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The third-order optical response function of a chromophore coupled to a bath consisting of noninteracting
two-level systems (TLSs) undergoing stochastic jumps is calculated. The results can be applied to a broad
class of nonlinear optical techniques in single-molecule spectroscopy and bulk measurements in glasses,
polymers, and mixed crystals. In the limit of many TLSs weakly coupled to the chromophore, the response
can be obtained using the second-order cumulant expansion and resembles that of the Brownian oscillator
model. Quantum corrections to the spectral density which accounts for the Stokes shift can be included in
this limit using the fluctuation-dissipation theorem. However, the temperature dependence predicted by the
two models is very different. Corrections to the cumulant expansion to fourth order in coupling strength are
derived.

I. Introduction

Nonlinear spectroscopies in the condensed phase provide a
direct probe for the coupling of chromophores to the surrounding
medium (solvent, glass, host crystal, protein, etc.).1-3 In many
situations, e.g., pentacene molecules inp-terphenyl crystals, the
local environment of the chromophore can be modeled as a
collection of flipping two-level systems (TLSs) which modulate
its transition frequency. Such spectral jumps have been
observed by repeated fast scanning of the zero-phonon line4-10

in the newly developed single-molecule spectroscopy (SMS).
The TLS model has been quite successful in explaining
anomalous specific heat and thermal conductivity of amorphous
materials.12-19 The excess specific heat of glasses (in addition
to the Debye specific heat) varies linearly with temperature in
contrast to the∼T3 contributions from phonons at low temper-
atures. This suggests the existence of additional degrees of
freedom in glasses with a roughly constant density of states.
Relaxation by TLS tunneling at low temperature can be
attributed to coupling of the TLS to acoustic phonons20-23 in
analogy with phonon-assisted intermolecular transfer.24,25 For
higher temperatures, however, introduction of soft phonon
modes with a crossover to anharmonicity at low frequencies
seems necessary.26-30

Theories of TLS frequency modulation were first developed
by Anderson and Weiss31,32for electron paramagnetic resonance
and later extended by Kubo.33-35 Interest in the TLS model
has spanned well over half a century. Line-shape functions and
photon-echo signals have been calculated by many authors36-44

and compared with traditional measurements of bulk materials.
Interactions between TLS have been incorporated as well.45

Studies of single molecules in solids came as a recent develop-
ment of optical spectroscopy which combines near-field mi-
croscopy and high-resolution lasers.4-6,10,11,46-48 In contrast to
traditional measurements, SMS reveals a distribution of the
dynamic fluctuations of the host TLS instead of merely
measuring an ensemble average. Much more information is

contained in a distribution compared to its average or moments.
SMS therefore calls for a more detailed microscopic theory to
provide a precise description of the host dynamic distribution.
Application of SMS has been found mostly in line-shape
measurements.7,8,49-51 For example, line-width distributions of
guest molecules embedded in a solid matrix (such as terrylene
in polyethylene) have been measured at low temperatures.
Nonlinear optical measurements, which are usually performed
in bulk solids, are adopted for SMS.

In this paper we generalize the earlier treatments of the TLS
bath and derive closed expressions for the complete third-order
response function. These expressions are not limited to the
photon echo38,40 and may be used for a broad range of
measurements (e.g., pump-probe, hole-burning, and four-wave
mixing). In the limit of many TLSs weakly coupled to the
chromophore, the response functions can be calculated using
the second-order cumulant expansion, resulting in an expression
resembling the Brownian oscillator model. In this case we can
further use the fluctuation-dissipation theorem to predict the
full temperature dependence of the response including the time-
dependent Stokes shift (which is neglected in stochastic models).
The Brownian oscillator model, which has been successfully
utilized in modeling the condensed-phase measurements at room
temperature,3 predicts a different temperature dependence of the
response (the real part of the spectral density function is
dominant at high temperatures, while the temperature-indepen-
dent imaginary part becomes significant at low temperatures).
Photon-echo studies of a dye molecule (IR144) in a polymer
glass (PMMA) show that many features of the host-guest
system have been successfully described by the oscillator bath
and its temperature-dependent response functions.52 For liquid
ethylene glycol solvent, however, harmonic bath models capture
the temperature dependence of the spectral density only in the
high-frequency regime.53 Temperature dependence different
from the boson bath has also been reported in organic polymers
PMMA and PVA in the temperature range 30-300 K.54 The
temperature dependence of the TLS and Brownian oscillator
model will be compared.
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In Section II, we describe the Brownian oscillator model and
its optical response functions.3,55 The spectral density is
discussed, and the third-order response is related to spectral
broadening functions via the second-order cumulant expansion.
In Section III, we derive the complete third-order response
function for the TLS model which generalizes earlier calcula-
tions restricted to the three-pulse echo. In Section IV, we
discuss the general scenario of a chromophore weakly coupled
to a bath of many surrounding TLSs using the cumulant
expansion. We extend the TLS model to include the imaginary
part of the spectral density function by making use of the
fluctuation-dissipation theorem. Absorption line-shape func-
tions are calculated and compared with the Brownian oscillator
model. In Section VI, we apply our results to the multipolar
chromophore-TLS coupling model. For dipolar coupling, a
Padéapproximant is found for the bulk spectral broadening
function, and the line-shape function is calculated for various
TLS densities. An alternative nonstochastic exactly solvable
model for a spin bath is introduced and discussed in Appendix
H.

II. Response Functions for a Chromophore in a Boson
Bath

We consider a chromophore with two electronic states, a
ground state|g〉 and an excited state|e〉, described by a
Hamiltonian

Here Ĥg and Ĥe operate in the space spanned by nuclear
(intermolecular and solvent) coordinates, andωeg

0 is the unper-
turbed chromophore transition frequency. The electronic transi-
tion dipole operator is given by

The collective bath coordinate

represents the coupling of the chromophore to its environment
and is responsible for spectral shifts and broadenings.

The linear response functionS(1)(t) is defined through the
polarizationP(1)(r,t), expanded to first order in the radiation field
E(r,t):

Using the second-order cumulant expansion, we obtain

with

andωeg is the renormalized transition frequency:

The spectral broadening functiong(t) is expressed in terms of
the spectral densityC′′(ω),

where

HereFg is the equilibrium ground-state density matrix:

To third order in the radiation field, the polarization reads

Here the response functionS(3)(t3,t2,t1) is given by a sum of
four terms:

with

These results are exact for the spin-boson Hamiltonian which
represents the Brownian oscillator model (Appendix A). For
this model,C′′(ω) (eq A6) is independent of temperature, and
the entire temperature dependence ofg(t) comes from the coth
factor in eq 2.8. This will be compared in Section V with the
TLS model.

The linear response function can always be recast in the form
of eqs 2.5-2.7 and expressed in terms of a single spectral
density. Equation 2.14 shows that for the boson bath the same
spectral density determines the third-order response. This is
not generally the case for other models,3 where more information
is needed in order to calculateS(3). A simple example is the
inhomogeneous cumulant expansion3 where g(t) depends on

Ĥ ) |g〉Ĥg〈g| + |e〉(ωeg
0 + Ĥe)〈e| (2.1)

V̂ ) |g〉V̂ge〈e| + |e〉V̂eg〈g| (2.2)

U ≡ Ĥe - Ĥg (2.3)

P(1)(r,t) ) ∫0

∞
dt1 S(1)(t1) E(r ,t-t1) (2.4)

S(1)(t) ) i
p

θ(t)[J(t) - J*( t)] (2.5)

J(t) ) exp(-iωegt) exp[-g(t)] (2.6)

ωeg ) ωeg
0 + 〈UFg〉 (2.7)

g(t) )

- 1
2π∫-∞

∞
dω

C′′(ω)

ω2
[1 + coth(âpω/2)][e-iωt + iωt - 1] (2.8)

C′′(ω) ) -i∫-∞

∞
dt eiωtC′′(t) (2.9)

C′′(t) ) - 1

2p2
[〈U(t) U(0)Fg〉 - 〈U(0) U(t)Fg〉] (2.10)

Fg )
|g〉〈g| exp(-âĤg)

Tr[exp(-âĤg)]
(2.11)

P(3)(r ,t) ) ∫0

∞
dt3∫0

∞
dt2∫0

∞
dt1 S(3)(t3,t2,t1) ×

E(r ,t-t1) E(r ,t-t2-t1) E(r ,t-t3-t2-t1) (2.12)

S(3)(t3,t2,t1) )

( i

p)3

θ(t1) θ(t2) θ(t3)∑
R)1

4

[RR(t3,t2,t1) - RR
/(t3,t2,t1)] (2.13)

R1
BO(t3,t2,t1) ) exp[-g(t1) - g*( t2) - g*( t3) + g(t1+t2) +

g*( t2+t3) - g(t1+t2+t3)]

R2
BO(t3,t2,t1) ) exp[-g*( t1) + g(t2) - g*( t3) - g*( t1+t2) -

g(t2+t3) + g*( t1+t2+t3)]

R3
BO(t3,t2,t1) ) exp[-g*( t1) + g*( t2) - g(t3) - g*( t1+t2) -

g*( t2+t3) + g*( t1+t2+t3)]

R4
BO(t3,t2,t1) ) exp[-g(t1) - g(t2) - g(t3) + g(t1+t2) +

g(t2+t3) - g(t1+t2+t3)] (2.14)
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some system parameters, and the response functionsS(1) (2.5)
and S(3) (2.14) are averaged over the distribution of these
parameters.

