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The pump-probe signal from the light-harvesting antenna LH2 of purple bacteria is analyzed using a Green
function expression derived by solving the nonlinear exciton-oscillator equations of motion (NEE). A
microscopic definition of the exciton mean free path (Lf) and localization size (LF) is given in terms of the
off-diagonal elements of the exciton Green function and density matrix, respectively. Using phonon-induced
(homogeneous) and disorder-induced (inhomogeneous) line widths compatible with superradiane measurements,
we find that at 4.2 K the localization size isLF ) 15 and that the shift∆Ω between the positive and negative
peaks in the differential absorption is determined by a different effective sizeLf/2 ) 5.6 associated with the
exciton mean free path. Our model further predicts the recently observed superradiance coherence size
determined byLF.

I. Introduction

Optical properties of photosynthetic antenna complexes have
become recently an object of intensive experimental and
theoretical studies.1,2 The 2.5 Å resolution geometrical structure
of the peripheral antenna of purple bacteria (LH2)3 shows 27
bacteriochlorophylla (BChla) monomers arranged in two
rings: 9 weakly coupled BChla molecules form the outer ring
which is responsible for the higher energetic B800 band, while
18 strongly interacting BChla of the inner ring form the lower
energetic B850 band. This high circular symmetry makes it
possible to estimate intermolecular interaction parameters and
has triggered intensive theoretical modeling of optical signals
including absorption,4,5 pump-probe,11-16 and three pulse
echoes.8,17 These measurements show ultrafast energy transfer
and vibrational coherence which persists even on time scales
where electronic coherence has been lost. Similar observations
have been made in the 32-member ring of the LH1 system.10,17-20

At low temperatures (4 K) a broad absorption lineΛ ≈ 300
cm-1 (fwhm) is observed in LH2, whereas hole-burning studies
report a 210 cm-1 hole which is independent of the burn
frequency.10 At room temperature, polarization-dependent
frequency-domain pump-probe studies give a homogeneous
width varying between 200 cm-1 at the band center and 30 cm-1

at the red wing.21 A total line width ofΛ ) 430 cm-1 and a
homogeneous width 188 cm-1 was found in ref 17.Λ ) 300
cm-1 was reported in ref 4. The observed line width reflects
the combined influence of static disorder (inhomogeneous
broadening), and exciton coupling to intermolecular, intramo-
lecular, and solvent nuclear motions (homogeneous line width).
Coherent and incoherent excitonic dynamical processes are
strongly affected by both broadening mechanisms. Pump-
probe spectroscopy provides a direct view into excitonic motions
through the differential absorption of a probe pulse as a function
of its frequency and the time delay with respect to a pump pulse.
The frequency-dependent differential absorption typically con-
tains a negative peak related to bleaching and to stimulated
emission from the one-exciton band to the ground state (we
refer to both contributions as BL), and a positive peak which
reflects excited-state absorption (ESA) from one-exciton to two-

exciton states.11,15 The shift∆Ω between these two features is
usually attributed to the energy difference between the exciton
state prepared by the pump, and a two-exciton state coupled to
that exciton by the probe.22 In a linear aggregate made out of
L molecules we have∆Ω ≈ 3π2J/(L + 1)2, whereJ is the
nearest-neighbor exciton intermolecular interaction. The shift
in the pump-probe signal ofJ aggregates has been observed
by Wiersma’s group and fitted using a model of a linear
aggregate of physical sizeL ) 15 with nearest-neighbor
interactionJ ) 1227 cm-1 derived from the frequency shift
between the aggregate and the monomer absorption peaks.23

This coherence size was associated with the Anderson localiza-
tion length of excitons, induced by static disorder.24 Further
numerical simulations of the signal in the presence of Gaussian
energy (diagonal) disorder with a finite correlation length show
excellent agreement with experiment.25 Similar observations
have been made recently in both LH1 and LH2.11,15 For LH1,
∆Ω increases monotonically with temperature from 24 cm-1

for T ) 4 K to 440 cm-1 for T ) 280 K. For LH2 the
temperature dependence is more complicated.15 From 4 to 20
K the shift decreases from 250 to 215 cm-1, and for higher
temperatures it increases, reaching 280 cm-1 at room temper-
ature.15

In a one-dimensional circular aggregate withLmolecules and
nearest-neighbor exciton couplingJ the single-exciton band has
energies 2J cos(k), k) 2πn/L, n) 0, 1, ...,L - 1. The spacing
between the levels at the band center is 4πJ/L. By calculating
the two-exciton states, it was shown22 that ∆Ω ) 4π2J/L2

coincides with the spacing between the two lowest exciton states.
The role of static disorder may be best understood using the
Mott picture of localization26 according to which wave functions
of excitons with close energies may not overlap. This is
connected with the statistical property of level repulsion.27 This
results in a fundamental characteristic energy∆E, namely, the
minimal splitting between two overlapping localized states.
Using this argument, one can divide the aggregate into spatially
nonoverlapping segments whose sizes are determined by the
Anderson localization lengthlA, and obtain for the energy
splitting between two lowest excitons in a segment
∆EA ≈ 3π2J/(lA + 1)2. The pump-probe signal can then be
interpreted using a three-level model which contains the groundX Abstract published inAdVance ACS Abstracts,August 1, 1997.
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state and the lowest one-exciton and two-exciton states in a
linear aggregate with sizelA. This argument relates the peak
shift in the pump-probe signal directly to the exciton localiza-
tion size and yields∆Ω ≈ ∆EA. In the interpretation of recent
pump-probe experiments, this shift has been used to estimate
the size of coherently coupled subunits of LH2.11,15 To obtain
shifts on the order of 200 cm-1 it had to be assumed that only
a fraction of the monomersL ) 2-4 can be coherently coupled.
Fitting of the pump-probe data using a model with different
physical sizes (L ) 3 or 4) yields values for the coherence size
for LH1 of 3.2 for 4 K and 2.3 for 280 K, and for LH2 of 2.3
for 4 K and≈2.7 for 280 K.15 It was not possible to reproduce
the experimentally observed shifts by calculations which
included the entire ring. Another recent measurement of
cooperative spontaneous emission (superradiance), interpreted
using disorder resulted in a coherence size of 2.8.28

