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A closed expression for the Stark signal of molecular aggregates, which does not suffer from singularities
when the exciton states are nearly degenerate and avoids the calculation of two-exciton states, is derived
from the third order response to the total (static+ optical) field, treating intermolecular interactions within
the local field approximation. Transitions between one-exciton states play an important role and generally
reduce the magnitude of the signal with respect to monomer spectra. The experimental Stark spectrum from
the B820 dimer subunit of LH1 is consistent with simulations for a dimer of parallel pigments. The spectra
of LH1 and LH2 cannot be explained by excitonic interactions alone. This supports the idea that charge-
transfer states may play an important role in the spectroscopy of photosynthetic pigment proteins.

1. Introduction

Excitons play a crucial role in primary photosynthesis. They
are created when sunlight is absorbed in light-harvesting proteins
and then transferred between pigments until they reach a reaction
center protein where, finally, they induce the primary charge
separation. The nature of the excited states, can be probed with
Stark (electroabsorption) spectroscopy, a technique whereby an
electric field is applied to the sample. The resulting absorption
changes yield information on the electronic properties of the
excited states.1 In the study of photosynthesis, Stark spectra
were initially measured for reaction centers,2-4 and later also
for light harvesting proteins.5,7,8

To analyze such Stark spectra, a formalism has been
developed by Liptay,1 based on second-order perturbation, in
the applied static electric field, of transition frequencies and
transition dipole moments of a multilevel molecule. Solvent
dynamics were included through a semiclassical treatment of
the reaction fields, but can be ignored for the low temperature
glasses discussed in this paper. For molecules with continuous
absorption bands, the difference Stark spectrum, which is
obtained by introducing a phenomenological line width, is a
linear combination of the zeroth, first, and second derivative of
the absorption spectrum.

This approach results in a perturbed eigenstate expression
(PEE), which is given in eq A4. When the transition frequencies
are well separated compared with the line width, the second-
derivative contribution is determined only by the differences
in permanent dipole moment between the excited state and the
ground state and the first-derivative contribution by the differ-
ence in static polarizability. In that case, the PEE expression
assumes a simpler form (PEE2, eq A6) which is commonly
used.4-8 Unfortunately, the calculation of the Stark signal of a
molecular aggregate, using the PEE is problematic, because the
one-exciton levels can be arbitrarily close. This violates the
conditions for the PEE2 and leads to singularities. These only
cancel out when the full (PEE) expression is used, which
requires explicit calculation of all one- and two-exciton states
as well as transition polarizabilities and hyperpolarizabilities.
Even though the singularities eventually cancel, their appearance

greatly complicates both numerical calculations and their
interpretation.

In this paper we derive a new Green function expression
(GFE) for the Stark signal of molecular aggregates, starting with
the third-order nonlinear response to the total (optical+ static)
field. The Stark spectrum is expressed as a sum type I and II
contributions. The former have the shape of the first and second
derivative of the line shape function, and are related to the PEE2.
Type II contributions, however, depend on transitions within
the one-exciton band, and interpolate between the zeroth, first-
and second-derivative shapes. The GFE does not suffer from
singularities whose cancellation is naturally build in from the
outset. Moreover, within the local field approximation, only
one-exciton states need to be calculated. The GFE is thus more
suitable than the PEE for calculating the Stark spectra of
molecular aggregates such as photosynthetic pigment protein
complexes. Moreover, the present approach makes it possible
to connect Stark spectroscopy to different models for dynamics
and relaxation of the molecules and their environment13

developed for nonlinear response theory, and to relate it to other
third-order measurements.

In section 2 the GFE for the Stark signal is derived and
compared to that for the PEE. In section 3 the GFE is used to
calculate the Stark spectra of symmetric dimer and ring
aggregates. These illustrate the significance of type II contribu-
tions in the GFE, and set the stage for the applications made in
the following two sections. In section 4 we apply this theory
to B820 dimers and the full LH1 and LH2 antennae are
considered in section 5. Comparison with experiment is made
for all systems. Finally, we summarize our results in section
6.

2. Green Function Calculation of Stark Spectra of
Molecular Aggregates

We consider an aggregate made out ofN three-level
molecules. In thenth molecule the respective energies of the
three states are 0,pΩn, andpΩn

(2). We consider only theS0 f
S1 and S1 f S2 transitions, with parallel transition dipole
momentsµbn andκnµbn, respectively. In addition, the third-order
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response also depends on∆µbn, the difference between the
permanent dipole moments ofS1 andS0. The electronic state
of the aggregate can be represented by introducing exciton
annihilation operators:Bn ) |0n〉〈1n| + κn|1n〉〈2n|, and their
Hermitian conjugates, (creation) operatorsBn

†. These satisfy
the following commutation relations:

(an additional (Bn
†)2(Bn)2 term has been omitted from the right-

hand side of eq 1 because it does not affect the third-order
response). Using these operators, the Hamiltonian can be
expressed as14

wheregn ) 2p(κn
-2 Ωn

(2) - Ωn) denotes the nonlinearity of the
nth molecule, andJnm the electrostatic interaction between
moleculesn andm. The dipole operator is

Because the intermolecular interactionJnm in eq 2 conserves
the number of excitons, the eigenstates of the aggregate are
grouped into independent bands, as illustrated in Figure 1.
Relevant for the third-order response are the ground stateg,
the one-exciton statesR, â, ..., and the two-exciton statesν, ....
The frequency of the lowest state in each band is denoted by
the optical gapsΩ andΩ(2). We assume that the one-exciton
bandwidth is small compared withΩ, and thatΩ(2) ≈ 2Ω, so
that in off-resonant contributions, the one- and two-exciton
frequencies can be replaced byΩ and 2Ω, respectively.
MoreoverpΩ . kBT so that only the ground state is occupied

at thermal equilibrium. These conditions typically hold for
molecular aggregates.

We proceed to calculate the differential Stark (electroabsorp-
tion) signalSE(ω) using the third order response function of
the aggregate. The total electric field is composed of an optical
(E0) and a static field (Es).

The third-order response to this field contains frequencies
between-3ω and 3ω.15 Relevant for absorption changes, such
as the Stark signal, is the response at frequencies(ω, which
can be realized by either zero or two interactions with the static
field. The former describes nonlinear absorption, and the latter
the Stark signalSE(ω) as follows:

The two zero frequencies inø(3) refer to the interactions with
the static field, and the frequencyω to the interaction with the
optical field. The absorption changeSE(ω) is obtained by
mixing the nonlinear response with the incoming field and is
thus a product of a fourth-rank tensor (the third-order suscep-
tibility ø(3)) and four fields. The signal〈SE(ω)〉 for isotropic
samples can be obtained by averaging over all molecular
conformations. This procedure is discussed in Appendix B.

To evaluate eq 5 for the molecular aggregate defined by eq
1-3, we set up equations of motion forBn and Bn

† in the
Heisenberg picture and solve these with a Green function
approach.14-16 Expressions which giveø(3) in terms of the one-
exciton Green function and exciton-exciton scattering matrix
were first derived for an assembly of two-level molecules.16

The GFE was later extended to an assembly of three-level
molecules14 and to a two-band model in semiconductor sys-
tems.17,18 Exciton-phonon coupling has also been incorpo-
rated.19,20

Since we are interested in the signal in the vicinity ofω )
Ω, i.e., far from two-exciton resonances, the local field (or time-
dependent Hartree-Fock) approximation can safely be applied.19

ø(3) is given by eight contributions (eqs E.1 in ref 21). Within
the rotating wave approximation (RWA), one would only retain
terms that are resonant, i.e., expressSE(ω) to zeroth order in
the ratio (Γ/ Ω) of the dephasing rate (Γ) and the optical gap
(Ω). This approach would yield only the first term of eq 6,
which is not satisfactory for this type of signal, because it would
vanish in the absence of permanent difference dipole moments
(compare eq 9). To cover this case, we use a modified RWA
by retaining also terms of first order inΓ/Ω, provided they do
not include permanent dipoles. While these terms scale with
Γ/Ω, which may be small, they are significant because they
depend on transition dipole moments (compare eq 9) which are
often lager than permanent dipole moments. The leading terms
areR4

(3) (eq E.1d) andR6
(3) (eq E.1f). We thus obtain the Green

function expression (GFE) of the Stark signal:

Here

Figure 1. Schematic representation the level scheme of an aggregate
of N three-level molecules. The levels that are relevant for the third
order response are a single ground state (g), a one-exciton band
composed ofN one-exciton levels (R, â, ...), and a two-exciton band
(ν, ...), which consists of linear combinations ofN(N - 1) two-exciton
states withN biexciton states. The optical gapsΩ andΩ(2) are defined
as the frequencies of the lowest energy levels in consecutive bands.

[Bm, Bn
†] ) δnm(1 - (2 - κm

2 )Bm
†Bm) (1)

H ) ∑
n

[pΩnBn
†Bn + 1/2gn(Bn

†)2(Bn)
2] +

∑
nm

Jnm(Bn
†Bm + Bm

†Bn) (2)

µ̂ ) ∑
n

µbn(Bn
† + Bn) + ∆µbnBn

†Bn (3)

E(t) ) E0e
-iωt + E0

/eiωt + Es (4)

SE(ω) ) 3Im[ø(3)(-ω;0,0,ω)]E0
/EsEsE0 (5)

SE(ω) ) (-
1

p)3

Im[ ∑
γ,â,R

µgγDγâ
(1) DâR

(1)µRgIγg(ω)Iâg(ω)IRg(ω) -

∑
â,R

µgâDâR
(2)µRgIâg(ω)IRg(ω)

1

Ω]E0
/EEE0 (6)

IRg(ω) ) 1/(ω - ΩR + iΓ) (7)
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is a complex line shape function, withΩR the frequencies of
the one-exciton states andΓ a dephasing rate introduced into
the equations of motion for theBn, to represent coupling to a
heat bath.15 The transition dipolesµgR and theDRâ

(j) are given
in the exciton basis setφR(n):

The µbn were defined in the beginning of this section while
the operatorsD(1) andD(2) have the following matrix elements
in the molecular (site) representation:

The first term of the GFE (eq 6) occurs within the RWA. It
is determined byD(1) which indeed scales with the difference
permanent dipole moments. The second term occurs only when
the modified RWA is used. This term is proportional toD(2)

which is related, but not identical, to the static difference
polarizability (∆R) in the PEE. For a monomer∆R ) 2D(2)/Ω
(see eq A5).

