherent exciton densities to bound
or unbound two-pair states. We therefore expect the
dynamics-controlled truncation results to deviate consid-
erably from the semiconductor Bloch equations when-
ever two-pair correlations are significant. This is always
the case when resonances corresponding to bound biex-
citons are resolved. But this is not the only situation in
which these contributions are important. For example,
the dependencies of four-wave mixing (FWM) or pump-
probe signals on the polarization of light cannot be ac-
counted for within the semiconductor Bloch equations
(Schmitt-Rink et al., 1992; Bennhardt et al., 1993; Wang
et al., 1993; Hu et al., 1994; Rappen et al., 1994; Smith
et al., 1994; Wang et al., 1994; Axt et al., 1995; Axt, Vic-
tor, and Stahl, 1996). Apart from terms related to two-
pair transitions, we also obtain two contributions result-
ing from incoherent exciton densities (}YN̄), which
cannot be absorbed into the definition of the particle
densities C and D . These two terms have a structure
similar to the corresponding incoherent parts of the par-
ticle densities, suggesting an interpretation as density-
induced dephasing. Instead of adding only the phonon
part i\] t

phYab to the pure mean-field dynamics resulting
from the factorizations (78), one often introduces a
more general correction through the ‘‘collision’’ term
i\] t

colYab . When this term is included, Eq. (74) is in
principle a correct equation, as all deviations from the
explicitly displayed factorized part can be absorbed in
i\] t

colYab . Standard methods used to obtain the Cou-
lomb scattering corrections are the second-order Born
approximation (Haug and Koch, 1993; Schäfer et al.,
1996) or the Kadanoff-Baym ansatz (Kuznetsov, 1991a).
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An overview, together with a systematic derivation of
this level of description starting from a correlation ex-
pansion based on the quantum BBGKY hierarchy, can
be found in Kuhn (1997). The resulting equations repre-
sent the traditional starting point for state of the art
calculations. In practice, all of these standard procedures
lead to scattering kernels of Boltzmann type (Haug and
Koch, 1993). It has been shown by Schäfer et al. (1996)
that the low-density limit of corrections resulting from
the second-order Born-approximation can be identified
as part of the scattering contributions to B̄ . To obtain
the high-density contributions to the Born approxima-
tion within the dynamics-controlled truncation one has
to take the cut for truncation at a higher level. The con-
tributions from the Born approximation constitute a sig-
nificant improvement compared to a theory that retains
only the factorized parts of the four-point density matri-
ces S and T . Nevertheless, the treatment of genuine
many-body correlations is still incomplete. In particular,
transitions involving bound biexcitons are not yet ac-
counted for in the standard treatments of the ‘‘collision’’
term.

We now turn to the discussion of intraband dynamics
represented by the electronic density C . The semicon-
ductor Bloch equation (75) can be obtained from the
third-order dynamics-controlled truncation equation
(87) by invoking the factorization (80) of the pair den-
sity N on the right-hand side of Eq. (80). First we note
that in the coherent limit the third-order dynamics-
controlled result coincides to leading order in the laser
field with the semiconductor Bloch factorization (80).
This implies that in the coherent limit there is no differ-
ence between the third-order dynamics-controlled trun-
cation and the mean-field treatment of particle densities;
C and D are given by the coherent densities Ccoh and
Dcoh defined in Eq. (64). The fundamental difference
between the lowest-order dynamics-controlled result
and Eq. (75) is that the phonon-induced deviation of N
from its factorized value measured by N̄ is completely
neglected. The dynamic variable N , which in general
represents the dynamics of coherent pair densities as
well as long-lived intraband coherences and the thermal-
ization of pair occupation densities (three distinct pro-
cesses each associated with a typical time scale), is there-
fore reduced to the coherent part only. In addition the
semiconductor Bloch treatment is in danger of artifi-
cially predicting resonances at frequencies correspond-
ing to the differences eb2ea of one-particle energies
(Binder et al., 1994; Chansungsan et al., 1994; Meier
et al., 1994, 1995; Axt, Bartels, and Stahl, 1996). The last
point needs further clarification. The fact that Eqs. (85)
and (86) are rigorous identities even in the presence of
phonons proves that only differences of frequencies as-
sociated with interacting electron-hole pairs (with pos-
sible phonon renormalizations) can enter the carrier
densities. This already follows from the general formu-
lation of the generating function Nab given by Eq. (A3)
and is preserved by the perturbative treatment of the
phonon degrees of freedom established in Eq. (69). To
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see this, we note that N describes densities of electron-
hole pairs. The propagation of N in configuration space
can be related to differences of one-particle energies
only in the limiting case when the Coulomb interaction
between the electrons and holes forming the pairs is
negligible as well as the energetic shifts due to phonon
interactions. Furthermore, one-particle frequencies are
involved in the sources to N only in this case. In all
other situations, the intraband response predicted by
dynamics-controlled truncation can consist only of fre-
quencies either imposed by the external field or by the
frequencies of electron-hole pairs including interaction-
induced renormalizations. This is, however, not so obvi-
ous from the equation of motion (75). Indeed it has been
pointed out by Axt, Bartels, and Stahl (1996) that each
of the sources in this equation alone would lead to com-
ponents oscillating with differences of one-particle fre-
quencies. In a rigorous treatment, these contributions
cancel out completely. Approximations, like the factor-
ization of N in the mean-field equation (75), leave some
parts of these components uncompensated, leading to a
prediction of oscillations with bare one-particle frequen-
cies even when the renormalizations are significant and
the excitation is in resonance with excitonic states
(Binder et al., 1994; Chansungsan et al., 1994; Meier
et al., 1994, 1995; Axt, Bartels and Stahl, 1996). The
measurement of THz signals for times longer than the
coherent regime at low excitation densities in the vicin-
ity of the lowest exciton resonance is a critical experi-
mental test of the different predictions (Haring Bolivar
et al., 1997). The semiconductor Bloch equations are at
variance with this experiment in two respects: (i) The
semiconductor Bloch treatment is not able to describe
intraband signals oscillating with excitonic frequencies
for times longer than T2/2 after the end of the laser
pulse, where T2 is the interband dephasing time, while
such oscillations are observed for three times that long
by Haring Bolivar et al. (1997); (ii) there is no experi-
mental evidence for oscillations with differences of one-
particle frequencies for selective excitation at the lowest
exciton frequency.

In conclusion, there are two general types of situa-
tions in which the predictions of dynamics-controlled
truncation and the semiconductor Bloch theory for in-
traband dynamics coincide: (i) when components with
single-particle frequencies entering the semiconductor
Bloch approach are small compared to the forced oscil-
lations with the renormalized (excitonic) frequencies.
This behavior is typical near the coherent limit and is
always realized in the early stages of the dynamics for
times when incoherent densities have not yet built up;
(ii) measurements dominated by contributions from
states in which the interaction-induced renormalizations
are negligible. This is realized, for example, when the
dominant contribution to the signal comes from scatter-
ing states in which the electron and the hole are spatially
well separated—a case in which a representation in
terms of free carrier densities is adequate and more
natural than a description in terms of pair densities,
which is still correct but inconvenient in this case. The
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tremendous success of the semiconductor Bloch equa-
tions indicates that at least one of these conditions is
well satisfied for a large number of experimental situa-
tions. Finally we note that ‘‘collision’’ terms have been
derived for the intraband dynamics as well (Haug and
Koch, 1993; Kuhn, 1997). In the standard approaches
one obtains Boltzmann-like scattering kernels, which are
of fourth order in the external field and thus show up in
dynamics-controlled truncation only when truncated at
the fourth order. The phonon-induced parts of N dis-
cussed above are missing in these standard treatments as
in the collision-free semiconductor Bloch equations.

It should be noted that the standard treatment of
phonons, performed on the two-point level, leads to a
Boltzmann-like scattering kernel for carrier-phonon
scattering similar to the results for carrier-carrier scat-
tering (Kuhn and Rossi, 1992; Kuhn et al., 1994; Schilp
et al., 1994, 1995; Kuhn, 1997). Both carrier-phonon
scattering and carrier-carrier scattering in any
Boltzmann-like theory eventually lead to a thermalized
distribution of the carriers over the one-particle states
with energies ea . In contrast, the dynamics-controlled
truncation predicts a thermalization into excitonic states.
This should lead to observable differences between the
respective predictions for luminescence measurements.
However, it should be stressed that although striking de-
viations from the semiconductor Bloch equations are ex-
pected in certain cases, a great many experimental situ-
ations are well reproduced by the simpler treatment of
the semiconductor Bloch equations. The results of
dynamics-controlled truncation usually reduce smoothly
to the semiconductor Bloch limit in these situations.

VII. COMPARISON WITH THE FRENKEL
EXCITON MODEL

The optical responses of molecular crystals (Davydov,
1971; Pope and Swenberg, 1982; Silinsh and Cápek,
1994), superlattices (Bulović et al., 1996; Bulović and
Forrest, 1996; Forrest, 1997), and aggregates (Knoester
and Mukamel, 1991; Knoester, 1993; Mukamel, 1994;
Chernyak et al., 1995) are usually analyzed in terms of
Frenkel excitons rather than interacting fermions. De-
velopments very similar to those presented for a pair-
conserving many-electron system have been made for
Frenkel excitons. In this section we shall compare the
results obtained for these two-model systems and show
that, despite obvious differences in the microscopic for-
mulation, both models lead to dynamic equations having
essentially the same structure (Chernyak and Mukamel,
1996a). This should allow the interpretation of many
phenomena in semiconductor optics using the simpler
Frenkel exciton model.

