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Spin versus Boson Baths in Nonlinear Spectroscopy
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The third-order optical response function of a chromophore coupled to a bath consisting of noninteracting
two-level systems (TLSs) undergoing stochastic jumps is calculated. The results can be applied to a broad
class of nonlinear optical techniques in single-molecule spectroscopy and bulk measurements in glasses,
polymers, and mixed crystals. In the limit of many TLSs weakly coupled to the chromophore, the response
can be obtained using the second-order cumulant expansion and resembles that of the Brownian oscillator
model. Quantum corrections to the spectral density which accounts for the Stokes shift can be included in
this limit using the fluctuatiorrdissipation theorem. However, the temperature dependence predicted by the
two models is very different. Corrections to the cumulant expansion to fourth order in coupling strength are
derived.

I. Introduction contained in a distribution compared to its average or moments.
2MS therefore calls for a more detailed microscopic theory to

direct probe for the coupling of chromophores to the surrounding Provide a precise description of the host dynamic distribution.
medium (solvent, glass, host crystal, protein, étc®)Inmany ~ APplication of SMS has been found mostly in line-shape
situations, e.g., pentacene moleculep-ierphenyl crystals, the ~ Measurements?4-t For example, line-width distributions of
local environment of the chromophore can be modeled as a9uest molecules embedded in a solid matrix (such as terrylene
collection of flipping two-level systems (TLSs) which modulate N Polyethylene) have been measured at low temperatures.
its transition frequency. Such spectral jumps have been !\Ionllnear pptlcal measurements, which are usually performed
observed by repeated fast scanning of the zero-phonairifhe  in bulk solids, are adopted for SMS.
in the newly developed single-molecule spectroscopy (SMS). In this paper we generalize the earlier treatments of the TLS
The TLS model has been quite successful in explaining bath and derive closed expressions for the complete third-order
anomalous specific heat and thermal conductivity of amorphous response function. These expressions are not limited to the
materialst>1° The excess specific heat of glasses (in addition photon ech&4° and may be used for a broad range of
to the Debye specific heat) varies linearly with temperature in measurements (e.g., pumprobe, hole-burning, and four-wave
contrast to the~T2 contributions from phonons at low temper- mixing). In the limit of many TLSs weakly coupled to the
atures. This suggests the existence of additional degrees ofchromophore, the response functions can be calculated using
freedom in glasses with a roughly constant density of states. the second-order cumulant expansion, resulting in an expression
Relaxation by TLS tunneling at low temperature can be resembling the Brownian oscillator model. In this case we can
attributed to coupling of the TLS to acoustic phor®n#® in further use the fluctuationdissipation theorem to predict the
analogy with phonon-assisted intermolecular tran&fét. For full temperature dependence of the response including the time-
higher temperatures, however, introduction of soft phonon dependent Stokes shift (which is neglected in stochastic models).
modes with a crossover to anharmonicity at low frequencies The Brownian oscillator model, which has been successfully
seems necessaty.* ) ] utilized in modeling the condensed-phase measurements at room

Theories of TLS frequency modulation were first developed temperaturé predicts a different temperature dependence of the
by Anderson and Wei&s%for electron paramagnetic resonance response (the real part of the spectral density function is
and later extended by Kulig=*> Interest in the TLS model  gominant at high temperatures, while the temperature-indepen-
has spanned vyell over half a century. Line-shape functions andggnt imaginary part becomes significant at low temperatures).
photon-echo signals have been calculated by many adithtts  ppoton.echo studies of a dye molecule (IR144) in a polymer
and compared with traditional measurements of bulk materials. glass (PMMA) show that many features of the hegtiest
Interactions between TLS have been incorporated as*Well. qystem have been successfully described by the oscillator bath
Studies of S|.ngle molecules in sohpls came as a recent'develqp-and its temperature-dependent response functorr liquid
ment of opt|cal_ spectroscopy Wh'CthCSTEB:QeS near-field mi- ethylene glycol solvent, however, harmonic bath models capture
croscopy and high-resolution lasérs:?®% !n contrast to the temperature dependence of the spectral density only in the
tradltlopal measurements, SMS reveals a distribution of the high-frequency regimé® Temperature dependence different
dynamlg fluctuations of the host TLS msteaql of me'rely' from the boson bath has also been reported in organic polymers
measuring an ensemble average. Much more information is PMMA and PVA in the temperature range-3800 K54 The

t Department of Chemistry. temperature dependence of the TLS and Brownian oscillator
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In Section I, we describe the Brownian oscillator model and The spectral broadening functiaft) is expressed in terms of
its optical response functiod$®> The spectral density is the spectral densitg" (w),
discussed, and the third-order response is related to spectral
broadening functions via the second-order cumulant expansion.g(t) =
In Section 1ll, we derive the complete third-order response 1,
function for the TLS model which generalizes earlier calcula- _Z—ﬂf,wdw
tions restricted to the three-pulse echo. In Section IV, we
discuss the general scenario of a chromophore weakly coupledWhere
to a bath of many surrounding TLSs using the cumulant
expansion. We extend the TLS model to include the imaginary

C'(w)

(,()2

[1 + cothBhw/2)][e ' + iwt — 1] (2.8)

part of the spectral density function by making use of the C'(w) = _if,mdt e () (2.9)
fluctuation—dissipation theorem. Absorption line-shape func-

tions are calculated and compared with the Brownian oscillator C'(t) = 1 [W(H) U(0)o.[— [W(0) U(t 210
model. In Section VI, we apply our results to the multipolar © 2h2[ (U )’og ©) ()PgEJ] (2.10)

chromophore-TLS coupling model. For dipolar coupling, a

Padeapproximant is found for the bulk spectral broadening Here pq is the equilibrium ground-state density matrix:
function, and the line-shape function is calculated for various

TLS densities. An alternative nonstochastic exactly solvable |G| exp(—ﬁﬂg)
model for a spin bath is introduced and discussed in Appendix Py = TriexpCpAI] (2.11)
H. g

) ) To third order in the radiation field, the polarization reads
Il. Response Functions for a Chromophore in a Boson

PO ) = [Tdty [ty [ 7dt, St t,ity) x
We consider a chromophore with two electronic states, a E(r t—t.) E(r t—t.—t.) E(r t—t.—t.—t.) (2.12
ground statel|gdand an excited stat¢el] described by a (rt=t) B(rt—t—t) Bttty (2.12)
Hamiltonian Here the response functid®®(ts,to,t1) is given by a sum of
N N 0 . - four terms:
H = |glH g + |eEGweg+ Ho) &l (2.1)
§3)(t3,t2,t1) =

Here |3|g and He operate in the space spanned by nuclear i\ 2
(intermolecular and solvent) coordinates, amﬂg is the unper- (_) 6(t,) 6(t,) O(ts) Z[Ra(t3't2'tl) - Ri(ta )] (2.13)
turbed chromophore transition frequency. The electronic transi- h &=

tion dipole operator is given by

. . . with
V=gV, el + eV, 49 @2
R (tataty) = exp[-g(ty) — g*(tp) — g*(t) + gty 1) +
The collective bath coordinate g*(t,+ty) — g(t, +t,+ty)]
U=H.—H, @3 RO tyt) = expl-g(ty) + olty) — (1) — gH(tHt) —

x
represents the coupling of the chromophore to its environment It Ft) + g (Lt Tyl

and is responsible for spectral shifts and broadenings.

The linear response functio(t) is defined through the  R5 (ta,txty) = expl—g*(ty) + g*(ty) — 9(ty) — g*(t+t,) —
polarizationP®(r t), expanded to first order in the radiation field g (t+tg) + gH(tHt,+t)]
E(r,t):

REC(ta,t,0t,) = exp[—g(ty) — g(t,) — g(ts) + g(t,+t,) +
P = [ dt, S ECr ity (2.4) s (taltaty) = expl-g(ty) — 9(t) g(_s) 9t +t)
o1 L ottty — oty Tt +ty)] (2.14)
Using the second-order cumulant expansion, we obtain These results are exact for the spin-boson Hamiltonian which
represents the Brownian oscillator model (Appendix A). For
YR o this model,C"(w) (eq A6) is independent of temperature, and
s = ha(t)[“](t) (0] (2:5) the entire temperature dependenceg(@®yf comes from the coth
factor in eq 2.8. This will be compared in Section V with the
with TLS model.
The linear response function can always be recast in the form
Jio) = exp(—iwegt) exp[-g(t)] (2.6) of eqgs 2.52.7.and expressed in terms of a single spectral
density. Equation 2.14 shows that for the boson bath the same
spectral density determines the third-order response. This is
not generally the case for other mod&lshere more information
o is needed in order to calcula®®. A simple example is the
Weg = Weg T Wpyll (2.7) inhomogeneous cumulant expansiavhere g(t) depends on

andweg is the renormalized transition frequency:
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some system parameters, and the response fun&@bng.5)
and S9 (2.14) are averaged over the distribution of these
parameters.