III. Response Functions for a Chromophore in a
Stochastic Spin Bath

We assume that our two-state chromophore is coupled to a
collection of two-level systems (TLSs) (labeled by the index
j). The transition frequency of the chromophore depends on
the state of the TLS, described by a time-dependent occupation
variableêj: êj ) 0 if the TLS is in its ground state, andêj ) 1
if the TLS is excited. Assuming that the chromophore’s
transition frequency is changed by the amountVj when êj is
changed from 0 to 1, then the collective bath coordinate (eq
2.3) is

The populations of the ground and excited TLS statesPj
0(t)

andPj
1(t) satisfy the rate equations

where kj
u and kj

d are the rate constants for up and down
transitions for thejth TLS. In thermal equilibrium, one obtains
the probabilityPj

k of finding the jth TLS in statek (k ) 0, 1):

Here

andεj is the energy difference of thejth TLS. We introduce
the dimensionless parameter

For this model, the time-domain response functionJ(t) is
given by the product of the individual response functionsJj(t)
(see Appendix B):

where

with

The third-order response function can be expressed in terms
of the Liouville-space Green functions given in Appendix D.
Third-order response functions corresponding toR2 andR3 were
first calculated for spin echoes by Klauder and Anderson (two-
and three-pulse, short times) and Mims (two-pulse, long
times36,57 for electronic spin resonance. High-temperature
results for arbitrary times were obtained by Hu and Hartmann37

for both two- and three-pulse echoes. Generalizations to finite
temperatures were later given by Hu and Walker.38 Utilizing
Pauli matrices, Huber extended the two-pulse echo results of
Hu and Hartmann (dipolar) to multipolar interactions (1/rn).39

Suárez and Silbey recently derived the most general form of
two- and three-pulse photon-echo responses valid for multipolar
interactions and arbitrary temperatures.40 However, the full
response function includingR1 andR4 in addition toR2 andR3

has not been calculated. In this section, we derive the complete
third-order response function. In the special case of the photon-
echo response our results reproduce earlier calculations.37,40

Since the TLS dynamics are not affected by whether the
chromophore is in the ground state or excited state, this model
misses the Stokes shift.3 ThereforeR1j ) R4j, andR2j ) R3j.
The time-domain third-order response functionS(3)(t3,t2,t1) is
given by eq (2.12) (cf. Appendix D):

with

where

Only R2 is relevant to photo-echo experiments. The corre-
sponding frequency-domain response functions are given in
Appendix C.

In the high-temperature limit (κj , 1 andpj ) 1/2), these
response functions can be simplified:

U ) ∑
j

Vjêj (3.1)

(Ṗj
0(t)

Ṗj
1(t) )) (-kj

u
kj

d

kj
u

-kj
d)(Pj

0(t)

Pj
1(t) ) (3.2)

Pj
k ) pjδk,1 + (1 - pj)δk,0 (3.3)

pj ) [exp(εj/kBT) + 1]-1 (3.4)

κj ≡ εj/kBT (3.5)

J(t) ) exp(-iωegt)ΠjJj(t) (3.6)

Jj(t) ) θ(t)e-(bj/2)t[cosh(Ωjt) +
2dj - bj

2Ωj
sinh(Ωjt)] (3.7)

Ωj ) xbj
2

4
- cj ) xKj

2

4
-

Vj
2

4
- i(pj - 1

2)VjKj (3.8)

bj ) iVj + Kj (3.9)

cj ) iVjKjpj (3.10)

dj ) Kj + iVj(1 - pj) (3.11)

Kj ) kj
u + kj

d (3.12)

R1(t3,t2,t1) ) ΠjR1j(t3,t2,t1) (3.13)

R2(t3,t2,t1) ) ΠjR2j(t3,t2,t1) (3.14)

R1j(t3,t2,t1) ) e-i(ωeg+Vj/2)(t1+t3)-(Kj/2)(t1+t3)

[(1 - pj)Fj(t3) Fj(t1) + pGj(t1) Gj(t1) +

(1 - e-Kjt2)
pj(1 - pj)Vj

2

Ωj
2

sinh(Ωjt3) sinh(Ωjt1)] (3.15)

R2j(t3,t2,t1) ) e-i(ωeg+Vj/2)(t1-t3)-(Kj/2)(t1+t3)

[(1 - pj)Fj(t3) Fj
/(t1) + pGj(t1) Gj

/(t1) -

(1 - e-Kjt2)
pj(1 - pj)Vj

2

|Ωj|2
sinh(Ωjt3) sinh(Ωj

/t1)] (3.16)

Fj(t) ) cosh(Ωjt) +
bj

2Ωj
sinh(Ωjt)

Gj(t) ) cosh(Ωjt) +
bj
/

2Ωj
sinh(Ωjt)
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S(3)(t3,t2,t1) can be applied to various third-order experiments
in single-molecule and bulk spectroscopy. Most of the earlier
work had focused on the three-pulse echo technique in the limit
of large inhomogeneous broadening. In that case we only need
the response functionR2 for t1 ) t3, and we have

with

which agrees with results of Hu and Hartmann37 and Sua´rez
and Silbey.40

In Figure 1, we compareR1(t1,t2,t3) and R2(t1,t2,t3) for a
chromophore interacting with a bath of four TLSs with identical
rates and different coupling strengthsV (V/K ) 0.60, 1.38, 2.31,
3.37). At t1 ) 0, the two response functions have not2
dependence and are therefore identical. However, forKt1 )
0.5, t2 ) 0 andKt1 ) 1, t2 ) 0, the two are very different. The
decay of the response functions as a function oft2 is revealed
by comparing the responses fort2 ) 0 andKt2 ) 2 atKt1 ) 0.5
(the two middle panels).

Figure 1. Comparison ofR1(t3,t2,t1) andR2(t3,t2,t1) for a chromophore interacting with a bath of four TLSs with identical jump rates but randomly
chosen coupling strengthsV (V/k ) 0.60, 1.38, 2.31, 3.37).p ) 0.5. Left column, real parts. Right column, imaginary parts. Att1 ) 0, the two
response functions have not2 dependence and are identical (top panel). The decay of the response functions witht2 is illustrated in the two middle
panels.]

R1j(t3,t2,t1) ) 1
2
e-i(ωeg+Vj/2)(t1+t3)-(Kj/2)(t1+t2+t3) ×

[sinh(Kjt2
2 )(Fj(t3) Gj(t1) + Gj(t3) Fj(t1)) +

cosh(Kjt2
2 )(Fj(t3) Fj(t1) + Gj(t3) Gj(t1))] (3.17)

R2j(t3,t2,t1) ) 1
2
ei(ωeg+Vj/2)(t1-t3)-(Kj/2)(t1+t2+t3) ×

[sinh(Kjt2
2 )(Fj(t3) Gj

/(t1) + Gj(t3) Fj
/(t1)) +

cosh(Kjt2
2 )(Fj(t3) Fj

/(t1) + Gj(t3) Gj
/(t1))] (3.18)

R2j(t1,t2,t1) )
exp[-i(2ωeg + Vj)t1 - kjt1]

4Ωh j
2

[Kj
2 cos(2Ωh jt1) -

Vj
2 + 2KjΩh j sin(2Ωh jt1) + (1 - e-Kjt2) sin2(Ωh jt1)] (3.19)

Ωh j ) 1
2xVj

2 - KJ
2 (3.20)
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IV. Cumulant Expansion for Many TLSs

To calculateJ(t) for a large ensemble of TLSs, we first recast
it in the form of eq (2.5) with

Assuming that each of the TLSs makes a very small contribution
to the line shape, we have

Similarly, eq (3.6) takes the form

where

Measured optical properties of chromophores need to be
averaged over many chromophores embedded in the host
matrixes. Each chromophore has a distinct coupling to the TLS.
Therefore an average over the TLS configuration with respect
to the chromophore needs to be performed. This averaging is
eliminated for the single-molecule spectroscopy (SMS). There-
fore the SMS response function is given by eq (3.6) and eq
(3.7).

Introducing the distribution functionn(k,V,E) for the TLS
parametersKj, Vj, andpj, we write the configurational average
as

with the normalization

This is similar to our notation of averages over the TLS index
j:

Performing the configurational average, we arrive at the bulk
response functionJc(t):

where the angular bracket denotes the configurational average.
The averaging allows the productΠj to be replaced by theNth

power (N is the total number of TLSs):

while theN f ∞ limit gives

The configurational average〈 〉c contains summations over
positions of the TLS with respect to the chromophore. It is
obvious that the single-chromophore response functionJ(t)
becomes the bulk response functionJc(t) once〈Jj(t)〉 is replaced
by the configurationally averaged〈Jj(t)〉c. 〈Jj(t)〉 is a sum over
j which reflects the random structure of a particular realization
of the chromophore-TLS system, while〈Jj(t)〉c is given by an
integral over the configurational coordinates. Therefore only
the bulk properties of the TLS and their coupling to the
chromophore are reflected in〈Jj(t)〉c.

In evaluating the bulk response functions, two averages need
to be performed if one views the evaluation ofJj(t) as an average
over stochastic trajectories. In general, one can reverse the order
of the configurational average and the average over the
stochastic trajectories denoted by the angular bracket〈 〉s. If
the configurational average is carried out first, we obtain

In the limit of largeN, we have

The approach of the stochastic average, which is equivalent to
our derivation of response functions via Green’s functions, can
be simulated by the Monte-Carlo techniques.58

The configurationally averaged line-shape functiongc(t)
assumes the form

whereb, d, andΩ are functions ofk, V, andp as given by eqs
3.8-3.12. We shall discuss the properties ofgc(t) in several
different limits.

