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A real-space formulation of time-resolved fluorescence of molecular aggregates is developed using
the one-exciton density matrix(t) of the optically driven system. A direct relationship is
established between the superradiance enhancement Eactord the exciton coherence sikg
associated with the off-diagonal density matrix elements in the molecular representation. Various
factors which affect the latter, including finite temperature, energetic disorder, coupling with
phonons, and polaron formation are explored. The theory is applied for the interpretation of recent
measurements in the B850 system of the LH2 photosynthetic complexed.99® American
Institute of Physicg.S0021-960807)50634-9

I. INTRODUCTION showed coherence sizes of 2-3 at room temperature,
whereas at low temperaturés=3 for LH2 antenna com-
Optical properties of photosynthetic antenna complexeplexes and_,=9 for LH1.2? Significant decrease of fluores-
have become an object of intensive experimental and theqence lifetimes in J-aggregates of pseudoisocyafii€)
retical studies over the last yearsTime and frequency re- dyes compared to single chromophores has been ob&rved
solved measurements including fluorescence depolarizyith the fluorescence lifetime varying between 70 ps at 1.5 K
ation’® hole buming™® pump-prob€;™** and photon 5 450 ps at 200 K. PIC J-aggregates are one-dimensional
echoe§™** provide direct information regarding the dynam- cjysters of dye molecules with collective superradiant emis-
ics of excitons, energy transfer, and electronic and nucleaion and optical nonlinearities. For example, in PIC-Br
relaxation in these systems. In this paper we focus on timeJ-band, a Strickler-Berg analysis gives the monomer radia-
resolved fluorescence and cooperative spontaneous emissiqly, |ifetime 3700 p® and 70 ps for the aggregate. This
(superradiangewhich is one of the most interesting elemen- implies a superradiance coherence size=50 which is

tary signatures of intermolecular coherence. Molecular a%;,uch smaller than the number of molecules in the aggregate:
gregates are often characterized by ultrafast radiative decayé.5>< 10* obtained from a study of exciton-exciton

This effect has a simple classical interpretation: When a COIénnihiIation?l Coherence sizes of 2—3 were found in mix-

lection of dipoles oscillate in phase, their amplitudes add YRures of isocyanine dyes adsorbed on silver halide substrates

coherently to form a large effectlve_ d.|pole. The oscn!ator- at room temperatur® wheread_ = 70 has been reported for
strength and consequently the radiative decay rate is thelglc aggregates in a low temperature gilss

roportional to the number of dipoles. The superradiance co- S o .
brop P b The finite coherence side, in large aggregates is related

herence sizd ¢ of a molecular aggregate is defined as thet the breakd fi lational v of i q
ratio of its radiative decay rate to that of a single molecule.t0 tet' rg_a gév;zg 24‘£§1nsta |onz.at symhme 'y o i exufo r:% ue
(For simplicity we assume in this definition that all mol- 0 stalic disor or o exciton-phonon interactions.

ecules are identical and have the same radiative decay ratl the former case, the coherezggfzslisl%ehas been attributed
fo exciton localization lengtfi2°2425which exists in one-

This definition can be generalized to aggregates made of dif=, ) . sordeE
ferent molecule$. The concept of a coherence size was in-dimensional systems even for infinitely weak disordets-

voked by Mobius and KuHfiin analyzing the dependence of fects of weak disorder on _emissi_on of two-dimensional ag-
fluorescence quenching on the acceptor surface density forg€dates have been studied using perturbative meftiods.
system consisting of an acceptor monolayer on top of & nonon-induced exciton dephasing has been shown to de-
J-aggregate monolayer. Molecules separated by more th&ifoy excitonic coherence and control the superradighce.

the optical wavelength may not emit coherently \(a)® is In this paper we show how the time-resolved fluores-
therefore the fundamental upper bound Fqr,*%"a being ~ cence from aggregates may be calculated and analyzed by
the lattice constant, ardithe dimensionalitysee Ref. 18 for exploring exciton dynamics in real-space using the single-
d=1 and Ref. 19 fod=2). In practice, however, the coher- €xciton density matrix. The superradiance dizeis shown
ence size is usually determined by other dephasing meché&e be primarily determined by the exciton coherence kize
nisms such as exciton-phonon interactions and stati@é precise definition of the latter in term of the “anti-
disordet®?°-%6and is typically much smaller than both the diagonal” section of the density matrix is given. We study

aggregate physical size and the optical waveleAYthSimi-  the effects of static disorder and strong exciton-phonon-
lar types of aggregates can have very different coherenceoupling onL ,. The density matrix approach further allows
sizes in different environment. us to express the time-resolved fluorescence signal as an

Recent work on photosynthetic antenna complexe®verlap of a doorway and a window excitonic wave packets.
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The doorway represents the reduced density matrix of tha unit vector. Otherwise its magnitude will vary with
exciton driven by the external pump whereas the windowJ,(q) are 3x 3 orthogonal rotation matrices describing mo-
accounts for the system’s geometry. lecular orientations.

In Sec. Il we develop the doorway-windo@W) pic- The time- and frequency-resolved fluorescence can be
ture and define the density matrix coherence $ize The related to the dipole-dipole tens8 (w,7):
influence of temperature and static disorderlgnin cyclic
aggregates is then explored in Sec. lll. An additional mecha- i A iot] o t il t
nism for L, resulting from strong exciton-phonon coupling SHo,1)= 2 %dte Pl 7+ 2 P 2]/ )
and the formation of polarons is discussed in Sec. IV. A o
variational calculation of the polaron wave function usingwherey=4u%w>/3%c? is the radiative decay rate of a single
Toyozawa's Ansatz allows us to compute the reduced excimglecule with optical frequency, and the time evolution of
ton dgns|ty matr|x by tracing the JO|_rleXC|ton plus phonon B,(7) is given by the molecular Hamiltonian with the exter-
;j_ensny sztrlx over the pgontotr;] var_|abll_e;:_s.d\/vr(;§nbnlt1_clea: MOpa driving field included A +H,,). Herei,j=x,y,z denote
lons are slow, we may adopt the simpiilied aciabalic polarony, ¢, 1ongoy components &in a molecular frame. To elimi-

{nOde.l cqmlmon(;y useq n lthe tderggzp_pﬁ n chexcnon Sﬁ If'nate propagation and polariton effects which are not essential
rapping in low-dimensionai Systems: € approach ¢, ihe present discussion, we assume that the aggregate’'s

is utilized in Sec. V to calculate the dependence of the SUsize is much smaller than the optical wavelerith.

perradiance enhancement factqron static disorder, diago- The model introduced by Ed1) conserves the number

nmal dalnd fcgf'dla?ﬁ n:;l q ?ch?r?—ﬁh?nngn-co\;llp\ll:lng diusmg t::cejlof excitons /=3 ,(B'B,). If exciton annihilation processes
odels ot Secs. Tl & - Finally ec. € discuss a (radiative or nonradiatiyeare taken into account/" be-

summarize our results. comes time-dependent; however, the timescalg 0is typi-

cally long compared with exciton equilibration. In either case
it is convenient to represent the time-resolved signals/as

Il. REAL-SPACE PICTURE OF TIME-RESOLVED times the signal per exciton.
FLUORESCENCE The time-resolved polarized sign8}( ) is given by
In this section we develop a real-space description of 5 o
time-resolved polarized and depolarized fluorescence from  Sy( T)=7./]/'(T),Zl 7 (r)n'n’, 5
L,]=

molecular aggregates. We show how this signal may be re-
cast in terms of a doorway function which contains all rel-or ysing operator notation

evant information about the electronic state of the system

(expressed through the exciton density matrand a win- Sa(7)=yA(r)n-A7)-n. (6)
dow function related to the system’s geometry. To set the . . _ o N
stage, we introduce a Frenkel-exciton model Hamiltoniar"|eren IS a u_nlt vector denoting the polarization direction of
which represents an aggregate made out of two-level molt-he emitted light, and
ecules interacting with a bath consisting of nucléatramo-

lecular, intermolecular, and solverdegrees of freedom: A=y T)]*lf %S”(w,T)
m#n
H=>, Q,(q)BIB,+ > J B! B,+HP". 1 1 o
2 Qn(@BByt+ 2 Jne( BBy (D) - PP @
moA ()

Here B, (BE) are exciton annihilatior{creation operators
for the nth molecule, AP" is the bath(phonon Hamiltonian, The total time- and frequency-resolved fluorescence si
and q represents the complete set of nuclear coordinates. |S(w.7) ?su:'nmed overr gil;egtignrs 2f Volari;at:()rsmr?be 19
Exciton-phonon interactions and static disorder are describe ’ X P

through the dependence of molecular frequenfigsand the represented in a form
intermolecular couplingg,,, on nuclear coordinates.

is the polarization tensor.

The dipole interaction with the optical field is S(w,7)= %Jm dteiwt< P ﬁ-% .p( — %)>

N pod

Hine=—E(1)- P, 2

_ i

where the polarization operator is given by _Ei S'(w,7). 8)

PZMZ Un(q)dn(BnJrB;). 3) The corresponding time-resolved signal is

n
oo w .