Ill. Response Functions for a Chromophore in a
Stochastic Spin Bath

Zhao et al.

The third-order response function can be expressed in terms
of the Liouville-space Green functions given in Appendix D.
Third-order response functions correspondingi@ndR; were
first calculated for spin echoes by Klauder and Anderson (two-
and three-pulse, short times) and Mims (two-pulse, long
times®57 for electronic spin resonance. High-temperature

We assume that our two-state chromophore is coupled to aresults for arbitrary times were obtained by Hu and HartrAann

collection of two-level systems (TLSs) (labeled by the index

for both two- and three-pulse echoes. Generalizations to finite

J). The transition frequency of the chromophore depends on temperatures were later given by Hu and WafeiUtilizing
the state of the TLS, described by a time-dependent occupationpauli matrices, Huber extended the two-pulse echo results of

variable&;: & = 0 ifthe TLS is in its ground state, arfgl= 1
if the TLS is excited. Assuming that the chromophore’s
transition frequency is changed by the amountvhen §; is
changed from 0 to 1, then the collective bath coordinate (eq

2.3) is
U=>5 4§
]

The populations of the ground and excited TLS stal?t%(ﬂ;)
and le(t) satisfy the rate equations
0
)ﬁﬂ
Pi(t)

Pt |_ K K
PO Kk

where k' and ki’ are the rate constants for up and down
transitions for thgth TLS. In thermal equilibrium, one obtains
the probabilityP}( of finding thejth TLS in statek (k = 0, 1):

(3.1)

(3.2)

ij = pjak,l +(1- pj)ék,o (3-3)

Here
P, = [exp(e/kgT) + 1171

ande; is the energy difference of thigh TLS. We introduce
the dimensionless parameter

K = ej/kBT

(3.4)

(3.5)

For this model, the time-domain response functit) is
given by the product of the individual response functidifg
(see Appendix B):

J(t) = exp(-iw HITJ(Y) (3.6)

where

Jj(t)=0(t)e(bilz)t[costht)+2j —Lsinh@t)| (3.7)

ZQ]
with
bjz KJ2 sz X 1

QJ = Z— C] = T—Z— I(pj _E)UjKj (3.8)

b =iy + K (3.9)

¢ = iyKip, (3.10)

d =K +iy(l—p) (3.11)

K =k'+K (3.12)

Hu and Hartmann (dipolar) to multipolar interactionsr{L°
Suaez and Silbey recently derived the most general form of
two- and three-pulse photon-echo responses valid for multipolar
interactions and arbitrary temperatufésHowever, the full
response function including; andR, in addition toR, andRs
has not been calculated. In this section, we derive the complete
third-order response function. In the special case of the photon-
echo response our results reproduce earlier calculatigfis.
Since the TLS dynamics are not affected by whether the
chromophore is in the ground state or excited state, this model
misses the Stokes shfft. ThereforeRy; = Ry, andRy = Ry;.
The time-domain third-order response functi§®(ts,to,t) is
given by eq (2.12) (cf. Appendix D):

Ri(tataty) = TRyttt (3.13)
Ro(ta thty) = TR, (ta bt (3.14)
with
le(t3at21t1) — efi(weg+vaZ)(t1+t3)7(Ki/2)(tl+t3)
l(l — p)F(ty) Fi(ty) + pG(ty Gi(ty +
D@ =)yt .
(1-e JZ)TSInh(Qit3) sinh@t;)| (3.15)
sz(t3,t2,tl) — efi(weg+z;jIZ)(trtg)7(Ki/2)(t1+13)
l(l — P)F(ty) Fj*(tl) +pG(ty) G;k(tl) -
2
(1- e_Kitz)wgnh(tha) sinh@'t))| (3.16)
j

where

b.
F,(t) = cosh@t) + Z—glgjsinh(th)

£3

b
G,(t) = cosh@t) + z—g'zjsmh(th)

Only Ry is relevant to photo-echo experiments. The corre-
sponding frequency-domain response functions are given in
Appendix C.

In the high-temperature limitk( < 1 andp; = 1/2), these
response functions can be simplified:
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Figure 1. Comparison oRy(ts,tz,t1) andRu(ts,to,th) for a chromophore interacting with a bath of four TLSs with identical jump rates but randomly
chosen coupling strengths(v/k = 0.60, 1.38, 2.31, 3.37p = 0.5. Left column, real parts. Right column, imaginary partst/At 0, the two
response functions have todependence and are identical (top panel). The decay of the response functiodsalthstrated in the two middle
panels.]

exp[—i(2weq + vt — kit;]

_ 1 _i(wertul2) (it — (Ki2) taHoHts) _
Ry(tatpty) = e e Hom e EETe Ry(tytpty) = — [K? cos(Rt,) —
Kt 4%
. j*2 — — —
[SInP(LZ)(Fj(ts) G(t) + G(ty) Fy(ty) + u? + 2KQ, sin(2t) + (1 — %) sif(Qt)] (3.19)
Kt .
cosr(Lzz)(Fj(g) F(t) + Gty Gj(tl))] @.17)  with
1 j(wegtui2)ti—ta) —(K/2) -+t o =1 v?— K7 (3.20)
R2j(t3vt2!t1) =§e'(weg U2t~ (K2t Hs) o i = oV Y 3

Kit i i i
[Sln’“(;zz)(ﬁ(tg) G}k(tl) + Gj(ts) Fj*(tl)) + \;vr?écg”i%gioes with results of Hu and Hartm&hand Steez
Kjtz . . In Figure 1, we comparé(ti,to,ts) and Ry(ty,tots) for a
COSF(T)(Fj(tg) F(t) + Gty G (tl))] (3.18) chromophore interacting with a bath of four TLSs with identical
rates and different coupling strengthé/K = 0.60, 1.38, 2.31,
3.37). Att; = 0, the two response functions have o
S3)(t3,t2,t1) can be applied to various third-order experiments dependence and are therefore identical. HoweverKfgpr=
in single-molecule and bulk spectroscopy. Most of the earlier 0.5,t, = 0 andKt; = 1,t, = 0, the two are very different. The
work had focused on the three-pulse echo technique in the limit decay of the response functions as a functiot, @ revealed
of large inhomogeneous broadening. In that case we only needby comparing the responses tor= 0 andKt, = 2 atKt; = 0.5
the response functioR; for t; = t3, and we have (the two middle panels).
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IV. Cumulant Expansion for Many TLSs power ( is the total number of TLSs):

To calculatel(t) for a large ensemble of TLSs, we first recast ) N
it in the form of eq (2.5) with Jo(t) = exp(-iw (DL (4.9)
glt) = while theN — oo limit gives

. 2d — b .
—Ynj1+|e ®2 cosh@yt) + S sinh@jt)| — J{t) = exp(-iw ) exp[-N(1 — (M)]  (4.10)
] ]
(4.1) The configurational averagélld contains summations over

] ~ positions of the TLS with respect to the chromophore. It is
Assuming that each of the TLSs makes a very small contribution gpvious that the single-chromophore response funcfig

to the line shape, we have becomes the bulk response functil(t) oncelJ;(t)Cis replaced
by the configurationally averaged;(t)ld. [Ji(t)Tis a sum over
gt) = j which reflects the random structure of a particular realization

29,

of the chromophoreTLS system, whilelJ;(t)ld is given by an
= integral over the configurational coordinates. Therefore only
the bulk properties of the TLS and their coupling to the
z[l - 3] (4.2) chromophore are reflected Ij(t) L.
] In evaluating the bulk response functions, two averages need
to be performed if one views the evaluationJgf) as an average
Similarly, eq (3.6) takes the form over stochastic trajectories. In general, one can reverse the order
of the configurational average and the average over the
J) = exp(—iwegt)e’N[H'j(‘)m (4.3) stochastic trajectories denoted by the angular bracket If
the configurational average is carried out first, we obtain

sinh(@;t)

ZIl - e‘(bi’z)t(coshgjt) +
]

where 1 e N
3= exp(—iwegt)[1 ~ N - e ﬁi“fQ@] (4.12)