In the Frenkel exciton model the electron-hole pair is
tightly bound; consequently, instead of operators for the
creation or annihilation of fermions, the basic building
blocks are operators Bn

† and Bn for the creation or an-
nihilation of an excitation (electron-hole pair) on site n .
Often only one excited state per molecule is taken into
account (Dubovsky and Mukamel, 1991; Leegwater and
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Mukamel, 1992), although multilevel extensions are pos-
sible (Chernyak and Mukamel, 1996c; Kühn et al., 1996;
Kühn and Mukamel, 1997). For simplicity we shall focus
on the former case. The operators Bn

† and Bn then obey
the Pauli commutation rules (Mukamel, 1995)

@Bn ,Bm#5@Bn
† ,Bm

† #5Bn
25~Bn

† !250, (92)

@Bn ,Bm
† #5dnm~122Bn

†Bn!. (93)

As in the many-electron model, the Frenkel exciton
Hamiltonian comprises the following contributions:

H̃[H̃mat1H̃ph1H̃ep1H̃opt . (94)

For typical molecular assemblies it is justified to con-
sider a material Hamiltonian that conserves the number
of excitations. This is known as the Heitler-London ap-
proximation and the material part of the Hamiltonian
then reads

H̃mat[\(
n

VnBn
†Bn1 (

mÞn
JnmBn

†Bm , (95)

where Vn is the electronic transition frequency of the
nth isolated molecule and Jnm accounts for dipole-
dipole as well as for short-range exchange exciton cou-
plings. The purely phonon Hamiltonian has the form

H̃ph[(
m

\ṽm b̃ m
† b̃ m , (96)

and the exciton-phonon interaction is assumed to be lin-
ear in phonon coordinates [analogous to Eq. (8)],

H̃ep[ (
nmm

g̃ nm
m Bn

†Bm~ b̃ m
† 1 b̃ m!. (97)

The operators b̃ m
† and b̃ m are boson operators for the

creation or annihilation of a phonon in mode m. Finally,
the dipole coupling to the optical field E(t) is given by

H̃opt[2E~ t !P̂̃, (98)

where the optical polarization operator, from which all
optical properties are derived, is given by

P̂̃5(
n

@mn~Bn1Bn
† !1mn8Bn

†Bn#1P̃stat . (99)

Here mn represents the transition dipole matrix element
at site n , mn8 accounts for the change of the permanent
dipole moment when site n gets excited, and P̃stat is the
static polarization of the assembly. The polarization is
therefore given by

P̃[^ P̂̃&5(
n

@mn~Ỹn1Ỹn* !1mn8Ñnn#1P̃stat , (100)

where we have introduced the definitions

Ỹn[^Bn&, Ñnm[^Bn
†Bm&. (101)

As in Eq. (34) for the many-electron system we have
two distinct types of contributions; those proportional to
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Ỹ are analogous to the interband transitions [} Y in Eq.
(34)], while those proportional to Ñ correspond to the
intraband transitions [} C ,D in Eq. (34)]. The optical
response in this model is thus fully determined once the
transition density Ỹ and the population-like density Ñ
are calculated. As in the many-electron system it is not
possible to obtain a closed set of equations of motion for
these fundamental dynamic variables, and we have to
face the problem of an infinite hierarchy of equations of
motion. For the Frenkel system, a classification of the
higher-order density matrices according to the leading
order in the laser field can be based on the following
observation (Dubovsky and Mukamel, 1991; Knoester
and Mukamel, 1991; Mukamel, 1994, 1995):

Let Ẫn denote the normal-ordered product of n op-
erators B†,B and an arbitrary number of phonon opera-
tors b̃ †, b̃ , where the normal ordering means that all B†

operators stand to the left of B . When the system is
initially in the ground state, it then follows for the ex-

pectation value of Ẫn that

^Ẫn&5O~En!. (102)

This classification makes the application of dynamics-
controlled truncation to the Frenkel exciton model pos-
sible. Proceeding along the same lines as in the many-
electron case, we can set up equations of motion for the
generating functions (Axt and Mukamel, 1997a),

Ỹj
ab[^BjF̂̃

ab&, (103)

B̃ij
ab[^BiBjF̂̃

ab&, (104)

Ñij
ab[^Bi

†BjF̂̃
ab&, (105)

Z̃kij
ab[^Bk

†BiBjF̂̃
ab&, (106)

F̃ab[^ F̂̃ab&

[K S expS (
m

am b̃ m
† D D S expS (

m
bm b̃ mD D L .

(107)

The equations relevant for the third-order response are
given by Eqs. (B1)–(B5).

We begin our comparison with the many-electron dy-
namics by discussing the coherent limit defined by
g̃ m→0. In this case we again obtain closed equations for
electronic variables alone. Factorization rules analogous
to Eqs. (45) and (46) hold,

Ñij[Ñij
a5b505Yi* Yj1O~E4!, (108)

Z̃kij[Z̃kij
a5b505Yk* Bij1O~E4!, (109)

as can be seen from Eqs. (B1)–(B4). The coherent dy-
namics is therefore determined by the one- and two-pair
transition densities Ỹj and B̃ij[B̃ij

a5b50 . The resulting
equations of motion according to Eqs. (B1) and (B2) are
given by
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i\] tỸ j5\ṼY~Ỹ ! j22(
m

J̃ jmỸj* B̃jm

2E@mj~122Ỹj* Ỹj!1mj8Ỹj# , (110)

i\] tB̃ ij5\ṼB~B̃ ! ij

2j ijE@mjỸ i1miỸ j1~mj81mi8!B̃ij# , (111)

where

j ij[12d ij , J̃ jm[d jm\V j1Jjm (112)

and \ṼY and \ṼB are defined in Eqs. (B6) and (B7).
The polarization of the Frenkel model in the coherent
limit is given by [cf. Eq. (100)]

P̃[^ P̂̃&5(
n

@mn~Ỹn1Ỹn* !1mn8Ỹn* Ỹn#1P̃stat . (113)

These equations are analogous to Eqs. (47) and (48).
They have been used by Spano and Mukamel (1991a,
1991b); Leegwater and Mukamel (1992); and Chernyak
and Mukamel (1993) to study the two-exciton problem
for the Frenkel system in great detail. Equation (111) is
equivalent to a model of bosons interacting via an infi-
nite on-site repulsion, which accounts for Pauli exclu-
sion. From the analogy to this ‘‘hard-core’’ model it is
clear that Eq. (111) may not describe bound biexciton
states, because the repulsion can only lead to exciton-
exciton scattering. By adding attractive interactions, one
can easily extend the Frenkel exciton formalism to ob-
tain bound two-exciton states (Dubovsky and Mukamel,
1991; Spano et al., 1991). Equation (111) is considerably
easier to solve than its counterpart equation (48) for the
many-electron system. In particular it has been shown
that the two-exciton Green’s function which solves Eq.
(111) can be expressed explicitly in terms of the corre-
sponding one-exciton Green’s function (Leegwater and
Mukamel, 1992; Chernyak and Mukamel, 1993). Our
goal in this section is to demonstrate that, despite differ-
ences from the many-electron system, Eqs. (110) and
(111) can be recast in a form analogous to Eqs. (58) and
(59). To this end we first introduce exciton eigenfunc-
tions c̃ and eigenvalues Ẽx5\ṽx defined as the solution
of the eigenvalue problem

\ṼY~ c̃x! j5(
m

J̃ jmc̃m
x 5Ẽxc̃ j

x . (114)

We then define a function B̃̄ ij by

B̃ij5j ij~ B̃̄ ij1ỸiỸ j!. (115)

The factor j ij [cf. Eq. (112)] explicitly enforces the Pauli
repulsion. It is clear that Eq. (115) leaves the values of

B̃̄ ij for i5j undefined. From Eqs. (110) and (111) we
obtain

j iji\] tB̃̄ ij5j ijF(
n

~ J̃ jnB̃̄ in1 J̃ inB̃̄nj!2 J̃ ji~ B̃̄ ii1ỸiỸ i!

2 J̃ ij~ B̃̄ jj1ỸjỸ j!2E~mi81mj8!B̃̄ ijG . (116)
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We shall use our freedom to choose B̃̄ jj by requiring that
Eq. (116) still holds when the common factors j ij are

dropped on both sides. We then expand B̃̄ and Ỹ in
terms of exciton eigenfunctions

Ỹj5(
j

c̃ j
x ỹ x , B̃̄ ij5(

x̄ x
c̃ i

x̄ c̃ j
x b̃ x̄ x . (117)

The relevant equations for the coherent Frenkel exciton
dynamics assume in this representation the form

i\] t ỹ x5Ẽx ỹ x1 (
x̄ x̄ 8x8

Ṽx
x̄ x̄ 8x8 ỹ x̄

* ~ ỹ x̄ 8 ỹ x81 b̃ x̄ 8x8!