It is clear that a proper theory of the optical response of these
aggregates should not be limited to the localization size and
should take into account other coherence sizes as well. In this
paper we identify various coherence sizes in LH2 and discuss
their spectroscopic signatures using a microscopic model that
takes into account the aggregate structure as well as effects of
static disorder and exciton-phonon coupling. The exciton mean
free pathLf represents the exciton-dephasing length scale. Its
origin can be understood as follows: In the presence of static
disorder or coupling with phonons the exciton wave vector is
no longer a good quantum number, and the exciton eigenstates
become wavepackets ink space with width∆kf ≈ 2π/Lf, where
Lf is the mean free path which reflects exciton dephasing. In
the vicinity of the band-edge the width∆kf induces a widthΓf

) 2J(1- cos(∆kf)) in energy space (assuming nearest-neighbor
coupling J). This givesΛf ) 2Γf ≈ 8π2J/Lf2 for the linear
absorption line width. In the case of static disorder exciton
dephasing is controlled by elastic scattering andLf ) ld, where
ld is the disorder-induced mean free path, which represents the
inhomogeneous line widthΛd. Exciton-phonon coupling
introduces an additional contribution to the mean free path. In
this case the total (exciton and phonon) momentum is a good
quantum number, which again introduces a width∆k into the
purely excitonic momentum, determined by the phonon-induced
mean free pathlph. This results in a homogeneous line width
of Λph ≈ 8π2J/lph2.
In one-dimensional systems with weak static disorder the

localization lengthlA coincides with the mean free pathld, ld )
lA. This is no longer the case once coupling with phonons is
incorporated. Exciton-phonon scattering together with static
disorder form a combined mean-free pathLf which is related
to the line widthΛf by Λf ≈ 8π2J/Lf2, and the total mean-free
pathLf is in general different from the localization lengthlA.
The inelastic exciton mean free pathlph can be larger or

smaller than the localization lengthlA. WhenlA , lph, we can
treat the exciton-phonon interaction as a small correction to
disorder. ForlA ≈ lph, we have a combined effect of disorder
and exciton-phonon coupling, and whenlph < lA, inelastic
scattering destroys the effects of exciton localization. This is
not the end of the story yet, since other coherence sizes enter
as well. At finite temperatures an additional coherence sizelT
≈ 3π2J/kT appears whereby the temperature is the relevant
energetic parameter (see Figure 7). For strong exciton-phonon
coupling one needs to incorporate the polaron sizelp (polaron
is an exciton dressed with a phonon cloud), with the polaron
binding energyEp being the corresponding energetic parameter.
The present analysis is based on a Green function theory of

nonlinear spectroscopy developed in ref 29 and summarized in
section II. This theory, in contrast to the sum over states (SOS)

approach,30 relates the optical signals to time-dependent exciton
populations and coherences, exciton dephasing, and exciton-
exciton scattering using one-exciton states as an input and
avoiding the explicit calculation of two-exciton states. The
advantages of this formulation will be discussed in section II.
In section III we present numerical calculations for the absorp-
tion and pump-probe spectra of LH2, including both elastic
(disorder-induced) and inelastic (exciton-phonon) scattering
contributions to exciton dephasing. In section IV we define
the exciton mean free path by using the antidiagonal section of
the exciton Green function. We show that the pump-probe
peak shift∆Ω is primarily determined byLf and obtainLf ≈
11.2.
In the last two sections we show that at low temperatures

the influence of exciton dephasing and localization on radiative
decay rate is very different. We thus propose time-resolved
fluorescence measurements to distinguish between effects of
exciton dephasing and Anderson localization. In section V we
introduce the exciton density matrix localization sizeLF based
on its “antidiagonal” section which contains all relevant
information about time-resolved fluorescence and allows us to
visualize the exciton coherence size. We obtainLF ≈ 15. Our
results are compatible with the relaxed fluorescence line shape,
since the disorder-induced Stokes shift is smaller than the
experimentally measured total Stokes shift. In section VI we
show howLF controls the superradiance and predicts the correct
superradiance sizeLs, in agreement with recent experiments.

II. Doorway/Window Picture of Pump-Probe
Spectroscopy

We consider an aggregate made ofL three-level molecules
with statesS0, S1, andS2 and energies 0,Ωm, andΩm + Ω′m,
m) 1, ...,L. The transition dipoles for theS0 f S1 andS1 f
S2 transitions will be denotedµm and µ′m, respectively (see
Figure 1). We assume that these are the only nonvanishing
matrix elements of the dipole operator. This model does
adequately represent the pump-probe spectroscopy of antenna
complexes.11 To develop a collective approach to optical
excitations in this system, we associate with each molecule an
anharmonic oscillator degree of freedom with fundamental
frequencyΩn and creation (annihilation) operatorsB†n(Bn).
These operators satisfy the commutation relations:

The parameterκm ≡ µ′m/µm is the ratio of the two
transition dipoles. We further introduce the parameter

Figure 1. Mapping of the three-level model (left) onto the excitonic
oscillator model (right).∆m ) Ω′m - Ωm is an anharmonicity
parameter.31

[Bm,B
†
n] ) δmn(1- (2- κm

2)B†mBm) (1)
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gn ≡ 2p(Ω′nκn-2 - Ωn). In ref 31 it has been shown that the
original model of coupled three-level systems with parameters
(Ωm, Ω′m, µn, µ′m) can be mapped into coupled anharmonic
oscillators characterized by the parametersΩm, κm, andgm.