1
()= —ZJj(t) (4.4)
N4 In the limit of largeN, we have

Measured optical properties of chromophores need to be S
averaged over many chromophores embedded in the host  J(t) = exp(-iwed) exp[—N[[]l—e'”"f"g”d’QI;l] (4.12)
matrixes. Each chromophore has a distinct coupling to the TLS.
Therefore an average over the TLS configuration with respect The approach of the stochastic average, which is equivalent to
to the chromophore needs to be performed. This averaging isour derivation of response functions via Green’s functions, can
eliminated for the single-molecule spectroscopy (SMS). There- pe simulated by the Monte-Carlo techniqs.
fore the SMS response function is given by eq (3.6) and eq The configurationally averaged line-shape functiget)

(8.7). assumes the form
Introducing the distribution functiom(k,,E) for the TLS

parameters, v;, andp;, we write the configurational average

l _ —(b/2)t 2d—b .
as Sq.t) = Eh[e (Costh) +2 smh(Qt))]u (4.13)
D)= [dv dk dE In(k,v,E) (4.5) whereb, d, andQ are functions ok, v, andp as given by eqs
3.8-3.12. We shall discuss the propertiesgeft) in several
with the normalization different limits.
Assuming than(k,v,E) is nonzero only in the regime < k,
de dk dE n(k,v,E) = 1 (4.6) we can expand eq 4.13 in powers a@k. The correlation

function C(t) to fifth order reads
This is similar to our notation of averages over the TLS index

i C(t) = B°p(L — p)e T+ i°p(L - p)(1 - 2p)te I+
PA—P) « &
T %z @.7) @4 22 © T4p(1 — p)e ™+ kt— 1) —
]
o222 [ 1sP(L = P)(1 = 2p)
Performing the configurational average, we arrive at the bulk (1= 20) o ]DC+ ID{ K3 =X
response functiodq(t): 1
{—(1 — 20238 — 2p(1 — p)(IKt: — 2(e ™ + kt — 1)]}D
3 (1) = exp(-im HILHOL (4.8) 6 G
(4.14)

where the angular bracket denotes the configurational average.
The averaging allows the produld to be replaced by thiith The line-broadening function to fourth order is
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Figure 2. Time-domain linear response functia($) (eq (3.6)) fora
= 10 and from top downN = 1, 4, 7, 9, 20. The dashed curve is the
second-order cumulant.]

[Wpy = [po] (4.15)

N2
Lo =1 P e -]

— _ 3

(e 1)|(§o 1)y
A

2Pl piakt— 29) ~ 20— 3) -

(K2t? + 4kt + 6 — 4p(1 — p)(K°t> + Bkt + 7))e K +

[(kt+ 2)e ¥ + (kt — 2)]D+

p(1— p)e‘”ﬁD (4.16)

Note thatgc(t) is an analytic function ok; ask — 0, the time-
dependent factor in theth term behaves de, which cancels
thek™" factors, and(t) remains finite. In the high-temperature
regimex < 1, the third-order term vanishes, and we obtain

Wogt 1] (4.17)

%gc(t) = %(ekt + kt— 1)D+

A
kt 5 —kt_}—zktD
Q’kj[z 7~ (kt+ 1)’ —Ze ] C (4.18)

J. Phys. Chem. A, Vol. 102, No. 33, 1998619
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Figure 3. Absorption line-shapes(w) (eq (4.21)) fora = 10 and
from top down,N = 1, 4, 7, 9, 20 (solid)we2 = N 2 The dashed
curve is the second-order cumulant.]

To second order in/k, we may rewrite eq 4.16 as
1o~ al® ke
o = S dk7(e + kt— 1) (4.19)
with

C(K) = | dv dE n(k,v,E)o’p(1 — p) (4.20)

Equation 4.19 recovers the stochastic oscillator model with the
distribution of the rate& given by the spectral density(k) of
eq 4.20°
The linear absorption line-shape functiofw) is given by
the Fourier transform of the response functitt):

o) = %Re [t (1) (4.21)

In Figure 2, we displayJ(t) for a fixed value of the
dimensionless parameter= v/Nu/2k (o. = 10) and increasing
N(N=1, 4,7, 9, 20 from top down). These are compared
with the second-order cumulant (dashed). The latter only
captures the short-time behavior while leaving out the long-
time oscillations in the exact response functions. The corre-
sponding line-shape functiongw) are displayed in Figure 3.
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Figure 4. Comparison of various approximations of the line-shape
function forp = 0.5,o0 = 10, N = 12. Upper panel: exact line-shape
function o(w) (solid), second-order cumulawt"{w) (dashed), and
fourth-order cumulan#*(w) (dotted, coincides with the solid curve).
Lower panel: second-order™(w) — o(w) (solid) and fourth-order
correctionso*™(w) — o(w) (dashed).]

HereN + 1 peaks are resolved in the line-shape functions with
N TLS. The second-order cumulant is recovered as the ldrge-
limit. This is expected from the central-limit theorem. In Figure
4, we compare the exact line-shape functidm) (solid) with

Zhao et al.

Filtatht) = Fy(tataty) =
4
[ﬂi) e (1 — e 7)1 — & )2kt +

(1— e e+ e"‘%]ﬂ (4.23)

Fatatot) = Rty trty) =
[ﬂ%()"e*kb(l — ey (1 — & 92Kt +

e Me(1 + e KKl _ (oK 4 e*'“a)]u (4.24)

V. Temperature-Dependent Response of the Spin and the
Boson Bath

We note that the second-order contributiorQ(@) (eq 4.14)
is real. Using the fluctuationdissipation theorem, we can
compute its imaginary part as wéll.At finite temperatures,
the line-shape function for the spin bafiS(t) can be calculated
from

1 o, 1—cospt)
gTLS(t) =5 fmdwT@)C () —

i o, Sin(wt) — wt hw -,
> S~ dw = tant=>=C'() (5.1)

where

2
UA
Cw)=2p1—p)——— 5.2
(w) = 2p( p)w2+A2 (5.2)
Here A = K stands for the flipping rate of the TLS. The
temperature dependence gif-S enters througip, A, and the

the second- (dashed) and fourth-order (dotted) cumulant expresianh factor. We shall compare this result with the boson bath

sions. For the parameters used=€ 10, N = 12), the second-
order cumulant works quite well, and the fourth-order correction

improves its accuracy. In Figure 5 we compare the exact third-

order response functidRy(ts,t2,t1) with the second- and fourth-

order cumulant expressions for the same set of parameters of

Figure 4N =12. All curves are plotted fokt; = 0.3 and five
values ofKt; (in the top panel, from top dowrkt, = 0, 0.1,
0.2, 0.3, 0.4, 0.5). The middle panel shows the small%)

line-shape functiomBO(t)

1 s~ , 1—cospt) .
> f_mdchoth(Bhw/Z) C'(w) +

g™t =
lzﬂ f_wmdw—sm(wzz_ o) (5.3)

For the overdamped Brownian oscillator model, the spectral

difference between the second-order cumulant and the exactdensity functionC”(w) takes the form

response functioRy(ts,t2,t1). The difference between the fourth-
order cumulant anB(ts,to,t;) is less than one-tenth of a percent.
Let us denote b)R(n) (n=1, 2, 3, 4) the third-order response

wA

C'(w)=24
(@) w®+ A?

(5.4)

function obtained by substituting the fourth-order line-broaden- For this model2 andA are both temperature independent, and
ing function (eq 4.16) into the Brownian oscillator expression. he only temperature dependence enters through the coth factor.
The response function calculated using the fourth-order cumulantgxpressions suitable for numerical calculations of egs 5.1 and
expansion may be recast in the form 5.3 are presented in Appendix F.