Here ud, is the transition dipole of tha-th molecule,u is S(r)= fﬁm _WS("”T): A (r)Ly(7), ©)

an average transition dipole agg a dimensionless vector.
When all molecular dipole moments are the sadyewillbe  whereL((7) is given by the trace of the polarization matrix
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s with the window given by Eq(13), and the doorway
L(n)=TIAN]=2, 7(7). (10 _ o
=t Nk (1) =1 " 7)(Un (@) UL () B}Br). (19
We shall now introduce the DW representation for the
time-resolved signalS(7) by relating Ly(7) to the time-
dependent doorwaylN) and window M) functions

The doorway function of Eq(14) is related to the doorway
function of Eq.(19) by

3
L(D=TIMN(7)]= 2 M Nio(7), (11 Niho(7)= 2, N (7). (20
mnij =
where we use the tensor notation of E8). M andN(7) are  Assuming fixed molecular orientations and neglecting reori-
thus direct products df ;X L, matrices in the exciton space entational disorder, the DW representation adopts the form
(Lg is the number of moleculgsand 3x 3 matrices in real

space. Hereafter we invoke the rotating-wave approximation ;. ij

for the signal by omitting the term&,,B,), (BIB!), and 7 (T)_% MmnPmn(7), (21)
<BmBl) occurring in correlation functions of polarization op- i _

erators in Eqs(4), (7), and(8). The doorway functioN(r) ~ Where M}, is given by Eq.(13) and pp, is the reduced

is then given by: exciton density matrix defined by EQL7).
i 1 " it The window functionM,,, introduced in this section
Nmn(7) =" (7){[Un(DUn(a)]" BB, (12 carries all the information regarding dipole orientations nec-

where the expectation value in the right hand gide.s) of ~ €ssary for calculating t_hg quores_cence. We note that bbth
Eq. (12) is taken with respect to the full density matrix of the @ndp areLoXLo Hermitian matricesl., being the number
system at timer. The window function is defined by: of one-exciton states. They satisfy

M} =dpdl. (13) Trlp]=1, Tr[M]=f, (22)

Equations(11), (12), and(13) constitute the DW representa- wheref is the total aggregate oscillator strength
tion of time-resolved spontaneous light emission. Assuming

that the averaging in the r.h.s. of E§.2) can be factorized, fEE fo, fo=|d,|? 23)
we obtain LI
Niho(7) =12 (U Un(a) 1 )(BIB,). (14 f, being the oscillator strength of theh molecule.

Equation(14) holds in three typical situationsi) static dis- The matricesM,, and ppmy can be diagonalized using

order, when orientational disorder is not correlated with en-ba_SIS sets deno';]edqﬁa ban_d Vo, respectwel:y, d.\%\”th
ergetic disorder; (ii) weak exciton-phonon-coupling, @=0,1,...Lo—1. These basis sets are generally different.

whereby the full density matrix can be factorized into a prod_However, if the aggregate has some symmetry, they may

uct of electronic and equilibrated nuclear parts, which makegr?'nc'de' Itis shown in lAppendlx Ad'FhM has r;§> moredthban

the first factor in the r.h.s. of Eq14) time independentiii) ~ [NT€€ NONZzero eigenva ueésupe_rra lant statgslenoted by

when nuclear motions do not affect dipole orientations.  f«» @=1, 2, 3; the corresponding three eigenstapeswill
Neglecting orientational disorder and assuming that albe hereafter referred to as the superradiant states. We further

molecules have fixed directions in space, the doorway anthtroduce three orthogonal vectods, which represent the

window functions become scalars in real space: transition dipoles between the ground state and the superra-

diant states:

L(D=TAMN(1)]= 2 Mmmome(7), (15 3
=2 dacb(m), (24)
with a=1
Mm=d,-dp. (16)  and f ,=|d,|% Equation(24) implies that each superradiant

. - . . State is responsible for the components of all molecular di-
';I(-)qu di%%ﬁga%;l#;;"on now coincides with the reduced exCI'poles along one of the orthogonal directions in the laboratory
' frame; these directions are uniquely determined by the ag-

Nin(7) = P T)E./j/*l(q-)<slq( 7)Bn(7)), 17 gregate geometry and are not arbitrary. When all molecular
dipoles are in the plane determined 8y with a=1,2 we
Qavefgzo, while f ,= f ;=0 when all dipoles are oriented
along d;. Denoting p ,=(¢,|p|#.), we obtain for the su-
perradiance factor

normalized to a unit trac&@r[p]=2,pnn=1.

These results can be readily extended to the polarize
signal[cf. Eq.(11)]. The DW representation for the polariza-
tion matrix becomes

3
A=3 X MENG (o), (18) Le= 2 Tapa, (29
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and since ELO‘lp_zl we have L gmaxa(f_) with ing the coherence length, and then relating the superradi-
a=0 o S al P

Ei=1f_a=f, which gives an upper bound for the superradi-ance factorLs to L, and to geometry through the window

ance factor for a given geometry. function.

The polarization matrix can be also represented in terms In the foIIQW|ng sections we study_vgrlous mechanisms
of the superradiant states, (a=1,2,3): which determine the coherence sizg: finite temperatures,
(0% 149 .

disorder-induced localization of excitons, and exciton self-

s trapping induced by exciton-phonon-coupling. Characteristic

A= d.dp,, (26)  sizes associated with these mechanisms will be introduced,
a=l and their relations ta ¢ will be discussed in Sec. V. We shall

Wheredia are components of the superradiant dipole restrict the following analysis to the case where the exciton

The DW representation of time-resolved spontaneou?q“”ibraﬁon timescale in the excited state manifold is short
emission given by Eqg15)—(17) will be applied in the com- compared with the radiative decay, and the fluorescence

ing sections to explore the roles of temperature, disorder angPMes from the fully-relaxed exciton density matrix. This

exciton-phonon coupling on the time-resolved fluorescenc&@Se: Which always represents the fluorescence at long times,

and superradiance of aggregates. To that end we shall intr@llows us to |ntrodL_Jce all the relevant coherence sizes and

duce the coherence site, which characterizes the size of a dephasing mechanisms.

domain where the molecules emit coherently. Within the ap-

proximations adopted here, all information about the state of

the system relevant for superradiance is given by the reducdtl. TEMPERATURE- AND DISORDER-CONTROL OF

exciton density matrixp,,(7) whose time dependence re- EXCITONIC COHERENCE IN CYCLIC

flects the role of relaxation processes on the superradian(',AeG‘GREGATES

factor L4(7). This allows us to introduce a formal definition The ~2.5 A resolution structure of the LH2 antenna

of the characteristic coherence slzgin terms of the density complex of purple bacteria shows two rings: an inner ring

matrix. By applying the inverse participation ratio concept e ggsg systeinmade of 18 chlorophyll molecules and an

commonly used in the theory of quantum localizatfon outer ring (the B8OO systemwith 9 chlorophylis®® Cyclic

complexes appear also in other systems such as LH1 which

LOZ (2 (27) has 32 chlorophylls. All calculations in this article were per-

mn mn formed on the B850 system. This aggregate is slightly dimer-

This quantity gives the length-scale on which the densit;)z.ed and in Append|xl3we present the wmdow fu.nct|ons for
matrix decays along the “anti-diagonal” direction, i.e., as acwcular aggregates_ with two molec_:ules in a unit cell. The
function of n—m. Similar measures have been successfullyvalues .Of the coupling betweep adjacent chIoropﬁ)l/II mol-
used in the analysis of off resonant polarizabilities Ofecules in the B850 band used in Ref. 42 a273 cm *and

aggregated’-® conjugated polymer® and semiconductor —291 cm &. However, we do not expect this dimerization to

nanocrystalyéo In the absence ’ of any coherence significantly affect the superradiance and for simplicity we

prm=Lo 18 ' and we have_ = 1. For a completely coher. have used an average nearest neighbor coupling parameter of
nm— =0 nm p -

ent distributionp,,=Lo %, and L,=Lo. If the molecular J=-280 cm %, . . .

dipoles are oriented in the same direction, then the superra- In the absen_ce of d|§order, the exciton eigenstates of a
diance factor is related to the number of molecules in thig'"9 ¥, and their energieg, are determined by the mo-
domain and loss of coherence which leads to the decrease BfEN@Ka=27alLo,@=0.1....Lo—1

L, reduces the superradiance. The picture is very different in 1

the opposite situation when the total dipole of an aggregate V¥ ,=-—¢e'*™, €,=2J cogk,). (28)

(i.e., the vector sum of the molecular dipglesnishes due ‘/L—O

to cancellation of contributions from individual molecules. SinceJ is negative, th&k,=0 state has the lowest energy.

In this case the emission is induced by the loss of coherence, In this section we shall consider two mechanisms for the
and should increase with the decreasé. pf It is important  loss of excitonic coherenc@ephasing finite temperature,

to note that the sizke, depends on the state of the aggregateand diagonal energetic disorder. A third mechanism: strong
and is changed when exciton relaxation takes places. Thisxciton-phonon-coupling resulting in polaron formation will
length has only an implicit dependence on the dipole orienbe discussed in the next section.

tation, which comes from the process of preparation of the For weak exciton-phonon-coupling, electronic and
initially excited state by the exciting optical field. These ar-nuclear degrees of freedom are decoupled in the equilibrium
guments show that superradiance is a combined effect afensity matrixthe only role of phonons is then to equilibrate
aggregate geometiglipole orientationsand its state, and at the electronic degrees of freedpnand the reduced exciton
least qualitatively all information about the aggregate statelensity matrixp assumes the canonical form:

relevant for superradiance is contained in the coherence size pup= 5a52_1 expl— e, /T), 29

L,, irrespective of the underlying physical dephasing
mechanisms. Superradiance can then be analyzed by firsthere we set Boltzmann's constant to 1 and
studying the role of different physical mechanisms in affect-Z=% ,exp(-¢,/T), €, were introduced in Eq28) andT is