The linear absorption spectrum has the form29

Here

is the one-exciton Green function, where the time evolution of
theBm(τ) operator is determined by the free material Hamilto-
nian (without the fields). For our model, this Green function
is given byGmn(ω) ≡ [(ω - h + iΓ)-1]mn with hmn≡ Ωmδmn
+ (1 - δmn)Jmn is the one-exciton Hamiltonian andΓmn is the
one-exciton relaxation matrix which can be expressed in terms
of bath spectral densities.

The calculation of the pump-probe signalS(ω;τ) as a
function of the time delayτ and the probe frequencyω is
simplified considerably when the following conditions hold: (i)
the exciton population-relaxation time scaleτp is long compared
with the inverse absorption line width 1/(2Γ)-1, (ii) the pump
pulse is short compared toτp, (iii) the delay between the pump
and probe is long compared to the duration of the pump pulse,
(iv) the probe pulse is short compared toτ and long compared
to 1/(2Γ)-1. These conditions define the “snapshot limit”32

where the signal depends only on the pump and the probe
frequencies and their relative delay and is independent on their
envelopes. Applying the results of ref 29, we express the
exciton Green function in terms of the exciton density matrix
Nmn(t) ≡ 〈B̃†m(t) B̃n(t)〉 (here the time evolution of the operators
B̃†m(t) andB̃n(t) is in the presence of the pump). By invoking
the Kadanoff-Baym ansatz33,34 and combining it with the
exciton scattering matrixΓh(ω) derived in ref 31 we obtain for
τ . Γ-1

The signal (eq 4) has the following interpretation: two
interactions with the pump create the reduced exciton density
matrix Nmn (thedoorway) at t ) 0, which evolves in time for
the delay periodτ, resulting inNmn(τ). The diagonal elements
Nnm(τ) represent exciton populations whereas the off diagonal
elementsn * m are excited-state coherences.Nmn(τ), which
can be calculated using various methods,35 plays a crucial role
in time- and frequency-resolved fluorescence and energy
transfer. The signalS is related to the exciton density matrix
by its Liouville space overlap with thewindow function
Mmn(ω), given by

with

The two-exciton scattering matrix has the form

with

Rmk is the relaxation operator of the third level (S2).
The time- and frequency-resolved fluorescence signalSfl(ω,τ)

is also given by eq 4 by simply replacingM with the
fluorescence window functionM(fl)(ω)

This doorway-window picture has been applied earlier to
describe nuclear dynamics in nonlinear spectroscopy of a single
chromophore.32 The present theory extends it to excitonic
dynamics and allows us to separate the optical process into
preparation, evolution, and detection states, and analyze sepa-
rately the roles of the pump (which determines the doorway)
and the probe (which affects the window). The conventional
SOS approach relates optical signals to properties of individual
eigenstates. An exciton state created by the pump is coupled
by the probe to a continuous manifold of two-exciton states (in
the joint exciton-phonon space). The signal is determined by
the distribution of the dipole operator matrix elements between
one- and two-exciton states; the necessary statistical (collective)
properties of levels can be described using multidimensional
spectral densities.36 The Green function approach offers a very
different and a much simpler physical picture for the optical
response in terms of exciton-exciton scattering and has
numerous advantages compared with the SOS: (i) it does not
suffer from the problem of cancellation of terms which scale
as∼L2 in nonlinear optical signals.22 These cancellations often
create severe numerical difficulties and make it hard to gain
physical insight. (ii) The diagonalizations ofL2× L2 matrixes
necessary for calculating two-exciton states are completely
avoided. OnlyL × L matrixes need to be inverted, which
considerably reduces the numerical effort. The most time
consuming step in calculating the pump-probe signal is the
multiple summations which appear in eqs 4 and 5 and not the
matrix inversion. (iii) Exciton-phonon interactions are natu-
rally incorporated.
In ref 29 these Green functions expressions have been derived

using diagrammatic techniques. A much more intuitive deriva-
tion based on the non-linear exciton equations of motion (NEE)
was developed recently37 and will be briefly sketched below.
In general, for our model, any third order optical process (such
as pump-probe) may be calculated by following the time
evolution of the variables〈Bn〉, 〈BnBm〉, 〈B†nBm〉, and〈B†nBmBl〉.
Equations 4-9 can be derived using equations of motion for
these variables, which may be closed using projection operator
techniques.38 The microscopic description of the pump-probe
spectrum depends on three time intervals. The first is the
difference between the two interactions with the pump. During
this interval the variables〈Bn〉 are created, and the doorway is
prepared. Following the second interaction with the pump we
start the second delay periodτ, where the density matrix〈B†nBm〉
evolves in time. Here an explicit relaxation kernal obtained,

R(ω) ) ∑
mn

Im[µmµnGmn(ω)] (2)

Gmn(ω) )∫0∞dτ exp(iωτ)〈Bm(τ) B
†
n(0)〉 (3)

S(ω,τ) ) Im∑
mn

Mmn(ω) Nmn(τ) (4)

Mmn(ω) ≡∑
ijl

µiµjGjl(ω) Gmi(ω) Tmnl(ω) (5)

Tmnl(ω) ≡ ∫-∞

∞ dε
2πi

G* ln(ε) Γh lm(ω + ε) (6)

Γhmn(ω) ) [F(ω)]mn
-1[(ω + gn)κn

2 - 2ω] (7)

Γhmn(ω) ) δmnκm
2 - [(ω + gn)κn

2 - 2ω]Gmn(ω) +

2iκm
2∑
k

RmkGkn(ω) (8)

Gmn(ω) ≡ ∫-∞

∞ dε
2πi

Gmn(ε) Gmn(ω - ε) (9)