In Figure 6, we compare the temperature dependences of
C'(w) and C"(w) for the Brownian oscillator and the TLS
models assuming thakt is temperature independent. For the
latter, C'(w) increases with temperature and levels off for high
temperatures, an@'"(w) peaks atkgT = ¢. Both C'(w) and
C"(w) vanish at zero temperature. For the Brownian oscillator
model,C"(w) is temperature independent, aBdw) increases
monotonically with temperature at high temperatures. At low

Ritataty) = Rg(t3’t2’t1) exp[—Fq(tstt)],
n=1,2 34 (4.22)

The functionsF, represent the deviation of TLS nonlinear
response functions from the form of eq 2.14. We find that to
second-order im/k F, vanish for all temperatures. In Appendix  temperaturesC'(w) has a dip atw = 0. Therefore, in the
E, we give Fy(tstzt1) to fourth order inv/k. In the high- Brownian oscillator modelC'(w) (C'(w)) dominates at high
temperature limit£ > 1), these expressions assume a simpler (low) temperatures. In the weak coupling regime, we can utilize
form: eq 2.14 to obtaifRy(ts,ta,t;) with n=1, 2, 3, 4. Since now the
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Figure 5. Comparison of the exact third response funct(ts,t,,t1) and the its second- and fourth-order cumulaﬁ%‘“(tg,tz,tl) and R;“h(ta,tz,tl),
respectively) forp = 0.5, o = 10, N = 12. Upper panel:|Rx(ts,t2,t1)|. Middle panel: |Ru(ts,tz,t1) — Rg"d(tg,tg,tl)L Lower panel: |Ry(ts,t2,t1) —
R‘z"“(tg,tz,tl)|. Kt; = 0.3. Five values oKt, are selected: 0.0 (solid), 0.1 (dashed), 0.2 (dotted), 0.3 (el#mtted), 0.4 (dashdouble-dotted), 0.5
(short-dashed).]

imaginary part ofy(t) is included and the Stokes shift has been the absorption line shapes is a Lorentzian. In Figure 8,
accounted forRy(ts,tz,t1) (Ro(ts,t2,t1)) is no longer identical to absorption line shapes of the extended TLS model are shown
Ry(tsto,t1) (Ra(ts ta,ta)). for six values of relaxation ratA andT/e = 6 (left panel). At

In Figure 7, we show the absorption line shapes of the low temperatures, the TLS line shape is neither a Lorentzian
Brownian oscillator model. For a fixed temperature, e.g., nor a Gaussian. For fixed, 4 displays a maximum at a
ksT = /4, the absorption width increases with decreasing  temperature slightly higher thanin the TLS model, as shown
(slower bath) in the BO model. At the same time, the line shape in Figure 8 (right panel). In Figure 9, the fwhm (full-width at
approaches a Gaussian in the static limit, and the Stokes shiftshalf-maximum) ofo(w) is plotted versus temperatufle For
tendsto 2. Forthe TLS model, however, the absorption width the BO model, the line width~ ,/Ak;T grows with the
decreases with decreasing and the slow modulation limit of ~ temperature, while for the TLS model, it approaches a finite
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Figure 6. Comparison of the Brownian oscillator model (left panel) and the TLS model (right panel): temperature dependgieg and

C"(w). C'(w) in both models increases with temperature: from top doWws,2, 1, 0.5, 0. In the Brownian oscillator models used as the energy

unit, while in the TLS modet is used as the energy unit = 3. C"(w) for the Brownian oscillator model has no temperature dependence (left,

lower panel).C"(w) for the TLS model (right, lower panel) peaksht= ¢ (solid). Also plotted in that panel afe= 0.5 (dashed) and = 2¢

(dotted).
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Figure 8. Absorption line shapes of the extended TLS modek
((‘)'(Oeg)/7L €l6. Six values ofA/e are shown (left panel), from left to right: 6, 5,
Figure 7. Absorption line shapes of the overdamped Brownian % 3;2, 1. Forafixed raté = ¢, 1 is plotted as a function g8 (right
oscillator model4 is used as the energy uniit= 0.25L. Three values panel). A maximum is found at a temperature slightly higher than
of A/A are shown: 3 (solid), 1 (dashed), and 0.3 (dotted).

It should be noted that the fluctuatiedissipation theorem,
limiting value at high temperatures. The temperature depen- which has been used in deriving eq 5.1, fixes the r@fi@)/
dence reflects the difference between BO and TLS asymptotics.C"(w) to be cothghw/2), but does not specify the temperature
At high temperatures, the boson bath becomes Gaussian whiledependence d@'(w) andC"(w). For the microscopic Brownian
the spin bath saturates. The TLS model is usually applied at oscillator modelC" () is temperature independent. We show
low temperatures, where the two baths show similar behaviors. that in the weak coupling limit when the TLS model resembles
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i T " ' ' ' natural criterion of this classification: whether coupling is larger

] / 1 or smaller than the rate of TLS flipping, For static systems,
/" however, a small sphere of radigsis usually carved out around

— ) the chromphore to define the remaining TLS as distant. The

] central limit theorerft is only applicable to the distant systems

o BO at long times.

. i We note that, for example, for parallel dipoles

T f(0) = 1 — cog 0,

FWHM / &
\

' ' 1 [dafe)=0 (6.5)
06 ] That is, the chromophot€TLS coupling has equal probability

1 to be attractive or repulsive. This being assumed, the configu-
s | rational average then takes the form

0.4

FWHM /¢

: ; : : : " _ 1l
o 1] Vﬁ)r dr [dQ (6.6)

Figure 9. Full-width at half-maxima (fwhm) of the absorption line
shapes as a function of temperature for the two models: BO model

0.0

For dipolar coupling, we examine a static systda(0) at

(upper panelA = 1); TLS model (lower panelA = e). low temperaturesp(— 0). We recast the first term in eq G1
with

the oscillator model, the line-shape function has the form similar _

to that of the Brownian oscillator model with the only difference g.(t) = (L — ef“’t)lQ (6.7)

thatC'(w) rather tharC"(w) is temperature independent. This
is the motivation for representingf'S(t) in the form of eq 5.1 For any real constar€, we have
rather than eq 5.3.

7
=5/Cl (6.8)

o0 C
VI. Multipolar Coupling to a Spin Bath fo X dx[l N COS(X_S)

Assuming a general multipolar chromopheELS coupling

in d dimesions Carrying out the intergrations over in the configurational

average given by eq 6.6, we obtain
v Or " (6.1)

[ g.(t) =Tt (6.9)

the distribution functiom(k..E) takes the form whereT is proportional top and depends on the detailed form

n(k,0,E) O y_(”d’”)é(k — K) 6(E — Ey) 6.2) of chromophore-TLS couplingf(6):

2
For dipolar interations, r= %ppfdgu —3cogh| = %Cpp (6.10)
3

93

Therefore the line-shape function is a Lorentzian. This result
was first derived in the seminal paper of Stonetfantn order
to obtain the Lorentzian line shape, it is essential to set the lower
cutoff a to zero.

At high temperaturesc(< 1, T — ), the rates for up and

v, = cr*(6) (6.3)
wherer; points from the chromophore to th TLS, 6; is the
angle between the-axis andr;. The dipolar chromophore
TLS coupling yields a distribution function(k,v,E)

1 down transitions are equal (for simplicity, we ignore the
n(k.v,E) 0 U_zé(k —K)O(E-Ey (6.4) variation in the rates):
where the proportionality prefactor depends on the angular form k‘d — k]“ — 5 _K (6.11)
of the chromophoreTLS coupling. The dipolar chromophore 2 2

TLS coupling of eq 6.3 is believed to be mediated by accoustic
phOﬂOﬂSl.7’22'59’60

The parameters for the chromophefELS system include
v, k, E, p, @, Rnax andT, whereE is the energy separation of
TLS, p is the TLS densitya represents the distance between 1 Kt Kt
the chromophore and the closest TLS (which is the same order Ngc(t) = A{H(E) + fz(E)] (6.12)
of magnitude as the lattice constant), aRgx is the largest

possible separation between the chromophore a TLS (which\ypere the constar depends on the angular distribution:gf
roughly stands for the physical size of the system). The nearby systems contribute
To clarify the applicable range of the central limit (cumulant)

expansion, we note that TLSs can be generally classified into f,(y) =

either “distant” or “nearby” systems according to their distance B B I

from the chromophore. Nearby systems give large but infre- [, X(1+X°)"’[1 — €™ cosfy) — e *x " sin(xy)ldx (6.13)
quent modulations, whereas distant systems give small but

frequent modulation. For nonstatic systems, there exists aand the distant systems contribute

The TLS can be divided into nearby;d > K;?) and distant
(1 < Kj?) systems. After the configurational average, the bulk
response function follows from eq 4.2 and eq 6.6:
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Figure 10. Bulk response functiom(t) and its Padeapproximant for five values ofz= 7NA/K eq 6.20 which is proportional to the TLS
(upper panel). The curves shown are without the prefactt)i NA densityp: from top down,z= 1.1, 1.4, 1.7, 2.0, 2.3.

The difference of the two curves is displayed in the lower panel.
o(w) for five values ofz (z= 1.1, 1.4, 1.7, 2.0, 2.3), whee

fly) = is proportional to the TLS density:
L/(’)lx(l — X371 — e cosky) — e 'x Lsinxy)ldx (6.14) INA
z2=T0A0 2 (6.20)

Combining the two contributions,
We note that for a fixed TLS densipy, the slower the bath, the

Kt Kt closer the line shape is to a Lorentzian. This is consistent with
Il =]+ 11 (6.15) _ . S
oA2) " "\2, our discussion of the static limit.