-1 2

— 2
L,=

Pmn Pmn
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the temperature. In E§29) Greek indices label one-exciton e 100 F
eigenstatedV , with energiese, . In real-space we have £ors]
Fos0f
pmn=Z" 12 WMV (n)exp — €, /T). (30 025
“ g 100}
At temperatures lower than the spacing between exciton cg 0.75 1
levels, the aggregate is in the lowest, completely delocalized, - 0.50 1
exciton statepmn=L51 andL,~L,. As the temperature is 0-25 1
raised, higher-momentum excitons become occupied, which g 1001
decreasek ,. We define the characteristic thermal sizeas £ 0751

the size of a cyclic J-aggregate with nearest-neighbor inter- T 050

action J in which the splitting between the lowest exciton 0.25
levels is equal to the temperatufe 1.00
0.75 |
0.50 |
0.25 [

|-OPn-m

12=472J|T % (31)

In a translationally-invariant system the density matrix co- i
herence length , is related tol. This relation contains a 100 Fegy T

numerical factor which can be calculated using 8§). For ; 0.75

example, when the temperature is much smaller than the ex- _ 0.50 SO

citon bandwidth, but much larger than the splitting between 025 ]
the exciton levels at the bottom of the band: _f; e ;‘2 — é:‘ . ;3'
472)/LE<T<4J, the numerical factor can be evaluated n-m

analytically using Eq{(30) and turns out to be close to 1: _ , ,
FIG. 1. Thermally relaxed density matricéa) Purely exciton system@o

LP_ V_2/7T|T' o . disorder and phononsfor different temperatures, solid: 50 K,,=14.55;
Disorder can be easily incorporated by averaging Eqgashed: 100 KL,=10.47; dotted: 300 Ki.,=5.95.(b) For different dis-
(30) over realizations of disorder using Monte Carlo sam-order strengths at 4 K, solid: 330 ¢t L,=14.55; dashed: 565 cm,
pling, resulting in(p). Static disorder breaks translational L,=10.64; dotted: 1130 cmt, L,=6.16. () For different disorder
symmetry. However, this symmetry is restored upon averag2™®"gths at 100 K, solid: 330 o L,=9.40; dashed: 565 o,

. . . . . . L, =8.044; dotted: 1130 cmt, L,=5.53. (d) Diagonal exciton-phonon
ing over disorder, which implies th&p) becomes diagonal _? g () Diag h

coupling,Jz=8, k=0.5 and three reduced temperatures, sdlig=10"3,
in the momentum representation. The coherence Isjz&s | =15.5; dashedTz=0.1,L,=9.58; dottedTg=0.2,L,=7.26.(¢) Diag-
determined by the population of higher-momentum exciton®nal exciton-phonon couplinglg=10"%, Jz=8 and three values ok,
even at low temperatures. Since in one-dimensional systen§§lid: x=0.125,L,=17.9; dashedx=0.5, L,=15.5; dotted:x=0.781,
static disorder leads to localization of exciton statescan Ly=352.
be related to the exciton Anderson localization lenigth as
can be seen from E¢30).

Using these definitions we now discuss the influence o

gendent Gaussian distributions with the same nf@gimde-
temperature and disorder on the density maigy. Figures

endent ofin) and FWHM ¢. Calculations were made using

181 h he “anti-di . . tthe densi a Monte Carlo sampling over different realizations. As
(@-1(c) show the “anti-diagonal” sections of the density shown in Fig. 1b), this localization becomes stronger with

matricesp,, calculated using Eq30) for different tempera- increasinge. The corresponding values df, at 4 K are
tures and disorder strengths. Neglecting disorder and assuMz e 10.6 and 6.16 far=330 cm'. 565 Cn‘%l and 1130
ing a temperature lower than the splitting between the Iowesémfl’ res;;ectively. In the limit of \;ery strong, disorder the
excitons, only the lowest exciton is populated in thermaldensity matrix becomes completely localizetiagonal and
equillibriL.Jm. Due to the symmetry, the.cor_respondin-g denSitXNe havelL ,=1. The combined influence of disorder and
matrix will be delocalized over the entire ring, abg will be temperature is illustrated in Fig(d where equilibrium den-

equal .to t_he syst_em side,=18. . . sity matrices are shown dt=100 K for different values of
With increasing temperature, higher exciton states are_ “rhe values of. . at 100 K are 9.40. 8.04. and 5.53 for
" P . y . y .

pﬁpulatnggndp beﬁomesh more chzalllsed. This eﬁeth'S o=330 cm’, 565 cm'}, and 1130 cm?, respectively. The
shown in Fig. 18), where the canonical density matrices for density matrices become more localized with increasing dis-

temperatL_Jres 50 Ksolid), 100 K(dasheai, and 300 _K(dgt- order and temperature, as is evident by comparing Fig). 1
ted) are displayed. The temperature-induced localization caf)ith Fig. 1(b)

be clearly seen. The corresponding values.gfare 14.6, ' '
10.5, and 5.95, respectively. In the high temperaturg limit aI.IIV. POLARON CONTROL OF EXCITONIC COHERENCE
exciton states are equally populated and the density matrixX
becomes completely localizédiagonal resulting inL ,=1. When exciton-phonon-coupling is weak, the phonon de-

Figure Xb) illustrates how disorder leads to localization grees of freedom may be eliminated and their effects incor-

of the density matrix at low temperatures. Energetic diagonaporated through relaxation superoperators calculated pertur-

disorder has been included by assuming figthave inde- batively in the exciton-phonon-coupling strendtf* The

J. Chem. Phys., Vol. 107, No. 10, 8 September 1997
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detailed-balance condition satisfied by the relaxation super- m#n A
operator guarantees that at long times the system evolves HGH=2 Qn(q=0)B;§Bn+ 2 Jmn(q=0)BLBn+ HPh
into a thermal distribution of bare excitons. The correspond- " mn

ing coherence sizk , then does not depend on the nature of " diag [yo.d.

p - i ' \ +H%394 HOC (37)
the phonons and their coupling with excitons. The analysis _ . _
of equilibrated excitons in Sec. Ill therefore implicitly as- ~ There are two competing energy scales in the Holstein

sumes weak exciton-phonon coupling. This state of affairélamiltonian, namely, the lattice relaxation gnegfyoo and
changes drastically as the coupling strength is increased. e bare exciton bandwidthJ4 Their ratio will be denoted
this section we consider the effects of strong excitonihe coupling strength

phonpn—coupling. on the coherence size. Ij[ is shown in Ap- Kk=g2wyl4 (38)
pendix C how higher order effects of exciton-phonon cou-

pling on the reduced exciton density matpix,, can be taken Which determines the size of the polaron as well as exciton-
into account perturbatively. The following analysis is non-Phonon correlgt.ions. In typical molecular crystegésl, in
perturbative and is based on the polaron mddel. ionic crystalsg® is large compared to unity, and in semicon-

We adopt the Hamiltonian Eq1) with the Einstein pho- ductors g? is between the former two. In anthracene, for
non Hamiltoniand®h example« is about 0.4, and in pyrene, about .8.6*" The

other two important parameters of the model are the reduced
R bandwidth(the ratio between the bare exciton bandwidth 4
HPP=2 fiwgbiby, (32)  and the characteristic phonon frequenay)
n

‘]R: 4\]/(1)0, (39)
wherebﬁ cregtes a phonon of frequeney on siten,_ and we and the reduced temperature
have one Einstein oscillator per molecule. Exciton-phonon
interactions enter through the nuclear coordinate influence on  Tgr=T/wy. (40
both molecular frequencidsgliagonal couplingand intermo-
lecular interactions (off-diagonal coupling Expanding
Q,(q) to first order in phonon coordinatg the first term of
Eq. (1) reads

For strong exciton-phonon-coupling# 1), solutions of the
Holstein Hamiltonian are known as small polarons because
the exciton-induced lattice distortion is confined to essen-
tially a single exciton sit&® For weak exciton-phonon cou-
pling (k<1), the spatial extent of the lattice distortion is
> Qn(0)BIB,=>, Q,(q=0)B!B,+H%29, (33)  significantly increased and the resulting phonon-dressed ex-
n n citon is called a large polaron. The crossover from a large
polaron to a small polaron with increasing exciton-phonon
coupling (often called the self-trapping transitiprs rather
abrupt for large intermolecular coupling In the limit of
Adia9= g7 w, >, BIB,(bl+b,), (34  Slow lattice motions Jg>1), adiabatic polaron theories ad-
n mit approximate solutions in the form of solitons.
The off-diagonal coupling in Eq36) has positivgnega-

with the diagonal exciton-phonon-coupling term

andg is a dimensionless diagonal coupling constant. tive) signs for electronic transfer to the leftight) of the
ExpandingJmq(q) to first order in phonon coordinates, distorted lattice site. While exact solutions exist for diagonal
we write the second term of E¢l) as coupling in theJg—0 limit (the small polaroy) the Hamil-

tonian with off-diagonal coupling has not been diagonalized
2 ] BTR = E 3 _0)BI B+ [0 35 analytically. Adding intermolecular interactions and diagonal
~ mr(4)BrBn= “~ mn(4=0)BrBn + (39 coupling complicates the problem even further. Due to diffi-
' Y culties in obtaining simple solutior$ off-diagonal coupling

m#n m#n

with the off-diagonal coupling terfri* is less frequently used compared with its diagonal counter-
part.
. od ; ; To calculatep,,, we assume that exciton-phonon cou-
H '=§ﬁw0; [BrnBn+1(by +0)(6n+ 1= ni) pling leads to the formation of bands of collective exciton-
phonon states, and the many-body polaron wave function is
+B!By_1(b]+b) (81— 8n_1))]- (36)  given by the Toyozawa Ansafz(see Appendix I
The second term of36) is the Hermitian conjugate of the |K):L51; eiK“|Aﬁ>%‘, YK Bl0Yey. (42)

first. Here we have assumed nearest-neighbor coupling, and

¢ is a dimensionless parameter controlling the off-diagonaere |K) is the lowest polaron state with momentui
coupling strength. Equatiof84) and Eq.(36), together with |0 __ s the exciton vacuum state, ahtiX) are phonon wave
HP" and the zeroth-order intermolecular coupling term, re-functions centered at site containing a coherent state on
sult in the generalized Holstein Hamiltoni&tf" (the origi-  each sitel with a displacemeni [ [cf. Eq. (D6)]. |[AK) is
nal Holstein Hamiltonian contains diagonal coupling orffy  different from |A§,> only by a shift ofn—n’ lattice con-
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stants. The paramete):#f , zp,K , and the polaron energy band
Ex, are obtained variationally. The phonon wave functions
|AK) represent a lattice distortion forming a potential well
centered ain and trapping the exciton with an amplitude

1.00 |

0.98
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distribution of y{° .
At sufficiently low temperaturesTz<<1), only the low-

est polaron band is populated, and the many-body exciton-

phonon density matriy,, is given by

pM=z*1§K‘, (K|K) Y K)e Bk/T(K]|, (42)

whereEg are the polaron energies ade: > cexp(—Ex/T) is
the partition function.