Equation 6 can alternatively be derived from the standard
sum-over-states (SOS) expression ofø(3). This is demonstrated
in Appendix C. Both formalisms can also be applied under
less restrictive conditions, e.g., without invoking the RWA, or
by including more states and transitions. However, the GFE is
computationally attractive, because two-exciton states need not
be calculated within the local field approximation and because
the occurrence of large canceling contributions, that is typical
for the SOS formalism, is eliminated.15 Moreover, unlike the
GFE the full SOS expression of the Stark signal contains
diverging terms that can only be avoided by introducing a model
for ground state relaxation.

The GFE (eq 6) provides an alternative to the standard PEE
(perturbed eigenstate expression)1 for the Stark signal discussed
in the Introduction. In Appendix A, the PEE is recast in a form
similar to the GFE. Let us compare the two approaches. In
Appendix D we demonstrate that, within the modified RWA
for which the GFE is given, it coincides with the PEE (eq A4).
In the absence of intermolecular interactions this is obvious since
D(1) andD(2) are, in that case, diagonal withDRR

(1) ) ∆µRg and
DRR

(2)/Ω ) ∆RRg/2, as discussed below eq 9. The general proof
is more involved, because arbitrarily close energy levels give
rise to singularities inRab and âab (see eq A5), which do not
occur in the GFE. This also demonstrates that the simplified
PEE2 (eq A6) which has been used successfully for semi-
empirical analysis of experimental Stark spectra of photosyn-
thetic pigment protein aggregates4-8 cannot be used to calculate
the Stark signal from properties of the individual chromophores.
To see this, consider two one-exciton states with a frequency
difference that approaches zero. In that case,∆R approaches
infinity (see eq A5) and eq A6 yields a spectrum with a first-
derivative shape and infinite magnitude. In contrast, eq 6
remains finite and has a second-derivative shape. These
singularities complicate numerical calculations, e.g., in the
presence of inhomogeneous broadening when arbitrarily close
energy levels do indeed occur. But, it also affects interpretation
of experimental spectra, since a second derivative shaped Stark

spectrum is not necessarily due to a permanent dipole moment,
but may also be caused by a transition to a nearby one-exciton
state.

A close comparison of the GFE and PEE shows that the most
striking difference is that the PEE contains only terms with
powers of the line shape function. These will be denoted type
I contributions. The imaginary part ofI(ω) yields a Lorentzian
line shape, and a straightforward calculation shows that the
imaginary parts ofI2(ω) and I3(ω) are the first and second
derivative of this line shape. This is the basis of the more
familiar description of the Stark spectrum as a linear combina-
tion of the zeroth, first, and second derivative of the absorption
spectrum.1,5-8

The GFE, however, contains additional products of different
lineshape functions, which may be shifted with respect to each
other, e.g., due to the exciton splitting or energetic disorder, or
may ever differ in width of shape. Such contributions will be
denoted as type II. Their structure and significance can be
understood by expressing them as a sum of type I contributions
(see eq D1). For example, the type II termIâg(ω)IRg(ω) )
(Iâg(ω) - IRg(ω))/(Ωâ - ΩR) is the sum of two Lorentzians
with opposite sign but takes the shape of a first derivative when
|Ωâ - ΩR| < Γ. Similarly, a product of three line shape
functions can take the shape of the zeroth, first, or second
derivative of a Lorentzian. Thus, the type II contributions
interpolate in a natural way between the various limiting cases.
This eliminates singularities and makes the GFE preferable to
the PEE, both for numerical calculations and for interpretation.
Moreover, evaluation of the PEE requires the summation over
all one- and two-exciton states, whereas only one-exciton states
are needed for the GFE.

Note that if all dipole moments are the same, i.e., for alln:
∆µbn ) ∆µb, µbn ) µb, κn ) κ, a special relation exists between
the signalSE(ω) and the ordinary absorption line shapeSA(ω)
which has the form:

Since in this caseD(1) andD(2) are proportional to unit operators
we get

The signalSE(ω) thus becomes a linear combination of the
second and first derivatives of the absorption spectrum with
coefficients independent of the size of the aggregate. This is
significant for aggregates with parallel dipoles, such as J-
aggregates. The deviation of the signalSE(ω) from eq 11
provides a measure for the degree of inhomogeneity in dipole
orientations.

3. Application to Dimers and Circular Aggregates

For symmetric aggregates, where only a few excitonic
transitions are allowed, the GFE can be simplified. We shall
demonstrate this for various dimeric and circular aggregates.
The results will be used in the next sections to analyze
experimental spectra of various light-harvesting complexes from
purple bacteria.

We first consider the Stark spectrum of a monomeric pigment.
With µ1 ) µ, ∆µ1 ) ∆µ, andκ1 ) κ, eq 6 reduces to

µgR ) ∑
n

µbnφR(n)

DRâ
(j) ) ∑

nm

φR
/(m)Dnm

(j)
φâ(n) (8)

Dnm
(1) ≡ δnm∆µbm

Dnm
(2) ≡ δnm(κm

2 - 2)µbm
/ µbn (9)

SA(ω) ) (-
1

p)Im[∑
R

µgRµRgIR(ω)]E0
/E0 (10)

SE(ω) )
(∆µbEs)

2

2

d2SA(ω)

dω2
+ (κ2 - 2)

(µb Es)
2

Ω
dSA(ω)

dω
(11)
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This expression contains only type I contributions (products
of identical line shape functions), with the shape of the first
and second derivative of the absorption spectrum, and in fact,
coincides with the PEE2.

Let us first compare this to a dimer of parallel identical
pigments. Withµ1 ) µ2 ) µ and∆µ1 ) ∆µ2 ) ∆µ, and one-
exciton wave functionsφ((n) ) ( ( 1)n/x2, one obtainsµg+ )
x2µ while µg- ) 0. Also D++

(1) ) D--
(1) ) ∆µ while D+-

(1) )
D-+

(1) ) 0, which means thatI+g(ω) is the only contributing line
shape function. The second term in eq 6 can then be simplified
by taking I+g(ω) outside the summations. The result is
independent of the molecular interaction and we have

Remarkably, this expression is identical to that of the
monomeric pigments, except for a shift from the monomer
frequency toI+g(ω). Since the linear absorption spectrum is
shifted by the same amount, the excitonic interaction has no
effect on the Stark spectrum for this geometry.

A very different behavior is found for an antiparallel dimer.
With ∆µ1 ) -∆µ2 ) ∆µ, we now obtainD++

(1) ) D--
(1) ) 0

while D+-
(1) ) D-+

(1) ) ∆µ, so that

The difference with the parallel dimer is that the expression
now contains a type II contribution, i.e., a product of different
line shape functions:I+g

2 (ω)I-g(ω)). The origin of this differ-
ence is that the permanent dipole moment of the “+” state
vanishes for an antiparallel dimer and is replaced by a transition
from the “+” to the “-” state. As a result, the line shape
functions of both excitonic states contribute to the Stark
spectrum. The spectral shape of the type II contribution depends
on the magnitude of the excitonic splitting (ω+-) relative to
the dephasing (Γ). WhenΓ > ω+-, we haveI+g(ω) ≈ I-g(ω),
and thus the term becomes a second derivative of the absorption,
just as in the case of a parallel dimer. However, whenΓ ,
ω+-, I+g

2 (ω)I-g(ω) ≈ I+g
2 (ω)/ω+-, which takes the shape of a

first derivative. The physical explanation behind this is that,
in that case, the “+” f “-” transition contributes to the static
polarizability of the former. The magnitude of the type II
contribution is weaker than, or at most equal to, that of the
corresponding type I contribution in the parallel dimer. More
precisely, their ratio scales withΓ/ω+-.

In summary, the Stark spectrum of a dimer differs from that
of a monomer only when transitions are allowed within the one-
exciton band. In that case a type II contribution interpolates
between different type I shapes, while decreasing in magnitude,
relative to the monomer case.

This behavior is typical and similar phenomena are found
for ring-shaped aggregates. We first consider a ring with in-
plane dipole moments, i.e.,µn ) |µ|(cos(nê)x̂ + sin(nê)ŷ) and

∆µn ) |∆µ|(cos(nê)x̂ + sin(nê)ŷ), with ê ) 2π/N, andx̂ andŷ
two perpendicular unit vectors. The excitonic wave functions
are φR(n) ) ε

iêRn/xN, and only two transitions are allowed:
µg,(1 ) 1

/2xN|µ|(x̂(iŷ). Since these are degenerate, the second
term of eq 6 is again not affected by the intermolecular
interaction. Furthermore,DâR

(1) ) δR,â+1|∆µ|(x̂ + iŷ) +
δR,â-1|∆µ|(x̂ - iŷ). For a particular orientation of the aggregate,
the expression forSE(ω) is lengthy. However, for an isotropic
sample, with magic angle (≈54.7°) between the static and optical
field, a number of terms vanish in the average signal. For this
typical experimental situation, which is discussed in Appendix
B, a more compact expression is obtained:

with IRg(ω) the complex line shape function of the pairwise
degenerate excitonic statesφ(R(n). This Stark spectrum differs
from that of a monomer, in that it contains type II contributions
from neighboring levels in the one-exciton band. However, the
excitonic splitting between these levels is only a fraction of the
intermolecular interaction strength, and is typically small
compared to their line width, in which case the Stark spectrum
reduces to that of the monomeric pigments.