Mmn
(fl)(ω) ) ∑

l

µlµnGlm(ω) (10)
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e.g., using the Redfield theory37,39 should be used. For long
time delaysτ, the exciton density matrixNmn(τ) assumes the
thermally equilibrated form

whereΨR andεR are the exciton wave functions and energies,
andZ ≡ ∑Rexp(-εR/T).
Subsequently, the first interaction with the probe creates the

three-exciton variable〈B†nBmBl〉 reflecting coherence between
one- and two-exciton states, as well as〈Bn〉 , whose time
evolution during the third evolution period between the two
interactions with the probe determines the window. The major
difficulty in implementing this procedure is the proper incor-
poration of the〈B†nBmBl〉 variables since their number scales as
∼L3. Various factorization schemes have been employed in
the past to describe specific measurements. A〈B†n〉〈BmBl〉
factorization22 applies in the absence of phonons. A〈B†nBm〉-
〈Bl〉 factorization was used to describe exciton transport.40,41A
more elaborate maximum entropy factorization which interpo-
lates between the above two was used in the analysis of off-
resonant optical susceptibilities.32,42 The NEE derived recently
uses an approximate relaxation kernel for the〈B†nBmBl〉 variables
rather than factorizing these variables themselves. Phonon
exchange among different excitons is neglected. This means
that during the third time interval phonon effects are incorpo-
rated through the one-exciton lifetime induced by exciton-
phonon dephasing, whereas exciton-exciton scattering is taken
into account explicitly. This scattering is related to Pauli
exclusion and to anharmonicities induced by the third molecular
level.
Equations 4-9 may be used to analyze the combined effects

of disorder and coupling with phonons on the pump-probe
signal. Previous calculations have employed a model with
disorder alone where exciton localization is the only size
underlying∆Ω.11,15 In that case, the BL peak comes from the
resonant feature in Im[Gns(ω) Gim(ω)] while the ESA peak is
due to a sharp resonance in Im[Γh(ω)] which enters the signal
through eqs 4 and 5. One can then qualitatively describe the
system as an ensemble of three-level systems. Once the phonon-
induced homogeneous width becomes large compared to the
spacing between two-exciton levels, the resonances ofΓh overlap
and the pump-probe signal assumes a very different nature: it
reflects a collective (global) excitation of the entire two-exciton
manifold. A key question is whether∆Ω originates from
exciton localization or from electronic dephasing determined
by the parameterLf. The calculations presented in the coming
sections will address this issue.

III. Application to the B850 System of LH2

We now apply the doorway-window expressions to calculate
the pump-probe signals from the B850 band of LH2. This
band comes from a cyclic aggregate consisting of 18 chlorophyll
molecules. We neglect the weak coupling to the outer nine-
molecule ring (the B800 band), and each chlorophyll molecule
is modeled as a three-level system.11,15,31 The transition
frequency between the second and third levels is shifted to the
blue compared with the lowest transition, and we set the
anharmonicity of the third levelΩ′m - Ωm ) 100 cm-1.11 The
ratio of the dipole moments is assumed to be the same for all
molecules and was adjusted to fit the experimental pump-probe
spectra. This results inκ values between≈0.9 and 1.0. We
used the molecular positions measured by McDermott et al.3

The system is made of nine dimers, and we assume that the

transition dipoles of individual molecules are tangential to the
ring and are almost antiparallel within each dimer.3,4 The
excitonic couplings between the molecules were taken from
Sauer et al.:4 nearest-neighbor couplings of 273 and 291 cm-1,
next-nearest-neighbor coupling of-50 and-36 cm-1, and the
third-nearest-neighbor term of 12 cm-1. All other couplings
were reported to be smaller than 10 cm-1 and were therefore
neglected in the present calculation. [Although the nearest-
neighbor coupling constants in the B850 ring on LH2 are
positive, spectroscopic features of the system are similar to those
of J aggregates (e.g., the aggregate absorption band is red-shifted
compared to the monomer) due to almost antiparallel directions
of nearest-neighbor dipoles. A simple transformationBn f
(-1)nBn leads to a representation where the nearest-neighbor
coupling constants are negative and the dipoles are almost
parallel.]
In the absence of specific information we assumed the

simplest model for the relaxation matricesΓmnandRmn. These
matrixes were taken to be diagonal in the site representation
with all diagonal elements equalΓmn) δmnΓ, Rmn) δmnΓ; the
homogeneous contribution to the linear absorption line width
results in fwhm ofΛ ) 2Γ. Note that for this model the
relaxation matrixes are also diagonal in the exciton representa-
tion with all relaxation rates being equal. The entire exciton-
phonon coupling is thus represented by a single parameter.
Previous modeling of the pump-probe spectra included

disorder but neglected exciton-phonon coupling.11,15 We start
our analysis by considering whether the reverse assumption,
namely, exciton-phonon coupling (homogeneous broadening)
alone with no disorder can reproduce the same spectra and lead
to large∆Ω, as observed experimentally.11,15

Figure 2 shows calculated pump-probe spectra without
disorder for different phonon-induced homogeneous widthΓ
at 4.2 K. For all values ofΓ the pump-probe signals show a
negative BL part at lower energies and a positive ESA part at
higher energies. For smallΓ, the splitting∆Ω is small, which
indicated that this system has two-exciton states energetically
very close to twice the one-exciton energy. In this case the
ESA shows a progression of several well-resolved two-exciton
contributions. AsΓ is increased, the contributions of different
two-exciton states merge and∆Ω increases (see inset in Figure
2). In this regime the shift does not reflect an energetic
difference between specific states but is induced by, and scales

Nmn) Z-1∑
R

Ψ*R(n) ΨR(m) exp(-εR/T) (11)