For bulk measurements of chromophores in a glassy matrix,
the nonlinear response functions have to be averaged over the
TLS configurations. Neglecting variations in up and down rates

Roo =TS

wherelg(x) and11(X) are modified Bessel functions of zeroth
and first order. We have constructed a Pageroximant for

9e(0): of TLS, i.e.,K; = K, the configurationally averaged three-pulse-
echo response function takes the féfm?
Kt \ﬁ(&)m
— 1. = — =
22 m~Ia2 Y2 619 Rlult) el Lo E@) + (@ - e IFmRN
1+1. 24:{ ) > (6.21)

wheret, andt; separate the first pulse from the second, and the

In Figure 10 we compare eqs 6.15 and 6.16. The two curves second from the third, respectively. The auxiliary functie(t)

are very close over the entire time range.

We point out two limiting cases of eq 6.12 assuming is defined as
f(0) = 1 — 3 cog 0. For the static limitkt < 1, TLS either _ kK t E
does not flip or at most flips once; one has Ft) = —n;Kz e’Ktj(')dt' [o(Kt") IOIK(t —t) tani‘(%)] (6.22)
t
Jt) = exp{ Cpt(l - Z)] (6.17) VII. Discussion

In this paper we have compared the Brownian oscillator

with (boson bath) and the TLS (spin bath) models for the optical
B 167C responses of chromophores in the condensed phase. For the
c=c/dQ|1 - cos 6| = 33 (6.18) Brownian oscillator model we can relate the spectral density

functions to the third-order response functions via eq 2.14 using
the second-order cumulant expansions. This relation is exact
for the boson bath. In order to verify to what degree such
T [2\V2 (211 relations between the linear response and third-order response
0 = ex;{ 12 ) CP(R) Z‘ (6.19) are retained in the TLS model, we expanded the linear and third-
order response functions to the fourth power in the chro-
The line shapes obtained using egs 6.9, 6.17, and 6.19 have thenophore-TLS coupling strength. We have found that to second
form of Levy distributions’3.64.71 order in the chromophot€T LS coupling strength eq 2.14 holds
Finally, the line-shape functiom(w) for the dipolar coupling for the TLS model. At higher orders, however, deviations from
case is the one-sided Fourier transform of the response functioreq 2.14 have been found.
Je(t). o(w) is quite sensitive to the TLS densjpy The smaller The TLS model assumes that the bath modulates the transition
the density, the sharper the line shape. In Figure 11, we displayfrequency of the chromophore. However, the model fails to

and the line shape is Lorentzian. In the opposite litit> 1,
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take into account that the optical excitation of the chromophore clear interpretation:N spins of S = 1/2 can be naturally
can alter the surrounding TLS via the chromophoféS represented as a collection of spins from Ota (if N is even).
coupling. Relaxation of the TLS that follows will add to the Since largeS spins behave almost as bosons (see, e.g., ref 66),
equilibrium thermal fluctuations of the TLS. In order to describe the behavior of the boson system is reproduced.

this effect, we extend the TLS model to include the imaginary  The similarity between the fermion and boson baths has been
part of the spectral density function by means of the fluctuation  explored through real-time finite-temperature dynarficé was
dissipation theorem. Absorption line-shape functions were concluded that for ohmic disspation (i.@;(w) = const) the
calculated and compared with the Brownian oscillator model. two baths have a similar behavior. Additional evidence is
A very different temperature dependence of the abSOfption line provided by an approximate mappmg of the anisotropic Kondo
shape has been found for the two cases. modef8 onto the spin-boson Hamiltonian with ohmic dissipation

A microscopic model of phonon-mediated chromophere using bosonization techniqué%’®where the oscillators in the
TLS coupling including TLS dynamics was proposed byr®ma  spin-boson model play the role of the spin-denisty excitations
and Silbey®in order to provide insight into the range of validity  in the Kondo case. Sinc®@= 1/2 spins correspond to spinless
of the stochastic TLS model. Path-integral techniques show fermions, it is not surprising that spin and boson baths share
that each stochastic trajectory corresponds to a series of quautuncommon characteristics. This can also be applied to a bath of
paths. It was concluded that the stochastic TLS model can bespins of sizeS because fermion statistics is gradually replaced
derived from a microscopic Hamiltonian if the TLS dynamics by boson statistics with increasir®)

are uncorrelated. In this paper, the connection between the two baths has been
To gain further insight into the stochastic TLS model, we established for a much more general situation: all one needs is
also examined a microscopic model for a spin bath in to have the TLS distribution function(k,»,E) be concentrated
Appendix H. Cumulant expansions are performed for the inthewv < kregime in order for the spin bath to behave as the
spectral broadening function. To second-order in chromophore boson bath. The oscillator limit and the deviations are obtained
bath coupling strength, the model reduces to the Brownian using a straightforward cumulant expansion in powersg/kf
oscillator model. This points to the universal nature of the carried out in Section VI. The static limit for the TLS model
Brownian oscillator model in the weak coupling regime of host  is defined by the conditiok < ». Nontrivial line shapes for
bath systems. The slow modulation and high-temperature limits the TLS model occur when(k,,E) is concentrated in neither
of the TLS model are discussed in Appendix G. k < v or k> v regimes.

The relations between the boson and spin baths can be Apart from the obviouk < » (static) limit, there is another
visualized using microscopic models. For the boson bath, the static limit where the TLS model reproduces the boson model
chromophore is linearly coupled to a set of harmonic oscillators in the static limit. This occurs wheNp(1 — p)v%k > k (which
in the microscopic model. If there ai identical oscillators can hold even when < k providedN is sufficiently large). In
linearly coupled to the chromophore, one can find a linear this case the line shape is Gaussian, as is known in the static
canonical transformation resulting M transformed harmonic  limit of the boson model. Using the TLS model, the static limit
oscillators, one of which is coupled the chromophore, and the of the boson model has the following meaning: although the
rest,N — 1, are uncoupled. This implies that for a given bath TLS is formally in the fast limit K> ») and the TLS flippings
frequency the bath is represented by a single effective oscillator.occur frequently, the changes of the total spin comparable to
This rationalizes the well-established description of a boson bathN/2 occur very rarely, which means that the effective boson
using a collective coordinate and a spectral density that system is in the static limit. In particular, this provides a clear
represents the correlation functions of the collective coordi- interpretation of the dependence of the line shape for the
nate355 The collective coordinate is given by the sum over all multipolar model of Section VI on the regulization parameter
bath frequencies of the coupled effective oscillators (one per a in the static limit. Ifa is small, the dominant contribution
frequency), whereas the spectral density is represented by thecomes from the&k < v regime, and one can skt= 0, which
square of the coupling between the effective oscillator of yields the result of ref 62 with the Lorentzian line shape (eq
frequencyw and the chromophore. This picture is, however, 6.17). In the opposite limit of large, v < k for all TLSs, and
limited to harmonic systems only, and therefore, does not apply the static limit of the boson model yields a Gaussian line shape.
to the spin bath, which is highly anharmonic. This is why for This implies that depending on the valueathe line shapes
a spin bath we need more detailed information about the bath,in the static limitk — 0 interpolate between the Lorentzian and
namely, all individual coupling constants. For the microscopic the Gaussian form.
model all the relevant information is contained in the distribution The first successful realization of sing|e molecule Spectros-
function of the frequencies and coupling constan(e,u) copy (SMS) at low temperatures has been performed on
introduced in Appendix H, whereas the stochastic model can pentacene Chromophoresﬂﬂerphenw Crysta|sl SMS allows
be described by the distribution functiak,v,E) introduced in  ys to probe the immediate microscopic environment of a single
Section VI. Adopting the language of correlation functions, a molecule, usually in tens of nanometers, eliminating the normal
harmonic system can be described by a two-point correlation ensemble averages over the bulk material required by the
function related to the spectral density since all higher-order classical methods. In the context of single-molecule spectros-
ones can be expressed in terms of the two-point correlation copy, the role of disorder clearly comes into play as each
functions using Wick's theorem. For an anharmonic (e.g., spin) chromophore is uniquely positioned with respect to the TLS.
bath, the optical response involves high-order correlation Numerical work by Zumofen and Klaft&rreveals that for a
functions and may not be represented in terms of a single |arge but finite number of TLSs ordered and disordered systems
spectral density function. have similar behaviors at short times, but at long times, TLS

We have shown, however, that in the case of a large numberon a filled lattice induce a Gaussian line shape while disorder
(N) of TLSs weakly coupled to the chromophore with coupling TLSs give line shapes depending on particular realizations. It
strengthy, the optical response reproduces that of the boson was conjectured that for disordered TLSs line shapes after
bath in the limit ofN — o and2?N = const. This result has a  averaging over realizations would follow a Lorentzian. It will
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be therefore interesting to see how line shapes change fromHerey;(w) represents the spectral distribution of the coupling
Gaussian to a Lorentzian form upon the onset of disorder which

can be simply introduced by allowing ordered TLSs to displace c.?