For N even, a ring of antiparallel dimers can be modeled by
simply reversing the orientation of every other pigment, i.e.,
by setting∆µn ) (-1)n|∆µ|(cos(nê)x̂ + sin(nê)ŷ). In that case
DâR

(1) ) δR,â+1/2N+1|∆µ|(x̂ + iŷ) + δR,â+1/2N-1|∆µ|(x̂ - iŷ), and
thus (again for magic angle detection and isotropic samples)

In this case, the type II contributions combines line shape
functions around frequencies from the top and bottom ends of
the one-exciton band. As in the dimer case, the result can have
either a second-derivative shape or a first-derivative shape with
a weaker magnitude, depending on the width of the one-exciton
band relative toΓ.

The differences between the parallel and antiparallel cases
are important because Stark spectroscopy is one of the few
techniques by which they can be distinguished. Note that the
reversal of a pigment orientation has no effect on the absorption
spectrum. The antiparallel structure has indeed been observed
in the crystal structure of LH2.9 The Stark spectra of LH1 and
B820 can be used to investigate the pigment orientation in these
proteins.

4. Application to Subunits of the LH1 Antenna Complex

We shall now apply the general GFE (eq 6) and the compact
analytical expressions for symmetric aggregates to calculate the
Stark spectra of the light-harvesting systems from photosynthetic
purple bacteria. Two types will be considered; The light-
harvesting 1 (LH1) system, which forms a core complex with
the reaction center, and LH2, which surrounds this core complex
in variable numbers.

SE,monomer(ω) ) (- 1
p)3

Im[µ∆µ∆µµI1g
3 (ω) -

(κ2 - 2)µµµµI1g
2 (ω)

1
Ω]E0

/EsEsE0 (12)

SE,dimer(ω) ) 2(- 1
p)3

Im[µ∆µ∆µµI+g
3 (ω) -

(κ2 - 2)µµµµI+g
2 (ω)

1
Ω]E0

/EsEsE0 (13)

SE,dimer′(ω) 2(-1
p)3

Im[µ∆µ∆µµI+g
2 (ω)I-g(ω) -

(κ2 - 2)µµµµI+g
2 (ω)

1
Ω]E0

/EsEsE0 (14)

〈SE,ring(ω)〉 )

N(-1
p)31

9
Im[|µ|2|∆µ|2I1g

2 (ω)
I0g(ω) + I2g(ω)

2
-

(κ2 - 2)|µ|4I1g
2 (ω)

1
Ω]|Es|2|E0|2 (15)

〈SE,ring′(ω)〉 )

N(-1
p)31

9
Im[|µ|2|∆µ|2I1g

2 (ω)
I1/2Ng(ω) + I1/2N+2g(ω)

2
-

(κ2 - 2)|µ|4I1g
2 (ω)

1
Ω]|Es|2|E0|2 (16)
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The main chromophore in these proteins is bacteriochloro-
phyll a (Bchl a). Its absorption of visible and near infrared
light originates from an unsaturatedπ-electron system of
approximately 1 nm radius, which runs across a porphyrin ring.
The red-most (Qy) transition absorbs at 780 nm, with a transition
dipole moment along the long axis of theπ-system. In LH1,
this transition is significantly red shifted (to 880 nm), while
LH2 shows two absorption bands (at 800 and 820-850 nm).
Further transitions are theQx (600 nm) and Soret (By andBx,
300-400 nm) transitions.

For the third-order optical response, only the three lowest
electronic states are relevant, at least as long as transitions are
allowed only between neighboring levels, (i.e.,S0 f S1, S1 f
S2, etc.). We shall thus model Bchla as a three-level molecule
with a ground state,Qy andBy (Soret) level. The aforementioned
condition is not strictly fulfilled since theBy transition is visible
in the ground state absorption spectrum. But, since any
contribution from this transition is off-resonant, it will be
omitted. For the same reason, and because no transition is
possible between theQy andQx levels, theQx andBx levels are
also omitted. The light-harvesting pigment-protein complex
can thus be modeled by an aggregate ofN three level molecules.

The structure of both LH1 and LH2 is a ring of subunits,
each composed of a Bchla dimer bound to two small (one helix)
membrane bound polypeptides. The porphyrin rings are vertical,
with the Qy transition dipole moments forming a small angle
(<15°) with the membrane. The 800 nm transition of LH2 is
caused by the presence of a third Bchla pigment. In addition,
the subunit may contain one or two carotene molecules.

High-resolution (0.25 nm) crystal structures ofRhodopseudo-
monas (Rps.) acidophilaLH2 show a ring of nine dimer
subunits,9 while Rhodospirillum (Rsp.) molischianumLH2
contains a ring of eight such subunits.10 Within each dimer,
the pigments are almost antiparallel, while forming a small angle
with the tangent of the ring. The interpigment distance within
the dimer is almost identical to that between neighboring dimers
(0.9 nm). Low-resolution (0.85 nm) structures of LH111 show
a larger ring of 16 dimer subunits. Similarities of function and
polypeptide sequence and structure modeling indicate that the
pigment organization of LH1 must be very similar to that of
LH2.

From LH1, a dimer (B820) subunit can be isolated by adding
detergent.12 The Qy transition then shifts to 820 nm. Upon
further addition of detergent, monomeric (B777) complexes are
formed. The process is reversible and by diluting the sample
it reassociates to a B873 complex which strongly resembles
LH1, except for the carotene molecules (two per B820 subunit),
which are lost during the dissociation. The Stark spectrum of
the B820 subunit will also be discussed because it may form a
bridge between those of LH1 and the monomeric pigments. So
far it has not been possible to prepare similar subunits of LH2.

Using the PEE2 a semiempirical analysis has been carried
out for the Stark spectra of photosynthetic proteins.4-8 In these
studies, the B820 spectrum is dominated by a second derivative
(of the absorption spectrum) shape, indicative of a difference
dipole moment similar to that of monomeric Bchla, while the
spectra of LH1 and LH2 are much larger and dominated by a
first derivative shape, indicative of a difference polarizability.
In addition, a significant unexplained zeroth-derivative contribu-
tion is present especially in B820.

We shall further the analysis these experimental results by
calculating the Stark spectra of the Bchla aggregates. As we
demonstrated, the PEE and PEE2 are not suitable for these
calculations due to singularities, and we thus use the GFE (eq

6) and the compact analytical expressions derived for symmetric
aggregates in the previous section. Rather than to try and adjust
the numerous parameters to the Stark measurements, we shall
start with parameters from related experiments, and then vary
the parameters one by one, to investigate their effect on the
spectra.

Two groups of parameters need to be considered, representing
respectively the Bacteriochlorophylla (Bchl a) chromophore
itself, and their organization within the aggregate. The latter
will be discussed separately for each light-harvesting protein,
but the chromophore is described by a common set of
parameters.

The S0 f S1 Transition Dipole Moment. The valueµ )
6.2 D has been determined from absorption.22,23

The Optical gap (Ω), Dephasing (Γ) and Energetic
Disorder (σ, Defined Below). These spectral parameters
change upon association with protein, and are adjusted to fit
the absorption spectrum.

The Difference in Dipole Moment between theS1 and S0

States. This is especially significant for the Stark spectrum. A
value of∆µ ) 1.45( 0.2 D was obtained from Stark spectra
of the monomer2 with a Lorentz local-field correction factor. It
forms a small angle (11°) with the transition dipole moment,3

but in our simulations we took them to be parallel.
The Relative Oscillator Strength of theS1 f S2 Transition.

This parameter is related to the difference polarizability in the
PEE2, but it is an essential parameter for any non-linear
response. In particular, a significant cancelation of the third-
order response takes place forκ ) x2. The valueκ ) 1 was
estimated from excited state absorption.24 This is, however,
only a rough estimate. For example, a small positive difference
polarizabilityTr[∆R] ) 36 ( 6 Å3 was observed with solvent
shift measurements,25 which suggests thatκ may actually be
larger thanx2. κ was therefore varied in our simulations.

In a number of calculations energetic (inhomogeneous
broadening) and structural disorder are included. For the former,
the optical gap of each pigment is changed by a random amount
taken from a Gaussian distribution with varianceσ, before
calculating the Stark and absorption spectra. This procedure is
repeated, and the spectra are averaged until convergence is
reached. Structural disorder is incorporated by assuming that
the dipole moment of each pigment is rotated by a random
amount. This is achieved by setting up a local coordinate system
with its z-axis along the dipole moment, and choosing a new
dipole moment with polar coordinates (θ, φ) in that system.θ
andφ are uniformly distributed random numbers in [0,θ0] and
[0, 2π], respectively. Convergence was monitored by calculat-
ing not only the average signal for each data point, but also its
standard deviation. Averaging was continued until all standard
deviations are less than 3% of the maximum of the spectrum.
This required between 250 (N ) 32, σ ) Γ) and 500 000 (N )
2, σ ) Γ/4) iterations, and takes between one minute and several
hours on a Silicon Graphics (Octane) workstation.

The surrounding medium is modeled by a Lorentz local-field
correction factor. This gives the ratio of the internal fieldEi

felt by the molecule, to the externally applied fieldEs:

and the dielectric constantε was set to 2.
The experimental absorption and Stark spectra were repro-

duced from publications on monomeric Bchla,26 B873 (re-
associated LH1) and B820 fromRhodospirillum (Rsp.) rubrum7

Ei ) ε + 2
3

Es (17)
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and LH2 fromRps. acidophila.8 All experimental and simulated
Stark spectra are shown with the corresponding normalized
absorption spectrum. The Stark, i.e., the difference between
the absorption with and without field, spectra are scaled to a
normalized field ofEs ) 105 V/cm.