2ES M̃x2 (
x̄ 8x8

M̃x
x̄ 8x8 ỹ x̄ 8

* ỹ x82(
x8

M̃x
x8 ỹ x8D ,

(118)

i\] t b̃ x̄ x5~Ẽ x̄ 1Ẽx! b̃ x̄ x1 (
x̄ 8x8

Ṽ x̄ x
x̄ 8x8~ b̃ x̄ 8x81 ỹ x̄ 8 ỹ x8!

1ES (
x8

M̃x
x8b̃ x̄ x81(

x̄ 8
M̃ x̄

x̄ 8b̃ x̄ 8xD , (119)

where Ṽx
x̄ x̄ 8x8 , Ṽ x̄ x

x̄ 8x8 , M̃x , M̃x
x8 , and M̃x

x̄ 8x8 are defined
in Eqs. (C13)–(C17).

Equations (118) and (119) are identical in form to
Eqs. (58) and (59). From this discussion it is clear that
the pair-conserving many-electron model and the Fren-
kel exciton model essentially describe the same basic
dynamics. The great variety of possible optical responses
realized for different materials as seen from the point of
view of Eqs. (118), (119), (58), and (59) reflect only dif-
ferent sets of parameters in these equations. This formal
analogy is not limited to the coherent limit and also
holds when phonons are incorporated in the model.

The combined dynamics of coherent transition densi-
ties and incoherent populations can be worked out for
the Frenkel exciton model in complete analogy to the
many-electron model (Axt and Mukamel, 1997a). The
new partially populationlike variables in this case are
Ñij5^Bi

†Bj& and Z̃kij5^Bk
†BiBj&. Variables measuring

the deviation from the coherent limit can, in analogy to
Eqs. (61) and (62), be defined as

Ñij5Ỹi* Ỹj1 Ñ̄ ij , (120)

Z̃kij5j ij@Ỹk* ~ B̃̄ ij1ỸiỸ j!1 Ñ̄kiỸ j1 Ñ̄kjỸ i1 Z̃̄kij# ,
(121)

where the factor j ij in Eqs. (121) explicitly enforces the

Pauli exclusion. In the following we shall neglect Z̃̄ , re-
sulting in a factorization of Z̃ that coincides apart from
the factor j ij with the one previously obtained from a
maximum-entropy argument (Dubovsky and Mukamel,
1991). When we introduce the exciton representation of

Ñ̄ by

Ñ̄ ij5(
x̄ x

c̃ i
x̄* c̃ j

x ñ x̄ x (122)
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and eliminate the phonon degrees of freedom perturba-
tively, we obtain the following set of equations:

i\] t ỹ x5Ẽx ỹ x1i\(
x8

Im~ṼY
ph!x

x8 ỹ x8

1 (
x̄ x̄ 8x8

Ṽx
x̄ x̄ 8x8@ ỹ x̄

* ~ ỹ x̄ 8 ỹ x81 b̃ x̄ 8x8!

1 ñ x̄ x8 ỹ x̄ 81 ñ x̄ x̄ 8 ỹ x8#

2EF M̃x2 (
x̄ 8x8

M̃x
x̄ 8x8~ ỹ x̄ 8

* ỹ x81 ñ x̄ 8x8!

2(
x8

M̃x
x8 ỹ x8G , (123)

i\] t b̃ x̄ x5~Ẽx1Ẽ x̄ ! b̃ x̄ x

1 (
x̄ 8x8

~Ṽ x̄ x
x̄ 8x81i\ Im~ṼB

ph! x̄ x
x̄ 8x8!~ b̃ x̄ 8x8

1 ỹ x̄ 8 ỹ x8!2i\(
x8

~ ỹ x̄ Im~ṼY
ph!x

x8 ỹ x8

1 ỹ x Im~ṼY
ph! x̄

x8 ỹ x8!

1ES (
x8

M̃x
x8b̃ x̄ x81(

x̄ 8
M̃ x̄

x̄ 8b̃ x̄ 8xD , (124)

i\] t ñ x̄ x5~Ẽx2Ẽ x̄ ! ñ x̄ x

1i\ (
x̄ 8x8

Im~ṼN
ph! x̄ x

x̄ 8x8~ ñ x̄ 8x81 ỹ x̄ 8
* ỹ x8!

2i\(
x8

@ ỹ x̄
* Im~VY

ph!x
x8 ỹ x8

1 ỹ x Im~Vph! x̄
x8 ỹ x8

* #

1ES (
x8

M̃x
x8ñ x̄ x82(

x̄ 8
M̃ x̄

x̄ 8* ñ x̄ 8xD , (125)

where the phonon-induced self-energies \Ṽph are given
in Appendix E. In terms of the variables of Eqs. (123)–
(125) the polarization (100) now reads

P̄5(
x

~M̃x* ỹ x1M̃x ỹ x* !2(
x̄ x

M̃ x̄
x
~ ỹ x̄

* ỹ x1 ñ x̄ x!1P̃stat .

(126)

Equations (123)–(125) demonstrate that the Frenkel
model leads to dynamic equations having the same
structure as the corresponding ones for the pair-
conserving many-electron system [cf. Eqs. (67)–(69)]. As
in the coherent case [Eqs. (118), (119), (58), and (59)],
the different microscopic definition of the parameters
entering the equations is the only difference between
these systems in the above representation.
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VIII. CONCLUDING REMARKS

The theoretical framework developed in this paper
yields a unified description beyond the semiconductor
Bloch equations treatment of the optical response of a
large class of semiconductor and organic materials. It is
particularly suitable for confined systems such as mo-
lecular aggregates, quantum wells, heterostructures, and
nanocrystals. Starting with a general Hamiltonian that
conserves the number of electron-hole pairs and can
represent Frenkel, Wannier, and intermediate excitons,
we obtained exact generating-function results [Eqs.
(A1)–(A5)]. Using these together with Eqs. (42)–(44)
and Eq. (34), we then established the structural equiva-
lence of the semiconductor model [Eqs. (58) and (59)]
with the Frenkel model [Eqs. (118) and (119)] recast in
the exciton representation in the coherent limit. This
equivalence is also retained when phonons are included
and additional dynamic variables are added [cf. Eqs.
(67)–(69) for the semiconductor and Eqs. (123)–(125)
for the Frenkel system]. We further compared these re-
sults with the semiconductor Bloch equations [Eqs. (74)
and (75)]. Issues addressed, using our equations, that
cannot be studied on the semiconductor Bloch level in-
clude many-body resonances associated with two-pair
states (bound or unbound biexcitons), the influence of
two-pair transitions on the polarization dependence of
various signals such as four-wave-mixing or pump-probe
measurements, and excited-state absorption between
one-pair and two-pair states. Furthermore, we have
shown that under certain conditions the proper model-
ing of intraband dynamics also requires a treatment be-
yond the semiconductor Bloch equations. The reduced
description derived in Sec. V is particularly suitable for
exploring the interplay between coherent and incoher-
ent dynamics. We have demonstrated that our treatment
will eventually lead to a thermalized occupation of exci-
tonic states at long times.

An alternative approach for calculating optical sus-
ceptibilities and nonlinear response functions is based
on expanding them in the global (many-electron) eigen-
states. All optical properties can then be recast in the
form of summations involving the eigenvalues and the
corresponding dipole matrix elements. This is known in
the molecular literature as the sum-over-states (SOS)
approach. For the present pair-conserving Hamiltonian,
the single excitations and the double excitations may be
separately diagonalized, thereby giving the relevant
eigenstates. With these in hand and the matrix elements
of the dipole operator calculated, one can use the SOS
approach to find the nonlinear optical responses. For-
mulating the density-matrix dynamics in terms of the
global eigenstates corresponding to excitations with
definite numbers of pairs is not the same as our exciton
representation of the dynamics; there is no one-to-one
correspondence between the respective dynamic vari-
ables. Instead they are connected by a linear transforma-
tion that mixes variables having different lowest orders
in the laser field (Victor et al., 1996). The equations of
motion also have very different structures (Mukamel,
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1994; Chen et al., 1996; Victor et al., 1996). The
dynamics-controlled truncation approach developed
here has numerous advantages over the SOS formula-
tion, which is much more computationally intensive.
Both calculating the eigenstates and performing the nec-
essary multiple summations become intractable for large
systems. In the equation-of-motion dynamics-controlled
approach we calculate the necessary Green’s functions
(and observables) directly, considerably reducing the
number of redundant calculations. Another major diffi-
culty with the SOS approach is the issue of size consis-
tency. Optical susceptibilities (like any other bulk prop-
erty) must scale linearly with system size, once the size is
sufficiently large compared with all relevant coherence
sizes. In SOS calculations this thermodynamic limit is
the result of a cancellation of terms that scale with
higher powers of the size. These cancellations limit the
accuracy of SOS calculations; simple approximations
may become dangerous since they destroy the delicate
balance among large cancelling terms, resulting in huge,
unphysical consequences and making it hard to develop
physical intuition.