Assuming thatn(k,V,E) is nonzero only in the regimeV , k,
we can expand eq 4.13 in powers ofV/k. The correlation
function C(t) to fifth order reads

The line-broadening function to fourth order is

g(t) )

-∑
j

ln{1 + [e-(bj/2)t(cosh(Ωjt) +
2dj - bj

2Ωj

sinh(Ωjt)) - 1]}
(4.1)

g(t) )

∑
j

[1 - e-(bj/2)t(cosh(Ωjt) +
2dj - bj

2Ωj

sinh(Ωjt))] )

∑
j

[1 - Jj(t)] (4.2)

J(t) ) exp(-iωegt)e
-N[1-〈Jj(t)〉] (4.3)

〈Jj(t)〉 )
1

N
∑

j

Jj(t) (4.4)

〈J〉c ≡ ∫dV dk dE Jn(k,V,E) (4.5)

∫dV dk dE n(k,V,E) ) 1 (4.6)

〈 〉 ≡ 1

N
∑

j

(4.7)

Jc(t) ) exp(-iωegt)Πj〈Jj(t)〉c (4.8)

Jc(t) ) exp(-iωegt)(〈Jj(t)〉c)
N (4.9)

Jc(t) ) exp(-iωegt) exp[-N(1 - 〈Jj(t)〉c)] (4.10)

Jc(t) ) exp(-iωegt)[1 - 1
N

N〈〈1 - eiVj∫0
t êjdτ〉c〉s]N

(4.11)

Jc(t) ) exp(-iωegt) exp[-N〈〈1 - eiVj∫0
t êjdτ〉c〉s] (4.12)

1
N

gc(t) ) 〈ln[e-(b/2)t(cosh(Ωt) + 2d - b
2Ω

sinh(Ωt))]〉c
(4.13)

C(t) ) 〈V2p(1 - p)e-kt〉c + i〈V3p(1 - p)(1 - 2p)te-kt〉c +

〈V4p(1 - p)

2k2
e-kt[4p(1 - p)(e-kt + kt - 1) -

(1 - 2p)2k2t2]〉
c

+ i〈V5p(1 - p)(1 - 2p)

k3
e-kt ×

{1
6
(1 - 2p)2k3t3 - 2p(1 - p)(k2t2 - 2(e-kt + kt - 1)]}〉

c

(4.14)
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Note thatgc(t) is an analytic function ofk; ask f 0, the time-
dependent factor in thenth term behaves askn, which cancels
thek-n factors, andgc(t) remains finite. In the high-temperature
regimeκ , 1, the third-order term vanishes, and we obtain

To second order inV/k, we may rewrite eq 4.16 as

with

Equation 4.19 recovers the stochastic oscillator model with the
distribution of the ratesk given by the spectral densityC(k) of
eq 4.20.3

The linear absorption line-shape functionσ(ω) is given by
the Fourier transform of the response functionJ(t):

In Figure 2, we displayJ(t) for a fixed value of the
dimensionless parameterR ≡ xNV/2k (R ) 10) and increasing
N (N ) 1, 4, 7, 9, 20 from top down). These are compared
with the second-order cumulant (dashed). The latter only
captures the short-time behavior while leaving out the long-
time oscillations in the exact response functions. The corre-
sponding line-shape functionsσ(ω) are displayed in Figure 3.

Figure 2. Time-domain linear response functionsJ(t) (eq (3.6)) forR
) 10 and from top down,N ) 1, 4, 7, 9, 20. The dashed curve is the
second-order cumulant.]

〈UFg〉 ) 〈pV〉c (4.15)

1
N

gc(t) ) 〈p(1 - p)V2

k2
(e-kt + kt - 1)〉

c
-

i〈p(p - 1)(2p - 1)V3

k3
[(kt + 2)e-kt + (kt - 2)]〉

c
+

〈p(1 - p)V4

2k4
[p(1 - p)(10kt - 29) - 2(kt - 3) -

(k2t2 + 4kt + 6 - 4p(1 - p)(k2t2 + 5kt + 7))e-kt +

p(1 - p)e-2kt]〉
c

(4.16)

〈UFg〉 ) 〈V2〉c
(4.17)

1
N

gc(t) ) 〈 V2

4k2
(e-kt + kt - 1)〉

c
+

〈 V4

8k4[kt
2

- 5
4

- (kt + 1)e-kt - 1
4
e-2kt]〉

c
(4.18)

Figure 3. Absorption line-shapesσ(ω) (eq (4.21)) forR ) 10 and
from top down,N ) 1, 4, 7, 9, 20 (solid).ω02 ) N V2. The dashed
curve is the second-order cumulant.]

1
N

gc(t) ) ∫dk
C(k)

k2
(e-kt + kt - 1) (4.19)

C(k) ) ∫dV dE n(k,V,E)V2p(1 - p) (4.20)

σ(ω) ) 1
π

Re∫0

∞
dt eiωtJ(t) (4.21)

Spin versus Boson Baths in Nonlinear Spectroscopy J. Phys. Chem. A, Vol. 102, No. 33, 19986619



HereN + 1 peaks are resolved in the line-shape functions with
N TLS. The second-order cumulant is recovered as the large-N
limit. This is expected from the central-limit theorem. In Figure
4, we compare the exact line-shape functionσ(ω) (solid) with
the second- (dashed) and fourth-order (dotted) cumulant expres-
sions. For the parameters used (R ) 10, N ) 12), the second-
order cumulant works quite well, and the fourth-order correction
improves its accuracy. In Figure 5 we compare the exact third-
order response functionR2(t3,t2,t1) with the second- and fourth-
order cumulant expressions for the same set of parameters of
Figure 4,N ) 12. All curves are plotted forKt1 ) 0.3 and five
values ofKt2 (in the top panel, from top down,Kt2 ) 0, 0.1,
0.2, 0.3, 0.4, 0.5). The middle panel shows the small (∼1%)
difference between the second-order cumulant and the exact
response functionR2(t3,t2,t1). The difference between the fourth-
order cumulant andR2(t3,t2,t1) is less than one-tenth of a percent.
Let us denote byRn

0 (n ) 1, 2, 3, 4) the third-order response
function obtained by substituting the fourth-order line-broaden-
ing function (eq 4.16) into the Brownian oscillator expression.
The response function calculated using the fourth-order cumulant
expansion may be recast in the form

The functionsFn represent the deviation of TLS nonlinear
response functions from the form of eq 2.14. We find that to
second-order inV/k Fn vanish for all temperatures. In Appendix
E, we give Fn(t3,t2,t1) to fourth order inV/k. In the high-
temperature limit (κ . 1), these expressions assume a simpler
form:

V. Temperature-Dependent Response of the Spin and the
Boson Bath

We note that the second-order contribution toC(t) (eq 4.14)
is real. Using the fluctuation-dissipation theorem, we can
compute its imaginary part as well.3 At finite temperatures,
the line-shape function for the spin bathgTLS(t) can be calculated
from

where

Here Λ ) K stands for the flipping rate of the TLS. The
temperature dependence ofgTLS enters throughp, Λ, and the
tanh factor. We shall compare this result with the boson bath
line-shape functiongBO(t)

For the overdamped Brownian oscillator model, the spectral
density functionC′′(ω) takes the form

For this model,λ andΛ are both temperature independent, and
the only temperature dependence enters through the coth factor.
Expressions suitable for numerical calculations of eqs 5.1 and
5.3 are presented in Appendix F.

In Figure 6, we compare the temperature dependences of
C′(ω) and C′′(ω) for the Brownian oscillator and the TLS
models assuming thatΛ is temperature independent. For the
latter,C′(ω) increases with temperature and levels off for high
temperatures, andC′′(ω) peaks atkBT ) ε. Both C′(ω) and
C′′(ω) vanish at zero temperature. For the Brownian oscillator
model,C′′(ω) is temperature independent, andC′(ω) increases
monotonically with temperature at high temperatures. At low
temperatures,C′(ω) has a dip atω ) 0. Therefore, in the
Brownian oscillator model,C′(ω) (C′′(ω)) dominates at high
(low) temperatures. In the weak coupling regime, we can utilize
eq 2.14 to obtainRn(t3,t2,t1) with n ) 1, 2, 3, 4. Since now the

Figure 4. Comparison of various approximations of the line-shape
function forp ) 0.5,R ) 10, N ) 12. Upper panel: exact line-shape
function σ(ω) (solid), second-order cumulantσ2nd(ω) (dashed), and
fourth-order cumulantσ4th(ω) (dotted, coincides with the solid curve).
Lower panel: second-orderσ4th(ω) - σ(ω) (solid) and fourth-order
correctionsσ4th(ω) - σ(ω) (dashed).]