A. The Bchl a Monomer. To test the parameter values
given above, we first compare experimental and simulated
spectra of the monomeric Bchla pigment. Figure 2A displays
the simulated absorption and Stark spectra with experiment.
Only homogeneous broadening is included, andΩ and Γ are
adjusted such that the simulated and experimental absorption
spectra coincide at OD) 0.5. The magnitude of the experi-
mental Stark spectrum and its second-derivative shape, caused
by a ∆µ-dependent term, are properly reproduced. Some
deviations are obvious: the minor asymmetry caused by the
κ-dependent term has the wrong sign in the simulated spectrum,
and the experimental Stark spectrum appears to be broader than
the simulated one. In Figure 2B parameters have been
optimized to fit the spectra. Some energetic disorder has been
introduced, which leads to a broadening of the Stark spectrum
with respect to the absorption. Combined with a small increase
of ∆µ andκ, this leads to a satisfactory fit, although deviations
in the wings are noticeable. The fit of the Stark spectrum is
better than that of the absorption spectrum.

B. The B820 Dimer. Simulation of the Stark spectrum of
the dimeric B820 subunit of LH1 requires in addition to the
Bchl a parameter values given above, a model for the dimer
geometry. Fluorescence polarization experiments12 indicate that

the angle between the transition dipole moments of the two
pigments is small (<30°). We initially consider cases where
the pigments are either parallel or antiparallel. The results can
thus be compared to the analytical expressions in the previous
section. For the intermolecular interaction we useJnm ) 230
cm-1, as estimated from the same experiments.

In Figure 3, experimental absorption and Stark spectra for
B820 are compared to simulations for the parallel and anti-
parallel dimer, for several inhomogeneity ratiosσ/Γ between 0
and 4, and structural inhomogeneitiesθ0 between 0 and 40°.
For σ/Γ ) θ0 ) 0, Ω and Γ were adjusted with the same
procedure as for the monomer. In all other spectra, the same
value ofΩ was used, whileσ andΓ were varied to reproduce
the fwhm of the experimental absorption spectrum.

The simulated Stark spectra for the parallel dimer resemble
eq 13. For the homogeneous (σ ) 0) case, they coincide, and
in all cases, the spectra are dominated by a∆µ-dependent type
I contribution, which has the form of a second derivative (of
the absorption spectrum). As in the monomer spectra, a small
asymmetry is present, due to theκ-dependent term. This term
disappears forκ ) x2 (compare Figure 4A). Except for a
shift induced by excitonic splitting, the homogeneously broad-
ened (σ ) 0) spectrum is identical to that of the monomeric
pigments with the sameΓ (not shown). The other spectra in
figure 3A are weaker, because the energetic disorder induces
partially allowed “+” f “-” transitions, and thus are type II
contributions. These are smaller than the type I contribution
to which they reduce when the material frequencies become
equal.

Comparing the numerical and analytical results is less
straightforward for the antiparallel dimer. The small magnitudes
of the simulated spectra in Figure 3C confirm the analytical
result of section 3: an antiparallel dimer has a smaller Stark
spectrum than a parallel dimer, due to the presence of type II
contributions for the former. But the shape of the simulated
spectra (a negative and positive lobe at the lower and upper
excitonic states respectively), does not seem to agree with the
dominant first-derivative shape of such a type II contribution.
This results from an interference of the∆µ- andκ-dependent
terms which are, in this case, of the same magnitude

The effects of energetic and structural disorder on the Stark
spectra are limited. The former leads to a red shift of both the
absorption and Stark spectrum, but the absorption maximum
remains coincident with the minimum of the Stark spectrum.
In addition, energetic disorder causes broadening of the Stark
spectrum and a decrease of the amplitude. The effects of
structural disorder are marginal.

The experimental Stark spectrum is best reproduced by the
simulated spectra in Figures 3A and B. This indicates that the
B820 subunit may form a parallel dimer, in contrast to the
antiparallel dimer that has been observed in the crystal structure
of LH2.9 However, the fit is not quite satisfactory. The main
difference is that the experimental Stark spectrum is broader
than the simulated ones. This discrepancy is reduced but not
quite eliminated, by the energetic and structural disorder (Figure
3A). In an earlier study, a better fit has been obtained with a
linear combination of the zeroth and second derivative of the
absorption spectrum.7 However, this required a substantial
zeroth-derivative contribution, which cannot be justified by the
present calculations. For example, eq 13 has no zeroth
derivative contribution at all, and although the type II contribu-
tion in eq 14 has a zeroth-derivative component, this is
considerably smaller than the other contributions. Moreover,

Figure 2. Simulated absorption and Stark ()∆OD atEs ) 105 V/cm)
spectra and experimental 77 K spectra (diamonds) for monomeric Bchl
a in toluene/pyridine (100:1 v/v). (A) Calculation withΩ ) 12630
cm-1, σ ) 0, Γ ) 145 cm-1, and all other parameters taken from
separate experiments (see text):µ ) 6.2 D,κ ) 1, ∆µ ) 1.45 D, and
ε ) 2.4. (B) Best fit;σ ) Γ ) 80 cm-1, κ ) 1.85, and∆µ ) 1.65 D.
Other parameters as in A. Experimental spectra reproduced from Lao
et al.26
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it is compensated by a zeroth-derivative component of opposite
sign at the high exciton component, which is also not observed
in experiment. Somewhat smaller zeroth derivative components
have also been derived from fits to Stark spectra from reaction
centers4 and light-harvesting proteins,5,7,8but no explanation has
as yet been given.

Starting from Figure 3, we vary the parameters one by one
to improve the fit to experiment. This is done for the parallel
dimer only, since this seems the most likely structure. For
computational efficiency, energetic and structural disorder are,
for the time being, omitted, since these had little effect on the
spectrum. In Figure 4Aκ is varied between 0 and 2. The
asymmetry is affected, which leads to a shift of the Stark
spectrum relative to absorption. This can be used to fit different
features of the experimental spectrum, but it does not increase
the width of the spectrum, as required for a good fit. Similar
effects are observed when∆µ or µ is varied (not shown).

We also tried to improve the fit by relaxing the symmetry of
the aggregate. In Figure 4B, the angle between the pigments
is increased up to 40° (the actual angle is estimated to be 24°12).
This leads to minor changes in the absorption and Stark
spectrum near the upper exciton component, but its effect in
the main band is limited to a small decrease of the magnitude
of the Stark spectrum. Finally, we studied the effects of
reducing the magnitude of the intermolecular interaction down
to 60 cm-1, and of lifting the degeneracy, by increasing the
difference between the optical gaps of the two pigments up to
400 cm-1 (while keeping the excitonic splitting at 460 cm-1).
Both parameters had a negligible effect on the Stark spectrum
(not shown). Especially the last result is somewhat remarkable

because the dimer, in that case, has two allowed transitions. In
any case, the results indicate that the fit to experiment is not
improved by relaxing the symmetry of the aggregate.

The parameter changes discussed above, which all lead to
minor improvements of the fit were combined to produce our
best fit that is shown in Figure 5. The main optimizations were
A minor change of∆µ to exactly reproduce the magnitude of
the spectrum and the reintroduction of energetic disorder to
produce a satisfactory fit of the red flank of the Stark spectrum.
The shallow blue feature, however, could not be fitted without
ruining the overall fit (compare Figure 4A). Note that the
resulting parameter set is not unique. For example, the effects
of decreasing∆µ andκ2 - 2 could also have been obtained by
decreasingε, and the structural disorder cannot be estimated
from the fit at all, because its effect on the Stark spectrum
(compare Figure 3B) is small.

In conclusion, the magnitude and approximate shape of the
B820 Stark spectrum can be reproduced by a relatively simple
model of a parallel dimer, with parameters derived from separate
experiments. However, its shallow blue flank not explained
by excitonic interactions alone. If it is not an experimental
artifact, e.g., due to overlap with the 777 nm band of monomeric
Bchl a, it requires either a new mechanism that adds a zeroth-
derivative component to the Stark spectrum, or a more detailed
model for line broadening, e.g., by adding vibrational transitions.

5. Application to the LH1 and LH2 Antenna Complexes

A. The LH1 Complex. We have applied our analysis
strategy to investigate the experimental Stark spectrum of B873

Figure 3. Simulated absorption and Stark ()∆OD at Es ) 105 V/cm) spectra for a Bchla dimer, and experimental 77 K spectra (diamonds) for
the B820 dimer subunit fromRsp. rubrum. (A and B) Parallel dimer (see text) with (A) energetic disorder:σ/Γ ) 0 (solid), 1 (dashed), and 4
(dotted). (B) Structural disorder:θ0 ) 0° (solid), 10° (dashed), and 40° (dotted), forσ ) Γ ) 120 cm-1. (C and D) Same calculations for the
anti-parallel dimer (see text). Other parameters:Ω ) 12390 cm-1, µ ) 6.2 D,κ ) 1, ∆µ ) 1.45 D. Intermolecular interaction:Jnm ) -230 cm-1.
ε ) 2.0. As indicated, the simulated spectra in C and D are multiplied by 5. Experimental spectra reproduced from Beekman et al.7
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(reassociated LH1) complex. As before, we initially use the
Bchl a parameters given in section 4. The aggregate is
modeled as a ring of 32 pigments, in accordance with the low-
resolution structure.11 Since no detailed atomic-resolution
structure is available for LH1, we assume the transition dipole
moments to be in-plane and tangent to the ring. The former is
consistent with linear dichroism measurements and with the
structure of the related LH2 complex. To mimic the LH2

structure more closely, a second structure is considered, where
the orientation of every second pigment is reversed. These
structures will be denoted as a ring of parallel and antiparallel
dimers, respectively. The intermolecular interactions are cal-
culated with dipole-dipole coupling, and scaled such that the
interaction between neighboring pigments is 230 cm-1, the same
value used above for the B820 dimer subunit, and similar to
the nearest-neighbor interaction in LH2.27

In Figure 6 the experimental spectrum is compared with
simulated spectra where the inhomogeneity ratioσ/Γ varied
between 0 and 4, and the structural disorderθ0 between 0° and
40°. The simulated spectra are remarkably similar to those
obtained for dimers in Figure 3, i.e., a type I (second-derivative)
shaped spectrum for the ring of parallel dimers and a much
smaller type II (first-derivative) shaped spectrum for the ring
of antiparallel dimers. The similarity of the dimer and ring
spectra is in agreement with the expressions obtained in section
3. The energetic and structural disorder cause large shifts in
the spectra, most likely due to the fact that several forbidden
transitions lay within the width of the absorption band, and these
become partially allowed by the disorder. However, the effect
of disorder on the shape of the Stark spectrum is even less than
in the dimer case, and hardly affects the fit with experiment.