It should be emphasized that the polaron state is delocal-
ized over the entire aggregate even though both exciton am-

plitudes ¢ and phonon displacement$ are localized. We
shall demonstrate that the sizeydf , hereafter referred to as
the polaron sizel,, which can be formally defined by
—1/|2|z,/;, |4, shows up as the localization length pf,,
(| e., as the coherence sitg). |, can therefore be directly

observed in superradiance measurements To that end \W#5. 2. The Debye-Waller factoF,

substitute Eqs(42) and (41) into pyw=Tr (pMBmB ’)
yielding

pmm,= L(;Z; <K|K>*le*EK IT

XE elK(n 7”)1//m nlllm’—n' n'n?

nn’

with the Debye-Waller factor

(43

Fﬁ,nE<AE,|AE)=exp{L01% |)\§|2(eiq(nfn’)_ 1)},
(44)
and)\g is the Fourier transform ofs (see Appendix D

>\§=§n} e i\, (45)

Localization ofp,,,y is determined by the combined ef- o
fect of electronic confinemeitthat of 4%_,) and the nuclear
factor Fn » Which represents the overlascalar produgt
(AX|A%) of two coherent states.

The reduced density matrix,,_, is shown in Fig. 1d)
for JR=8, k=0.5 and three reduced
Tr= 1073,

0.96 |- g
10 |- ) ) ) ) ) )

0.8

Y O A N A A S S

. (& Weak coupling,x=0.0125,
narrow bandJg=0.8, two crystal momenta are showk=0 (solid) and
K= (dasheg (b) weak coupling,x=0.125, broad band)z=8, three
crystal momenta are showiK=0 (solid), K= (dashedl and K=2/37
(dotted; (c) intermediate couplings= 0.5, Jg=8, two crystal momenta are
selectedK =0 (solid) andK =7 (dashedl

polaron-induced localized structure at smail-n|. To trace
the origin of this behavior, let us examine more carefully the
Debye-Waller factorF:f,n decreases from 1 at=n’ to a
constant at largen—n’| over a characteristic lengthscale
which will be denoted byl . A formal definition of I by
can be obtained by subtracting its valEefor large|n—n’|

and substituting:rf,n—F_into Eq. (27) instead ofp,,,. The
Debye-Waller factor can be recast in the form

FN . =exp(ah_,—ab), (47)
where o

n_n is the Fourier transform of\{|?. Because
o,_, decays rapidly to zero with mcreasnjg n’[, the
Debye-Waller factor(A"|AX) at large [n—n’| equals
exp(—oh) which becomes exp{g?) in the Jz—0 limit.
In Fig. 2, the Debye-Waller facta(v\ﬁ,m,'f) is displayed
as a function ofn—n’ for different polaron moment&.

n—n’

temperaturesTwo weak-coupling cases are showis=0.0125,J5=0.8
0.1, 0.2.L, for the three reduced temperatures (Jg<<1, narrow banljand k=0.125,J,=8 (Jg>1, broad-
are 15.5, 9.58, and 7 26, respectively. Comparison with thgand For the first caseE

, hardly deviates from 1 for both

other panels shows that at finite temperatures, polarork =g andk =, as shown in Fig. @). For the second case,

induced and disorder-induced localization@f_, are very
similar. At zero temperature, only th€=0 polaron state is
populated, and the reduced density matrix becomes

Pmm"xz ‘Mﬁ:g E,:EJ:, :0|A§:o>. (46)
nn’

In Fig. 1(e), we display the reduced density matpix,_ , for

Tr=103, Jz=8, andx=0.125, 0.5 and 0.78. The corre-

spondingL, are 17.9, 15.5, and 3.52, respectively, , has

a constant finite component at larige— n| in addition to the

the Debye-Waller factor reflects the one-phonon plane-wave
of high momentum states. Fdz=8, x=0.5, the Debye-
Waller factor has a constant component expg) which de-
creases with increasing crystal momentum as is evident from
comparing the two crystal moment,= = and K= 2/3,
displayed in Fig. &). For intermediate to strong couplings,

it is safe to assume that the Debye-Waller factor $jzg is
much smaller tharl,. This implies that only those terms
with [n—n’|<l, contrlbutes to Eq(43), and sincey has a
size ofl, the reduced density matrix is localized on the
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FIG. 3. Reduced exciton density matrices for the polaron mdaefor two © ©
reduced temperaturég=0.27 (solid, L ,=13.24), andTg=0.49 (dashed, Oo OO
L,=14.27),Jg=8,k=0.125. The corresponding polaron band is shown in 13r ) 00900 )
Fig. 4@). (b) For two temperature3z=0 (solid, L ,=5.95) andTr=0.2 -1.0 -0.5 0.0 05 1.0
(dotted, L,=2.93), ¢=1, Jg=g=0. Also shown for comparison is the kin

reduced density matrix fop=g=1, Jz=Tg=0 (dashedL ,=3.71). The

corresponding polaron band is shown in Figb}4 (c) ¢=1, Jg=2 and FIG. 4. Dispersion curvesH vs K) for the lowest polaron banda) Di-
Tr=10"2 (solid, L ,=13.9), Tg=10"2 (dashed].,=8.9). The correspond- agonal coupling onlyJz=8, x=0.125.(b) Diagonal and off-diagonal cou-
ing polaron band is shown in Fig(e). (d) For soliton profile§Eqgs.(48) and pling, Jrg=0, $=g=1. (c) Off-diagonal coupling onlyg=1, Jg=2.

(50)] for three strengths of nonlinearitgy= 3 (solid), a,=4 (dashed and

a,="5 (dotted. L,=17.9, 17.7, and 16.8, respectively.

exciton wave function, wheredg,y shows a typical separa-

lengthscale as a function ¢h—n’|. The constant compo- tion between the traps related to the Igfta) and right(ket)
nent of the reduced density matrix,_,, for large n—m  components of the density matrix. The coherence size de-
shown in Fig. 1d) reflects the similar behavior of the Debye- pends on bott, andlpyy,, however wherp<I, the length
Waller factor. I ow is irrelevant. The constant tafl of F,,,,, which does not

In the weak coupling £<1) limit of the broadband vanish at large values ¢h—n’| may be important in large
(Jr>1) case, the Debye-Waller factor EG#4) for high  aggregates and at low temperatures. Representing the Debye-
crystal momentum states has a one-phonon plane-wave cofyier factor asF n=(Fmn— F)+ F in Eq. (43) we recast
po_nent due_ to strong mteractlpns Wlth the one-phonon sCafpe density matrixp,y in a form pmm’:p(0)1+p(1)r . By
tering continuum, as shown in Fig(l8. As a result, for L (0) 1) - mm T mme
some temperature rangg,,,y may become more delocal- SUbSUtUtingp oy andpmm, into Eq.(_27) we obtain., WhICh
ized at higher temperatures. This counterintuitive behavior i§aturates and scales likg, _respectlv_ely, for laﬂ‘_ko' Since
related to the increase in population of higher-momentunin the case of strong and intermediate couplings usually
states which have the one-phonon plane-wave as the phon§ft@ll at intermediate sizels,, L, does not depend oh,

wave function, as the temperature is raised. As shown in FigVhile at largeL, we havel, = Lo. The sizel. which
3(@), pnm at T=0.49 has a longer off-diagonal tail than determines the crossover region can be defined as the value

. . 0 1
pmm at TR=0.27. For smalllm—m’|, though, p,,w at Of Lo when contributions ofofm)n, and pfm)n, are equal. The

Tr=0.49 remains slightly more localized tham,,, at smallerF, the larger id..