In the dynamics-controlled truncation approach, these
cancellations are built-in from the very start, and each
individual contribution to the response has the proper
scaling with size (Spano and Mukamel, 1991a, 1991b;
Chernyak and Mukamel 1996b; Victor et al., 1996). The
SOS expressions for susceptibilities are universal and
apply to all types of materials. However, the approxima-
tions made in calculating the global eigenstates of mol-
ecules, molecular aggregates, semiconductors, and con-
jugated polyenes are very different, making it extremely
difficult to trace the origin of the different optical re-
sponse of different materials. In contrast, the equations-
of-motion approach provides a unified description of
various materials. This can be accomplished by varying
simple parameters such as the Coulomb interaction
strength or the hopping-matrix elements. A convenient,
transparent physical picture then emerges (Chernyak
and Mukamel, 1996a). In a sum-over-states approach it
is virtually impossible to make contact with the standard
semiconductor literature, while our formulation easily
allows one to recover most major developments in this
field as a limiting case. In addition, the sum-over-states
approach is limited to a strict perturbative treatment of
the radiation field, while the equations truncated by
dynamics-control can be useful in many cases at excita-
tion densities beyond the scope of strict perturbation
theory. The dynamics-controlled truncation results in a
set of equations for which a perturbative solution yields
the optical response rigorously up to the prescribed or-
der chosen by the cut for truncation. When one solves
these equations numerically, nonperturbatively in the
field, the solution will also contain contributions of
higher orders in the laser field than the one used for
truncation. This is a partial resummation in the external
field. In connection with other truncation schemes such
as factorizations leading to the semiconductor Bloch
equations (which is exact only for the linear response),
similar strategies have been widely used to study the
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dependence of optical signals on the excitation density.
Recently calculations of this type have been performed
within the dynamics-controlled truncation (Mukamel
et al., 1996; Victor and Stahl, 1996; Bartels et al., 1997)
truncated at the third order. The results reproduce those
of corresponding experiments, including signatures of
many-body correlations for excitation densities well be-
yond the strict validity of third-order perturbation
theory. Only strategies developed for rather high excita-
tion densities, in particular screening models (Wyld and
Fried, 1963; Zimmermann et al., 1978; Haug and
Schmitt-Rink, 1984; Yu-Kuang Hu et al., 1989; Hart-
mann et al., 1990; Bechstedt and Glutsch, 1991; Collet,
1993), have so far not been systematically incorporated
within our approach. Parts of these contributions are al-
ready covered by the present equations but not system-
atically classified as a contribution to screening, while
some high-density corrections are surely missing.

The primary limitation of the present theory is the
restriction to pair-conserving systems. While this is jus-
tified for many materials, the situation is fundamentally
different for related classes of materials such as conju-
gated polymers. This can be seen upon examination of
typical numbers, characterizing the Coulomb interaction
for the Pariser-Parr-Pople (PPP) model, which is a com-
mon semiempirical model for conjugated polymers. The
one-particle (Peierls) gap given by Ep54utud , where d is
the alternation and t is the mean strength of the next-
neighbor coupling, is Ep;0.7 eV for standard PPP val-
ues for polyacetylene [utu 5 2.4 eV, d50.07] (McWill-
iams et al., 1991), while the total optical gap is ;2 eV in
the long chain limit. Thus, instead of decreasing the one-
particle gap by the exciton binding energy, as in the case
of direct-gap semiconductors, adding the Coulomb inter-
action more than doubles the one-particle gap, due to
the dominance of the repulsive parts of the interaction
in this case. Furthermore, due to the non-pair-
conserving terms, components with one and two
electron-hole pairs are strongly mixed in the excited
states of conjugated polymers. For small oligomers the
mixing is typically ;50% for excited states of Ag sym-
metry (McWilliams et al., 1991). On the other hand, it is
known from full configuration interaction calculations
that the ground state has an overlap of more than 90%
with the Hartree-Fock ground state, even for small oli-
gomers, in which correlation effects are expected to be
most pronounced (McWilliams et al., 1991). Further-
more, most of the linear absorption is concentrated in
transitions to only one excited state of Bu type, which is
well represented by the corresponding Hartree-Fock
state too. Consequently many of the modifications
brought forth by the non-pair-conserving parts of the
Hamiltonian may be well represented by applying a
mean-field theory to these terms. This is demonstrated
by the success of the time-dependent Hartree-Fock de-
scription of conjugated polymers (Meier and Mukamel,
1996; Meier et al., 1996; Tretiak et al., 1996b). The
present approach can be extended to the case in which
non-pair-conserving parts of the Coulomb interaction
are replaced in the Hamiltonian by their mean-field
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
counterparts. Further work is required to analyze the
implications of such an extended scheme.
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APPENDIX A: EQUATIONS FOR ELECTRON-HOLE
GENERATING FUNCTIONS

In this appendix we present the equations of motion
for the generating functions defined by Eqs. (36)–(40)
for the many-electron system. Starting with our pair-
conserving Hamiltonian (30) and neglecting contribu-
tions that do not contribute to the third-order response,
we obtain the Heisenberg equations

i\] tYab
ab5\VY~Yab!ab1\VY

ph~Y !ab
ab1QY

ph
ab
ab

1 (
pqk5e

V̄bqkp
eeee Skpaq

ab

2 (
pq5e,k5h

~V̄pqka
eehh 2V̄kqpa

heeh !Spqkb
ab

1 (
pqk5h

V̄kpqa
hhhh Tpkqb

ab

2 (
pq5h,k5e

~V̄bkpq
eehh 2V̄bqpk

ehhe !Tqpak
ab

2ES M̄ba
eh Fab2 (

k5h
M̄bk

eh Dka
ab2 (

k5e
M̄ka

eh Ckb
ab

1 (
k5e

M̄bk
ee Yak

ab2 (
k5h

M̄ka
hhYkb

abD , (A1)

i\] tBabcd
ab 5\VB~Bab!abcd1\VB

ph~B !abcd
ab 2E~M̄dc

ehYab
ab

2M̄da
ehYcb

ab2M̄bc
ehYad

ab1M̄ba
ehYcd

ab!

2EF (
k5e

~M̄dk
ee Babck

ab 1M̄bk
ee Bakcd

ab !

2 (
k5h

~M̄kc
hhBabkd

ab 1M̄ka
hhBkbcd

ab !G1O~E4!,

(A2)

i\] tNabcd
ab 5\VN~Nab!abcd1\VN

ph~N !abcd
ab

2E~M̄dc
ehYba

ba* 2M̄ba
he Ycd

ab!

2EF (
k5e

~M̄dk
ee Nabck

ab 2M̄ka
ee Nkbcd

ab !

2 (
k5h

~M̄kc
hhNabkd

ab 2M̄bk
hh Nakcd

ab !G1O~E4!,

(A3)
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i\] tZabcdef
ab 5\VZ~Zab!abcdef1\VZ

ph~Z !abcdef
ab

2E~M̄fe
ehNabcd

ab 2M̄fc
ehNabed

ab 2M̄de
ehNabcf

ab

1M̄dc
ehNabef

ab 2M̄ba
he Bcdef

ab !1O~E4!, (A4)

i\] tF
ab5\VF

ph~F !ab1 (
pq5e,m

~ ḡ pq
m bm2 ḡ qp

m* am!Cpq
ab

2 (
pq5h,m

~ ḡ pq
m bm2 ḡ qp

m* am!Dqp
ab , (A5)

with

Cab
ab[^ c̄ a

† c̄ bF̂ab&, Dab
ab[^ d̄ a

† d̄ bF̂ab&, (A6)

Sabcd
ab [^ c̄ a

† c̄ b d̄ c c̄ dF̂ab& , Tabcd
ab [^ d̄ a

† d̄ b d̄ c c̄ dF̂ab&.
(A7)

The linear operators \V and \Vph form the homoge-
neous part of the respective equations. The operators
\V act only on the electronic indices. The eigenvalues of
these operators can be identified with the energies of
excitons or biexcitons including bound as well as scatter-
ing states. They are defined by

\VY~Yab!ab[~eb
e2ea

h!Yab
ab

1 (
p5h,q5e

~V̄pqba
heeh 2V̄pabq

hhee !Ypq
ab , (A8)

\VB~Bab!abcd[~ed
e2ec

h1eb
e2ea

h!Babcd
ab

1 (
pq5e

V̄bpdq
eeee Bapcq

ab 1 (
pq5h

V̄pcqa
hhhh Bqbpd

ab

1 (
p5h
q5e

@~V̄pqdc
heeh 2V̄pcdq

hhee !Babpq
ab

1~V̄pqda
heeh 2V̄padq

hhee !Bpbcq
ab

1~V̄pqbc
heeh 2V̄pcbq

hhee !Baqpd
ab

1~V̄pqba
heeh 2V̄pabq

hhee !Bpqcd
ab # , (A9)

\VN~Nab!abcd[~ed
e2ec

h1eb
h2ea

e!Nabcd
ab

1 (
p5h,q5e

@~V̄pqdc
heeh 2V̄pcdq

hhee !Nabpq
ab

2~V̄baqp
heeh 2V̄bpqa

hhee !Nqpcd
ab # , (A10)

\VZ~Zab!abcdef[~e f
e2ee

h1ed
e2ec

h1eb
h2ea

e!Zabcdef
ab

1 (
pq5e

V̄dpfq
eeee Zabcpeq

ab

1 (
pq5h

V̄peqc
hhhhZabqdpf

ab

1 (
p5h
q5e

@~V̄pqfe
heeh2V̄pefq

hhee!Zabcdpq
ab

1~V̄pqfc
heeh2V̄pcfq

hhee!Zabpdeq
ab
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1~V̄pqde
heeh 2V̄pedq

hhee !Zabcqpf
ab

1~V̄pqdc
heeh 2V̄pcdq

hhee !Zabpqef
ab

2~V̄baqp
heeh 2V̄bpqa

hhee !Zqpcdef
ab # . (A11)

Unlike \V, the operators \Vph act on electronic indices
as well as on the phonon-related arguments a,b. We
shall see later that these terms can be used to define
phonon-induced self-energies [cf. Eqs. (D7), (D11), and
(D27)]. The definition of these operators is

\VY
ph~Y !ab

ab[\v̂̄Yab
ab1 (

k5e
L̄bk

b Yak
ab2 (

k5h
L̄ka

b Ykb
ab,

(A12)

\VB
ph~B !abcd

ab [\v̂̄Babcd
ab 1 (

k5e
~L̄dk

b Babck
ab 1L̄bk

b Bakcd
ab !