Although the parameters used for the simulated spectra in
Figure 6 were taken from separate experiments and should thus
at least be of the correct order of magnitude, none of the spectra
in this figure reproduces the experimental Stark spectrum: the
simulated spectra of the ring of parallel dimers are three times
weaker than experiment. Moreover, they have a second-
derivative shape, instead of the observed first-derivative shape
of the experimental spectrum. The simulated spectra of the ring
of antiparallel dimers do have a first-derivative shape, but their
magnitude is even weaker, and their sign is wrong.

To resolve the discrepancy, an explanation must be found
for the large first-derivative components. Equations 15 and 16
suggest several possible origins for this component. First, in
both expressions the second term has a first-derivative shape.
Its contribution scales withκ2 - 2, and may be enhanced for
example by taking a strongerS1 f S2 transition than assumed
so far. The results of increasingκ up to 4 are shown in Figure
7. This is indeed sufficient to reproduce the magnitude of the
experimental spectrum. It makes little difference which of the
two structural models is used. The experimental spectrum is
shifted with respect to the simulated one, and thus the fit may
be further improved by adding a stronger second-derivative
component to the spectrum. This may be caused by a difference
dipole moment induced by matrix fields in the protein.5,7

Unfortunately, the present fit suffers from several difficulties
because of the large increase ofκ that is needed. First, it implies
that the total excited state oscillator strength is 16 times stronger
than the ground state absorption, which has not been observed.24

Second, Figures 7C and D indicate that these values forκ induce
similar strong first-derivative spectra in the dimer, in contradic-
tion with experiment. Since it is highly unlikely that a large
change of the excited state absorption of the single pigments
should occur upon the formation of the LH1 aggregate from its
B820 subunits, this model is unrealistic.

Another option is to enhance the type II contribution in
equation16 which also has a first derivative shape, by increasing
∆µ. This contribution is present in the simulated spectra of
the ring of anti-parallel dimers (Figure 6C), but with a very
small amplitude. The simplest way to enhance it, is by

Figure 4. Simulated absorption and Stark ()∆OD atEs ) 105 V/cm)
spectra for a parallel Bchla dimer, and experimental 77 K spectra
(diamonds) for the B820 dimer subunit fromRsp. rubrum. (A) κ ) 0
(solid), 1 (dashed), and 2 (dotted). In (B) the angle between the pigments
is increased from 0° (solid), to 10° (dashed), and 40° (dotted). Other
parameters:σ ) 0, Γ ) 170 cm-1, and additionally as in Figure 3.
Experimental spectra reproduced from Beekman et al.7

Figure 5. Best fit to 77 K absorption and Stark ()∆OD at Es ) 105

V/cm) spectra (diamonds) for the B820 dimer subunit fromRsp.
rubrum. The spectra are calculated with a parallel dimer model andσ
) Γ ) 120 cm-1, κ ) 1.2, and∆µ ) 1.25 D. Other parameters as in
Figure 3. Experimental spectra reproduced from Beekman et al.7
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increasing the difference dipole moment (∆µ) or the local field
correction factor. However, the required changes are again large
and raise similar objections as for theκ -case discussed above.

This type II contribution can also be enhanced with param-
eters that do not affect the monomer spectra, e.g., by reducing
the bandwidth of the one-exciton manifold. This was discussed
for the dimer case below equation 14. It is shown in Figure
8A, where the intermolecular interactions are reduced by up to
a factor 4. Indeed, with decreasing interaction, the exciton
bandwidth decreases, and the magnitude of the simulated Stark
spectrum is enhanced. However, the increase is not sufficient
because its magnitude cannot exceed that of the (type I)
spectrum in the ring with parallel dimers (Figure 6A). More-
over, as the magnitude approaches that of the type I contribution
its shape changes to a second derivative. This is a typical
behavior for type II contributions since they interpolate between
the different shapes. Thus, the type II contribution also cannot
reproduce the experimental spectrum.

We have further varied the parameters that define the
aggregate’s geometry. There is, however, no indication that
any of these will reproduce the required large first derivative
Stark spectrum. In addition to Figure 8A, discussed above, this
is further confirmed by Figure 8B, where the energy difference
between the optical gaps of the two pigments in the dimer
subunit was varied. This leads to a minor enhancement of the
type II contribution in the ring of antiparallel dimers. Also,
the out-of-plane angle of the dipole moments (up to 30°) has
no notable effects on the Stark spectrum (not shown). Other
geometrical parameters were not varied.

In Figure 9, the parameter optimizations discussed above were
combined to yield our best fit to experiment. Onlyσ/Γ, κ, and
∆µ were varied, since the other parameters only have a minor
effect. The fit to the experimental Stark spectrum is remarkably
good. Deviations in the wings of the both the Stark and
absorption spectra may be attributed to the relatively simple
model used for spectral broadening.

In conclusion, a satisfactory fit of the experimental absorption
and Stark spectrum of LH1 could be obtained with a model of
excitonically interacting molecules, but the required parameters
differ strongly from those obtained for its B820 dimer subunit
and monomeric Bchla. This indicates that the present model
is incomplete and that additional states have to be considered,
which play a role in the intact LH1, but not in its smaller
subunits. This was proposed earlier on the basis of semi-
empirical fit using the PEE2,5-8 but is now backed by simulated
Stark spectra and a microscopic model of the molecular
aggregate.

B. The LH2 Complex. Finally, we apply our analysis to
the light-harvesting 2 (LH2) complex ofRps. acidophila. No
dimer subunit has been isolated for this protein, but more
detailed structural information is available. We use parameters
which successfully reproduced experimental superradiance20 and
long time pump-probe spectra.28 Thus LH2 is modeled by a
ring of 18 pigments with orientations as in the crystal structure,9

and intermolecular interaction strengths from point charge
calculations.27 The chromophore parameters are initially taken
as given in the beginning of this section, except thatκ ) 0.9,
from the fits of Meier et al.28,20

Figure 6. Simulated absorption and Stark ()∆OD at Es ) 105 V/cm) spectra for a circular Bchla aggregate (N ) 32), and experimental 77 K
spectra (diamonds) for B873 (reassociated LH1) fromRsp. rubrum. (A and B) Ring of parallel dimers (see text) with (A) energetic disorder:σ /Γ
) 0 (solid), 1 (dashed), and 4 (dotted). (B) Structural disorder:θ0 ) 0° (solid), 10° (dashed), and 40° (dotted), forσ ) Γ ) 155 cm-1. (C and D)
Same simulations for a ring of antiparallel dimers (see text). Other parameters:Ω ) 11890 cm-1, µ ) 6.2 D; κ ) 1, ∆µ ) 1.45 D. Jnm from
dipole-dipole interaction (see text).ε ) 2.0. As indicated, the simulated spectra are multiplied by 2 (A and B) or 20 (C and D). Experimental
spectra reproduced from Beekmanet al.7
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Notwithstanding the more detailed structural information, the
results are similar to those presented above for LH1, and we
review them only briefly. Figure 10A shows simulated spectra
for several inhomogeneity ratiosσ/Γ between 0 and 4, together
with the experimental spectra for LH2. The first-derivative
shape of the Stark spectrum agrees with the roughly anti-parallel
pigments in the dimer subunit of LH2, but its magnitude and
sign do not match experiment. Energetic disorder leads to an
overall red shift of both the absorption and Stark spectrum, but
has very little effect on the shape of the spectra.

The fit to experiment can again be improved by increasing
κ, µ, ∆µ of ε. The former is illustrated in Figure 10B, where
again a change toκ > 4 is required to reproduce the magnitude
of the experimental Stark spectrum, a value that is too different
from that in the monomeric Bchla, to be caused by changes in
the environment. Moreover, the fit of the LH2 spectrum in
figure 10B, is not as good as that for LH1 in Figure 7, because
the experimental LH2 spectrum is asymmetric and shows a
shoulder on the red wing. Neither of these features is
reproduced by the simulated spectra. Therefore, our results do
not substantiate suggestions5 that the shoulder may be due to
the red most exciton component of the LH2 ring.

Our analysis of the LH2 Stark spectrum confirms the
conclusion drawn for LH1, i.e., that the spectrum can be fitted
with an excitonic interaction model, but that the parameters
differ considerably from those of the monomeric Bchla.