Rn(t3,t2,t1) ) Rn
0(t3,t2,t1) exp[-Fn(t3,t2,t1)],

n ) 1, 2, 3, 4 (4.22)

F1(t3,t2,t1) ) F4(t3,t2,t1) )

〈( V
2k)4

e-kt2(1 - e-kt1)(1 - e-kt3)[2kt2 +

(1 - e-kt2)(e-kt1 + e-kt3)]〉c
(4.23)

F2(t3,t2,t1) ) F3(t3,t2,t1) )

〈( V
2k)4

e-kt2(1 - e-kt1)(1 - e-kt3)[2kt2 +

e-kt2(1 + e-kt1-kt3) - (e-kt1 + e-kt3)]〉c
(4.24)

gTLS(t) ) 1
2π∫-∞

∞
dω

1 - cos(ωt)

ω2
C′(ω) -

i
2π∫-∞

∞
dω

sin(ωt) - ωt

ω2
tanh

âpω
2

C′(ω) (5.1)

C′(ω) ) 2p(1 - p)
V2Λ

ω2 + Λ2
(5.2)

gBO(t) ) 1
2π∫-∞

∞
dω

1 - cos(ωt)

ω2
coth(âpω/2) C′′(ω) +

i
2π∫-∞

∞
dω

sin(ωt) - ωt

ω2
C′′(ω) (5.3)

C′′(ω) ) 2λ ωΛ
ω2 + Λ2

(5.4)
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imaginary part ofg(t) is included and the Stokes shift has been
accounted for,R1(t3,t2,t1) (R2(t3,t2,t1)) is no longer identical to
R4(t3,t2,t1) (R3(t3,t2,t1)).

In Figure 7, we show the absorption line shapes of the
Brownian oscillator model. For a fixed temperature, e.g.,
kBT ) λ/4, the absorption width increases with decreasingΛ
(slower bath) in the BO model. At the same time, the line shape
approaches a Gaussian in the static limit, and the Stokes shifts
tends to 2λ. For the TLS model, however, the absorption width
decreases with decreasingΛ, and the slow modulation limit of

the absorption line shapes is a Lorentzian. In Figure 8,
absorption line shapes of the extended TLS model are shown
for six values of relaxation rateΛ andT/ε ) 6 (left panel). At
low temperatures, the TLS line shape is neither a Lorentzian
nor a Gaussian. For fixedΛ, λ displays a maximum at a
temperature slightly higher thanε in the TLS model, as shown
in Figure 8 (right panel). In Figure 9, the fwhm (full-width at
half-maximum) ofσ(ω) is plotted versus temperatureT. For
the BO model, the line width∼ xλkBT grows with the
temperature, while for the TLS model, it approaches a finite

Figure 5. Comparison of the exact third response functionR2(t3,t2,t1) and the its second- and fourth-order cumulants (R2
2nd(t3,t2,t1) andR2

4th(t3,t2,t1),
respectively) forp ) 0.5, R ) 10, N ) 12. Upper panel:|R2(t3,t2,t1)|. Middle panel: |R2(t3,t2,t1) - R2

2nd(t3,t2,t1)|. Lower panel: |R2(t3,t2,t1) -
R2

4th(t3,t2,t1)|. Kt1 ) 0.3. Five values ofKt2 are selected: 0.0 (solid), 0.1 (dashed), 0.2 (dotted), 0.3 (dash-dotted), 0.4 (dash-double-dotted), 0.5
(short-dashed).]
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limiting value at high temperatures. The temperature depen-
dence reflects the difference between BO and TLS asymptotics.
At high temperatures, the boson bath becomes Gaussian while
the spin bath saturates. The TLS model is usually applied at
low temperatures, where the two baths show similar behaviors.

It should be noted that the fluctuation-dissipation theorem,
which has been used in deriving eq 5.1, fixes the ratioC′(ω)/
C′′(ω) to be coth(âpω/2), but does not specify the temperature
dependence ofC′(ω) andC′′(ω). For the microscopic Brownian
oscillator modelC′′(ω) is temperature independent. We show
that in the weak coupling limit when the TLS model resembles

Figure 6. Comparison of the Brownian oscillator model (left panel) and the TLS model (right panel): temperature dependence ofC′(ω) and
C′′(ω). C′(ω) in both models increases with temperature: from top down,T ) 2, 1, 0.5, 0. In the Brownian oscillator modelλ is used as the energy
unit, while in the TLS modelε is used as the energy unit.Λ ) 3. C′′(ω) for the Brownian oscillator model has no temperature dependence (left,
lower panel).C′′(ω) for the TLS model (right, lower panel) peaks atT ) ε (solid). Also plotted in that panel areT ) 0.5ε (dashed) andT ) 2ε

(dotted).

Figure 7. Absorption line shapes of the overdamped Brownian
oscillator model.λ is used as the energy unit.T ) 0.25λ. Three values
of Λ/λ are shown: 3 (solid), 1 (dashed), and 0.3 (dotted).

Figure 8. Absorption line shapes of the extended TLS model.T )
ε/6. Six values ofΛ/ε are shown (left panel), from left to right: 6, 5,
4, 3, 2, 1. For a fixed rateΛ ) ε, λ is plotted as a function ofâ (right
panel). A maximum is found at a temperature slightly higher thanε.
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the oscillator model, the line-shape function has the form similar
to that of the Brownian oscillator model with the only difference
thatC′(ω) rather thanC′′(ω) is temperature independent. This
is the motivation for representinggTLS(t) in the form of eq 5.1
rather than eq 5.3.

VI. Multipolar Coupling to a Spin Bath

Assuming a general multipolar chromophore-TLS coupling
in d dimesions,

the distribution functionn(k,V,E) takes the form

For dipolar interations,

wherer j points from the chromophore to thejth TLS, θj is the
angle between thez-axis andr j. The dipolar chromophore-
TLS coupling yields a distribution functionn(k,V,E)

where the proportionality prefactor depends on the angular form
of the chromophore-TLS coupling. The dipolar chromophore-
TLS coupling of eq 6.3 is believed to be mediated by accoustic
phonons.17,22,59,60

The parameters for the chromophore-TLS system include
V, k, E, F, a, Rmax, andT, whereE is the energy separation of
TLS, F is the TLS density,a represents the distance between
the chromophore and the closest TLS (which is the same order
of magnitude as the lattice constant), andRmax is the largest
possible separation between the chromophore a TLS (which
roughly stands for the physical size of the system).

To clarify the applicable range of the central limit (cumulant)
expansion, we note that TLSs can be generally classified into
either “distant” or “nearby” systems according to their distance
from the chromophore. Nearby systems give large but infre-
quent modulations, whereas distant systems give small but
frequent modulation. For nonstatic systems, there exists a

natural criterion of this classification: whether coupling is larger
or smaller than the rate of TLS flipping, For static systems,
however, a small sphere of radiusRc is usually carved out around
the chromphore to define the remaining TLS as distant. The
central limit theorem61 is only applicable to the distant systems
at long times.

We note that, for example, for parallel dipoles
f(θ) ) 1 - cos2 θ,

That is, the chromophore-TLS coupling has equal probability
to be attractive or repulsive. This being assumed, the configu-
rational average then takes the form

For dipolar coupling, we examine a static system (k ) 0) at
low temperatures (p f 0). We recast the first term in eq G1
with

For any real constantC, we have

Carrying out the intergrations overr in the configurational
average given by eq 6.6, we obtain

whereΓ is proportional top and depends on the detailed form
of chromophore-TLS couplingf(θ):

Therefore the line-shape function is a Lorentzian. This result
was first derived in the seminal paper of Stoneham.62 In order
to obtain the Lorentzian line shape, it is essential to set the lower
cutoff a to zero.

At high temperatures (κ , 1, T f ∞), the rates for up and
down transitions are equal (for simplicity, we ignore the
variation in the rates):

The TLS can be divided into nearby (Vj
2 > Kj

2) and distant
(Vj

2 < Kj
2) systems. After the configurational average, the bulk

response function follows from eq 4.2 and eq 6.6:

where the constantA depends on the angular distribution ofVj.
The nearby systems contribute

and the distant systems contribute

Figure 9. Full-width at half-maxima (fwhm) of the absorption line
shapes as a function of temperature for the two models: BO model
(upper panel,Λ ) λ); TLS model (lower panel,Λ ) ε).

Vj ∝ rj
-n (6.1)

n(k,V,E) ∝ V-(1+d/n)δ(k - K) δ(E - E0) (6.2)

Vj ) crj
-3f(θj) (6.3)

n(k,V,E) ∝ 1

V2
δ(k - K) δ(E - E0) (6.4)

∫dΩ f(θ) ) 0 (6.5)

〈 〉c ) 1
V∫0

∞
r2 dr∫dΩ (6.6)

gc(t) ) 〈p(1 - e-iVt)〉c (6.7)

∫0

∞
x2 dx[1 - cos(C

x3)] ) π
6
|C| (6.8)

gc(t) ) Γ|t| (6.9)

Γ ) πcFp
6 ∫dΩ|1 - 3 cos2 θ| ) 8π2

9x3
cFp (6.10)

kj
d ) kj

u )
Kj

2
) K

2
(6.11)

1
N

gc(t) ) A[f1(Kt
2 ) + f2(Kt

2 )] (6.12)

f1(y) )

∫0

∞
x(1 + x2)-3/2[1 - e-y cos(xy) - e-yx-1 sin(xy)]dx (6.13)
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Combining the two contributions,

where I0(x) and I1(x) are modified Bessel functions of zeroth
and first order. We have constructed a Pade´ approximant for
gc(t):

In Figure 10 we compare eqs 6.15 and 6.16. The two curves
are very close over the entire time range.

We point out two limiting cases of eq 6.12 assuming
f(θ) ) 1 - 3 cos2 θ. For the static limitKt , 1, TLS either
does not flip or at most flips once; one has

with

and the line shape is Lorentzian. In the opposite limitKt . 1,

The line shapes obtained using eqs 6.9, 6.17, and 6.19 have the
form of Levy distributions.63,64,71

Finally, the line-shape functionσ(ω) for the dipolar coupling
case is the one-sided Fourier transform of the response function
Jc(t). σ(ω) is quite sensitive to the TLS densityF. The smaller
the density, the sharper the line shape. In Figure 11, we display

σ(ω) for five values ofz (z ) 1.1, 1.4, 1.7, 2.0, 2.3), wherez
is proportional to the TLS density:

We note that for a fixed TLS densityF, the slower the bath, the
closer the line shape is to a Lorentzian. This is consistent with
our discussion of the static limit.