2 (
k5h

~L̄kc
b Babkd

ab 1L̄ka
b Bkbcd

ab !, (A13)

\VN
ph~N !abcd

ab [\v̂̄Nabcd
ab 1 (

k5e
~L̄dk

b Nabck
ab 2L̄ka

a Nkbcd
ab !

2 (
k5h

~L̄kc
b Nabkd

ab 2L̄bk
a Nakcd

ab !, (A14)

\VZ~Zab!abcdef[\v̂̄Zabcdef
ab 1 (

k5e
~L̄ fk

b Zabcdek
ab

1L̄dk
b Zabckef

ab 2L̄ka
a Zkbcdef

ab !

2 (
k5h

~L̄ke
b Zabcdkf

ab 1L̄kc
b Zabkdef

ab

2L̄bk
a Zakcdef

ab !, (A15)

\VF
ph~F !ab[\v̂̄Fab, (A16)

with

L̄ab
a [(

m
@ ḡ ab

m ]am
1 ḡ ba

m* ~]bm
1am!# , (A17)

L̄ab
b [(

m
@ ḡ ab

m ~]am
1bm!1 ḡ ba

m* ]bm
# , (A18)

v̂̄[(
m

\vm~bm]bm
2am]am

!. (A19)

Finally, the phonon-induced inhomogeneity QY
ph is given

by

QY
ph

ab
ab[ (

pq5e,m
~ ḡ pq

m bm2 ḡ qp
m* am!Spqab

ab

2 (
pq5h,m

~ ḡ pq
m bm2 ḡ qp

m* am!Tqpab
ab . (A20)
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Similar contributions to the other equations of motion
are at least order O(E4). QY

ph is third order in the laser
field and it vanishes for a5b50. It therefore leads to
third-order corrections of the phonon-assisted variables.
When the four-point density matrices S and T are fac-
torized in Eq. (A20) according to the mean-field treat-
ment of electronic correlations, these terms lead to
density-dependent contributions to the phonon self en-
ergies (Bányai et al., 1992; Haug, 1992; Kuhn and Rossi,
1992; Tran Thoai and Haug, 1993; Kuhn et al., 1994;
Schilp et al., 1994, 1995). In the low-density regime these
contributions can be neglected. We shall not discuss
these terms further in this article.

Looking at Eqs. (A1)–(A5) one could get the impres-
sion that equations of motion should also be set up for
the variables C , D , S , and T defined in Eqs. (A6) and
(A7) in order to obtain a closed set of equations. This is,
however, deceiving, because these variables can be ex-
pressed as

Cab
ab5 (

k5h
Nakkb

ab 1O~E4!, (A21)

Dab
ab5 (

k5e
Nkabk

ab 1O~E4!, (A22)

Sabcd
ab 5 (

k5h
Zakkbcd

ab 1O~E5!, (A23)

Tabcd
ab 5 (

k5e
Zkabkcd

ab 1O~E5!. (A24)

These relations may be proved using the results of Axt,
Victor, and Stahl (1996), who showed that, in a system
described by a pair-conserving material Hamiltonian, all
density matrices defined as expectation values of opera-
tors that can only partially be combined to pair opera-
tors d̄ † c̄ † or d̄ c̄ can be eliminated to any order in the
driving field by suitable combinations of density matri-
ces defined only through pair operators. This holds even
in the presence of a phonon bath. In Appendix F we
provide a different derivation of Eqs. (A21)–(A24),
which also shows that, unlike the truncated quantum
BBGKY hierarchy, dynamics-controlled truncation does
not violate fundamental trace relations (Schmitt et al.,
1989, 1990; Cassing and Pfitzner, 1992; Reinhard and
Toepffer, 1994; Axt and Mukamel, 1997b).

When one uses Eqs. (A21)–(A24), Eqs. (A1)–(A5)
form a closed set representing the dynamics of the pair-
conserving many-electron model rigorously up to third
order in the laser field, including phonon degrees of
freedom. A calculation of the third-order polarization
based on these equations can be performed iteratively
according to the following steps. First, one has to calcu-
late the generating function Fab for phonon correlations
in thermal equilibrium. Here is the point where the tem-
perature enters the equations. F is the only one of the
five functions that has nonzero temperature-dependent
values prior to the optical excitation. The linear re-
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sponse is completely determined by Yab
ab , while the

other variables are needed in order to calculate nonlin-
ear optical signals.

APPENDIX B: GENERATING FUNCTIONS
FOR FRENKEL EXCITONS

A generating-function description of Frenkel excitons
analogous to Appendix A has been formulated by Axt
and Mukamel (1997a). Using the notation (103)–(107),
the equations relevant for a third-order calculation
within the Frenkel exciton model read

i\] tỸ j
ab5\ṼY~Ỹab! j1\ṼY

ph~Ỹ ! j
ab22(

m
J̃ jmZ̃jjm

ab

1Q̃Y
ph

j
ab2E@mj~ F̃ab22Ñjj

ab!1mj8Ỹj
ab# ,

(B1)

i\] tB̃ ij
ab5\ṼB~B̃ab! ij1\ṼB

ph~B̃ ! ij
ab2j ijE@mjỸ i

ab

1miỸ j
ab1~mj81mi8!B̃ij

ab#1O~E4!, (B2)

i\] tÑ ij
ab5\ṼN~Ñab! ij1\ṼN

ph~Ñ ! ij
ab2E@mjỸ i

ba*

2miỸ j
ab1~mj82mi8!Ñij

ab#1O~E4!, (B3)

i\] tZ̃kij
ab5\ṼZ~Z̃ab!kij1\ṼZ

ph~Z̃ab!kij1EmkB̃ij
ab

2j ijE~mjÑki
ab1miÑkj

ab!1O~E4!, (B4)

i\] tF̃
ab5\ṼF

ph~ F̃ !ab1 (
nmm

g̃ nm
m ~bm2am!Ñnm

ab ,

(B5)

with j ij[12d ij and J̃ jm[d jm\V j1Jjm . The phonon-
independent linear operators appearing in the homoge-
neous parts of the equations are given by

\ṼY~Ỹab! j[(
m

J̃ jmỸm
ab , (B6)

\ṼB~B̃ab! ij[j ij(
m

~ J̃ jmB̃im
ab1 J̃ imB̃mj

ab!, (B7)

\ṼN~Ñab! ij[(
m

~ J̃ jmÑim
ab2 J̃ miÑmj

ab!, (B8)

\ṼZ~Z̃ab!kij[(
m

@j ij~ J̃ jmZ̃kim
ab 1 J̃ imZ̃kmj

ab !

2 J̃ mkZ̃mij
ab # , (B9)

while the corresponding phonon-dependent linear op-
erators read

\ṼY
ph~Ỹ ! j

ab[\v̂̃Ỹj
ab1(

m
L̃ jm

b Ỹm
ab , (B10)

\ṼB
ph~B̃ ! ij

ab[\v̂̃B̃ij
ab1j ij(

m
~L̃ jm

b B̃im
ab1L̃ im

b B̃mj
ab!,

(B11)
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\ṼN
ph~Ñ ! ij

ab[\v̂̃Ñij
ab1(

m
~L̃ jm

b Ñim
ab2L̃mi

a Ñmj
ab!,

(B12)

\ṼZ
ph~Z̃ab!kij[\v̂̃Z̃kij

ab1(
m

@j ij~L̃ jm
b Z̃kim

ab

1L̃ im
b Z̃kmj

ab !2L̃mk
a Z̃mij

ab # , (B13)

\ṼF
ph~ F̃ !ab[\v̂̃F̃ab , (B14)

with

L̃ jm
a 5(

m
g̃ jm

m ~am1]am
1]bm

!, (B15)

L̃ jm
b 5(

m
g̃ jm

m ~bm1]am
1]bm

!, (B16)

v̂̃[(
m

ṽm~bm]bm
2am]am

!. (B17)

As in the many-electron case, we obtain a phonon-
induced inhomogeneity of order lower than O(E4) only
for the transition amplitude Ỹ ,

Q̃Y
ph

j
ab[22(

m
L̃ jm

b Z̃jjm
ab 1 (

nmm
g̃ nm

m ~bm2am!Z̃nmj
ab .