6. Discussion

In this paper, four expressions for the Stark signal of
molecular aggregates were presented and compared. These are

(i) The Green function expression (GFE, eq 6), derived from
the third-order nonlinear response of the aggregate to the total
(static+ optical) electric field. Intermolecular interactions are
treated within the local field approximation. With a modified
rotating wave approximation (described above eq 6), only terms
of lowest order in the ratioΓ/Ω of the dephasing and the optical
gap were retained; (ii) The sum-over-states expression (SOS,
eq C2), which provides an alternative description of the third
order response function to the total electric field, and thus of
the Stark signal; (iii) Liptay’s perturbed eigenstate expression
(PEE, eq A4).1 This is obtained by calculating the transition
dipole moments and transition frequencies of a multilevel
molecule, up to second order in the static field; (iv) The
commonly used simplified version of the perturbed eigenstate
expression (PEE2, eq A6). This is obtained by retaining from
the PEE, only the terms to lowest order in the ratioΓ/ωâR of
the dephasing and the frequency separation between one-exciton
levels.

Several similarities and differences between these four
approaches have been observed in this paper. The PEE is
elegant because it expresses the Stark spectrum as a sum of the
contributions of individual transitions, which are shaped as the
zeroth, first, and second derivative of the line shape function.
In the PEE2, only the latter two are present, and their amplitudes
are determined respectively by the difference in static polariz-
ability (∆R) between the excited state and the ground state and
the difference in permanent dipole moment (∆µ) between these
two states. In the more general PEE, also the transition
polarizability (R) and hyperpolarizability (â) need to be taken
into consideration (see eq A5). In the ideal case when one

Figure 7. Simulated absorption and Stark ()∆OD at Es ) 105 V/cm) spectra for ring of parallel (A) and antiparallel (B) Bchla dimers, both in
conjugation with experimental 77 K spectra (diamonds) for B873 (reassociated LH1) fromRsp. rubrum, and parallel (C) and antiparallel dimeric
Bchl a aggregates, both in conjugation with experimental 77 K spectra (diamonds) for the B820 dimer subunit fromRsp. rubrum. (see text). In all
panelsκ ) 0 (solid), 1 (dashed), and 4 (dotted). For the circular aggregates:σ ) 0, Γ ) 200 cm-1. Other parameters as in figures 4 and 6. As
indicated, the simulated spectra forκ ) 0 and 1 are multiplied by 2 (A and C) or 10 (B and D). Experimental spectra reproduced from Beekman
et al.7
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transition dominates the absorption spectrum, the parameters
can be determined by fitting the Stark spectrum with derivatives
of the absorption spectrum. This has indeed been done for
photosynthetic proteins.4-8 However, these approaches become
problematic when quantitative calculations are attempted for

such molecular aggregates. In that case, the PEE2 cannot be
used because the conditionωâR . Γ does not in general hold,
and the PEE contains singular terms which require careful
cancellation.

At first sight, the GFE appears to be more complicated than
the PEE approaches, for two reasons. First, the GFE contains
products of line shape functions. When these are from the same
transition (type I), the result corresponds to terms in the PEE2,
but many terms contain products of different line shape functions
(type II) which complicate the expression. Second, the GFE
expresses the Stark signal in terms of the dipole moments (µbn,
∆µbn, κn) of the individual pigments. While this is not in
fundamental disagreement with the PEE, the elegant intermedi-
ate expression in terms of dipole moments and (hyper)-
polarizabilities of one-exciton states is no longer possible with
the GFE.

However, the superiority of the GFE becomes clear when
the type II contributions are studied in more detail. On the one
hand, they can be expressed as sums of type I contributions.
Indeed, by carefully carrying out this procedure, we demon-
strated that the GFE and PEE coincide, at least within the
modified RWA for which the former was given. On the other
hand, the type II contributions themselves avoid the singularities
of the PEE, by interpolating between the zeroth-, first-, and
second-derivative type I shapes. This is most obvious for the
phenomenon that occurs when transitions are allowed between

Figure 8. Simulated absorption and Stark ()∆OD atEs ) 105 V/cm)
spectra for ring antiparallel Bchla dimers, and experimental 77 K
spectra (diamonds) for B873 (reassociated LH1) fromRsp. rubrum. In
A, all intermolecular interaction strengths are reduced by a factor 1
(solid), 2 (dashed), and 4 (dotted), with respect to Figure 6. In B, the
energy difference between the two pigments in the dimeric subunits is
varied from 0 to 100 cm-1 and 400 cm-1 while intermolecular
interaction strengths are scaled such the excitonic bandwidth does not
change. Other parameters as in Figure 7. As indicated, the simulated
spectra are multiplied by 5 (A) or 20 (B). Experimental spectra
reproduced from Beekman et al.7

Figure 9. Best fit to 77 K absorption and Stark ()∆OD at Es ) 105

V/cm) spectra (diamonds) for B873 (reassociated LH1) fromRsp.
rubrum. The spectra are calculated for a ring of parallel dimers withσ
) Γ ) 155 cm-1, κ ) 4, and∆µ ) 2.0 D. Other parameters as in
Figure 6. Experimental spectra reproduced from Beekman et al.7

Figure 10. Simulated absorption and Stark ()∆OD atEs ) 105 V/cm)
spectra for a circular Bchla aggregate (N ) 18) and experimental 77
K spectra (diamonds) for LH2 fromRps. acidophila. Structure and
intermolecular interaction: see text. (A) Energetic disorder:σ/ Γ ) 0
(solid), 2.2 (dashed), and 4 (dotted). (B)κ ) 0 (solid), 0.9 (dashed),
and 4 (dotted), forσ ) 0 cm-1 andΓ ) 125 cm-1. Other parameters:
Ω ) 12100 cm-1, µ ) 6.2 D,κ ) 0.9 (A), and∆µ ) 1.45 D.Jnm from
Sauer et al (see text).ε ) 2.0. As indicated, the simulated spectra are
multiplied by 20 (A) or 10 (B, exceptκ ) 4). Experimental spectra
reproduced from Beekman et al.8
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one-exciton states, as is indeed the case for an antiparallel dimer
(eq 14), or a circular aggregate (eqs 15 and 16). When the
transition frequency is larger than the line width, it contributes
mainly to the∆R’s of the two states. But when the frequency
becomes zero, it contributes to the∆µ of the resulting degenerate
transition. This phenomenon is not represented in the PEE;
when the transition frequency approaches zero,∆R becomes
singular (eq A5), and must be carefully canceled out with other
singular contributions from transition (hyper)polarizabilities (eq
A5). In the GFE, however, this phenonenon is included in only
one type II term which is directly related to that particular
transition, and naturally changes from a first- to a second-
derivative shape as the transition frequency approaches zero.
This makes the GFE more convenient, both for numerical
calculations, and because the GFE is more directly related to
the dynamics of the aggregate, for interpretation. We illustrated
this for symmetric aggregates. In the absence of such allowed
transitions within the one-exciton band, the PEE2 could be more
useful, but this is not generally the case for photosynthetic
pigment-protein complexes. In addition, the PEE requires
summation over all one- and two- exciton states, while, within
the local field approximation, a summation over one-exciton
states is sufficient for the GFE.

The SOS is in essence a less advanced version of the GFE.
It expresses the Stark spectrum in terms of (transition) dipole
moments for the one- and two-exciton states. We demonstrated
that the expressions coincide within the modified RWA for
which the GFE was given. But in more general cases, the SOS
suffers from large canceling contributions (see ref 15 or eq C1)
and requires summation over one- and two-exciton states, as
well as a complicated model for ground state relaxation to avoid
divergence.

In summary, we propose that the GFE is the most suitable
expression for the Stark signal of molecular aggregates, and
use the GFE for the numerical calculations in this paper.

An important result which follows from the GFE (eq 6), is
that the formation of a molecular aggregate does not in general
lead to an enhancement of the Stark signal. This is because
type I contributions are converted to type II contributions with
the same prefactors, while the amplitudes of the latter are
smaller. In particular, if all line shape functions contributing
to eq 6 are identical, the summations can be carried out
analytically and the result is equal to the Stark signal of the
uncoupled monomers. This situation occurs when the exciton
bandwidth is small, or when the most strongly coupled pigments
are parallel, so that prefactors of the type II contributions vanish.
In other cases the amplitude of the Stark spectrum is typically
reduced. This is confirmed by the numerical and analytical
spectra presented throughout this paper.

Enhancement of the Stark signal is still possible if the
intermolecular interaction causes narrowing of the line width
functions, as occurs, e.g., in J-aggregates. But this is not
generally the case in photosynthetic pigment protein aggregates.
For this reason alone, the large first-derivative-shaped Stark
spectra observed for LH1 and LH2 are remarkable and indicate
that additional mechanisms play a role in these proteins. The
experimental B820 spectrum is similar both in shape and
magnitude to that of monomeric Bchla and should be easier to
model.

Stark and absorption spectra were simulated for LH1 and its
B820 dimer subunit and of LH2 and compared to experimental

spectra. Initially, we used only parameters derived from ground
and excited state absorption spectra and Stark spectra of the
monomeric Bchla molecule. From this starting point, we varied
parameters one-by-one to improve the fit. The B820 spectrum
is similar to that of monomeric Bchla and was best represented
by a dimer of parallel pigments, in agreement with the
aforementioned general properties of the GFE. This differs from
the crystal structure of LH2, where neighboring pigments were
found to be antiparallel. The fit to the experimental Stark
spectrum was, however, not quite satisfactory. In earlier studies,
a better fit was obtained by a linear combination of the zeroth
and second derivative of the absorption spectrum.7 However,
our results show that a large zeroth-derivative contribution, i.e.,
a loss of dipole strength, does not result from intermolecular
interaction alone, indicating that an alternative mechanism may
be present.