Figure 2. Normalized pump-probe spectra without disorder for
different dephasing ratesΓ at 4.2 K.κ ) 0.9. SolidΓ ) 25 cm-1; dash
50 cm-1; dot 100 cm-1; dash-dot 150 cm-1; and dash-dot-dot 200
cm-1. Inset: shift∆Ω as a function ofΓ. For other parameters see
text.
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with, the homogeneous line width. These calculations show
that both disorder-induced localization and homogeneous broad-
ening induced by coupling to phonons may account for the
observed spectra.
We next calculated the pump-probe signal, incorporating

both exciton-phonon interactions and static disorder, and fitted
the shift between the BL and ESA as well as their relative
magnitude to recently measured pump-probe spectra on B850
of LH2 at 4.2 K.15 The exciton-phonon coupling strength can
be obtained from hole-burning measurements,10 polarization-
dependent frequency-domain pump-probe,21 and three-pulse
echo measurements.17 Disorder is incorporated by assuming
that each frequencyΩm has a Gaussian distribution with fwhm
σ around its mean value. This model is known as Gaussian
diagonal disorder.σ was varied to fit the experimental pump-
probe spectra. Calculations were made using a Monte Carlo
sampling over different realizations of disorder. In the following
calculations we used three models. In model I we tookΓ )
180 cm-1, κ ) 0.9, Ωm ) 12 348 cm-1, andσ ) 0. In this
case we neglected disorder altogether, and the absorption line
width is homogeneous. In model II we haveΓ ) 100 cm-1, κ
) 0.9,Ωm ) 12 408 cm-1, andσ ) 377 cm-1, and finally in
model III Γ ) 50 cm-1, κ ) 1.0,Ωm ) 12 488 cm-1, andσ )
527 cm-1. Considering previous measurements10,17,21 and
estimates of the homogeneous and inhomogeneous line widths
in LH2, model III is probably the most realistic.
Figure 3 compares the pump-probe and the linear absorption

spectra for the three models at 4.2 K. The linear absorption
line width is 360 cm-1 (fwhm) for model I and 310 cm-1 for
models II and III, which fall within the range of experimentally
reported values.
The calculated pump-probe signals have been normalized,

andΩm has been shifted so that the maximum of the BL is-1
and occurs at 858 nm; these spectral shifts are 88, 148, and
228 cm-1 for models I, II, and III, respectively. To fit the linear
spectrum, Sauer et al.4 have lowered the transition frequencies

of the B850 monomers by 240 cm-1 compared to the B800
monomers. The shifts obtained here are in the opposite direction
and should reduce the difference between the monomers of the
two bands. All three models yield about the same∆Ω and the
same ratio of the magnitudes of BL and ESA. This demon-
strates that the pump-probe experiment alone can be interpreted
using very different models.
In Figure 4 we display the linear absorption and the relaxed

fluorescence for model III. In the calculation of the fluorescence
we have assumed that for each realization of disorder the
excitons are in thermal equilibrium, which for the temperature
of 4.2 K implies that only the lowest exciton state on each ring
is occupied. The purely electronic disorder-induced Stokes shift
shown in Figure 4 is 139 cm-1. In ref 17 the Stokes shift
induced by nuclear motion at room temperature has been
estimated to be about 80 cm-1. Since the disorder-induced
Stokes shift should decrease with increasing temperature, these
values are in good agreement with ref 43, where the total Stokes
shift has been measured to vary from 400 cm-1 at 4 K to 270
cm-1 at room temperature by comparing absorption and
fluorescence. Thus using three parameters:Γph related to the
value of the exciton-phonon coupling, the strength of static
disorderσ, and the ratio of the molecular dipolesκ, we obtain
a good agreement between our calculations and four types of
optical measurements: absorption, fluorescence and pump-
probe.
It should be noted that polaron effects are not included in

the present theory. This means that the Stokes shift clearly seen
in Figure 4 is not related to nuclear relaxation and reflects pure
electronic relaxation. It will be interesting to explore whether
the difference between the theoretical curves and experiment
on the red wing of the pump-probe signal,15 could be attributed
to polaron effects.15

IV. Exciton Mean Free Path and the Pump-Probe Peak
Shift

The exciton-phonon coupling and the static disorder param-
eters used in model III reproduce the pump-probe signal11,15

as well as linear absorption,4 of the B850 system of LH2. It is
tempting to try to interpret these measurements in terms of some
effective aggregate sizeLeff. The idea is that the combined
effects of disorder and coupling with phonons restrict the extent
of spatial coherence in the system. The optical properties should
then depend onLeff rather than on the physical size of the
aggregate (which for very large aggregates becomes irrelevant).

Figure 3. Normalized pump-probe (a) and linear absorption spectra
(b) for models I (solid), II (dashed), and III (dotted). IΓ ) 180 cm-1,
σ ) 0, Ωm ) 12 348 cm-1, andκ ) 0.9; II Γ ) 100 cm-1, σ ) 377
cm-1, Ωm ) 12 408 cm-1, andκ ) 0.9; III Γ ) 50 cm-1, σ ) 527
cm-1, Ωm ) 12 488 cm-1 andκ ) 1.0; atT) 4.2 K. The experimental
data (circles) are taken from ref 15.

Figure 4. Linear absorption (solid), fluorescence (dashed), and pump-
probe (dotted) spectra calculated using model III.
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One obvious candidate forLeff is the localization sizelA. If lA
controls the pump-probe signal the shift∆Ω reflects properties
of individual exciton states. A different length scale which
could determineLeff is the mean free pathLf. the formal
definition of Lf involves the one-exciton Green functionGmn-
(ω) introduced in section II:Lf is a length scale of decay of
Gmn(ε) as a function ofm - n, ε being the exciton energy,
chosen to be at the absorption maximum since these excitons
primarily determine the optical response. We shall defineLf
as the inverse participation ratio44 associated withGmn(ε):