For bulk measurements of chromophores in a glassy matrix,
the nonlinear response functions have to be averaged over the
TLS configurations. Neglecting variations in up and down rates
of TLS, i.e.,Kj ) K, the configurationally averaged three-pulse-
echo response function takes the form37-40

wheret2 andt1 separate the first pulse from the second, and the
second from the third, respectively. The auxiliary functionFh(t)
is defined as

VII. Discussion

In this paper we have compared the Brownian oscillator
(boson bath) and the TLS (spin bath) models for the optical
responses of chromophores in the condensed phase. For the
Brownian oscillator model we can relate the spectral density
functions to the third-order response functions via eq 2.14 using
the second-order cumulant expansions. This relation is exact
for the boson bath. In order to verify to what degree such
relations between the linear response and third-order response
are retained in the TLS model, we expanded the linear and third-
order response functions to the fourth power in the chro-
mophore-TLS coupling strength. We have found that to second
order in the chromophore-TLS coupling strength eq 2.14 holds
for the TLS model. At higher orders, however, deviations from
eq 2.14 have been found.

The TLS model assumes that the bath modulates the transition
frequency of the chromophore. However, the model fails to

Figure 10. Bulk response functiongc(t) and its Pade´ approximant
(upper panel). The curves shown are without the prefactor (π/2)2 NA.
The difference of the two curves is displayed in the lower panel.

Figure 11. Line-shape functionJc(ω) for dipolar coupling is shown
for five values ofz ) πNA/K eq 6.20 which is proportional to the TLS
densityF: from top down,z ) 1.1, 1.4, 1.7, 2.0, 2.3.

z ) πNA
K

∝ F
K

(6.20)

Rh2(t1,t2,t1) ) exp{-F[2K∫0

t1dt Fh(t) + (1 - e-Kt2)Fh(t1)]}
(6.21)

Fh(t) ) πcjkdku

3K2
e-Kt∫0

t
dt′ I0(Kt′) I0[K(t - t′) tanh(âE

2 )] (6.22)

f2(y) )

∫0

1
x(1 - x2)-3/2[1 - e-y cos(xy) - e-yx-1 sin(xy)]dx (6.14)

1
N

gc(t) ) πAKt
4

e-Kt/2[I0(Kt
2 ) + I1(Kt

2 )] (6.15)

2
π

1
N

gc(t) ≈ π
2

A

Kt
2

+ x2
π(Kt

2 )3/2

1 + 1.243(Kt
2 )1/2

+ Kt
2

(6.16)

Jh(t) ) exp[- π
12

cjFt(1 - Kt
4 )] (6.17)

cj ) c∫dΩ|1 - cos2 θ| ) 16πc

3x3
(6.18)

Jh(t) ) exp[- π
12(2π)1/2

cjF(2t
K)1/2] (6.19)
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take into account that the optical excitation of the chromophore
can alter the surrounding TLS via the chromophore-TLS
coupling. Relaxation of the TLS that follows will add to the
equilibrium thermal fluctuations of the TLS. In order to describe
this effect, we extend the TLS model to include the imaginary
part of the spectral density function by means of the fluctuation-
dissipation theorem. Absorption line-shape functions were
calculated and compared with the Brownian oscillator model.
A very different temperature dependence of the absorption line
shape has been found for the two cases.

A microscopic model of phonon-mediated chromophore-
TLS coupling including TLS dynamics was proposed by Sua´rez
and Silbey59 in order to provide insight into the range of validity
of the stochastic TLS model. Path-integral techniques show
that each stochastic trajectory corresponds to a series of quautum
paths. It was concluded that the stochastic TLS model can be
derived from a microscopic Hamiltonian if the TLS dynamics
are uncorrelated.

To gain further insight into the stochastic TLS model, we
also examined a microscopic model for a spin bath in
Appendix H. Cumulant expansions are performed for the
spectral broadening function. To second-order in chromophore-
bath coupling strength, the model reduces to the Brownian
oscillator model. This points to the universal nature of the
Brownian oscillator model in the weak coupling regime of host-
bath systems. The slow modulation and high-temperature limits
of the TLS model are discussed in Appendix G.

The relations between the boson and spin baths can be
visualized using microscopic models. For the boson bath, the
chromophore is linearly coupled to a set of harmonic oscillators
in the microscopic model. If there areN identical oscillators
linearly coupled to the chromophore, one can find a linear
canonical transformation resulting inN transformed harmonic
oscillators, one of which is coupled the chromophore, and the
rest,N - 1, are uncoupled. This implies that for a given bath
frequency the bath is represented by a single effective oscillator.
This rationalizes the well-established description of a boson bath
using a collective coordinate and a spectral density that
represents the correlation functions of the collective coordi-
nate.3,65 The collective coordinate is given by the sum over all
bath frequencies of the coupled effective oscillators (one per
frequency), whereas the spectral density is represented by the
square of the coupling between the effective oscillator of
frequencyω and the chromophore. This picture is, however,
limited to harmonic systems only, and therefore, does not apply
to the spin bath, which is highly anharmonic. This is why for
a spin bath we need more detailed information about the bath,
namely, all individual coupling constants. For the microscopic
model all the relevant information is contained in the distribution
function of the frequencies and coupling constantsn(ω,u)
introduced in Appendix H, whereas the stochastic model can
be described by the distribution functionn(k,V,E) introduced in
Section VI. Adopting the language of correlation functions, a
harmonic system can be described by a two-point correlation
function related to the spectral density since all higher-order
ones can be expressed in terms of the two-point correlation
functions using Wick’s theorem. For an anharmonic (e.g., spin)
bath, the optical response involves high-order correlation
functions and may not be represented in terms of a single
spectral density function.

We have shown, however, that in the case of a large number
(N) of TLSs weakly coupled to the chromophore with coupling
strengthV, the optical response reproduces that of the boson
bath in the limit ofN f ∞ andV2N ) const. This result has a

clear interpretation:N spins of S ) 1/2 can be naturally
represented as a collection of spins from 0 toN/2 (if N is even).
Since largeSspins behave almost as bosons (see, e.g., ref 66),
the behavior of the boson system is reproduced.

The similarity between the fermion and boson baths has been
explored through real-time finite-temperature dynamics.67 It was
concluded that for ohmic disspation (i.e.,γj(ω) ) const) the
two baths have a similar behavior. Additional evidence is
provided by an approximate mapping of the anisotropic Kondo
model68 onto the spin-boson Hamiltonian with ohmic dissipation
using bosonization techniques,69,70 where the oscillators in the
spin-boson model play the role of the spin-denisty excitations
in the Kondo case. SinceS) 1/2 spins correspond to spinless
fermions, it is not surprising that spin and boson baths share
common characteristics. This can also be applied to a bath of
spins of sizeSbecause fermion statistics is gradually replaced
by boson statistics with increasingS.

In this paper, the connection between the two baths has been
established for a much more general situation: all one needs is
to have the TLS distribution functionn(k,V,E) be concentrated
in theV , k regime in order for the spin bath to behave as the
boson bath. The oscillator limit and the deviations are obtained
using a straightforward cumulant expansion in powers ofV/k
carried out in Section VI. The static limit for the TLS model
is defined by the conditionk , V. Nontrivial line shapes for
the TLS model occur whenn(k,V,E) is concentrated in neither
k , V or k . V regimes.

Apart from the obviousk , V (static) limit, there is another
static limit where the TLS model reproduces the boson model
in the static limit. This occurs whenNp(1 - p)V2/k . k (which
can hold even whenV , k providedN is sufficiently large). In
this case the line shape is Gaussian, as is known in the static
limit of the boson model. Using the TLS model, the static limit
of the boson model has the following meaning: although the
TLS is formally in the fast limit (k . V) and the TLS flippings
occur frequently, the changes of the total spin comparable to
N/2 occur very rarely, which means that the effective boson
system is in the static limit. In particular, this provides a clear
interpretation of the dependence of the line shape for the
multipolar model of Section VI on the regulization parameter
a in the static limit. If a is small, the dominant contribution
comes from thek , V regime, and one can setk ) 0, which
yields the result of ref 62 with the Lorentzian line shape (eq
6.17). In the opposite limit of largea, V , k for all TLSs, and
the static limit of the boson model yields a Gaussian line shape.
This implies that depending on the value ofa the line shapes
in the static limitk f 0 interpolate between the Lorentzian and
the Gaussian form.