Tr=0.27.L, for the two cases are 14.27 and 13.24, respec- We now turn to off-diagonal coupling. LH2 has signifi-

tively. Figure 4a) shows the corresponding polaron band.cant dipole-dipole interactions up to the third neighffdt.is

The flat regions of the polaron band at higher crystal mo+easonable to assume that these interactions are affected by

menta are responsible for the counterintuitive behavior of thearious phonon modes. The two sets of variational param-

reduced exciton density matrix shown in FidaB etersy, and\, of the Toyozawa Ansatz provide an adequate
In summary, we have shown that in the absence of statidescription of off-diagonal coupling as well, and the result-

disorder and at low temperatures, the coherencelsjzes  ing exciton-phonon correlations and polaron energy bands

related to the characteristic sizgsandlpy, even though compare favorably with the Munn-Silbey approach at zero

the excitons are not localized, in contrast to the case of statiemperaturd®*®

disorder. The polaron siZeg reflects the size of the trapped In Fig. 3(b) we show the influence of off-diagonal cou-
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pling on the reduced density matgx,,. ForJg=g=0 (off- by the Holstein Hamiltonian, while in the Frbich Hamil-
diagonal coupling only the polaron band is symmetric with tonian only the large polaron is physically meaningful. If the
respect toK =+ /2 as demonstrated in Fig(d). As a re- characteristic phonon frequency is small compared to the
sult, pm—n, Vanishes for oddn—n. For everm—n, p,,_, has  splitting between exciton levels the lattice kinetic energy can
alternating signs reflecting the dynamic dimerization intro-be neglected in the zero-order adiabatic approximation.
duced by off-diagonal coupling. Increase in temperature re- For the diagonal coupling we gésee Appendix E for
duces the amplitudes @f,,_, at nonzero evem—n. Diag-  the derivation

onal coupling has a similar effect omp,_, as the 1

temperature, i.e., it suppressgs_, for nonzero evemm-—n. pmnz—Z P*(m+s)¥(n+s), (48
However, as is evident from Fig.(I3, diagonal coupling Lo®s

reduces equallyy,—, for all nonzero everm—n. This is  where the exciton wave function satisfies the discrete nonlin-
clearly reflected in the sizes df, for the three cases dis- ear Schrdinger equatioft3+%*

layed in Fig. 8b): 5.95 =0,¢ =1,Jg =g =0),
D 0% T 290_:62,2) = 1(,ZRR _ g¢= 0} and 371 T)R —IJ[W(n+1)+W(n—1)]—4\|W(n)|2W(n)=EW(n),
= 0,0 = ¢ = 1,Jg = 0). With increasing temperature, (49)
Pm-n for m — n=+4, =6, +8 vanishes much faster than where 2 is the Stokes shift of a single moleculeN2 9%wg
m—n=*2. For diagonal coupling onlyy,,_, is completely ~ for the Holstein modgland E is the polaron energy. For
localized onm—n=0. Off-diagonal coupling thus induces large polarongi.e., when the polaron sizg is much larger
localization as well as assists transport of electronic excitathan the lattice constant but still smaller than the system’s
tions. size), one can apply the one-dimensional infinite-size con-
Addition of the transfer integral destroys the folded tinuum model, which yields the followingsolitor) solution
. .33,34
polaron band structure by lowering the zone center energ9f Ed. (49):
EX=° [cf. Fig. 4b)]. Consequently, the structure pf,_, is 1 n
expanded while retaining the oscillatory feature in Fign)3 T(n)= /2— secré
As the zone center enerdyy -, is lowered to the level of do
Ek-- .2, the polaron band has a rather flat structure at thavith ap=J/\. Solutions of the continuum version of Eq.
zone center, as illustrated in Fig(c} for the case of¢p  (49) on a ring, which generalize E@50) to finite systems
= 1. Jg = 2, causing the reduced density matrix to changehave been obtained recently in Ref. 55. The connection be-
abruptly as the temperature is raised from zero. In Fg) 3 tween the soliton solutions and the Toyozawa Ansatz is dis-
we comparep,,,_,, for two low temperature§g=10"% and  cussed in Appendix D. In Fig.(8), we show the reduced
102 for Jg=8, ¢=1. A temperature increase of one hun- density matrices calculated using E¢$8) and (50). For the
dredth of the phonon frequency drastically affects the profilehree strengths of nonlinearity shovag = 3, 4, 5, the cor-
of pm—n due to a flat band bottom at the zone center, lapd responding values ok, are 17.9, 17.7 and 16.8, respec-
also drops from 13.9Tzg=103) to 8.94 (Tg=10"2). For tively.
sufficiently large transfer integrals, the polaron band acquires  Equation(48) allows us to treat effects of disorder and
a similar shape as the weak coupling band of diagonaphonon coupling on exciton coherence size in the same fash-
exciton-phonon-coupling, and so does the reduced densitpn. In the case of static disord#(m) is a localized exciton
matrix pyn- wave function, whereas in the polaron picture represented by
So far our calculations were based on the assumptiothe Toyozawa Ansatz¥(m) is the self-trapped exciton
that the temperature is much lower than the phonon frewave function represented hyf, in Eq. (41). In the case of
quency Tg<<1, which is typically the case for optical static disorder, Eq(48) should be averaged over disorder
phonons even at room temperature. Aggregates may havealizations with the canonical distributidsee Eq.(30)].
strong coupling to low-frequency solvent modes. NuclearFor strong or intermediate exciton-phonon-coupling the av-
spectral densities representing coupling to low-frequencyeraging of Egq. (48) is given by Eg. (43) by setting
modes have been used to fit photon-echo measurements <in§,|A§>: Snn- In the adiabatic polaron approadh(m) is
light-harvesting complexe¥. This corresponds to the oppo- the solution of Eq(49).
site limit Tk=T/wy>1 (herewy denotes a typical frequency
of low-energy solvent modg¢sand the adiabatic polaron
theor.y can be applied: Thg'calculation of the polaron Wave, sUPERRADIANCE IN CYCLIC AGGREGATES
functions is greatly simplified when nuclear motions are
much slower than the electronic ones. In this case we can It was shown in Sec. Il that the superradiance enhance-
adopt the Born-Oppenheimédiabati¢ approximation. The ment factor depends on two ingredients: the exciton density
adiabatic polaron theory was first developed by P&kiar  matrix and the window functioM;; which carries informa-
an analogous continuum Hamiltonian—the “Rich  tion regarding the aggregate geometry. In this section we
Hamiltonian—describing a slow electron moving in an ionic consider various models for dipole orientations and combine
crystal®? Later the Pekar-type adiabatic solution was generthem with the calculation of the density matrix presented in
alized to the Holstein Hamiltonian for molecular cryst&#s?  the last two sections to explore the superradiant behavior of
Both the large and small adiabatic polaron can be capturethe LH2 complexes.

=) (50)
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. : . . . displayed for comparison decreases with increasing tempera-
15F \ " @ ture [see Fig. 1a)]. For model Ill the temperature depen-
dence ofL is close to that ot ,: both decrease from 18 for
low temperatures to 1 in the high temperature limit. How-
ever, for model I,L; shows a very different temperature
dependence: at low temperatures the density matrix is com-
pletely delocalized, and the summation over all the inner
products of the dipole vectors in the calculationLqfyields
Ls=0. With increasing temperature the coherence size
decreases antl becomes finite and eventually reaches a
maximum wherL , is somewhat larger than half the system
size. At high temperatures, all three models have similar su-
perradiance factors which eventually approach 1. It follows
from Eg. (54) that the superradiance factor for model Il is
simply the average of models | and Ill. It is therefore easy to
calculatel ¢ for all angles®, using the curves for models |
and 1.

Figures %b)—5(d) display the temperature-dependence
of Ls and L, due to diagonal and off-diagonal exciton-
phonon-coupling. Within the polaron model as outlined Sec.
_ . IV, localization of p,,,y may have several origins. Increased
50 100 150 200 250 300 temperature results in smallér,. This is clearly shown

T (K) when the bandwidth &l is less than the Einstein phonon fre-
quencywq (Jg<1) so that the bare exciton band does not
FIG. 5. Variation ofL with temperature. Solid: model III; dashed: model Cr0SS into the one-phonon scattering continuum. kor 1,
II; dotted: model I; dashed-dottedt, . (a) Without disorder and exciton-  the weak coupling limit is nonperturbative in the sense that
phonon-coupling(b) Diagonal coupling, the weak coupling limi#—0 and the k—07" polaron band is different from the bare exciton
Jr=0.8. (c) Diagonal couplingJp=8, k=0.5. wo=1253 cm ™. (d) O hanq due to level repulsion from the phonon continim®
diagonal couplinggp=1 andJg=5. wy=1253 cm ~. . . .
In Fig. 5(b), we displayL , and the superradiance lengdth
for our three models and falg=0.8 in the weak coupling

The window function for a cyclic aggregate can be limit (k—0). At zero temperature, both, and the superra-
readily calculated. Denoting the angle between the moleculatiance length_ for parallel dipolesmodel Ill) are equal to
dipole and the aggregate plane ®ywe obtain: the size of the system, 18. Due to the momentum selection

rule, Lg for the in-plane dipole configuratioiimodel )
M) ) (51)  reaches a maximum at a temperature wherebKth@ /18
Lo state is most populated.,, and the superradiance lendth

It follows from the circular symmetry, thasp and M are  for ©=0° 45°, 90° are are shown in Fig(c3 for interme-

diagonal in the same basis set and the superradiant states &faté exciton-phonon coupling=0.5, Jz=38. At zero tem-
perature the superradiance lendth for parallel dipoles is

only half the size of the ring, anid, is also less than 18. For

M p=0d?| sir? ®+cos O CO{

b1.AmM)= \/Toe 27mibo, - py(m) = \/TO' (52 strong exciton-phonon coupling, the superradiance Isjze

. ) i independent of temperature. In Figdbwe showl , and the
with the corresponding oscillator strengths superradiance length, for models 1, Il and Il as a function
I | _ of the temperature fodz=4, $=1 andg=0. The depen-
fi= f2=§d2|-00052®. f3=d’Losir?®. (53 dence of the superradiance lengthon temperature is very

similar to the diagonal coupling case.
The stateg; has a transition dipole orthogonal to the aggre-  |n Fig. 6@ we displayL and L, versus the static dis-
gate’s plane, whereag, and ¢, have an in-plane dipole. order parameter at 4 K. The curves are slightly different,
Combining Egs(15) and (51)—(53) we have for the super- but their general appearance and limits are similar to Fig.

radiance factor: 5(a). Figure @b) repeats the calculations of Fig(a for a
p1+ Py higher temperaturél00 K). Due to the temperature-induced
Ls=| cog 5 +sir® Op;|Lg, (54)  loss of coherencd,, andL for model Il are smaller than
the system size for weak disorder, ahd for model | no
with pq+po+ps<1. longer vanishes. Analogous to Figah with increasing dis-

We first examine the effect of finite temperature. Figureorder L becomes similar for all models. For very strong
5(a) shows the variation of ¢ with temperature for three disorder,L, as well asL approach 1.
orientations of the dipoles with respect to the ring: model I The correlations betwedn, andL , are clearly shown in
(0=0°), model Il (®=45"), and model Ill @ =90"). L, Fig. 7(a), where we display them for the different localiza-
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FIG. 6. VariationLg with disorder strength, in the absence of exciton-
phonon coupling(a) T=4 K and(b) T=100 K. Solid: model IlI; dashed:
model II; dotted: model I; dashed-dotteld, .

tion mechanisms and dipole orientations. For the two local-
ization mechanisms considered in Fig@a)7 (temperature-
and disorder-induced dephasjnge find a very similar cor-
relation betweer ; andL , in models | and Ill, which dem-
onstrates that the superradiance enhancement factor is in
both cases primarily determined by the off-diagonal spread
of the density matrix.,, and that both mechanisms influ- ¢
ence the superradiative enhancement factor in a similar fash-
ion. In Fig. 7b), Ls from model Il is plotted vsL, within

the polaron approach for different temperatures, intermolecu-
lar couplings and diagonal exciton-phonon couplings. This
again shows the strong correlation betwégrandL , is not
sensitive to the underlying mechanisms.