This quantity gives the length scale on which the exciton Green
function decays along the “antidiagonal” direction, i.e., as a
function ofn - m.
|Gmn(ε)| for models I, II, and III displayed in Figure 5d-f

shows how they decay with increasing|m- n|. The mean free
pathsLf calculated using eq 15 assume the values 9.2, 10.6,
and 11.2, respectively. To show how the mean free path enters
into the pump-probe signal, we shall carry out the integration
in eq 6 using the exciton basis set and switch to the exciton
representation for the Green functions. Since after averaging
over disorder the translational symmetry of a circular aggregate
is restored, and denoting the momentum of theRth exciton by
kR we obtain for the signal

whereNRR(τ) are exciton populations at timeτ, andk ) 2π/L
is the momentum of the optically active exciton. When the
exciton dephasing rateΓ is larger than the splitting between
exciton levels, the two-exciton resonances merge andΓh(ω +
εR + iΓ, k + kR) in the right-hand side of eq 13, shows no
sharp resonances. (However, its imaginary part whenω + εR
is tuned across the two-exciton band is a signature of two-
exciton states.) The resonances of the pump-probe signal are
thus given by the Green functionsG. The shift∆Ω now reflects
collective properties of the two-exciton manifold rather than
positions of individual two-exciton states. Under these circum-
stances, the pump-probe signal may not be interpreted in terms
of a three-level model. Instead, the signal is related to the
coupled dynamics of exciton populations and coherences,
exciton dephasing, and exciton-exciton scattering, as repre-
sented by eqs 4-9. This is how the mean free path (which is
related to the spatial coherence of the Green function) enters
into the picture.
SinceG(ω) has sharp one-exciton resonances, Im[G2(ω)] has

an absorptive negative profile while Re[G2(ω)] is dispersive.
The sum of these two terms gives the positive and negative
peaks. The former originates from the positive feature in the
dispersive form of Re[G2(ω)] and is proportional to
Im[Γh(ω + εR + iΓ)] which is nonzero by virtue of the two-
exciton manifold. The shift between the peaks is determined
by the shift between the positive and negative features of
Re[G2(ω)] which yields ∆Ω ≈ 2Γ/x3. In this qualitative
picture we neglected the weak frequency dependence of
Γh(ω + εR + iΓ). This rough estimate is verified by our
numerical calculations: using the absorption line width 2Γ )
310 cm-1 (models II and III) we obtain∆Ω ) 180 cm-1 versus
∆Ω ) 250 cm-1 obtained in our numerical calculations. For

model I (no disorder) we have even a better agreement:∆Ω )
210 cm-1 (for 2Γ ) 360 cm-1) versus 250 cm-1.
We are now in a position to relate the shift∆Ω in the pump-

probe signal to the exciton mean free pathLf. We note that the
signal (eq 13) depends on Im[Gmn

2(ω)] and Re[Gmn
2(ω)]. We

shall define three new length scalesLf
(i), Lf

(r), andLf
(a), obtained

from eq 12 by substitutingFmn
(i) ) Im[Gmn

2(ε)], Fmn
(r) ) Re[Gmn

2-
(ε)], and Fmn

(a) ) |Gmn
2(ε)| for Gmn(ε), respectively. These

reflect how the imaginary part, the real part, and the absolute
value ofG2 decay with |n - m|, respectivelyFmn

(r) , Fmn
(i) , and

Fmn
(a) for model III are displayed in Figure 6, and the coherence
sizes are 5.8(r), 3.2(i), and 5.6(a). Comparing these coherence
sizes we see thatLf

(i) ≈ Lf
(a) ≈ Lf/2. The relationLf

(a) ≈ Lf/2 is
natural sinceG2 should decay approximately twice faster than
G, which allows us to chooseLf

(a) as the coherence length
related to Gmn

2(ε) and treat Lf
(a) ≈ Lf/2 as the effective

coherence sizeLeff. This yields the following approximate
expression for the shift in terms of the exciton mean free path:

Using ∆Ω ) 250 cm-1 and an average nearest-neighbor
coupling of Jh ) 282 cm-1 gives Lf/2 ) 6.7 which is in
agreement withLf/2 ) 5.6 calculated for model III.
In summary we have shown that in all cases the effective

coherence size which determines the shift∆Ω of the pump-
probe signal from LH2 is determined by one-half of the exciton
mean free pathLf: Leff ≈ Lf/2 ) 5.6, which is induced by
exciton-phonon interactions and disorder-induced elastic scat-
tering. This is a very important result since the relationLeff ≈
Lf/2 is valid for quite different physical situations, e.g., in model
I there is no exciton localization and the signal can be interpreted
in terms ofLf only, whereas in model III excitons are strongly
localized and one may interpret∆Ω in terms of eitherLf or lA.
To resolve this ambiguity, we consider a situation with static
disorder and without exciton-phonon coupling, where the
signals can be interpreted in terms of exciton states. It follows
from eq 3 that the mean free pathLf associated withGmn(ω)
reflects the properties of both phase and amplitude of the exciton
wave functions, whereas the Anderson localization lengthlA
describes properties of the amplitude only. In higher dimen-
sional systems with weak disorder, there is no exciton localiza-
tion and Lf is determined by loss of exciton phase (elastic
scattering). In one-dimensional systems all exciton states are
localized, and since at the band edge the wave functions are
nonoscillatory we have the opposite situation wherebyLf reflects
localization of amplitude, described bylA.
In summary, our analysis shows that the shift∆Ω is directly

related toLeff ≈ Lf/2. Since exciton localization is only one of
several mechanisms that determineLf, it is not generally possible
to infer that the shift∆Ω is evidence of exciton localization.

V. Density Matrix Representation of the Exciton
Localization Size

We have shown in previous sections that exciton dephasing
and localization show up in a similar way in the pump-probe
peak shift∆Ω. To distinguish between dephasing and localiza-
tion, one needs to consider an observable which is influenced
in a different way by these two mechanisms. The simplest such
quantity is the single-exciton density matrixNmn. In the next
section we demonstrate howNmn shows up in cooperative
spontaneous emission superradiance. A detailed study of the
role of Nmn in time-resolved emission is given in ref 48.