The first successful realization of single molecule spectros-
copy (SMS) at low temperatures has been performed on
pentacene chromophores inp-terphenyl crystals. SMS allows
us to probe the immediate microscopic environment of a single
molecule, usually in tens of nanometers, eliminating the normal
ensemble averages over the bulk material required by the
classical methods. In the context of single-molecule spectros-
copy, the role of disorder clearly comes into play as each
chromophore is uniquely positioned with respect to the TLS.
Numerical work by Zumofen and Klafter71 reveals that for a
large but finite number of TLSs ordered and disordered systems
have similar behaviors at short times, but at long times, TLS
on a filled lattice induce a Gaussian line shape while disorder
TLSs give line shapes depending on particular realizations. It
was conjectured that for disordered TLSs line shapes after
averaging over realizations would follow a Lorentzian. It will
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be therefore interesting to see how line shapes change from
Gaussian to a Lorentzian form upon the onset of disorder which
can be simply introduced by allowing ordered TLSs to displace
from lattice points. Similarity can be drawn between this case
and the problem of hysteresis in a magnetic particle system
where positional disorder of point dipoles is believed to be
responsible for hysteretical behavior of the system.72 It is also
interesting to compare numerical models of finite numbers of
TLSs and models of infinte spins73 and continuum models of a
spin bath. For example, the continuum model gives a Lorentzian
in the static limit, while a filled lattice of TLS is found
numerically to give a Gaussian line shape. For this case, the
difference lies in the lower cutoffa, which tends to zero in the
continuum model but not in a lattice model.
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Appendix A: Brownian Oscillator (Spin-Boson) Model

In this Appendix we derive an expression for the spectral
density of a boson bath. In the Brownian oscillator model, the
system is taken to be a two-electronic-level system with some
primary nuclear coordinates coupled linearly to the electronic
systems:

where

Herepj (pn), qj (xn), andmj (mn) represent the momentum, the
coordinate, and the mass of thejth (nth) nuclear mode of the
primary (bath) oscillators, respectively.H′ describes the bath
oscillators and their coupling to the primary oscillators with a
coupling strengthcn. For this model, the second-order cumulant
expansions 2.14 are exact, and we have

where

Hereγj(ω) represents the spectral distribution of the coupling

and the real partΣj(ω) of the self-energy is related to the spectral
distribution of the coupling by the Kramers-Kronig relation56

This gives

Appendix B: Linear Response of the Two-State Jump
Model

In this Appendix we derive a closed expression for the linear
response function of the stochastic TLS model. The response
function S(1)(t) can be calculated using the Green function
approach.3 The response functinJ(t) can be written as

Here Fg is the equilibrium density operator, and the Green
function Gmn(t) (m, n can bee or g) is defined by its action on
operatorÂ for a time-dependent Hamiltonian as

J(t) takes the following form if the identity matrices are inserted
in the above equation ofJ(t):

The TLS populations satisfy ordinary rate equations as given
by eq 3.2. Each Liouville space vector is now a two-component
column vector in the TLS population space,

Liouville space operators such asV and Geg become 2× 2
matrices in the same space,

The Laplace transform of the Green functionGeg(t) is

ĤBO ) |g〉Ĥg
BO〈g| + |e〉Ĥe

BO〈e| + Ĥ′ (A1)

Ĥg
BO ) ∑

j
[ pj

2

2mj

+
1

2
mjωj

2qj
2] (A2)

Ĥe
BO ) hωeg

0 + ∑
j

[ pj
2

2mj

+
1

2
mjωj2(qj + dj)

2] (A3)

Ĥ′ ) ∑
n [ pn

2

2mn

+
mnωn

2

2 (xn - ∑
j

cnjqj

mnωn
2)2] (A4)

C′′(ω) ) ∑
j

C′′j(ω) (A5)

C′′j(ω) ) (mjωj
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2

2p ) ωγj(ω)

(ωj
2 + ωΣj(ω) - ω2)2 + ω2γj
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(A6)
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2
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2
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∞
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J(t) ) 〈〈Veg|Geg(t)|VegFg〉〉 (B1)

Gmn(t)Â ≡ θ(t) exp[- i
p
∫0

t
dτ Hn(τ)]Â exp[ i

p
∫0

t
dτ Hm(τ)]

(B2)

J(t) ) 〈〈V|eg〉〉〈〈eg|Geg(t)|eg〉〉〈〈eg|V |gg〉〉〈〈gg|F(-∞)〉〉
(B3)

〈〈V|eg〉〉 ) µ(1 1) (B4)

〈〈gg|F(-∞)〉〉 ) (1 - pj

pj
) (B5)

〈〈eg|V|gg〉〉 ) µ(1 0
0 1) (B6)

〈〈eg|G̃eg(s)|eg〉〉 ) (s + iωeg + kj
u -kj

d

-kj
u s + iωeg + iVj + kj

d)-1

(B7)
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The time-domain response function due to thejth TLS,

can be easily obtained by an inverse Laplace transform.
Alternatively, we introduce the one-sided Fourier transform3

which appears frequently in linear and nonlinear spectra
calculations. In the frequency domain, one obtains

Jj
a(t) (eq B8) is the one-sided Fourier transform of the response

function J̃j(ω).

Appendix C: Third-Order Response in the Frequency
Domain

In this Appendix we derive expressions for the frequency
domain third-order nonlinear optical response of the TLS model.
In the frequency domain, we have

where

We first examine one of the response functions in the
frequency domain

where

andGeg(ω) andGee(ω) are the Green functions.

R1(ω1 + ω2 + ω3, ω1 + ω2, ω1) can be simplified as (cf.
Appendix A)

where we have introduced the parameter

which vanishes at high temperatures, and

with

Similarly, in the frequency domain,

where

R1(ω1+ω2+ω3,ω1+ω2,ω1) ) 1
f(ω1,ω2,ω3)

×

(ω1 + ω2 + ω3 - ωeg - Vj + ikp, ω1 + ω2 +

ω3 - ωeg - ikp)(ω1 + ω2 + i
k′
2

-i
k′
2

-i
k
2

ω1 + ω2 + i
k
2

) ×

((1 - pj)(ω1 - ωeg - Vj + ikp)
pj(ω1 - ωeg - ikp) ) (C5)

kp ) (1 - 2pj)Kj (C6)

f′(ω1,ω2,ω3) )

(ω1 + ω2 + ω3 - iΩ+)(ω1 + ω2 + ω3 - iΩ-) ×
(ω1 + ω2)(ω1 + ω2 + iK)(ω1 - iΩ+)(ω1 - iΩ-) (C7)

Ω+ ) Ωj +
bj

2

Ω- ) -Ωj +
bj

2
(C8)

R2(ω1+ω2+ω3,ω1+ω2,ω1) ) 1
f(ω1,ω2,ω3)

×

(ω1 + ω2 + ω3 - ωeg - Vj + ikp, ω1 + ω2 +

ω3 - ωeg - ikp)(ω1 + ω2 + i
k′
2

-i
k′
2

-i
k
2

ω1 + ω2 + i
k
2

) ×

((1 - pj)(ω1 + ωeg + Vj - ikp)
p(ω1 + ωeg + ikp) ) (C9)

f′(ω1,ω2,ω3) )

(ω1 + ω2 + ω3 - iΩ+)(ω1 + ω2 + ω3 - iΩ-)(ω1 + ω2)

(ω1 + ω2 + iK)(ω1 + iΩ+)(ω1 + iΩ-) (C10)

Jj
a(t) ) e-iω0tJj(t) (B8)

θ(t) f(t) ) - 1
2πi∫-∞

∞
dω F̃j(ω)e-iωt (B9)

F̃j(ω) ) -i∫0

∞
dt f(t)eiωt (B10)

J̃j(ω) )
(ω - ωeg) - iKj - Vj(1 - pj)

(ω - ωeg)(ω - ωeg - iKj) - Vj(ω - ωeg - iKjpj)
(B11)

S(3)(ω1+ω2+ω3,ω1+ω2,ω1) )

(-
1

p)3

∑
R)1

4

[RR(ω1+ω2+ω3,ω1+ω2,ω1) +

RR
/(-ω1-ω2-ω3,-ω1-ω2,-ω1)] (C1)

RR(ω1+ω2+ω3,ω1+ω2,ω1) ≡
(-i)3∫0

∞
dt3∫0

∞
dt2∫0

∞
dt1 RR(t3,t2,t1) exp[i(ω1+ω2+ω3)t3 +

i(ω1+ω2)t2 + iω1t1] (C2)

R1(ω1+ω2+ω3,ω1+ω2,ω1) )

(1 1)Geg(ω1+ω2+ω3) Gee(ω1+ω2) Geg(ω1)(Feq
e

Feq
e′ ) (C3)

(Feq
e

Feq
e′ ) ) (1 - pj

pj
) (C4)
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Substituting the three Green functionsGeg(ω1+ω2+ω3),
Gee(ω1+ω2), andGeg(ω1) in eq C3, we obtain

where

or alternatively, in terms of the poles,

with

Similarly, one has

where

Appendix D: Third-Order Response in the Time-Domain

In this Appendix we derive the time-domain third-order response for the TLS model starting from the frequency-domain expression
derived in Appendix C. The third-order response function can be written in terms of the Liouville-space Green functions,3

R1(t3,t2,t1) can be derived fromR1(ω1+ω2+ω3,ω1+ω2,ω1) via inverse Fourier transforms B10:

R1(ω1+ω2+ω3,ω1+ω2,ω1) ) 1
f(ω1,ω2,ω3)

(1 1)

(ω1 + ω2 + ω3 - ωe′g + i
k′
2

-i
k′
2

-i
k
2

ω1 + ω2 + ω3 - ωeg + i
k
2

)
(ω1 + ω2 + i

k′
2

-i
k′
2

-i
k
2

ω1 + ω2 + i
k
2

)
(ω1 - ωe′g + i

k′
2

-i
k′
2

-i
k
2

ω1 - ωeg + i
k
2

)(1 - pj

pj
) (C11)