We have identified the density matrix sitg, as the
primary factor in determining the superradiance size 0
This allows us to predidts usingL ,, regardless of the spe- L
cific microscopic mechanism that determines. A com-
monly used measure of the exciton localization length is progig. 7. correlation between the superradiance enhancement fagtord
vided by the inverse participation ratio of a wave functionthe density matrix size,, . () Squares: model 11l for different temperatures,

N
o
o
-
-
(=]
Py
N
Py
H
-
o
-
0

\Ifa(m)?’ﬁ triangles up: model Il for different disorder strengthsTat 4 K; dashed
line: model Il for different disorder strengths &t 100 K, circles: model |
1 for different temperatures; triangles down: model | for different disorder
. (55) strengths af =4 K; dotted line: model | for different disorder strengths at
2m|‘1’a( m)|4 T=100 K; (b) model Il for different temperature¥, intermolecular cou-

. . . lings J and diagonal exciton-phonon coupling strength
The thermally averaged size associated with the wave fund- 9 P ping 9

tion is defined by:

1,=Z712, | exp—e,/T). 56 3
=22 xR~ e, ) 60 | _ I e

o,
5
We shall now discuss the connection betwegandL ,. At (57
low temperatures., depends on exciton localization and is . 3|4¢/
related tol,. The numerical factor which relates the two L,= 2 '
depends 0?1 the form of the wave function and the system (215 + 1)+ (21~ Lo)*= (21~ Lo)
sizeL,. To illustrate this point we plot in Fig.(8) the de-  In particularL ,=I, whenl ,=L,. Therefore in the absence
pendence ot , onl, for different models. Assuming a uni- of disorder and at low temperatureb<4 K) both measures
form wave function W (m)=6(m)o(l,— m)/ﬂ where  givel ,=l,=Ly=18, since the lowest exciton is completely
6(m) is the Heaviside function, we obtain delocalized. With increasing disorder however, they start to

0
for I¢>?.
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Thereforel , is determined by localization of the amplitude
and is related td,,. In the absence of disorder exciton states
are delocalized over the entire aggregate ands deter-
mined by oscillations of wave functions corresponding to
higher-energy excitons which are populated when the tem-
perature is raised. This implies that the characteristic length
I+ reflects the phase oscillations of the exciton wave func-
tions. In a disordered aggregate at low temperatures when
I,<lt, phase oscillations are negligible ahg is related to

l,. As the temperature is raised and higher-energy excitons
become populated,, increases since localization is weaker
at higher energies whereas phase oscillations become more
important, as reflected in the decreaselpf L, then de-
creases whilel, increases. In this intermediate region
l,~1+t, L, is influenced by the competition of the amplitude
and the phase-induced mechanisms. At higher temperatures
I+<I,, exciton localization becomes irrelevant ahg is
determined by the thermal sitge. This can be illustrated as
follows: our numerical simulations of the thermal- and
disorder-averaged density matr{p), with c=377 cm?!

FIG. 8. (a) L, versusl, of the lowest exciton wave function for different gIves LP: 13.7. Using Eq(56) we then obtairl %”:4'8’ SO

models. Dashed-dotted: uniform wave function: dashed: Gaussian wavtatL /I ,~3. We recall that for these parameters we find a
function; dotted: sech wave functidiqg. (50)]; solid: T=4 K with varying ~ superradiance enhancement factorLqof=3.2 for model |I.

_disorder.(b) Difference between the solid curve @ and the Padapprox-  \\/ith increasing disorder both measures become more local-
imant Eq.(58). ized. Foro=754 cm * andT = 4 K we obtainL ,=8.6 and
l,=2.6, and their ratio is 3.3. With increasing temperature,
due to the contribution of energetically higher exciton states
which are more delocalized,, increases, whileL, de-
creases. Fof = 300 K we have. ,=5.8 andl ,=6.6. These
examples illustrate an interplay of the characteristic sizes
and |y in determining the coherence sitg. We reiterate
That superradiance is strongly affected by geometryland
not necessarily proportional 1g,, i.e., for weak disordek ¢
is determined by the loss of coherenicg—L, rather than
1+7.881,-1) l,. Usually one can divide the aggregate into domaiggg
Lp=1+o 31681 —1)20.00393] — 1)’ (58 stands for geometyywithin which molecular dipoles are ori-
-3181,~1)+0. &~ ented in more or less the same direction. These directions are
These examples illustrate that the coherence lehgth different for different domains and the total dipole of the
representing the number of coherently coupled molecules iaggregate vanishes due to cancellation of contributions from
closely related to the size of the corresponding wave funcdifferent domains. At long times, when excitons are equili-
tions which is usually defined through the inverse participabrated,L , is independent on the system’s geometry. In con-
tion ratio|l given by Eq.(55 wherel =1, for the model of trast, the sizé ; depends only on the dipole orientatidasd
static disorder anti=1, for the case of exciton-phonon cou- the system's symmetjyand is independent on the state of
pling. However, the relations between these quantities corthe aggregate. It is easy to see that for a given geonfatiy
tain important numerical factors representing the wave funck ) there is an optimal value of the coherence sizg
tion shap& and the system size. All models show a verywhich maximizes the superradiance, namigly=L .
similar behavior with the numerical ratio bf andL , vary- The dipole orientations in LH1 and LH2 imply that the
ing from 1.0 to 3.3 depending on the model and the value ofluorescence should vanish if all monomers emit coherently
l,. This has a very important implication for analyzing ex- (i.e., Lp:Lo).61 The factorLg can then be small in two
perimental data on the superradiance enhancement flagtor cases: eithet ,<L, where we have.s~L, (since the di-
in light-harvesting complexe?. poles emitting coherently are almost paraliefL,—L ,<L,
In all four cases shown in Fig.(8, the wave functions where we have.;~L,—L, and the signal is proportional to
are nonoscillatory antj, is the only factor which determines the measure of coherence destruction. This meand._thiat
L, . This situation is changed as the temperature is increasedot necessarily proportional ig,. For example, in calcula-
It follows from Eq. (30) that both the amplitude and the tions performed for LH% l,~6,L,~15 andLs~3 which
phase of thermally populated exciton wave functions affectatisfiesLs~L,—L,. This could explain the difference be-
L,. At low temperatures only excitons at the bottom of thetween low-temperature superradiance of LH1+9) and
band with nonoscillatory wave functions are populated.LH2 (Ls~3) observed in Ref. 22 despite close values of