(B18)

Unlike Eq. (A20), Q̃Y
ph

j
ab does not vanish for a5b50.

Apart from this detail, this contribution has the same
physical meaning as the corresponding term (A20). Us-
ing Eq. (100) we find that the polarization in the
generating-function representation is determined by the
values of Ỹj

ab and Ñjj
ab at a5b50 due to the identities

Ỹj5Ỹj
a5b50 and Ñjj5Ñjj

a5b50 .
Written in the form (A1)–(A5), the equations for the

many-electron system look much more complicated than
their Frenkel counterparts (B1)–(B5). But inserting the
relations (A21)–(A24) in Eqs. (A1)–(A5) reveals that,
for both sets of equations, the right-hand sides consist of
contributions of analogous types, although the coupling
is obviously simpler in the Frenkel case.

APPENDIX C: EXCITON REPRESENTATION
OF TWO-EXCITON VARIABLES
AND COUPLING CONSTANTS

In this appendix we derive the exciton representation
(59) of the equation of motion for the correlated part B̄
of the two-pair transition density in the coherent limit.
Using the cluster decomposition (54) together with Eqs.
(47) and (48) we obtain in the coherent limit

i\] tB̄abcd5\VB~B̄ !abcd1Qabcd
B̄ 2Qcbad

B̄

2EF (
k5e

~M̄dk
ee B̄abck1M̄bk

ee B̄akcd!

2 (
k5h

~M̄kc
hhB̄abkd1M̄ka

hhB̄kbcd!G , (C1)
Rev. Mod. Phys., Vol. 70, No. 1, January 1998
with

Qabcd
B̄ [ (

pq5e
V̄bpdq

eeee YapYcq1 (
pq5h

V̄pcqa
hhhh YqbYpd

1 (
p5h
q5e

@~V̄pqda
heeh 2V̄padq

hhee !YpbYcq

1~V̄pqbc
heeh 2V̄pcbq

hhee !YaqYpd# . (C2)

We then introduce an auxiliary function B̄A defined as
the solution of

i\] tB̄abcd
A 5\VB~B̄A!abcd1Qabcd

B̄

2EF (
k5e

~M̄dk
ee B̄abck

A 1M̄bk
ee B̄akcd

A !

2 (
k5h

~M̄kc
hhB̄abkd

A 1M̄ka
hhB̄kbcd

A !G . (C3)

Because \VB commutes with the operation of exchang-
ing the indices a and c , we obtain

B̄abcd5B̄abcd
A 2B̄cbad

A . (C4)

We next expand B̄A in exciton eigenfunctions in the
form

B̄abcd
A 5(

x̄ x
c̄ ab

x̄ c̄ cd
x b x̄ x , (C5)

which yields

B̄abcd5(
x̄ x

~ c̄ ab
x̄ c̄ cd

x 2 c̄ cb
x̄ c̄ ad

x !b x̄ x . (C6)

Here we note that each of the sets of functions, c̄ ab
x̄ c̄ cd

x

as well as c̄ cb
x̄ c̄ ad

x , forms a complete basis set for the
space of functions with two-electron and two-hole argu-
ments, reflecting the two distinct ways to select two
electron-hole pairs out of the four particles. Instead of
expanding B̄A in the form (C5) we could as well have
expanded B̄ directly in either of these sets. Compared to
these alternatives, the representation (C6) has the ad-
vantage that the fundamental anticommutation relation,

B̄abcd52B̄cbad52B̄adcb5B̄cdab , (C7)

is satisfied by each term of the expansion separately,
which makes a truncation of the expansion (C6) pos-
sible, consistent with the Pauli principle. Equation (59)
is then obtained by projecting (C3) onto c̄ ab

x̄ c̄ cd
x and

inserting the expansions (55) and (C5), where the fol-
lowing auxiliary quantities have been introduced:
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V̄x
x̄ x̄ 8x8[ (

a5h
b5e

c̄ ab
x* F (

pqk5e
l5h

V̄bqkp
eeee c̄ lk

x̄* ~ c̄ lp
x̄ 8c̄ aq

x8

2 c̄ ap
x̄ 8c̄ lq

x8!1 (
pqk5h

l5e

V̄kpqa
hhhh c̄pl

x̄* ~ c̄kl
x̄ 8c̄qb

x8

2 c̄ql
x̄ 8c̄kb

x8 !2 (
pq5e
kl5h

~V̄pqka
eehh 2V̄kqpa

heeh !c̄ lp
x̄*

3~ c̄ lq
x̄ 8c̄kb

x8 2 c̄kq
x̄ 8c̄ lb

x8!

2 (
pq5h
kl5e

~V̄bkpq
eehh 2V̄bqpk

ehhe !c̄ql
x̄*

3~ c̄pl
x̄ 8c̄ ak

x8 2 c̄ al
x̄ 8c̄pk

x8 !G , (C8)

V̄ x̄ x
x̄ 8x8[ (

ac5h
bd5e

c̄ ab
x̄* c̄ cd

x* H (
pq5e

V̄bpdq
eeee c̄ ap

x̄ 8c̄ cq
x8

1 (
p5h
q5e

@~V̄pqda
heeh 2V̄padq

hhee !c̄qb
x̄ 8c̄ cd

x81~V̄pqbc
heeh

2V̄pcbq
hhee !c̄ aq

x̄ 8c̄pd
x8 #1 (

pq5h
V̄pcqa

hhhh c̄qb
x̄ 8c̄pd

x8 J ,

(C9)

M̄x[(
ab

c̄ ab
x* M̄ba

eh , (C10)

M̄x
x8[ (

a5h
b5e

c̄ ab
x* S (

k5h
Mka

hh c̄kb
x8 2 (

k5e
Mbk

ee c̄ ak
x8 D , (C11)

M̄x
x̄ 8x8[ (

ka5h
qb5e

c̄ ab
x* c̄kq

x̄ 8* ~Mbk
eh c̄ aq

x8 1Mqa
eh c̄kb

x8 !. (C12)

Note that projecting Eq. (C1) for B̄ (instead of B̄A) onto
the function space spanned by c̄ abcd

x̄ x [c̄ ab
x̄ c̄ cd

x 2 c̄ cb
x̄ c̄ ad

x

does not lead to explicit equations for b x̄ x when the
representation (C6) is inserted, because the functions
c̄ abcd

x̄ x are not orthonormal.
In the Frenkel case the exciton representation of the

analogous coupling constants needed in Eqs. (118) and
(119) as well as in Eqs. (123)–(125) reads

Ṽx
x̄ x̄ 8x8[2(

j
c̃ j

x* c̃ j
x̄* c̃ j

x̄ 8c̃ j
x8~\V j2Ẽx8!, (C13)

Ṽ x̄ x
x̄ 8x8[2~Ẽ x̄ 1Ẽx!(

j
c̃ j

x* c̃ j
x̄* c̃ j

x̄ 8c̃ j
x8 , (C14)

M̃x[(
j

c̃ j
x* mj , (C15)

M̃x
x8[2(

j
c̃ j

x* mj8c̃ j
x8 , (C16)

M̃x
x̄ 8x8[2(

j
c̃ j

x* c̃ j
x̄ 8* c̃ j

x8mj . (C17)
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APPENDIX D: PHONON-INDUCED SELF-ENERGIES FOR
THE MANY-ELECTRON SYSTEM

In this appendix we calculate the phonon-induced
self-energies that appear in Sec. V. In addition to the
parts already present in the coherent limit, the equation
for each electronic density matrix contains one phonon-
induced source term, namely, the term } Vph taken at
a5b50; e.g., the additional phonon-induced source for
the transition density Y reads explicitly

\VY
ph~Y !ab

a5b505(
m

F (
k5e

~ ḡ bk
m Ymak

~1 ! 1 ḡ kb
m* Ymak

~2 ! !