ωeg ) ωeg, ωe′g ) ωeg + Vj

k
2

) pjKj,
k′
2

) (1 - pj)Kj (C12)

f(ω1,ω2,ω3) ) [(ω1 + ω2 + ω3 - ωeg + i
k
2) ×

(ω1 + ω2 + ω3 - ωe′g + i
k′
2) + kk′

4 ] ×

[(ω1 + ω2 + i
k
2)(ω1 + ω2 + i

k′
2) + kk′

4 ] ×

[(ω1 - ωeg + i
k
2)(ω1 - ωe′g + i

k′
2) + kk′

4 ] (C13)

f(ω1,ω2,ω3) )
(ω1 + ω2 + ω3 - iΩ+)(ω1 + ω2 + ω3 - iΩ-)(ω1 + ω2) ×

(ω1 + ω2 + iK)(ω1 - iΩ+)(ω1 - iΩ-) (C14)

Ω+ ) Ωj +
bj

2

Ω- ) -Ωj +
bj

2
(C15)

R2(ω1+ω2+ω3,ω1+ω2,ω1) ) 1
f′(ω1,ω2,ω3)

(1 1)×

(ω1 + ω2 + ω3 - ωe′g + i
k′
2

-i
k′
2

-i
k
2

ω1 + ω2 + ω3 - ωeg + i
k
2

) ×

(ω1 + ω2 + i
k′
2

-i
k′
2

-i
a
2
k ω1 + ω2 + i

k
2

) ×

(ω1 + ωe′g - i
k′
2

i
k′
2

i
k
2

ω1 + ωeg - i
k
2

)(1 - pj

pj
) (C16)

f′(ω1,ω2,ω3) )
(ω1 + ω2 + ω3 - iΩ+)(ω1 + ω2 + ω3 - iΩ-)(ω1 + ω2) ×

(ω1 + ω2 + iK)(ω1 + iΩ+)(ω1 + iΩ-) (C17)

R1(t3,t2,t1) ≡ 〈〈Veq|Geg(t3)Veg,eeGee(t2)Vee,egGeg(t1)Veg,gg|Fg〉〉 (D1)

R2(t3,t2,t1) ≡ 〈〈Veq|Geg(t3)Veg,eeGee(t2)Vee,egGeg(t1)Vge,gg|Fg〉〉 (D2)

R3(t3,t2,t1) ≡ 〈〈Veq|Geg(t3)Veg,eeGee(t2)Vgg,geGge(t1)Vge,gg|Fg〉〉 (D3)

R4(t3,t2,t1) ≡ 〈〈Veq|Geg(t3)Veg,ggGgg(t2)Vgg,egGeg(t1)Veg,gg|Fg〉〉 (D4)

R1(t3,t2,t1) ) e-i(ωeg+Vj/2)(t1+t3)-(Kj/2)(t1+t2+t3) (1 1)

(cosh(Ωjt3) + gj sinh(Ωjt3)
k′

2Ωj
sinh(Ωjt3)

k
2Ωj

sinh(Ωjt3) cosh(Ωjt3) - gj sinh(Ωjt3) )(cosh(Kjt2
2 ) + (1 - 2pj) sinh(Kjt2

2 ) k′
K

sinh(Kjt2
2 )

k
K

sinh(Kjt2
2 ) cosh(Kjt2

2 ) - (1 - 2pj) sinh(Kjt2
2 ) ) ×

(cosh(Ωjt1) + gj sinh(Ωjt1)
k′

2Ωj
sinh(Ωjt1)

k
2Ωj

sinh(Ωjt1) cosh(Ωjt1) - gj sinh(Ωjt1) )(1 - pj

pj
) (D5)
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where we have introduced

Similarly, R2(t3,t2,t1) assumes the form

where

We further simplifyR1(t3,t2,t1) as

with

R2(t3,t2,t1) is similarly given by

with

gj )
bj

2Ωj
-

pjKj

Ωj
(D6)

R2(t3,t2,t1) ) ei(ωeg+Vj/2)(t1-t3)-(Kj/2)(t1+t2+t3) (1 1)×

(cosh(Ωjt3) + g sinh(Ωjt3)
k′

2Ωj
sinh(Ωjt3)

k
2Ωj

sinh(Ωjt3) cosh(Ωjt3) - g sinh(Ωjt3) )(cosh(Kjt2
2 ) + (1 - 2pj) sinh(Kjt2

2 ) k′
K

sinh(Kjt2
2 )

k
K

sinh(Kjt2
2 ) cosh(Kjt2

2 ) - (1 - 2pj) sinh(Kjt2
2 ) ) ×

(cosh(Ωj
/t1) + gj

/ sinh(Ωj
/t1)

k′
2Ωj

/
sinh(Ωj

/t1)

k

2Ωj
/
sinh(Ωj

/t1) cosh(Ωj
/t1) - gj

/ sinh(Ωj
/t1) )(1 - pj

pj
) (D7)

Ωj
/ ) xbj

/2

4
+ cj ) xKj

2

4
-

Vj
2

4
+ i(pj - 1

2)VjKj (D8)

gj
/ )

bj
/

2Ωj
/

-
pjKj

Ωj
/

(D9)

R1(t3,t2,t1) ) e-i(ωeg+Vj/2)(t1+t3)-(Kj/2)(t1+t2+t3)(Fj(t3), Gj(t3)) ×

(cosh(Kjt2
2 ) + (1 - 2pj) sinh(Kjt2

2 ) 2(1 - pj) sinh(Kjt2
2 )

2pj sinh(Kjt2
2 ) cosh(Kjt2

2 ) - (1 - 2pj) sinh(Kjt2
2 ) )(2(1 - pj) sinh(Kjt2

2 )
cosh(Kjt2

2 ) - (1 - 2pj) sinh(Kjt2
2 ) )((1 - pj)Fj(t1)

pjGj(t1) )
(D10)

bj
/ ) Kj - iVj

Fj(t) ) cosh(Ωjt) +
bj

2Ωj
sinh(Ωjt)

Gj(t) ) cosh(Ωjt) +
bj
/

2Ωj
sinh(Ωjt)

R2(t3,t2,t1) ) ei(ωeg+Vj/2)(t1-t3)-(Kj/2)(t1+t2+t3)(Fj(t3), Gj(t3)) ×

(cosh(Kjt2
2 ) + (1 - 2pj) sinh(Kjt2

2 ) 2(1 - pj) sinh(Kjt2
2 )

2pj sinh(Kjt2
2 ) cosh(Kjt2

2 ) - (1 - 2pj) sinh(Kjt2
2 ) )((1 - pj)Fj

/(t1)

pjGj
/(t1) ) (D11)

Fj
/(t) ) cosh(Ωj

/t) +
bj
/

2Ωj
/
sinh(Ωj

/t)

Gj
/(t) ) cosh(Ωj

/t) +
bj

2Ωj
/
sinh(Ωj

/t)

Spin versus Boson Baths in Nonlinear Spectroscopy J. Phys. Chem. A, Vol. 102, No. 33, 19986629



Appendix E: Fourth-Order Cumulant Expressions for
the Nonlinear Response of a Spin Bath

In this Appendix we carry out the cumulant expansion for
the stochastic model of a spin bath. To the fourth order inV/k,
we obtain

where the auxiliary functionsh(t3,t2,t1) andδ(t3,t2,t1) are defined
as

Fn (n ) 1, 2, 3, 4 ) vanish to second order inV/k, pointing to
the fact that to second order inV/k the TLS model is equivalent
to the Brownian oscillator model. However, third- and fourth-
order terms are nonzero. ForF1 and F4, the differences are
proportional to e-kt2t1t2t3 for small time arguments.

Appendix F: Line-Shape Functions for the Boson and
the Spin Bath

In this Appendix, we give the expressions for the line-shape
functions gBO(t) and gTLS(t) of the boson and spin bath,
respectively. In eq 5.3, we presented the line-shape function

for the boson bathgBO(t) in terms of the spectral density function
C′′(ω). Alternatively,gBO(t) can be written as

The meromorphic funtion coth(âpω/2) may be expanded as a
summation over its poles, which are the Matsubara frequencies
for bosons:74

with

This allows representingM′(t) and∆2 in terms of the Matsubara
frequenciesνn by means of contour integrations:

Contour integrations also yieldM′′(t):

with eq F5 reducing to an identity.
The line-shape functiong(t) ) g′(t) + ig′′(t) is therefore

obtained from eq F1 as

The summation in eq F11 can be carried out, and results are
expressed in terms of special functions:

F1(t3,t2,t1) ) F4(t3,t2,t1) + 〈(Vk)3
δ(t3,t2,t1)〉c

(E1)

F2(t3,t2,t1) ) F3(t3,t2,t1) + 〈(Vk)3
δ(t3,t2,t1)〉c

(E2)

F3(t3,t2,t1) ) -i〈(V
k)3

p(1 - p)(1 - 2p)kt2e
-kt2(1 - e-kt1) ×

[(kt2 + 2)(1 - e-kt3) - 2kt3]〉
c

+

〈(V
k)4p(1 - p)

2
e-kt2{(1 - 2p)2[kt2h(t3,t2,t1) +

4kt1(1 - e-kt3) + 4kt3(1 - e-kt1) - 4k2t1t3] +

(1 - e-kt1)(1 - e-kt3)[kt2 + 2p(1 - p)e-kt2(1 + e-kt1-kt3) -

2p(1 - p)(e-kt1 + e-kt3)]}〉
c

(E3)

F4(t3,t2,t1) ) -i〈(V
k)3

p(1 - p)(1 - 2p)kt2e
-kt2(1 - e-kt1) ×

(1 - e-kt3)〉
c

+ 〈(V
k)4p(1 - p)