differ, since the exciton wave function is no longer uniform.
ForLo>1,>1, we havelL, ~ 1.9, as shown in Fig. &).
For the Gaussian wave functioh(m), we havel ,=2I , if
Lo>1,>1. The soliton wave functions E¢G0) show a simi-
lar behavior. Monte Carlo averaging over diagonal disorder
yields the solid curve in Fig.(@). An excellent fit is obtained
using the Padapproximanisee Fig. &)]
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parameters for both complexes. The differencekdrtould  motions exciton localization affects transport properties by
be attributed to different geometric factofand window increasing the depolarization timescale.
functiong resulting from the different number of pigments Static localization of excitons also affects the tempera-
(Lo=32 versus_,=18) in these complexes. ture dependence of fluorescence dét&yand pump-probe
signal§?>27:616%n a more delicate way. The effect may be
rationalized using the Mott picture of Anderson localization
which implies that localized states with close energies must
be spatially separaté.This leads to a qualitative picture
Spectroscopic properties of J-aggreg#tés?’6263and  whereby the aggregate can be divided into noninteracting
light-harvesting complexéé142264are often related to a segments whose sizes are equal to the localization length.
coherence size known as the exciton delocalization lengtfihe signals from a large disordered aggregate can therefore
[cf. Eqg.(56)]. In the absence of disorder and exciton-phononbe related to the signal from a homogeneous aggregate
interaction, the exciton states are delocalized over the entirwhose physical size is given by the localization length.
aggregate, and the exciton delocalization length is equal to It has been shown in Ref. 61 that polaron formation
the aggregate size. Since in infinite one-dimensional disoréself-trapping and static localization lead to similar features
dered systems all exciton states become locafizesiatic  in the pump-probe signal for long time delays. In both cases
disorder induces a finitéAnderson-typgexciton delocaliza- the shift between positivenduced-absorptionand negative
tion length. Effects of exciton localization on optical signals (bleaching peaks in the differential absorption reflects the
of disordered aggregates can be rationalized by examiningnergy difference between the lowest and the next lowest
properties of individual states and their contributions o excitons. This is in turn related to the polaron binding energy
Effects of nuclear motions on the exciton localization E, (i.e., the binding energy of the self-trapped excjtonthe
length have been denoted dynamical localizatb®.Dy-  dynamical case, and is given by the minimal energy splitting
namical localization is much more complex than its statichetween exciton states located in the same region in $pace.
counterpart, since excitons are coupled to a ldofeen mac-  For weak exciton-phonon couplifigthe pump-probe signal
roscopi¢ number of nuclear degrees of freedom. The onlywas related to the one-exciton Green function, and the shift
practical way to introduce an exciton delocalization length inin the pump-probe signal was related to the exciton mean-
this case is through observables which involve exciton varifree path which plays the role of the coherence size for the
ables. Such observables can always be represented in termsmp-probe signal.
of Green functions of exciton operatdt$®®° and in some The exciton delocalization length can show up directly
cases in terms of reduced exciton density matrigglsich  in transport processes. Although aggregate sizes are usually
constitute a particular case of Green functjori@espite this  smaller than the optical wavelength, nonuniform population
formal difficulty which can be overcome by applying the distributions are obtained by optical excitation of light-
Green function formalism, it is clear that there is a substanharvesting complexes with polarized light due to dipole ori-
tial physical difference between static and dynamical local-entations. Population relaxation can be observed by depolar-
ization: in aggregates with exciton-phonon coupling butization measurements. A model in which an excitation is
without static disorder excitons are self-trapped rather  localized on a dimer due to static disorder has been*fded
than localized. This implies that a natural measure for thdit energy transfer experiments. The possibility of dynamical
exciton dynamical delocalization will be the polaron sige contributions to exciton localization in the context of trans-
defined in Sec. IV as the size of the self-trapped excitorport phenomena has been discus¥ed. theory of energy
wave function‘lfﬁ,n which enters the expression for the transfer in molecular aggregates with strong exciton-phonon
polaron wave functioEg. (41)]. The main difference be- coupling using canonical transformations in the joint
tween static localization and dynamiself-trapping local-  exciton-phonon space has been develdB&8The role of
ization is that a localized exciton is confined in a certainpolaron effects on the energy transfer has been discussed for
region in space whereas the exciton density in the polarothe cases of small and large polar6n8’ An application of
wave function is spread over the entire aggregate. Howevetransport theories will be to connect the exciton delocaliza-
since the wave function of the self-trapped exciwﬁ;\,n is  tion size due to coupling to nuclear motions with the depo-
localized, self-trapping and localization have common fealarization timescale observed in Refs. 3 and 4. An interesting
tures and similar effects on some spectroscopic measur@ttempt to introduce a coherence size related to transport by
ments. means of the Green function techniques in Ref. 64 for a
In the remainder of this section we discuss how staticsystem with static disorder and exciton-phonon coupling has
and dynamical localization show up in various spectroscopideen treated within the Redfield thetty°with the Redfield
technigues. Exciton localization naturally leads to a decreaseelaxation operator taken in the Haken-Strobl form?
of the superradiance factor in the time-resolved emisHowever, the Green functio@i(ffi)i used in Eq(39) of Ref.
siorf222481and affects energy transfer which affects in de-64 to define the participation ratio is related to a model with
polarization measurementé:®*n particular, in the absence a finite lifetime rather than homogeneous dephasing, for
of nuclear motions no transport should take place in a systemwhich most calculations have been made. This can be clearly
with localized excitons, and the fluorescence will retain itsseen from Eq(40) of Ref. 64 which shows the same rdte
initial polarization at all times. In the presence of nuclearfor the decay of populations and coherences. Thus the coher-

VI. DISCUSSION

J. Chem. Phys., Vol. 107, No. 10, 8 September 1997

Downloaded 08 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



Meier et al.: Antenna complexes 3889

ence size defined in Ref. 64 is related to exciton lifetime anatan be viewed as a bilinear form & and all eigenstates of

not to pure dephasing processes due to exciton-phonon coM viewed as a linear operatdt:V—V with nonzero eigen-

pling. values belong tovy. M can be diagonalized oW, in an
In this paper, utilizing the DW representation we haveorthogonal basis set representeddyy, «=1, 2, 3. We then

related the time-resolved fluorescence signal to the reduceatknote fora=1, 2, 3

exciton density matrix. Superradiance is usually attributed to

coherent emission of a set of electronic dipoles confined da=2 dr . (M). (A3)

within a region of a size much smaller than the wavelength m

of the emitted light. This coherence can be partially or com4n the notation of Sec. lig,, are the superradiant states with
pletely eroded by interactions with additional degrees Ofyansition dipolesd,. The relationsd,-dg=0 for a # B
freedom such as nuclear motions and static disorder. Thgndf_=|d,|? follows from the fact thaM is diagonal in the

density matrix further allows us to visualize various mecha-asis set of superradiant states and using &ds.and(A2).
nisms by staying in the exciton phase spéa® opposed to

the joint exciton-phonon spacerhis is impossible using &  \poen by B WINDOW FUNCTION FOR DIMERIZED

wave function description. The cglculatlons pre;ented he_r%IRCULAR AGGREGATES

clearly show that the coherence size of the density matrix is

the natural lengthscale which controls cooperativity in spon-  In this Appendix we present expressions for the window
taneous emission. Calculations based on eigenstates are functions for a circular aggregate with two molecules in a
merically expensive and often do not lead to a clear insightunit cell. Let®;, j=0,1 be the angles which molecular di-
Since properties of individual eigenstates are usually highlypoles in a unit cell form with the aggregate plane ahdare
averaged and lost in observables. For example, the thermtlie angles between their projections into the plane and the
density matrix at high temperatures is localized, although theircle. A simple calculation yields:

individual exciton states are fully delocalized! The destruc-
tion of superradiance is determined by the density matrix. It
is hard to envision this effect in a unified fashion for various
models by examining individual eigenstates. Our calcula-
tions demonstrate that the exciton localization lerigtidue

to static disorder aqd the size of self-trapped excj;p_nm thg 5 cos{z—W(Zm—2n+j Kt d’k)H , (B1)
case of strong exciton-phonon-coupling have similar signa- Lo J

g,lr:gs in the reduced exciton density matrix and superradi\-Ni,[h m, n=0,1,...,Lo—2)/2 andj k=0, 1.

2m+j,2n+k

=d2[sin ©; sin O, +cos®; cosO,

The superradiant states can be evaluated using the ap-
proach of Appendix A and have the following form:
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0
APPENDIX A: THE SUPERRADIANT STATES . . .
with the corresponding oscillator-strengths
In this Appendix we prove the statements in Sec. Il L

made with regard to thg elge_nstates of the yylgdow function f_3=d230(sin2 Og+sir? 0,),
M. To that end we define a linear m&pV—.7> from the
L, dimensional space of real one-exciton functions to the L
space of real 3-dimensional vectors by f = fzzdzzo(cos2 Oy+cog 0,). (B3)

D¢= d m). Al
¢ % mé(m) (A1) APPENDIX C: DENSITY MATRIX OF EXCITONS

COUPLED TO PHONONS
The matrixM viewed as a bilinear form o¥ can be written

in a form: In this Appendix we discuss perturbative treatments of
exciton-phonon coupling on the reduced exciton density ma-
M(¢,¥)=D(¢)-D(¥). (A2) trix. For weak exciton-phonon-coupling the reduced exciton
Since.72? is 3-dimensional an¥ is L,-dimensional there is density matrix adopts the Boltzmann form in the exciton
a (Lp,— 3) dimensional subspadg CV with D(V,)=0. Let basis sefcf. Egs.(29) and (30)] at long time. This is no
V, be the 3-dimensional orthogonal componenitg then  longer the case as the exciton-phonon coupling is increased.
M(¢,¥) # 0 only if both ¢, ¥ € Vy, which means thaw This can be shown using perturbative arguments. We con-
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sider the generalized master equati®&ME) for the evolu- .

tion of the reduced exciton density matgy,, which can be H®= 32 B(Bys1+Bn-1), (D2)
derived using the projection operator technigtis. The "

kernel of the GME can be explicitly calculated perturbatively R

in the exciton-phonon-coupling. The long-time valuepgf, APN=%iw>, blby, (D3)
is then the stationary point of the GME :

=ilh,pJmn= > Rmniapua=0, (CD H&PM=ghw ) BiBa(by+br)
where the matrixh;;=Q;;;+J;;(1— &) represents one- ¢ T t
exciton Hamiltonian anRy,, is the Redfield tensd¥,™ + Eﬁ“’()% [BnBn+1(by +b)(8n+1)— i)
given by the zero-frequency value of the GME kernel. When
the Redfield tensor is calculated to lowésécond order in +BIBn_1(b/ +b) (8= h-1))]- (D4)

exciton-phonon coupling, E4CY) yields the Boltzmann dis-
tribution of bare excitorfd given by Eqgs.(29) and (30) for
Pmn- Finding p,, from Eq. (C1) with the Redfield tensor

Rmnk calculated in the nexifourth) order in coupling / ) _ .
strehgth will show a deviation of,, from the Boltzmann the exciton transfer integral between nearest-neighbor sites,
distribution. mn andg (¢) is the diagonaloff-diagona) exciton-phonon cou-

Another perturbative argument can be made as followsP!iNg strength. The original Holstein model contains only
assuming that at long times the full density majsix of the diagonal exciton-phonon-coupling. The Hamiltonian Eqg.

joint exciton-phonon system adopts the canonical form, théP1) can be obtained from Ed1) by expanding molecular
reduced exciton density matrix,, can be represented as ~ reduenciestly(q) and intermolecular couplingd,(q) up
to first order in nuclear coordinateg We also assume the

pmn=Tr(BlBnowm). (C2)  nearest neighbor form of intermolecular couplingg,(q)