With the initial parameter set, our simulated spectra for
circular aggregates deviated strongly from the experimental
Stark spectra of LH1 and LH2. A satisfactory fit could be
obtained by increasing either the relative oscillator strength (κ2)
of the excited state absorption, or the difference dipole moment
of the Bchl a molecule, with respect to the monomer, or by
increasing the local field correction factor from its value used
for the dimer. However, the required changes are large, and
agree neither with the parameters observed in the monomeric
Bchl a molecule, nor with the observed Stark spectrum of the
B820 dimer subunit. A numerical survey was carried out by
varying individual parameters and demonstrated that no set of
parameters can simultaneously reproduce the magnitude of the
observed Stark spectrum of LH1 and its B820 dimer subunit.
We thus conclude that it is not possible to model the LH1 Stark
spectrum with an excitonically coupled aggregate and that an
alternative explanation must be found for the observed large
spectrum. This has been previously suggested,5,7,8 and is now
confirmed on the basis of quantitative calculations of the Stark
spectra of molecular aggregates.

The most likely explanation for the observed large Stark
spectrum is the presence of an additional state that does not
occur in the monomeric pigments or the B820 dimer. To
reproduce the required first derivative shape by a type II
contribution, this state should be located at an energy above
the one-exciton band. In addition, this type II term contributes
a positive peak to the Stark spectrum at the position of the added
state, even if the state itself carries no oscillator strength. Since
such a feature has not been observed, its magnitude must be
small, implying that the added state is located at an energy that
is at least several thousand cm-1 above the one-exciton band.
This in turn implies that the transition dipole moment between
the one-exciton transitions and the added state must be of the
order of 10 Debye or larger, to reproduce the magnitude of the
observed spectrum. This is a reasonable value if the added state
has a charge transfer character, since a charge separation of one
electron between two neighboring Bchla molecules in LH2,
i.e., at≈0.9 nm distance results in a permanent dipole moment
of ≈50 D. It does, however, confirm that a state with charge
transfer character is required, since any other state cannot
produce sufficiently strong transitions.

Recently, detailed quantum mechanical calculations, including
charge transfer states, have been carried out for LH2 ofRps.
acidophila.29 Although some attempts have been made to
describe the effects of charge transfer states on the Stark
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spectrum of the photosynthetic reaction center,30 no general
model for such spectra is as yet available for aggregates with
charge transfer states. The development of such a model will
be extremely useful.
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Appendix A: Perturbed Eigenstate Expression (PEE) for
Stark Spectra

The conventional expression for the Stark signal of a
multilevel molecule1 is obtained by calculating how the static
electric field affects its absorption spectrum. The molecule is
defined by statesa, with energyε̃a and dephasing rateγa, and
by transition dipole momentsµ̃ba between statesb anda. The
linear absorptionS̃a(ω) with respect to the optical part (E0) of
the field in eq 4 is given by15

with P(a) the equilibrium population of statea, and Ĩba(ω) )
1/(ω - ω̃ba + iΓba) a complex line shape function, withpw̃ba

) ε̃b - ε̃a andΓba ) (γb + γa)/2. The “∼” indicates quantities
that are affected by the static fieldEs. P(a) andγa are assumed
to be independent ofEs. The perturbation ofµ̃ba and ω̃ba is
formally expressed as

where the as yet undetermined tensorsRba and âba are the
transition polarizability and hyperpolarizability,∆Rba ≡ Rbb -
Raa is the more familiar static difference polarizability, and∆µba

≡ µbb - µaa the difference dipole moment between statesb
anda.

The Stark signal is defined by the change of the ab-
sorptionS̃a(ω) caused by the fieldEs. The first-order perturba-
tion:

carries information onRba and∆µba, but vanishes for isotropic
samples. In the present paper, we therefore focus on the second-

order perturbation:

This result will be denoted the perturbed eigenstate expression
(PEE) for SE(ω). It is a product of a fourth-rank tensor and
four fields. The signal〈SE(ω)〉 for isotropic samples can be
obtained by averaging over orientations, as described in Ap-
pendix B.

Several additional results facilitate the application of the PEE.
First, the transition polarizability and hyperpolarizability can
be calculated with time-independent perturbation theory. In the
absence of dephasing, they are given by

Second, the line shape functions satisfydn Iba(ω)/dωn )
(-1)nn!Iba

n+1(ω). The imaginary part of the right-hand side
coincides with the frequency dependent components ofSE(ω)
in eq A4 which is thus a linear combination of the zeroth, first,
and second derivative of the absorption line shape functions.

Third, when the transitions are sufficiently well separated to
be distinguished in the absorption spectrum,SE(ω) is a linear
combination of the derivatives ofSA(ω). This result can be
used to analyze experimental Stark spectra.

Finally, under the same condition, i.e., when the fre-
quency separationωbc to the nearest other transition is larger
thanΓba, leading contributionsSE(ω) can be distinguished by
the power at which they scale withΓba andωbc. The third term
of eq A4 scales with 1/Γba

3 and is much larger than the second
term which scales as 1/(Γ2

baωbc), unless the permanent dipole
moments are absent or much smaller than the transition
dipole moments. In that case the∆Rba-dependent part of the
second term is important. This leads to a simplified ex-
pression,

S̃a(ω) ) (-
1

p)Im[∑
ba

P(a)µ̃abµ̃baĨba(ω)]E0
/E0 (A1)

µ̃ba ) µba + Rba Es + âbaEsEs + ...

pω̃ba ) pωba - ∆µbaEs - 1
2
∆RbaEsEs + ... (A2)

SE
(1)(ω) ) (-

1

p)Im[∑
ab

P(a)[(µabRba + Rabµba)Iba(ω) -

µab∆µbaµba

p
Iba
2 (ω)]]E0

/EsE0 (A3)

SE(ω) )

(-
1

p)Im[∑
ab

P(a)[(µabâba + RabRba + âabµba)Iba(ω) -

µab∆µbaRba + Rab∆µbaµba + µab∆Rbaµba/2

p
Iba
2 (ω) +

µab∆µba
2 µba

p2
Iba
3 (ω)]]E0

/EsEsE0 (A4)

Rab ) ∑
c*b

µacµcb

pωcb

+ ∑
c*a

µcbµac

pωca

âab ) ∑
c*a

∑
d*a

µcbµad(µdc - δdcµaa)

p2ωcaωda

+

∑
c*b

∑
d*b

µac(µcd - δcdµbb)µdb

p2ωcbωdb

+ ∑
c*a

∑
d*b

µcdµacµdb

p2ωcaωdb

-

1

2
µab(∑c*a

µacµca

p2ωca
2

+ ∑
c*b

µbcµcb

p2ωcb
2 ) (A5)

SE(ω) ≈ (- 1
p)Im[-

µab∆Rbaµba/2

p
Iba
2 (ω) +

µab∆µba
2 µba

p2
Iba
3 (ω)]]E0

/EsEsE0 (A6)
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which will be denoted PEE2. The first term scales with
1/(Γbaωbc

2 ) and is thus smaller than the other terms, under the
given conditions. No such simplification if found forSE

(1).

The expression ofSE(ω) as a linear combination of the zeroth,
first, and second derivative ofSA(ω), is often used for the
analysis of experimental Stark spectra, while the PEE2 is applied
to interpret the coefficients of the components.4-8 Note,
however, that the conditionωbc . Γba is not in general satisfied
in a molecular aggregate. See main text for further dis-
cussion.

Appendix B: Stark Spectra of Isotropic Samples

The expressions for the Stark spectrum in eq 6, A4, and C2
are all given for a particular orientation of the molecule and
expressed in the form

i.e., as a product of a fourth-rank tensor and four electric fields.
For isotropic samples, the Stark signal〈SE(ω)〉 can be obtained
by averaging over all molecular orientations. To carry out this
procedure we first note that the fields are equal two by two.
Moreover,Es is real, and as the light is plane-polarized,E0 is
equal to a real vector multiplied by a phase factor. This phase
factor can be ignored because of the multiplication with the
complex conjugate. The Stark signal of the isotropic sample
is then

whereø is the angle between the optical and static fields. For
simplicity, many experiments are carried out at magic angle
(cosø ) 1/x3), and the signal depends only on nine of the 81
elements of the tensor. Angle-dependent measurements provide
information on the other tensor components.

Appendix C: Calculation of Stark Spectra Using the
Sum-Over-States expression ofø(3)

Equation 6 can alternatively be derived from eq 5 by
evaluating ø(3)(-ω;0,0,ω) with the sum-over-states (SOS)
expression.15 The aggregate of three level molecules is
described by the Hamiltonian of eq 2 and the dipole operator
by eq 3. As illustrated in Figure 1, we distinguish the ground
state g, one-exciton states denotedR, â, ..., and two-exciton
states denotedν, .... By retaining only those terms that fall
within the modified RWA introduced above eq 6 while
considering that all transition dipole momentsµâR within the
one-exciton band originate from permanent dipole moments of
the monomeric molecules, the following expression is obtained
for the Stark signal:

The first term of eq C1 coincides with the first term of
equation 6 sinceµâR ) DâR

(1). The next three terms can be
combined because within the rotating wave approximation; the
frequency in all off-resonant line shape functions can be replaced
by the optical gapΩ. Finally, the last four terms partially cancel
in pairs, the result of which scales with (Γ/Ω)2 and can be
ignored. Thus,

which coincides with eq 6.