Lf ≡ [L∑
mn

|Gmn(ε)|2]-1[(∑
mn

(ε)|)2] (12)

S(ω,τ) )

∑
R
NRR(τ) Im[G

2(ω,k)] Re[Γh(ω + εR + iΓ, k+ kR)]

∑
R
NRR(τ) Re[G

2(ω,k)] Im[Γh(ω + εR + iΓ, k+ kR)] (13)

∆Ω ) 4π2J

Leff
2
≈ 16π2J

Lf
2

(14)
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To determine the role of exciton localization, we display the
exciton reduced density matrixNmn ) 〈B†nBm〉, whereB†n(Bm)
are the exciton creation (annihilation) operators in the molecular
representation.2 [Note that we are considering here a nonsta-
tionary density matrix whose time evolution is governed by the
molecular Hamiltonian driven by the pump field. The localiza-
tion size can be alternatively obtained using the equilibrium

correlation function〈Bm(0) Bn†(t) Bn(t) Bm†(0)〉. Here the time
evolution of all operators is given by the molecular Hamiltonian
(without the external field). The localization length then shows
up if we consider this quantity as a function ofn - m for long
times (or for small frequencies, in the frequency domain).]
The exciton density matrix provides a natural measure of

exciton-localization signatures of optical measurements such as

Figure 5. Absolute values of equilibrium exciton density matrixesNmn for models I (a), II (b), and III (c) atT ) 4.2 K. Absolute value of the
exciton Green functionGmn(ε) with ε at the absorption maximum for models I (d), II (e), and III (f). Also given are the corresponding values of the
coherence sizesLF andLf calculated via the inverse participation ratio. From large to small: blue, green, yellow, red; see color code in Figure 7.
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pump-probe spectroscopy. When the exciton eigenstates are
well resolved and the experiment depends on a few of them, it
is possible to interpret measurements using properties of
individual eigenstates. However, in many cases, these properties
are averaged out by the collective nature of the measurement.

This happens, e.g., at finite temperatures (compared with the
exciton bandwidth). In addition, when exciton-phonon cou-
pling is incorporated, the pure exciton states are not very
meaningful, since we need to consider the eigenstates in the
joint electronic and nuclear space. The density matrix provides
the level of description most compatible with optical measure-
ments and is therefore the natural link between theory and
experiment. In section VI we show that the localization of the
density matrix as viewed by its “antidiagonal” sections controls
the superradiance emission, regardless of whether it represents
a few individual eigenstates or the collective effect of many
states.
Neglecting disorder, the density matrices representing the

lowest exciton states〈R|Bn†Bm|R〉, R ) 1, 2, 3 are displayed in
Figures 7 and 5a. The lowest optically forbidden exciton (Figure
5a) is completely delocalized over the entire ring, and all density
matrix elements are the same. The next two optically active
excitons are degenerate with an energy 60 cm-1 higher than
the lowest exciton. These excitons are somewhat localized, as
shown in Figure 7a,b. The density matrix representing a mixed
state, with both excitons equally populated displayed in Figure
7c, shows a cyclic symmetry. The modulation of the off-
diagonal elements reflects the weak dimerization.
A convenient measure of exciton delocalization is provided

by the inverse participation ratio of the exciton density matrix

with Fmn ) Nmn. Equation 15 is the same formula used for the
definition ofLf (see eq 12), withGmn(ε) replaced byFmn. This
quantity gives the length scale on which the density matrix
decays along the “antidiagonal” direction, i.e., as a function of
n - m. Similar measures has been successfully used in the
analysis of off resonant polarizabilities of aggregates,42,45

conjugated polymers,46 and semiconductor nanocrystals.47

Figure 7 displays the thermally equilibrated density matrixes
for model I corresponding to 100 K (Figure d) and 300 K (Figure
e). Although the individual eigenstates are delocalized, the
thermal exciton density matrix is localized. This thermal
localization increases with increasing temperatures, fromLF )
13.8 at 100 K toLF ) 7.9 at 300 K. At higher temperatures
when all excitons are populated equally, the density matrix
becomes diagonal andLF ) 1.
The present definition of a localization size is in general

different from that based on the size of individual eigenstates.
If the eigenstates are localized, then the density matrix will be
localized as well. As demonstrated in Figure 5, the reverse is
not true: the density matrix may be localized even if the
individual states are delocalized. Since optical measurements
are related to the density matrix, we argue that this new
definition is more appropriate. It provides precisely the level
of averaging required for the description of optical signals.
Figure 5a-c shows the equilibrium density matrixes corre-

sponding to models I, II, and III at 4.2 K. For model I, the
lowest exciton, which is the only one populated atT ) 4.2 K,
is delocalized over the entire aggregate. In this coherent case,
LF ) 18 coincides with the systems’ physical size. In the
opposite, incoherent case, when the density matrix is completely
diagonal in real-space, we haveLF ) 1. The disorder included
in models II and III leads to a decrease ofLF to 16.5 and 15.0,
which reflects effects of exciton localization on the exciton
coherence size. It is important to note that in all cases exciton-
phonon interaction has been taken into account in the weak
coupling limit which results in Boltzmann distribution of
excitons at large times. This allows to interpret our results in

Figure 6. Square of exciton Green functionGmn
2(ε) with ε at the

absorption maximum for model III. Absolute value of real part (a),
absolute value of imaginary part (b), and absolute value (c). Also given
are the corresponding values of the coherence sizesLf

(r), Lf
(i), andLf

(a)

calculated via the inverse participation ratio. From large to small: blue,
green, yellow, red; see color code in Figure 7.

LF ≡ [L∑
mn

|Fmn|2]-1[(∑
mn

|Fmn|)2] (15)
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the following way: weak exciton-phonon interaction does not
lead to localization of the density matrix (LF ) 18) whereas
disorder does (LF < 18). Since at low temperatures only low-
energy excitons with nonoscillatory wave functions are popu-
lated,LF is related to the exciton localization lengthlA but not
to Lf since the phonon-induced part ofLf does not affect toLF
at all (LF ) L for model I). lA is usually defined using the
participation ratio of the exciton wave function.44,48Even when

LF is determined by localization, its numerical value does not
coincide withlA. For the values of parameters used in this paper
LF ≈ 3lA.48 This means that for model III (LF ) 15) excitons
are localized (lA ) 5).
We emphasize thatLF is a measure of exciton localization

only at low temperatures and for weak exciton-phonon
coupling. At higher temperatures higher energy excitons with
oscillatory wave functions are populated, thereby decreasingLF.