from lattice points. Similarity can be drawn between this case () = ﬁ "

and the problem of hysteresis in a magnetic particle system . MF2mw 2

where positional disorder of point dipoles is believed to be "
responsible for hysteretical behavior of the systénit is also
interesting to compare numerical models of finite numbers of
TLSs and models of infinte spifsand continuum models of a
spin bath. For example, the continuum model gives a Lorentzian
in the static limit, while a filled lattice of TLS is found 3(0) = —lRefm do’
numerically to give a Gaussian line shape. For this case, the Tl
difference lies in the lower cuto#, which tends to zero in the o

continuum model but not in a lattice model. This gives

[0(w — w,) + (0 + o)] (A7)

and the real paifj(w) of the self-energy is related to the spectral
distribution of the coupling by the Kramer&ronig relatior?®

Vj(w')

w —w

(A8)
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Appendix B: Linear Response of the Two-State Jump

Appendix A: Brownian Oscillator (Spin-Boson) Model Model

In this Appendix we derive a closed expression for the linear
response function of the stochastic TLS model. The response
function SY(t) can be calculated using the Green function
approacl. The response functid(t) can be written as

In this Appendix we derive an expression for the spectral
density of a boson bath. In the Brownian oscillator model, the
system is taken to be a two-electronic-level system with some
primary nuclear coordinates coupled linearly to the electronic

systems: () = MVegl Ceg(t) Vegoq! (B1)
N N . N Here pgq is the equilibrium density operator, and the Green
BO _ BO BO ] 9
H™ = gl 19| + el el + H (A1) function Gmr(t) (M, n can bee or g) is defined by its action on
operatorA for a time-dependent Hamiltonian as
where . .
~ | ot ~ | ot
. G, (0A = O() ex;{—ﬁ "dr H(2)| A exp{};l [l H @)
' 1
~BO _ ! 22 (B2)
Hg = z 2—+5rqa)j q]- (A2)
T J(t) takes the following form if the identity matrices are inserted
) in the above equation af(t):
. o1
AZ° = hogg+ 3 | —+ -moj’(g +d)?|  (A3) J() = OV|egTMRg G, 1) eg g V |ggTIgg|p(—co)
T12m 2 (B3)
D 2 me 2 cq The TLS populations satisfy ordinary rate equations as given
o = z "y " X, — Z n (A4) by eq 3.2. Each Liouville space vector is now a two-component

= 2m, 2 : mnwnz column vector in the TLS population space,

[Vieg=u(1 1) (B4)

Herep; (pn), ¢ (X»), andmy (m,) represent the momentum, the

coordinate, and the mass of tjth (nth) nuclear mode of the 1-p

primary (bath) oscillators, respectivel\d’ describes the bath (g9 p(—eo) = P, (BS)
oscillators and their coupling to the primary oscillators with a

coupling strengtle,. For this model, the second-order cumulant [ joyville space operators such & and Geq become 2x 2

expansions 2.14 are exact, and we have matrices in the same space,
€@ =3 ) (A5) TegViggT= u(cl, 2) (86)
where The Laplace transform of the Green functiGgft) is
Clo) = (rqc;:de) 2 wyj(wz) — (A6 géeg(s)leg]]= S——;uiweg+ k' S—_|k1_.diweg+ .- kjd -1
(0" + wZ(w) — ©°)" + 0% (o) (B7)
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The time-domain response function due to jtheTLS, Ri(w1 + w2 + w3, w1 + w2, w1) can be simplified as (cf.

Appendix A)

F(t) = (1) (B8)

R(w,tw, w0, +w,,w,) = 1

can be easily obtained by an inverse Laplace transform.

H(wywpwg)

Alternatively, we introduce the one-sided Fourier transform

(0, +w,+w;— o,

g~ Y Tiky, 0+ w,+

0010 = — [ do F@e™  (89) orto,tiy g
2mid —» J W3~ Weg I 1 X
) _IE wq + Wy + IE
Fi(w) = —i [dt f(t)e! (B10) ,
(1- pj)(wl T Weg T Y + Ikp)
P(: — weg— ik) (©5)
which appears frequently in linear and nonlinear spectra
calculations. In the frequency domain, one obtains
where we have introduced the parameter
3 () = (0 = weg) —IK; = (1= p)
! (0 = we(@ = g = 1K) = (0 — weg — IKiP) ko= (1= 2p)K; (C6)

(B11)

a . . . which vanishes at high temperatures, and
J/(t) (eq B8) is the one-sided Fourier transform of the response

function Jj(w). fi(. 2
W1,W5,W3) =

Appendix C: Third-Order Response in the Frequency (0, + 0, + w3 — IQ,) (0, + 0, + 0y — IQ_) x
Domain B
(0, + w)(w; + 0, + iIK)(w;, —1Q2,)(w, —i1Q_) (C7)
In this Appendix we derive expressions for the frequency
domain third-order nonlinear optical response of the TLS model.

In the frequency domain, we have with
5(3)(w1+a)2+w3,w1+w2,w1) = _ bJ
s 4 Q, =Q+ 5
(—%) Z[Ru(wl+w2+w3,wl+w2,wl) + b
* Q =-Q +§’ (C8)
R(—0,—w,~ w3 —w,—w,—w,)] (C1)
where Similarly, in the frequency domain,
+w,+ + = . B
Rilortozrosoto,en) Ry 0yt w0, tw,0,) = f( ) 3 :
N3 [ o ) , W 1,05,
(")3']; dtsj(; dtzﬂ) dt; R, (tst,ty) expli(w,tw, Tty + v
i(w,tw)t, +iwt)] (C2) (W1 + Wy + w3 = weq— v +iky, 0 + 0, +
kKK
We first examine one of the response functions in the I T o, + '5 'E
frequency domain w3~ Weg ~ K| k|
—lz w, T w, T i3
2 2
Ryw twtwgo,to,0,) = .
- (A= P+ oot o= ik)| o
(1 1)Ged@r 0y twg) Gedwyta,) Gefwy)| &' (C3) Py + weq T iky)
eq
where
where
qu _(1—n ca fwpwywg) =
Peq ] (0, + 0, + w0y —1Q )0, + v, + w3 —1Q_)(w; + w,)

andGeg(w) andGedw) are the Green functions. (w0, + 0, + iK)(w, +1Q) (0, +i1Q_) (C10)
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Substituting the three Green functiozgwit+wotws),
Gedw1twy), andGegw1) in eq C3, we obtain

Zhao et al.
flwy0y0q) =
(0, + 0, +w;—iIQ )0, + v, + w3 —1Q_)w, + w,) x
(wq + o, +iK)(w; —IQ ) (w, —iQ_) (C14)

1
R(w,tw, w0t w,w) =————1 1)
f(wy,0,05) .
with
K K
W+ 0, + 03— wgqt+ IE _IE b
-k -k Q. =Q +-2
_IE wl+w2+w3—weg+|§ + 12
KoK b,
oyt oty TG Q =+ (C15)
K K 2
—l5 W+ w, T3
2 2 -
K _ Similarly, one has
W~ Wgg TS5 —lm 1—np
-k T2 g -k (p- pJ) (C11) Ry(w,+w,+w,w+w a))=;(1 1) x
_IE wl — weg+ |E ] 2\ 1 2 31 2% f'(wlywzng)
K K
where wq + W, + w3 — a)e,g + IE _IE y
Deg™= Weg  Dag = Vgt 7] —ig Wy + 0, w3 — weyt ig
koo Ko KoK
E_ijj' E_(l_ PIK; (C12) w1+w2+|2 5 5
" —i§ o+ ow,+ ig
flw,w,w,) = [(wl T, t w3~ wegt ié) X _ K
. w w1+werg_|5 IE (1—[)]-) (C16)
(w1+w2+w3—wdg+i§)+7 X ig W)+ W ig P
[(a)l +w,+ ig)(a)l +w,+ IkE) + % X where
flwpwyws) =

[(a)l — Weg T ilé()(cul — wggt IkE) + %] (C13)

or alternatively, in terms of

the poles,

(0, + 0, +w;—iQ )0, + v, + 0y —1Q_)w, + w,) x
(wq + 0, +iK)(w, +iQ ) (w, +iQ_) (C17)

Appendix D: Third-Order Response in the Time-Domain

In this Appendix we derive the time-domain third-order response for the TLS model starting from the frequency-domain expression
derived in Appendix C. The third-order response function can be written in terms of the Liouville-space Green fdnctions,