Appendix D: Comparison of the GFE and PEE for the
Stark Signal

The GFE (eq 6) can be compared with the PEE (eq A4), by
expanding all type II contributions as sums of type I contribu-
tions:

with ωâR ≡ Ωâ - ΩR. To avoid singularities, we assume that

SE(ω) ) (-
1

p)3

Im[∑
γâR

µgγµγâµâRµRgIγg(ω)Iâg(ω)IRg(ω) +

∑
âR

∑
ν

µgâµâνµνRµRgIâg(ω)Iνg(ω)IRg(ω) +

∑
âR

µgâµâgµgRµRgIâg(ω)Igg(ω)IRg(ω) +

∑
âR

µgRµâgµgâµRgIRg(ω)IRâ(ω)IRg(ω) +

∑
âR

µgâµgRµRgµâgIâg(ω)Igg(0)IRg(0) +

∑
âR

µgâµRgµgRµâgIâg(ω)Igg(0)IgR(0) +

∑
γR

µgRµgγµRgµγgIRg(ω)IRγ(0)IRg(0) +

∑
γR

µgRµRgµgγµγgIRg(ω)IRγ(0)Igγ(0)]E0
/EsEsE0 (C1)

SE(ω) ) (-
1

p)3

Im[∑
γâR

µgγµγâµâRµRgIγg(ω)Iâg(ω)IRg(ω) -

∑
âR

µgâ(∑
ν

µâνµνR - µâgµgR -

δâR∑
γ

µγgµgγ)µRgIâg(ω)IRg(ω)
1

Ω]E0
*EsEsE0 )

(-
1

p)3

Im[ ∑
γâRnm

µgγφγ
/(n)∆µbnφâ(n)φâ

/(m)∆µbnφR(m)µRg

Iγg(ω)Iâg(ω)IRg(ω) -

∑
âRn

µgâφâ
/(n)(κn

2 - 2)µbn
/µbnφR(n)µRgIâg(ω)IRg(ω)

1

Ω]E0
/EsEsE0

(C2)

Iâg(ω)IRg(ω) ) -
Iâg(ω)

ωRâ
-

IRg(ω)

ωâR

Iâg
2 (ω)IRg(ω) ) -

Iâg
2 (ω)

ωRâ
-

Iâg(ω)

ωRâ
2

+
IRg(ω)

ωâR
2

Iγg(ω)Iâg(ω)IRg(ω) )
Iγg(ω)

ωRγωâγ
+

Iâg(ω)

ωRâωγâ
+

IRg(ω)

ωâRωγR
(D1)

SE(ω) ) A(ω)E0
/EsEsE0 ) ∑

ijkl

Aijkl(ω)(E0
*)i(Es)j(Es)k(E0)l (B1)

〈SE(ω)〉 ) 〈∑
ijkl

Aijkl(ω)(E0
*)i(Es)j(Es)k(E0)l〉

)
1

45
∑

ij
(5Aijji (ω) + [3cos2(ø) - 1][3Aiijj + Aijji

2
-

Aijji ])|Es|2|E0|2 (B2)
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all one-exciton states have different energies and single out cases
where one or more indices are equal.

Next, by changing indices, and rearranging the order of the terms

This can be further recast in the form

To compare this result to the PEE, we start with eq A4 and
A5, apply this to an aggregate of three level molecules, and
retain from the former only leading terms within the modified
RWA as defined above eq 6. Those terms now coincide with
eq D4.
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(14) Kühn, O.; Chernyak, V.; Mukamel, S.J. Chem. Phys.1996, 105,
8586-8601.

(15) Mukamel, S.Principles of Nonlinear Optical Spectroscopy; Oxford
University Press: New York, 1995.

(16) Chernyak, V.; Mukamel, S.Phys. ReV. B 1993, 48, 2470-2478.
(17) Chernyak, V.; Mukamel, S.J. Opt. Soc. Am. B1996, 13, 1302-

1307.
(18) Chernyak, V.; Yokojima, S.; Meier, T.; Mukamel, S.Phys. ReV. B

1998, 58, 4496.
(19) Chernyak, V.; Wang, N.; Mukamel, S.Phys. Rep.1995, 263, 213-

309.
(20) Meier, T.; Zhao, Y.; Chernyak, V.; Mukamel, S.J. Chem. Phys

1997, 107, 3876-3893.

SE(ω) ) (-
1

p)3

Im[∑
γâR

µgγDγâ
(1) DâR

(1)µRgIγg(ω)Iâg(ω)IRg(ω) -

∑
âR

µgâDâR
(2)µRgIâg(ω)IRg(ω)

1

Ω]E0
/EsEsE0

) (-
1

p)3

Im[∑R
µgRDRR

(1) DRR
(1)µRgIRg

3 (ω) +

∑
γ*R

µgγDγR
(1) DRR

(1)µRg(-
IRg
2 (ω)

ωγR

-
IRg(ω)

ωγR
2

+
Iγg(ω)

ωRγ
2 ) +

∑
â*R

µgRDRâ
(1) DâR

(1)µRg(-
IRg
2 (ω)

ωâR

-
IRg(ω)

ωâR
2

+
Iâg(ω)

ωRâ
2 ) +

∑
â*R

µgâDââ
(1) DâR

(1)µRg(-
Iâg
2 (ω)

ωRâ

-
Iâg(ω)

ωRâ
2

+
IRg(ω)

ωâR
2 ) +

∑
â*R

∑
γ*â,R

µgγDγâ
(1) DâR

(1)µRg( Iγg(ω)

ωRγωâγ

+
Iâg(ω)

ωRâωγâ

+
IRg(ω)

ωâRωγR
) -

∑
R

µgRDRR
(2)µRgIRg

2 (ω)
1

Ω
-

∑
â*R

µgâDâR
(2)µRg(-

Iâg(ω)

ωRâ

-
IRg(ω)

ωâR
) 1

Ω]E0
/EsEsE0 (D2)

SE(ω) ) (-
1

p)3

Im[∑â ( ∑
γ,δ*â

µgâDâδ
(1) Dδγ

(1)µγg

ωγâωδâ

-

∑
γ*â

µgâDââ
(1) Dâγ

(1)µγg

ωγâ
2

+ ∑
γ*â

µgâDâγ
(2)µγg

ωγâΩ
+

∑
γ,δ*â

µgγDγδ
(1) Dδâ

(1)µâg

ωδâωγâ

- ∑
γ*â

µgγDγâ
(1) Dââ

(1)µâg

ωγâ
2

+

∑
γ*â

µgγDγâ
(2)µâg

ωγâΩ
- ∑

γ*â

µgâDâγ
(1) Dγâ

(1)µâg

ωγâ
2

+

∑
γ,δ*â

µgγDγâ
(1) Dâδ

(1)µδg

ωδâωγâ
)Iâg(ω) -

∑
â

(∑
γ*â

µgâDââ
(1) Dâγ

(1)µγg

ωγâ

+ ∑
γ*â

µgγDγâ
(1) Dââ

(1)µâg

ωγâ

+

∑
γ*â

µgâDâγ
(1) Dγâ

(1)µâg

ωγâ

+
µgâDââ

(2)µâg

Ω )Iâg
2 (ω) +

∑
â

µgâDââ
(1) Dââ

(1)µâgIâg
3 (ω)]E0

/EsEsE0 (D3)

SE(ω) ) (-
1

p)3

Im[∑â [(∑γ*â

µgγDγâ
(1)

ωγâ
∑
δ*â

Dâδ
(1)µδg

ωδâ

+

µgâ( ∑
γ,δ*â

(Dâδ
(1) - δγδDââ

(1))Dδγ
(1)µγg

ωγâωδâ

+ ∑
γ*â

Dâγ
(2)µγg

ωγâΩ
-

1

2
∑
γ*â

Dâγ
(1) Dγâ

(1)

ωγâ
2

µâg) + ( ∑
γ,δ*â

µgγ(Dγδ
(1) - δγδDââ

(1))Dδâ
(1)

ωδâωγâ

+

∑
γ*â

µgγDγâ
(2)

ωγâΩ
-

1

2
µgâ∑

γ*â

Dâγ
(1) Dγâ

(1)

ωγâ
2 )µâg)Iâg(ω) -

(µgâDââ
(1)∑

γ*â

Dâγ
(1)µγg

ωγâ

+ ∑
γ*â

µgγDγâ
(1)

ωγâ

Dââ
(1)µâg +

µgâ(∑
γ*â

Dâγ
(1) Dγâ

(1)

ωγâ

+
Dââ

(2)

Ω )µâg)Iâg
2 (ω) +

µgâDââ
(1) Dââ

(1)µâgIâg
3 (ω)]]E0

/EsEsE0 (D4)

Light-Harvesting Systems J. Phys. Chem. B, Vol. 102, No. 44, 19988907



(21) Chernyak, V.; Mukamel, S.J. Chem. Phys.1996, 104, 444-459.
(22) Scherz, A.; Rosenbach-Belkin, V. The spectral properties of

chlorophyll and bacteriochlorophyll dimers; A Comparative Study. InThe
Photosynthetic Bacterial Reaction Center, Structure and Dynamics; Breton,
J., Vermeglio, A., Eds.; Plenum Press; New York, 1988.

(23) Sauer, K.; Lindsay-Smith, J. R.; Schultz, A. J.J. Am. Chem. Soc.
1966, 88, 2681-2688.

(24) Becker, M.; Nagarajan, V.; Parson, W. W.J. Am. Chem. Soc.1991,
113, 6840-6848.

(25) Renge, I.Chem. Phys.1992, 167, 173-184.

(26) Lao, K.; Moore, L. J.; Zhou, H.; Boxer, S. G.J. Phys. Chem.1994,
99, 496-500.

(27) Sauer, K.; Cogdell, R. J.; Prince, S. M.; Freer, A.; Isaacs, N. W.;
Scheer, H.Photochem. Photobiol.1996, 64, 564-576.

(28) Meier, T.; Chernyak, V.; Mukamel, S.J. Phys. Chem. B1997, 101,
7332-7342.

(29) Alden, R. G.; Johnson, E.; Nagarajan, V.; Parson, W. W.; Law, C.
J.; Cogdell, R. J.J. Phys. Chem. B1997, 101, 4667-4680.

(30) Scherer, P. O. J.; Fischer, S. F.Chem. Phys. Lett1986, 131, 153-
159.

8908 J. Phys. Chem. B, Vol. 102, No. 44, 1998 Somsen et al.