Figure 7. (a, b) Absolute values of density matrixes of the two lowest degenerate optically active excitons of B850 of LH2 without disorder
(model I). (c) Mixed state with equal populations of states (a) and (b). Also shown are the absolute values of equilibrium exciton density matrixes
Nmn at 100 K (d) and 300 K (e) and the corresponding values of the coherence sizeLF calculated via the inverse participation ratio are given. From
large to small: blue, green, yellow, red; see color code.

7340 J. Phys. Chem. B, Vol. 101, No. 37, 1997 Meier et al.



Under these conditions exciton localization does not contribute
to LF, which is primarily determined by the sizelT defined in
the Introduction.48 Strong exciton-phonon coupling can result
in another coherence size that affectsLF: the polaron sizelp,
with the polaron binding energyEp being the characteristic
energy parameter.49

Polaron formation can also contribute to∆Ω, and the
mechanism is very similar to that of localization. Although a
polaron is an electronically delocalized state, due to self-
trapping, the different positions are correlated. To put this on
a formal basis, we consider the reduced exciton density matrix
Nmn prepared by the pump. Due to lattice distortionNmn as a
function ofm - n acquires a coherence lengthlp. Since the
relaxed polaron prepared by the pump has an energy-Ep with
respect to the exciton band edge, the energy of a two-exciton
state created by the probe is shifted by at leastEp with respect
to twice the energy of a single exciton. This makesEp
contribution to∆Ω. Taking polaron effects into account is a
natural extension of the present theory. The energy parameters
related to the coherence sizeslph, lp, andlA are the homogeneous
line width 2Γph, the polaron binding energyEp, and the minimal
energy splitting between overlapping localized exciton states
∆Ea, respectively. For each of these three mechanisms the
splitting between the peaks∆Ω may be attributed to one of the
corresponding energy parameters.

VI. Superradiance Coherence Size

Cooperative spontaneous emission (superradiance) provides
an additional interesting signature of exciton localization. When
molecules radiate in phase, we expect the radiative decay rate
to be enhanced. The superradiance coherence sizeLs is defined
as the ratio of the radiative decay rate of the aggregate to that
of a single molecule.50 It reflects the extent of excitonic
intermolecular coherence. Earlier calculations have addressed
the role of exciton-phonon coupling and disorder onLs.50 The
superradiance enhancement factorLs50 can be expressed in terms
of the exciton density matrix:48

Here the matrixNmn is normalized to have a unit trace, i.e.,
∑nNnn ) 1. The direction of the molecular dipole moments is
given by the unit vectorsdm. Unlike ∆Ω, superradiance is
directly related to the exciton localization size. Initially,
following the excitation,Ls(t) will vary with time. Below we
consider the long time limit where the density matrix has been
fully equilibrated in the exciton manifold. Temperature-
dependent superradiance have been recently reported in LH1
and LH2.28 The predicted superradiance enhancement should
provide a critical test for our model, since all parameters have
been already determined.
In Figure 8 we display the superradiance enhancement factor

Ls for models I, II, and III. In the absence of disorder (model
I) and at low temperatures only the lowest exciton state is
occupied. Although this exciton and the corresponding density
matrix are delocalized over the entire system (Figure 5a), the
enhancement factorLs is zero. This is due to the fact that given
the geometry of LH2 with a tangential head-to-tail orientation
of the dipoles, the lowest exciton carries no oscillator strength.
With increasing temperature, higher bright exciton states are
populated, andLs is finite. The density matrix, however,
becomes more localized as the temperature is increased.48 The
increase ofLs as the coherence size of the density matrixLF

decreases, suggests that in the low-temperature regimeLs is
related directly to the difference between the physical siteL
andLF. At T ) 170 K corresponding to a thermal energy of
107 cm-1, which is somewhat larger than the energy difference
of 60 cm-1 between the lowest and the optically active excitons,
Ls reaches a maximum of 4.2 for model I. For higher
temperaturesLs decreases. For temperatures much higher than
the bandwidth (in model I the bandwidth is 1160 cm-1

corresponding to a temperature of 1850 K) all excitons are
equally populated. In this case the density matrix is diagonal
andLs becomes 1.
When disorder is introduced, the pronounced temperature

dependence ofLs is diminished. In particular at very low
temperaturesLs attains a finite value, since with disorder the
transition to the lowest exciton becomes allowed. At 4.2 K for
model II we haveLs ) 2.5 andLF ) 16.6. Ls is thus almost
exactly given byL - LF ) 2.4. For model III we findLs ) 2.8
andLF ) 15, i.e.,L -LF ) 3. This again demonstrates that at
low temperaturesLs is determined by the disorder-induced loss
of coherence of the density matrix. With disorder, a smaller
maximum ofLs appears aroundT ) 170 K (4.0 for model II
and 3.9 for model III) compared with model I. At higher
temperaturesLs decreases in all models, and for very high
temperatures, when all excitons are populated equally, it
approaches a value of 1. Our calculations for model III are in
good agreement with recent experiments,28which found between
4 and 300 K a constant value of 2.8 for the superradiance
enhancement factor in LH2. Model III reproduces the experi-
mental value for low temperatures and shows a rather weak
temperature dependence ofLs.
It is important to note that for model IIIlA ≈ 5 (see ref 48)

and the superradiant factorLs ≈ 3 may seem to be formed by
coherent emission of dipoles on the length scale oflA. However,
this is a coincidence, since we have shown that the size on which
dipoles emit coherently isLF ≈ 3lA and for the present geometry
Ls≈ L - LF ≈ L - 3lA which turns out to be not very different
from lA for L ) 18. For this reason, the different superradiance
factor observed in LH1 (Ls ≈ 9 with L ) 32)28 does not
necessarily imply a different exciton coherence size.
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Figure 8. Superradiance enhancement factorLs as function of
temperature for models I (solid), II (dashed), and III (dotted).

Ls(t) ) ∑
mn

(dm‚dn)Nmn(t) (16)
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