Ry(ta 1) = (Vo Goft)V egedSed 1) VeeedPedt)Vegggl oo™ (D1)
Rolta 1) = (Ve Godt)V egedSed 1) VeeedBedt)Voegel o™ (D2)
Ra(ta o) = (Ve Goglts)VegedSed12VogBoet)Vgegel Pl (D3)
Ri(ta 1) = VoG 19ViegoGos(t) VagedGedt)V egggl 05T (D4)

Ri(ts.t2,t1) can be derived fronRy(w1twotws,witws,wi) via inverse Fourier transforms B10:

Rl(t3 t2 tl) — e*i(azeg+vjl2)(tl+t3)*(KI/Z)(t1+t2+t3) (1 1)

k.
Z—stmh(th3)

cosh@yty) — g, sinh@ty)

. Kt Kt Kt
coshfity) + g; sinh(@Qt;) cosl‘(Lzz) +(1-2p) sinr(’TZ) Esin 172)

X
K . Kjtz) k(Kjtz)_ B , ’_(Kjtz)
Ksm)—(z cos > (1 —2p)sin 5

cosh@ty) + g sinh@ty) %sinh(gjtl)
]

k .
Z_QJ- smh(thl)

k .
Z—QjSInh(ths)
1-p

, (p. ) (D5)
cosh@Qty) — g, sinh@ty) [*
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where we have introduced

b pK
—_J1 O3
97207 g (D6)
Similarly, Rx(ts,t2,t1) assumes the form
Rz(ts,tz,tl — ei(weg+vj/2)(t1—t3)—(Kj/z)(t1+l2+t3) (1 1) %
. K K Kt , 1,
cosh@Qjty) + g sinh€;t;) 29, 55 Sinh@t;) cosl{ 5 )+ (1-2p) smr( > ) Ksm)‘(#z)
k . . K r(Kt) r(Kt) I_(Kt) x
—sinh@it cosh@it,) — g sinh@it,) || X 2
20 €ty €ty) — gsinh@ty) L sinh = cosf{—~| — (1 — 2p) sinf—
kK . X
cosh@t,) + g sinh(@t,) ﬂsmh@j t) 1-p
K sinh@* | (pi ]) 7
Z—QJ_*S'“h(Qi ty) cosh@t)) — g sinh@ty)
where
. by K* o’ 1
Qj = T'FCJ-: T—Z'Fl(pj _E)UjKj (DS)
b  pK
" ) (A
r— 1 _ T D9
9= o (D9)

We further simplifyRy(ts,to,t1) as

— oi(wegty/2 —(Kj2
Ry(tyt,t) =€ i(wegt2)(ttta)— (K; )(t1+t2+t3)(|:j(t3), Gj(ta)) x

Kty Kit, Kty (Kt
cos + (@ -2p)sinf—=]  2(1—p) sinf|—- 2(1 = p) sinh =~ ((1 - pJ)FJ'(tl))

Kit, Kit, Kit, Kjtz) _ r(Kjtz) pG(ty)
2p, smf( 5 ) cosl‘( 5 ) (1-2p) smr'( 5 ) cos!‘(7 (1—2p)sin 3
(D10)
with
WZ&—
b,
Fi() = cosh@Qyt) + smh(Q t)
b*
G(t) = cosh@2;t) + smh(Q t)
Ro(ts to,th) is similarly given by
Rz(t3,t2,tl) — ei(a)eg+UJ/Z)(tl—tg)—(KI/Z)(11+12+t3)(F (tg) G (ts)) %
%) (%) 2u-men()
cos 5 + (1 - 2p) sin 5 2(1—p)sin 3 (1- pj)F;k(t]_)
Kt K, Kit \ (D11)
2p, sinI—(J—Z) cosl’( ) (1- 2p)sm|‘( ) PG/
) 2 2 ! 2

with
F(t) hQ't) + Y h@t)
“(t) = cosh@; ——sinh(@;
i i 20" i
G/ (t) = coshjt) + ——sinh(Q1)
20
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Appendix E: Fourth-Order Cumulant Expressions for for the boson batig®°(t) in terms of the spectral density function
the Nonlinear Response of a Spin Bath C'(w). Alternatively,gB(t) can be written as

In this Appendix we carry out the cumulant expansion for Bty = A2 (dz. [dr. M —ia e = M F1
the stochastic model of a spin bath. To the fourth orderkn G fo TZJ(‘) M) ﬁ) il @1 (F1)

we obtain
M'(t) = % [dor C*(w) cothﬁ%‘“ cospt)  (F2)
JT.

Filtstht) = Faltatat) + m&)sé(t@tz,tl)u (E1)

I R O ()]
) N M () = = /. dw = cost) (F3)
Fy(ta oty = Fa(tytuty) + HI}() 6(t3,t2,t1)u (E2)
2_ 1 po " )
N =2 [ 40 C'(w) cothHT(w) (F4)
3
—_ Y _ _ —ktoyrq ki
Faltstot) = '[GR) P(1 - p)(1 — 2p)kte (1 —e ™) x 1 e, C'()
r== 1 dor— = (F5)
[(kt, + 21— &™) — 2kig| ]+
C
AP —p) 5 The meromorphic funtion cotfitiw/2) may be expanded as a
¢ (1~ 20 Tkeh(t ity + summation over its poles, which are the Matsubara frequencies
ke C oMy _ 4y for bosons™
4kt (1 — e %) + 4kty(1 — e ™) — 4ktyty] +
1— e )1 —e " [kt + 2p(1 — p)e Y1+ e ) — ho 2 1
( ) )Ikt, + 2p(1 — p)e "X ) cot pho 2 _ (F6)
201 - e+ e ] €9 2 A, e
[
with
3
Fo(ta byt =—iw) 1-p)(1— 2p)kte %1 — &™) x
atataty) K p(1 — p)( p)kte " ) vn=2ﬂt, N=0 41 42, .. (F7)
Kt v|'P(L—P) 2 hp
(1-e 3)DC+ 5 °© (1 = 2p)kth(tytyty) +
k. ks Kty This allows representiniyl’ (t) andA? in terms of the Matsubara
(1-e ™)1 —e )kt +2p(l—p)(l-e ™) x frequenciesr, by means of contour integrations:
—kt. —kt;
e 't+e™ E4
( )]}Dc (E4) ) ABA  AAA Vn
A=/1Acot2 + 3 >S5 (F8)
- A
where the auxiliary functionis(ts,to,t;) ando(ts,to,t;) are defined "V
as " Vn
1 RBA . MA_ Ve "
M'(t) = —{2A cot——e "+ —% ———| (F9)
— —kt o ktg —kt3 _oakty AZ 2 ﬁ nwy 2 A2
h(tgt,,t) = 2ktie "1 —e ™) + 2kt,e (1 —e ™) n

oKy okt
ke +8)(1-e A —-e™) (ES) Contour integrations also yieldl" (t):

(3(t3,t2,t1) =2ip(1 —2p)(1 — p)[kt2(1 _ —kt3) +

gy — oAt
kt(1— e — 2(1— e (1 — e™9)] (E6) M"(t) = e (F10)

with eq F5 reducing to an identity.
The line-shape functiog(t) = g'(t) + ig'(t) is therefore

F =1,223,4 ish i inti
n(n , 2, 3, 4) vanish to second order ifk, pointing to obtained from eq F1 as

the fact that to second order irk the TLS model is equivalent
to the Brownian oscillator model. However, third- and fourth-
order terms are nonzero. F&4 andF,, the differences are

LORBA AN e Frt—1
proportional to ekt tyts for small time arguments. g = A COtT(e +At—1)+

s V(v = A%)
(F11)

Appendix F: Line-Shape Functions for the Boson and
the Spin Bath g'()=—% coLﬁzA(e_’“ FAL-1)  (F12)

In this Appendix, we give the expressions for the line-shape
functions gB°(t) and g™-S(t) of the boson and spin bath, The summation in eq F11 can be carried out, and results are
respectively. In eq 5.3, we presented the line-shape function expressed in terms of special functions:
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g = % cotfizl\(e”‘t +At—1)+

L —vt vt —vt vV — A
A[2y~|—2log(1 )+ <1>( 1A )+
"t<1>( vt A) +1- At)qﬂo]( . A) +
(1+ Ao #)] (F13)

wherev = 2n/hf3, y is the Euler’s constant0.577 216 ) -
(zs,a) is the Lerch transcendent, ati"(2) is the Digamma
function.