2 (
k5h

~ ḡ ka
m Ymkb

~1 ! 1 ḡ ak
m* Ymkb

~2 ! !G ,

(D1)

where we have introduced the following phonon-
assisted variables:

Ymab
~1 ! []am

Yab
abua5b505^bm

† d̄ a c̄ b&, (D2)

Ymab
~2 ! []bm

Yab
abua5b505^bm d̄ a c̄ b&. (D3)

The phonon-induced sources for B , N , and Z couple
these quantities in a similar way to their phonon-assisted
counterparts (Axt, Victor, and Stahl 1996), which in turn
are coupled by their equations of motion to second de-
rivatives of the generating functions (density matrices
with two assisting phonon operators). The scheme most
often used to obtain a closed set of equations is to keep
only those density matrices with zero- or one-phonon
assistance (Zimmermann, 1990; Kuhn and Rossi, 1992;
Kuhn et al., 1994; Schilp et al., 1994, 1995; Axt, Victor,
and Stahl, 1996); double-assisted variables are then fac-
torized according to the recipe ^Abm

† bn&'^A&nmdmn ,
where A can be any electronic operator and
nm51/@exp(\vm /kT)21# is the Bose distribution. The
contributions neglected by the factorization of electronic
and phonon variables result in self-energies for the
phonon-assisted variables [collisional broadening (Bán-
yai et al., 1992; Haug, 1992; Tran Thoai and Haug, 1993;
Schilp et al., 1994, 1995)]. In many cases it is sufficient to
account for these contributions by constant damping
rates. For longitudinal optical phonons in a direct-gap
semiconductor, a self-consistent estimate of these con-
stants has been given (Bányai et al., 1992; Haug, 1992;
Tran Thoai and Haug, 1993). Inverting the equations for
the phonon-assisted density matrices in order to elimi-
nate the phonon degrees of freedom leads to two types
of contributions to the equations for the electronic den-
sity matrices: (i) retarded homogeneous parts (self-
energies) and (ii) additional phonon-induced sources
arising from the combined action of the phonon cou-
pling and other interactions such as the coupling to the
electric field, which is responsible for the intracollisional
field effect (Bertoncini et al., 1990; Rossi and Jacoboni,
1992). These additional terms are referred to in the lit-
erature as ‘‘cross terms’’ and are often neglected (Schilp
et al., 1994, 1995). Here, we shall keep only the density-
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independent parts of self-energy type. Finally, to obtain
the time-local self-energies in Sec. V, we apply a scheme
known as the ‘‘Markov approximation’’ (Brunetti et al.,
1989; Zimmermann, 1990; Kuznetsov, 1991b; Kuhn and
Rossi, 1992; Kuhn et al., 1994). As an example, the equa-
tion of motion for the phonon-assisted transition density
Ymab

(2) resulting from the decoupling scheme described
above reads in the exciton representation
(Ymab

(6) 5(xc̄ ab
x ymx

(6))

i\] tymx
~2 !5~Ēx1\vm2i\gY!ymx

~2 !

1~nm11 !(
x8

Gxx8
m yx8 , (D4)

with

Gxx8
m [ (

a5h,b5e
c̄ ab

x* S (
k5e

ḡ bk
m c̄ ak

x8 2 (
k5h

ḡ ka
m c̄kb

x8 D .

(D5)

Here gY is the damping rate constant accounting for the
imaginary parts of the self-energies induced by higher-
order phonon-assisted variables. Inversion of Eq. (D4)
leads to

ymx
~2 !~ t !5

nm11
i\ (

x8
Gxx8

m E
2`

t
dt8

3e2[i~v̄x1vm!1gY]~ t2t8!yx8~ t8!

'
nm11

\ (
x8

Gxx8
m yx8~ t !

v̄x8x2vm1igY

, (D6)

with v̄x8x[v̄x82v̄x . In the last step we have invoked
the Markov approximation, assuming that yx can be
separated as yx5e2ivxt ȳ x into a free rotation e2ivxt and
a factor ȳ x assumed to be slowly varying on a time scale
defined by the memory-loss time of the phonon memory
kernel, so that ȳ x can be taken in front of the time in-
tegral (Kuhn and Rossi, 1992; Kuhn et al., 1994). Insert-
ing Eq. (D6) and the analogous solution for ymx

(1) into
Eq. (D1), we obtain for the phonon-induced self-energy
in the exciton representation

\VY x
phx85(

x̄
Gx x̄ x̄ x8

Y , Gxx8 x̄ x̄ 8
Y

[G~gY!xx8 x̄ x̄ 8 , (D7)

G~g!xx8 x̄ x̄ 8[(
m

@Gxx8
m G x̄ 8 x̄

m* f ~1 !~ v̄ x̄ 8 x̄ ,vm ,g!

1Gx8x
m* G x̄ x̄ 8

m f ~2 !~ v̄ x̄ 8 x̄ ,vm ,g!# , (D8)

f ~6 !~v ,vm ,g![
nm1 1

2 7 1
2

\~v6vm1ig!
, (D9)

nm5n~vm!5
1

exp~\vm /kT !21
. (D10)

We have used the standard procedure and kept only the
imaginary part of the self-energy in Eq. (67).
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Applying the same strategies to the exciton density N ,
we obtain

\VN
ph

x̄ x
x̄ 8x85d x̄ x̄ 8(

x̃
Gx x̃ x̃ x8

N
2dxx8(

x̃
G x̄ x̃ x̃ x̄ 8

N*

1Gx8x x̄ x̄ 8
N* 2G x̄ 8 x̄ xx8

N , (D11)

Gxx8 x̄ x̄ 8
N

[G~gN!xx8 x̄ x̄ 8 . (D12)

The derivation of the self-energy for B is complicated by
the fact that the homogeneous parts of the equation for
the assisted variables are not diagonal in the exciton rep-
resentation and also by the desire to obtain a represen-
tation that obeys the Pauli principle at all levels of trun-
cation. To address the latter problem, we introduce
auxiliary functions BA and B(6)A in order to decompose
B and B(6) in analogy to Eq. (C4),

Babcd5Babcd
A 2Bcbad

A , (D13)

Bmabcd
~6 ! 5Bmabcd

~6 !A 2Bmcbad
~6 !A , (D14)

where the phonon-assisted density matrices B(6) are de-
fined by

Bmabcd
~1 ! []am

Babcd
ab ua5b505^bm

† d̄ a c̄ b d̄ c c̄ d&, (D15)

Bmabcd
~2 ! []bm

Babcd
ab ua5b505^bm d̄ a c̄ b d̄ c c̄ d&. (D16)

Obviously, the decompositions (D13) and (D14) are not
unique, as one can add to BA and/or B(6)A any function
that is symmetric with respect to the exchange of the
indices a and c , without changing B or B(6). For any of
these decompositions we obtain a corresponding separa-
tion of the phonon-induced sources

\Vph~B !abcd
a5b505Qabcd

Bph 2Qcbad
Bph , (D17)

\Vph~Bm
~6 !!abcd

a5b505Qmabcd
Bph~6 !2Qmcbad

Bph~6 ! , (D18)

with

Qabcd
Bph [(

m
F (

k5e
~ ḡ dk

m Bmabck
~1 !A 1 ḡ kd

m* Bmabck
~2 !A

1 ḡ bk
m Bmakcd

~1 !A 1 ḡ kb
m* Bmakcd

~2 !A !

2 (
k5h

~ ḡ kc
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~1 !A 1 ḡ ck
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~2 !A 1 ḡ ka
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1 ḡ ak
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~2 !A !G , (D19)

Qmabcd
Bph~1 ![nmF (

k5e
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m* Babck
A 1 ḡ kb

m* Bakcd
A !

2 (
k5h

~ ḡ ck
m* Babkd

A 1 ḡ ak
m* Bkbcd

A !G , (D20)

Qmabcd
Bph~2 ![~nm11 !F (

k5e
~ ḡ dk

m Babck
A 1 ḡ bk

m Bakcd
A !

2 (
k5h

~ ḡ kc
m Babkd

A 1 ḡ ka
m Bkbcd

A !G . (D21)
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We remove the ambiguity in the choice of BA and B(6)A

by requiring that sources of the respective equations of
motion be given by Qabcd

Bph and Qmabcd
Bph(6) . Using the ex-

pansions

Babcd
A 5(

x̄ x
c̄ ab

x̄ c̄ cd
x ~y x̄ yx1b x̄ x!, (D22)

Babcd
~6 !A5(

x̄ x
c̄ ab

x̄ c̄ cd
x bm x̄ x

~6 ! , (D23)

we obtain

i\] tbm x̄ x
~1 !

5~Ē x̄ 1Ēx2\vm2i\gB!bm x̄ x
~1 !

1nm (
x̄ 8x8

gm
x̄ 8x8
x̄ x* ~y x̄ 8yx81b x̄ 8x8!

1 (
x̄ 8x8

V̄ x̄ x
x̄ 8x8bm x̄ 8x8

~1 ! , (D24)

i\] tbm x̄ x
~2 !

5~Ē x̄ 1Ēx1\vm2i\gB!bm x̄ x
~2 !

1~nm11 ! (
x̄ 8x8

gm
x̄ x
x̄ 8x8~y x̄ 8yx81b x̄ 8x8!