The r.h.s. of Eq(C2) can be evaluated perturbatively in the and Emstgm phonons. 50 :
exciton-phonon coupling strength, e.g., by applying the Mat- FolIowmg Toyozawa,” we construct the one-exciton
subara Green’s function techniqu®sThe zero-order result wave function

yields Eq.(30) whereas the second-order contribution results

in deviations ofp,,, from the bare Boltzmann distribution. K)y=2, ek wﬁlnBlleXr{—z ()\,'fz,nbﬁz
Deviation from the Boltzmann distribution of bare exciton at : M1 N2

long times for weak exciton-phonon-coupling has been dem- «

onstrated in Ref. 23. However, the non-Boltzmann _)\n:nbnz)}|0>' (DS)
asymptotic behavior of the exciton distribution originates

from neglecting environmentég.g., solventnuclear modes The variationally optimized parametex§ describe the pho-
in the model: The system does not have enough phonons igon distortion of siten, and % are the corresponding exci-
equilibrate. Adding solvent modes with a continuous specton amplitudes. EquatioiD5) is equivalent to Eq.(41)

trum to that model will lead to a Boltzmann distribution of where the phonon wave functioh&ﬁ) are explicitly written
bare excitons at long times within the formalism of Ref. 23,in terms of phonon coherent states

which is based on perturbative in exciton-phonon coupling

calculation of the GME®"3with memory. This implies that Ay —exg — S
the results of Ref. 23 describe a situation with weak coupling |An)=ex (
to solvent modes for intermediate timescales when coupling

to solvent modes is unimportant and exciton dephasing i§quation (D5) can be alternatively represented in
induced by the aggregate intermolecular and intramoleculanomentum-space as

modes.

Here |0) is the vacuum state for both the exciton and the
phonon degrees of freedom, anfi (bl) creates an exciton
(phonon on siten. wg is the Einstein phonon frequencyjs

AK bl —\K* bnz)}|o>ph. (D6)

ﬂz—ﬂ n2 n2—n

APPENDIX D: TOYOZAWA’'S ANSATZ FOR THE i I .
POLARON WAVE FUNCTION Xexl{ —Lo 12% (Age "9 —\g* e'qan>}|0>,

In this Appendix we present the details of the Toyozawa (D7)
Ansatz for polaron wave functions. We start with generaliz- ot K K ) -
ing the Holstein Hamiltonian, also known as the molecular""}t‘e“EB kbq* ¢ andhg are Fourier transforms @, by,
crystal model, by adding the linear off-diagonal exciton-¥n @ndAn:
phonon coupling:

t_ | —12 —iknpt
H:ﬁex_l_ﬂph_l_':'ex—ph (Dl) B _LO ; € I nBﬂ' (D8)
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bg=L "?2, e, (D9)
vie=20 ey, (D10)
>\§=; eldm\K, (D11)

The exciton amplitudeﬂxﬁ serve as weights in a linear n

Taking into account the translational symmetry, we may la-
bel p,,, With one index, i.e.pm—n=Pmn-

We now discuss the connection between adiabatic po-
laron theory and variational Ansz. Equation49) can also
be deduced using a time-dependent variational principle as
soliton theory is usually implemented. Localized polaron
Ansaze, such as the Davydov Ansatz,

> ¢n<t>B;|0>ex®exp[—§ (M(t)bz—x:(t)bn)}lom

superposition of phonon coherent states if Toyozawa’'s An- (D20)

satz(D5) is viewed in a different fornf*

|K> — Lal/zz eiKnBlnzl e—iKnll/lEl

nz

xexp[—E (M, —nPh, = A0 n, ~br,) |[0)-

(D12)

Equation(D12) can be obtained from E¢D5) by relabeling
n asn—ny, andn; asn. Defining the phonon part of the
wave function as|®X) [the summation ovem; in Eq.
(D12)],

[00)=2 e My AL, (D13)
1
|K) is written in the compact form

[Ky=Lo "2, &7 ®7)B/|0)cy. (D14)

We approximate the density matrix by E¢2), which is
well-justified in the low temperature regimespecially for

are often employed, and equations of motion are derived for
the time-dependent parameters characterizing the exciton
wave function and the phonon fields. Neglecting the time-
derivative of the phonon fields, as the adiabatic condition
requires, Eq(E8) is recovered, and the exciton wave func-
tion is found to follow Eq(49). For large polarons where the
continuum approximation is justified, the static solution for
the exciton wave function again assumes the soliton profile
(50). The physical picture is that the exciton creates a static
lattice deformation\ , and then become self-trapped in the
potential well that is established by the deformation.

The delocalized Toyozawa Ansatz employed in this
work can be obtained by applying a delocalization projection
operator

P=Ly1> exr{in( K->, kBIB,— >, qbgbq”
n k q
(D21)
to the Davydov AnsatzD20). Within the Toyozawa Ansatz,
a “locking” relation similar to (E8) is found fornK and ¢

in the adiabatic regimes of the phase diagram for both small
and large polaron€ although for weak exciton-phonon-

intermediate and strong exciton-phonon-couplings a finiteoupling nonadiabaticity emerges as the one-phonon plane-
gap is formed between the one-exciton ground state and th@ave from the background of the large adiabatic polaron as

high-lying phonon continuui Carrying out the trace over
the phonon bath, one arrives at

pmn= 2 (K[K)~te Pre M M(@rjon), (D15
where

(F|Df)y= > eKmmnayixyl

nqy,No

X exp{ L(;lE |)\§|2(eiq(n2—n1)+iq(n—m)_ 1)|.
q

(D16)
Noting that
(@p]@R)=Lo {(KIK), (D17)
we have
pan=Lot. (D18)
Also p,, is found to be real so that
Pmn= Pnm- (D19

the coupling is decreased. It is worth noting that extended
states yield lower energies than the localized parent states.
Ansatz(D5) with optimized\X and 4K, and its generaliza-
tion with the replacement ofxﬁz,n in (D5) by a two-

parameter sura, _,+ By _, , constitute the most sophisti-

cated variational wave functions applied to the Holstein
Hamiltonian. We note that the delocalization procedure
which transformgD20) into (D5) preserves the locality of
exciton-phonon correlations.

APPENDIX E: ADIABATIC POLARONS

In this Appendix we evaluate the reduced exciton den-
sity matrix p,, using the adiabatic polaron model. To that
end we represent the phonon Hamiltonian which enters Eq.
(1) in a form:

th:Tph+V(q): (ED)

whereT,, is the nuclear kinetic energy andq) is the po-
tential energy. We adopt the Born-Oppenheimer approach to
the polaron problef?’®"” by representing the eigenfunc-
tions of the joint system in a form
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— . (E9)

2T

®=3 ¥, (na)BJ0)A (), €2 )\_f“ do C(w)

whereWV ,(n;q) is the ath exciton wave function with en- Solutions of Eq.(49) are commonly referred to as solitons.
ergy E,(q). A ,(q) is an eigenfunction of the phonon effec- The nonlinearity induced by the exciton-phonon coupling is
tive adiabatic Hamiltoniarh-liff defined as the mechanism supporting the soliton excitations. For the
continuum model with the solution given by EO) the

Hi”ETphJFVZ”(Q)v (E3) energy splitting between the lowest trapped exciton and the
with next one is given byn?/|J|.3* This implies that Eq.E5)
which is valid in the adiabatic limit is derived under the
VeT(q)=V(q) +E,(q). (E4  conditionwy<\?/|J|. This equation leads to EGEG) in the

L . T<\?%|J| limit. Equation(E7) which follows from Eq.(E6
The adiabatic ansatz for the wave functions represented tWhenT!wO is heqnce val(id7v)vhem)0<T<)\2/|J| a.E6)

E.?S'(E?._(EA') a}llows to represent the reduced exciton den- Neglecting fluctuations of collective bath coordinates in
sty matrix in a form the vicinity of the minimum ofvéff(q) we obtain a simple

expression fop,, given by Eq. 48. Equatior(48) can also

Prn= > qu‘l”;[(m;q)‘['a(n;q)(ql be obtained using the Toyozawa ansatz and setting the
‘ Debye-Waller factor(A§,|A,f)=5nn,, which means that in
xexp(—HT)|q). (E5 the adiabatic polaron theoryy,,=0 (this reflects the fact

- ) _ that the traps related to left and right components of the
If the energy splitting between trapped excitons is IargerthaQjensity matrix have the same positiprd |, is the only
the temperature, only the=0 term related to the lowest lengthscale which determinés, P

exciton needs to be retained in H&5) which yields

= | dg¥*(m;q)¥(n; exp(—HeT)|q),
Pmn f d ( q) ( q)<q| F( )|q> IR. van Grondelle, J. P. Dekker, T. Gillbro, and V. Sundstrd@iochim.

(E6) Biophys. Actal187, 1 (1994.
. . 2V. Sundstfon and R. van Grondelle, iAnoxygenic Photosynthetic Bac-
where thea=0 subscript has been omitted. teria, edited by R. E. Blankenship, M. T. Madiga, and C. E. Be(iéuver
If temperature is higher than the phonon frequency theSAcademic, Dordrecht, 1995p. 349. _
phonon density matrix eXp(Heff/T) can be represented in S. E.'Bradforth, R. Jimenez, F. von Mourik, R. van Grondelle, and G. R.
form Fleming, J. Phys. Chen®9, 16 179(1995.
4R. Jimenez, S. R. Dikshit, S. E. Bradforth, and G. R. Fleming, J. Phys.
Chem.100, 6825(1996.
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x exp(—Ve(q)/T), (E7) 181 391(199D.
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