For the spin bath, we have

g"™S(t) = A2 [ dr, [ de, M (zy) — i f ce[1 — M"(2)]

(F14)
iy L e .
M'(t) = o /. do C'(w) cost) (F15)
M (1) = 1 po, Cl(w) f@
m== J, dw -~ tanf==cos@t)  (F16)
AZ= % [ do C (@) (F17)
ﬁfc(“’) hﬂ— (F18)

The line-shape functions for the spin bath can then be obtained 1

as

p(1l — p)o”

gty =—"——"—(E M+ At—-1) (F19)
A?
1 ABA
g'(t) = —p(1 — p)o° —tanﬂ—(e’At +At—1)+
A2 2
ap e M +ut—1
—y ——— | (F20)
hp = VnZ(AZ o Vnz)
where
@n+ 1)
V= T (FZl)

We expand tamBw/2) as a summation over its poles, which
are the mastubara frequencies for fermiéhs:

(F22)

with

(F23)
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Performing contour intergrations, one obtains from eqs—+15
F18

A?=p(1 - p)s* (F24)
M =e ™ (F25)
pPL—p)* KBA 4A
= tan— + —% ——— (F26)
A 2 B Vn(AZ - Vnz)
p(L - p)o” RpA | aA et
M (t) = e Mtan b +—5
AL 2 hpLG (A2=v2)
(F27)

Appendix G: Limiting Cases of the Linear Response

In Section IV, we have examined the limit of weak chro-
mophore-TLS coupling. Here we look into the opposite limit
of slow TLS modulation of the chromophore transition fre-
guency. The static limitK = 0) can be seen as the case of
defect-induced inhomogeneous broadefig.

1. Slow Modulation. In the opposite limit > k, we expand
0c(t) to the second order ik/v:

NOO = —0h[1 — p(1 — e ")+
ut cosz 2 sm%t
2p(1 —p) y; : +
cosE +i(1 — 2p) S'”E
p(1—p) [

2[(3 8p(1 —p))

cosz +i(1 —2p) smE

(1 — cosut) + ivt(1 — 2p)(2 + cosut) —
%UZ’[Z(ZD 1P — 202+ (1 — 2p)(3i + o)) sin]ﬂ (G1)

C

In the high-temperature limit < 1, g¢(t) reduces to

R I L e I
tv sintv

@21 — costv —
4 1+ costy

DC (G2)

la. Static Limit k= 0. In this limit, p is actually the
occupation probability of the excited TLS, which is equivalant
to the defect density in the lattice model of inhomogeneous line
shape§27576

Upon expanding the first term of eq G2 to ninth ordewin
one obtains
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(1 - 2p)x At high temperaturesc(< 1), half of a lattice is occupied
git) = Zp( iyt) + Z ( Iut) +—A( wt) + by defects. One obtains from eq G3 a Gaussian lineshape, i.e.,
3! for Kj— 0 andT — o (x < 1),
1-
—(x—6x)( iyt)* + (x—12x2)( i) + 4t 1 1 .
glt) = In ~=i=) vt —=) v (G5)
> DY

1 2 3 H 6

_|(X — 30x" + 120¢)(—iyt)” +

6! provided that the higher-order terms
1 —

2|O(x — 60X + 360C)(—iyt) + 1 171
) _Z[ﬂ( t)* —( t)° +——(vt) + .| (G6)
5(x — 126¢ + 1680¢ — 5040¢)(—iyt)® +

are vanishingly small. In order for the above summation to

-2p P remain finite in the case of dipolar coupling, however, one has
x— 252¢ + 5040¢ — 2016 )(_'th) (G3) to impose a lower cutoff for the chromopher€LS separation,
a
where At low temperaturesp — 0, and most TLS remain in their
ground states. One obtains from eq G1
x=p(l-p) (G4)
Odd-order terms have a factor-1 2p which vanishes at high g(t) = zp,(l el (G7)

temperatures, and all terms are proportiongbtb — p). We

note that the coefficients ofA)2" and ¢t)2"** containn terms

up tox". It is interesting to observe that the coefficientsxof For the dipolar coupling, a Lorentzian line shape emerges as
in odd-order terms:{)?"*1 is i times those ok in even-order the lower cutoff for the chromophot€T LS separationg, tends
terms ¢t)2. to zero. This is discussed in Section IV.

2. High Temperature k < 1. Performing a high-temperature expansion of eq 4.1 to second ordpr-nl1(2), we obtain
Ra0 == Hoc+ il |- [ cosl@x/kz — )+ —Esinn@/ié - ||+
C VIE — 2 -

1
‘EF B z)”" (V12 — v2cosh/IZ — 1%t) + (kt — (2 (2 + kb)) sinh(/kZ — Uzt)ﬂ -
k=0 V1 — (AKd)coshy/ié — 1) + sinh@/iZ — %) -

b 1) i e )

pP—3 1- =2+ 4kt) +4—2[1—=| +

( )( —v)[ (IOcoshie — 27 + sinhie — 21t K K
2[—2+ (1 - ”é)z + (1 - Ué)kt] cosh§/kZ — vt) + [1- Ué[kt(z - ”é) + 4(1 - E—z) - 6] sinh/'k? — Uzt)}ﬂ (G8)

Appendix H: Microscopic Model for a Spin Bath where

In this Appendix we introduce a microscopic model of the R N @

i i i ine- =YHI=Y—o H3)
spin bath and derive a closed expression for the line-shape Hy ZHJ Z i (
function. We assume that the chromophore is coupled to a bath ] 2
represented by a collection of the TLS. The Hamiltonian has o
the form N0 L j

He= ij +U= zzoﬁ Zujojx (H4)
] ] ]
Q w] 1+ Here H? anf H are the Hamiltonian of thigh bath spin when
EO{) + JZE + JzujOf( (H1) the chromophore is in the ground and excited states, respectively,

andU is the collective bath coordinate. In eq kg represent
Pauli matrices of the chromophore, Where#sare the Pauli
or equivalently, matrices that represent spins of the battyg is chromophore
frequency;w; is the frequency of thgth bath spin, which is

. . decoupled from the chromophore in the ground state of the
= |gH g + |ellweq + Ho)lel (H2) chromophore but coupled with strengthin the chromophore
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excited state. For the linear response functigt) we have

J(t) = Trlexp(—iH}) exp(—pH?) exp(H)]  (H5)
where exp(—ﬁng) with § = 1/kgT is the equilibrium density
matrix of thejth bath spin. A straightforward calculation yields

. ot
sinA;t sin—- +
2
w; wjt
—S|n/1jtcos7 (H6)
j

_ ot o
J(t) = cosAjt cos? + 2

]
. t ot
|tanl13§ cosijt sm? %

where

— i 2 2
lj = (E) + UJ-

Introducing J(t;w,u) with o, u substituted forw;, uy; and the
distributionn(w, u), we can recast eq H5 in a form

(H7)

ood 0
gy =—/; E“’ “du n(o,u) IN[F(to,w)]  (H8)
where we use the normalization
ooda) 00 _
0 2o dun(w,u) =1 (H9)

Equations H8 and H6 express the line-shape funag@nin
terms of the distribution function(w,u) in the general case.
Now we consider the weak coupling limit whetw,u) is
nonzero only in the regime < w. Expanding Inf;(t;w,u)] in
powers ofu/w and retaining terms up to sixth order yields

9(t) =
w0 CP()[ o _
027 42 .(1 COSwt)+|tanh2m_(wt smwt)]
=0 C(w)

027 4

(1 — coswt) + coshpt + cosh(iwt + ft) —

12sin wt sinh(iot + Bt) + ia)t(sinh(ia)t + Bt + %sinhﬁt)] -

Cw)

q(t) — 2iots(t) +
120° cosﬁ%{
12502t2[cosi‘f;—t - sinh%sinh(iwt - ﬁt)] + diw*? sinhﬁz—t}
(H10)

wdw
0 27

where
qt) = —54+ 15 cos}(% - iwt) + 33 cosl(»% + iwt) +
6 cosr(% + Ziwt) — 22 coslgg + 15 cos Sgt + iwt) +

6 cos&é%ﬂt + 2iwt) + cosl‘%ﬂt + 3iwt)

s(t) =6 Sint% +3 sini‘("%ﬁt + iwt) +3 sinh? +
3 sinl'(%ﬁt Fiof) + sint(%ﬁt + 2iwt)] (H11)

Introducing the spectral density(w) by

J. Phys. Chem. A, Vol. 102, No. 33, 1998633

C(w) = C(w) tanhZIf’TT (H12)

we reproduce the result of the Brownian oscillator model to
second order in/w:

Cw) = [ du tPn(w,u) (H13)
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