1 (
x̄ 8x8

V̄ x̄ x
x̄ 8x8bm x̄ 8x8

~2 ! , (D25)

with

gm
x̄ x
x̄ 8x8[d x̄ x̄ 8Gxx8

m
1dxx8G x̄ x̄ 8

m . (D26)

The last term in Eq. (D24) as well as that in Eq. (D25)
describes the interaction between phonon-assisted exci-
tons. This term is responsible for the appearance of the
two-pair Green’s function in a complete calculation of
the phonon-induced self-energy for the two-pair transi-
tion density B (Axt, Victor, and Stahl, 1996; Axt and
Mukamel, 1997a), reflecting the combined action of
phonon-coupling and Coulomb interaction. We shall ne-
glect this cooperative effect in the following. In this way
we eventually obtain, after inverting Eqs. (D24) and
(D25) and invoking the Markov approximation,

\V x̄ x
ph x̄ 8x85d x̄ x̄ 8(

x̃
Gx x̃ x̃ x8

B
1dxx8(

x̃
G x̄ x̃ x̃ x̄ 8

B

1Gxx8 x̄ x̄ 8
B

1G x̄ x̄ 8xx8
B , (D27)

G x̄ x̄ 8xx8
B

5G~gB! x̄ x̄ 8xx8 . (D28)

APPENDIX E: PHONON-INDUCED SELF-ENERGIES FOR
FRENKEL EXCITONS

The phonon-induced self-energies for the Frenkel sys-
tem can be derived along the same lines used in Appen-
dix D, resulting in

\ṼY x
phx85(

x̄
G̃x x̄ x̄ x8

Y , (E1)

\ṼN x̄ x
ph x̄ 8x85d x̄ x̄ 8(

x̃
G̃x x̃ x̃ x8

N
2dxx8(

x̃
G̃ x̄ x̃ x̃ x̄ 8

N*

1G̃x8x x̄ x̄ 8
N* 2G̃ x̄ 8 x̄ xx8

N , (E2)
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\ṼB x̄ x
ph x̄ 8x85 (

m x̃ x̃ 8
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x̄ x
x̃ x̃ 8 g̃ m

x̃ x̃ 8
x̄ 8x8f~ṽ x̄ 8 x̃

1ṽx8 x̃ 8 ,ṽm , g̃ B!, (E3)

G̃xx8 x̄ x̄ 8
Y

[G̃~ g̃ Y!xx8 x̄ x̄ 8 , (E4)

G̃xx8 x̄ x̄ 8
N

[G̃~ g̃ N!xx8 x̄ x̄ 8 , (E5)

G̃~g!xx8 x̄ x̄ 8[(
m

G̃xx8
m G̃ x̄ x̄ 8

m f~ṽ x̄ 8 x̄ ,ṽm ,g!, (E6)

G̃xx8
m [(

nm
c̃n

x* g̃ nm
m c̃m

x8 , (E7)

g̃ m
x̄ x
x̄ 8x8[(

ijn
c̃ i

x̄* c̃ j
x* ~ g̃ jn

m j inc̃ i
x̄ 8c̃n

x81 g̃ in
m jnjc̃n

x̄ 8c̃ j
x8!,

(E8)

f~v ,vm ,g![f ~1 !~v ,vm ,g!1f ~2 !~v ,vm ,g!, (E9)

where the functions f(6)(v ,vm ,g) have been defined in
Eq. (D9). To derive the self-energy for B̃ we introduce
the auxiliary functions B̃A and B̃(6)A by

B̃ij5j ijB̃ ij
A , B̃ij

~6 !5j ijB̃ ij
~6 !A (E10)

and remove the ambiguity of the values at i5j in the
same way as in Eq. (116). Expanding these functions in
exciton eigenfunctions and neglecting the exciton-
exciton interaction in the phonon-assisted equations,
leads to Eq. (E3), which reduces to the simpler form
(D28) when the factor j ij in Eq. (E8) is replaced by one.
This factor explicitly enforces the Pauli exclusion for the
phonon-assisted two-pair transitions, which was taken
care of by the proper antisymmetrization in the many-
electron case.

APPENDIX F: CONTRACTION RELATIONS

In this appendix we prove the fundamental relations
(A21)–(A24) and show that the dynamics-controlled
truncation, unlike schemes such as the truncated quan-
tum BBGKY hierarchy (Axt and Mukamel, 1997b),
does not violate fundamental trace relations. From the
fact that the density matrix of a system with fixed num-
ber of particles Np can always be written as a superpo-
sition of matrices for pure states, in which each state is
an eigenvector of the total-particle operator with eigen-
value Np , it follows that
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~Np21 !Cab
ab5 (

k5e,h
^ c̄ a

† c̄ k
† c̄ k c̄ bF̂ab&

5 (
k5h
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† d̄ k d̄ k

† c̄ bF̂ab&

1 (
k5e
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† c̄ k

† c̄ k c̄ bF̂ab&

5 (
k5h

^ c̄ a
†~12 d̄ k

† d̄ k! c̄ bF̂ab&

1 (
k5e

^ c̄ a
† c̄ k

† c̄ k c̄ bF̂ab&

5NpCab
ab2 (

k5h
^ c̄ a

† d̄ k
† d̄ k c̄ bF̂ab&

1 (
k5e

^ c̄ a
† c̄ k

† c̄ k c̄ bF̂ab&, (F1)

or equivalently

Cab
ab5 (

k5h
Nakkb

ab 2 (
k5e

^ c̄ a
† c̄ k

† c̄ k c̄ bF̂ab&

5 (
k5h

Nakkb
ab 1O~E4!. (F2)

In the last step, we have used the result that the expec-
tation value of four electron operators is at least of
fourth order in the laser field. Along the same lines we
obtain the relations

Dab
ab5 (

k5e
Nkabk

ab 1O~E4!, (F3)

Sabcd
ab 5 (

k5h
Zakkbcd

ab 1O~E5!, (F4)

Tabcd
ab 5 (

k5e
Zkabkcd

ab 1O~E5!, (F5)

from the identities

~Np11 !Dab
ab5 (

k5e,h
^ d̄ a

† c̄ k
† c̄ k d̄ bF̂ab&, (F6)

~Np21 !Sabcd
ab 5 (

k5e,h
^ c̄ a

† c̄ k
† c̄ k c̄ b d̄ c c̄ dF̂ab&, (F7)

~Np11 !Tabcd
ab 5 (

k5e,h
^ d̄ a

† c̄ k
† c̄ k d̄ b d̄ c c̄ dF̂ab&. (F8)

These are special cases of general relations connecting
n-point to (n12)-point density matrices in every system
with a fixed number Np of particles. For n52 and n54
we obtain (the indices a ,b ,c ,d in the following formulas
may refer to either an electron or a hole)
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~Np21 !^ c̄ a
† c̄ bF̂ab&5 (

k5e,h
^ c̄ a

† c̄ k
† c̄ k c̄ bF̂ab&, (F9)

~Np22 !^ c̄ a
† c̄ b

† c̄ c c̄ dF̂ab&5 (
k5e,h

^ c̄ a
† c̄ b

† c̄ k
† c̄ k c̄ c c̄ dF̂ab&.

(F10)

It has been pointed out (Schmitt et al., 1989, 1990; Cass-
ing and Pfitzner, 1992; Reinhard and Toepffer, 1994)
that the truncation scheme suggested by the quantum
BBGKY hierarchy violates Eqs. (F9) and (F10). This
violation is believed to be a major cause of chaotic be-
havior exhibited by truncated quantum BBGKY dynam-
ics in certain cases (Schmitt et al., 1989, 1990; Cassing
and Pfitzner, 1992; Reinhard and Toepffer, 1994). We
shall demonstrate, that a dynamics-controlled truncation
preserves these relations. For the particle-particle com-
ponents Cab ,Dab of the one-particle density matrix this
is trivial, since, instead of solving separate equations for
C and D , these functions are constructed from these
relations. In order to prove that Eq. (F9) is preserved, it
remains only to discuss the electron-hole components.
When a refers to a hole and b represents an electron,
Eq. (F9) reads

~Np21 !^ d̄ a c̄ bF̂ab&

5~Np21 !Yab
ab

5 (
k5e

^ d̄ a c̄ k
† c̄ k c̄ bF̂ab&

1 (
k5h

^ d̄ a~12 d̄ k
† d̄ k! c̄ bF̂ab&

5 (
k5e

Skkab
ab 1NpYab

ab2 (
k5h

^~dak2 d̄ k
† d̄ a! d̄ k c̄ bF̂ab&

5~Np21 !Yab
ab1 (

k5e
Skkab

ab 2 (
k5h

Tkkab
ab . (F11)

Thus satisfying Eq. (F9) is equivalent to

(
k5e

Skkab
ab 5 (

k5h
Tkkab

ab . (F12)

Relation (F12) is guaranteed within the dynamics-
controlled truncation approach by the representations
(F4) and (F5) for S and T , irrespective of the values of
Z . Similar arguments prove the consistency of the
dynamics-controlled scheme with Eq. (F9) when a is an
electron and b a hole. In order to check Eq. (F10) one
has to discuss 16 cases corresponding to the possible as-
signments of a , b , c , and d as either an electron or a
hole. The general strategy is as follows: First, both sides
of Eq. (F10) are expressed completely in terms of expec-
tation values of normally ordered operators with respect
to the electron-hole representation, because these are
the variables we have chosen to formulate the dynamics.
Second, the truncation has to be applied to both sides,
i.e., for a cut at the O(E3) level, one has to neglect
normal-ordered expectation values containing more
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than three Fermi operators of one type (electron or
hole). Finally one has to compare both sides. In this way
it is easy to show that for all 16 combinations Eq. (F10)
either reduces to one of the cases (F2)–(F5) or leads to
trivial identities like Eq. (F11). We have therefore dem-
onstrated that using Eqs. (F2)–(F5) in conjunction with
the dynamics-controlled truncation prescription guaran-
tees that the fundamental trace relations (F9) and (F10)
are fulfilled. It is worthwhile to note that this holds re-
gardless of whether further approximations are invoked
in the calculation of the remaining density matrices.
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Leo, K., E. O. Göbel, T. C. Damen, J. Shah, S. Schmitt-Rink,
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