2
e-kt2{(1 - 2p)2kt2h(t3,t2,t1) +

(1 - e-kt1)(1 - e-kt3)[kt2 + 2p(1 - p)(1 - e-kt2) ×
(e-kt1 + e-kt3)]}〉

c
(E4)

h(t3,t2,t1) ) 2kt1e
-kt1(1 - e-kt3) + 2kt3e

-kt3(1 - e-kt1) -

(kt2 + 5)(1 - e-kt1)(1 - e-kt3) (E5)

δ(t3,t2,t1) ) 2ip(1 - 2p)(1 - p)[kt2(1 - e-kt3) +

kt3(1 - e-kt2) - 2(1 - e-kt2)(1 - e-kt3)] (E6)

gBO(t) ) ∆2∫0

t
dτ2∫0

τ2dτ1 M′(τ1) - iλ∫0

t
dτ[1 - M′′(τ)] (F1)

M′(t) ) 1

π∆2∫0

∞
dω C′′(ω) coth

âpω
2

cos(ωt) (F2)

M′′(t) ) 1
πλ∫0

∞
dω

C′′(ω)
ω

cos(ωt) (F3)

∆2 ) 1
π∫0

∞
dω C′′(ω) coth

âpω
2

(ω) (F4)

λ ) 1
π∫0

∞
dω

C′′(ω)
ω

(F5)

coth
âpω

2
)

2

pâ
∑

n

1

iνn - ω
(F6)

νn ) 2nπ
pâ

, n ) 0, (1, (2, ... (F7)

∆2 ) λΛ cot
pâΛ

2
+

4λΛ

â
∑

n

νn

νn
2 - Λ2

(F8)

M′(t) )
1

∆2(λΛ cot
pâΛ

2
e-Λt +

4λΛ

â
∑

n

νne
-νnt

νn
2 - Λ2) (F9)

M′′(t) ) e-Λt (F10)

g′(t) )
λ

Λ
cot

pâΛ

2
(e-Λt + Λt - 1) +

4λΛ

pâ
∑
n)1

∞ e-νnt + νnt - 1

νn(νn
2 - Λ2)

(F11)

g′′(t) ) - λ
Λ

cot
pâΛ

2
(e-Λt + Λt - 1) (F12)
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whereν ) 2π/pâ, γ is the Euler’s constant (≈0.577 216 ),Φ-
(z,s,a) is the Lerch transcendent, andΨ[n](z) is the Digamma
function.

For the spin bath, we have

The line-shape functions for the spin bath can then be obtained
as

where

We expand tan(pâω/2) as a summation over its poles, which
are the mastubara frequencies for fermions:74

with

Performing contour intergrations, one obtains from eqs F15-
F18

Appendix G: Limiting Cases of the Linear Response

In Section IV, we have examined the limit of weak chro-
mophore-TLS coupling. Here we look into the opposite limit
of slow TLS modulation of the chromophore transition fre-
quency. The static limit (K ) 0) can be seen as the case of
defect-induced inhomogeneous broadening.62,75

1. Slow Modulation. In the opposite limitV . k, we expand
gc(t) to the second order ink/V:

In the high-temperature limitκ , 1 , gc(t) reduces to

1a. Static Limit k) 0. In this limit, p is actually the
occupation probability of the excited TLS, which is equivalant
to the defect density in the lattice model of inhomogeneous line
shapes.62,75,76

Upon expanding the first term of eq G2 to ninth order inVt,
one obtains

g′(t) ) λ
Λ

cot
pâΛ

2
(e-Λt + Λt - 1) +

λ
πΛ[2γ + 2 log(1- e-νt) + e-νtΦ(e-νt,1,

ν - Λ
ν ) +

e-νtΦ(e-νt,1,
ν + Λ

ν ) + (1 - Λt)Ψ[0](ν - Λ
ν ) +

(1 + Λt)Ψ[0](ν + Λ
ν )] (F13)

gTLS(t) ) ∆2∫0

t
dτ2∫0

τ2dτ1 M′(τ1) - iλ∫0

t
dτ[1 - M′′(τ)]

(F14)

M′(t) ) 1

π∆2∫0

∞
dω C′(ω) cos(ωt) (F15)

M′′(t) ) 1
πλ∫0

∞
dω

C′(ω)
ω

tanh
âpω

2
cos(ωt) (F16)

∆2 ) 1
π∫0

∞
dω C′(ω) (F17)

λ ) 1
π∫0

∞C′(ω)
ω

tanh
âpω

2
(F18)

g′(t) )
p(1 - p)V2

Λ2
(e-Λt + Λt - 1) (F19)

g′′(t) ) -p(1 - p)V2[ 1

Λ2
tan

pâΛ

2
(e-Λt + Λt - 1) +

4Λ

pâ
∑
n)0

∞ e-νnt + νnt - 1

νn
2(Λ2 - νn

2) ] (F20)

νn )
(2n + 1)π

pâ
(F21)

tan
âpω

2
) -

2

pâ
∑

n

1

iνn - ω
(F22)

νn )
(2n + 1)π

pâ
, n ) 0, (1, (2, ... (F23)

∆2 ) p(1 - p)V2 (F24)

M′ ) e-Λt (F25)

λ )
p(1 - p)V2

Λ
tan

pâΛ

2
+

4Λ

pâ
∑

n

1

νn(Λ
2 - νn

2)
(F26)

M′′(t) )
p(1 - p)V2

Λλ
e-Λt tan

pâΛ

2
+

4Λ

pâλ
∑

n

e-νnt

νn(Λ
2 - νn

2)
(F27)

1
N

gc(t) ) -〈ln[1 - p(1 - e-iVt)]〉c +

〈kV2p(1 - p)
Vt cos

Vt
2

- 2 sin
Vt
2

cos
Vt
2

+ i(1 - 2p) sin
Vt
2

〉
c

+

〈k2

V2

p(1 - p)

[cos
Vt
2

+ i(1 - 2p) sin
Vt
2]2[(3 - 8p(1 - p))

(1 - cosVt) + iVt(1 - 2p)(2 + cosVt) -
1
2

V2t2(2p - 1)2 - (2p2 + (1 - 2p)(3i + Vt)) sin]〉
c

(G1)

1
N

gc(t) ) -〈ln1 + e-iVt

2 〉
c

+ 〈kV(Vt
2

- tan
Vt
2)〉

c
+

〈k2

V2

1 - costV - tV sin tV
1 + costV 〉

c
(G2)
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where

Odd-order terms have a factor 1- 2p which vanishes at high
temperatures, and all terms are proportional top(1 - p). We
note that the coefficients of (Vt)2n and (Vt)2n+1 containn terms
up to xn. It is interesting to observe that the coefficients ofxi

in odd-order terms (Vt)2n+1 is i times those ofxi in even-order
terms (Vt)2n.

At high temperatures (κ , 1), half of a lattice is occupied
by defects. One obtains from eq G3 a Gaussian lineshape, i.e.,
for Kj f 0 andT f ∞ (κ , 1),

provided that the higher-order terms

are vanishingly small. In order for the above summation to
remain finite in the case of dipolar coupling, however, one has
to impose a lower cutoff for the chromophore-TLS separation,
a.

At low temperatures,p f 0 , and most TLS remain in their
ground states. One obtains from eq G1

For the dipolar coupling, a Lorentzian line shape emerges as
the lower cutoff for the chromophore-TLS separation,a, tends
to zero. This is discussed in Section IV.

2. High Temperature K , 1. Performing a high-temperature expansion of eq 4.1 to second order in (p - 1/2), we obtain

Appendix H: Microscopic Model for a Spin Bath

In this Appendix we introduce a microscopic model of the
spin bath and derive a closed expression for the line-shape
function. We assume that the chromophore is coupled to a bath
represented by a collection of the TLS. The Hamiltonian has
the form

or equivalently,

where

HereĤj
g anf Ĥj

e are the Hamiltonian of thejth bath spin when
the chromophore is in the ground and excited states, respectively,
andÛ is the collective bath coordinate. In eq H1σ0

R represent
Pauli matrices of the chromophore, whereasσj

R are the Pauli
matrices that represent spins of the bath.ωeg is chromophore
frequency;ωj is the frequency of thejth bath spin, which is
decoupled from the chromophore in the ground state of the
chromophore but coupled with strengthuj in the chromophore

g(t) ) ∑
j

p(-iVjt) + ∑
j

[ x

2!
(-iVjt)

2 +
(1 - 2p)x

3!
(-iVjt)

3 +

1

4!
(x - 6x2)(-iVjt)

4 +
1 - 2p

5!
(x - 12x2)(-iVjt)

5 +

1

6!
(x - 30x2 + 120x3)(-iVjt)

6 +

1 - 2p

7!
(x - 60x2 + 360x3)(-iVjt)

7 +

1

8!
(x - 126x2 + 1680x3 - 5040x4)(-iVjt)

8 +

1 - 2p

9!
(x - 252x2 + 5040x3 - 20160x4)(-iVjt)

9] (G3)

x ≡ p(1 - p) (G4)

g(t) ) ∑
j

ln
1 + e-iVjt

2
≈ -i

1

2
∑

j

Vjt -
1

8
∑

j

Vj
2t2 (G5)

-∑
j

[ 1
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(Vjt)
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1

4 × 6!
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17

4

1
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(Vjt)

8 + ...] (G6)
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j

pj(1 - eiVjt) (G7)

1
N
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2
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- 〈ln[cosh(12xk2 - V2t) + k
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2)Vk
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〉

c

-

〈12(p - 1
2)2 ( Vk

k2 - V2)2 1
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c

(G8)
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2
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2
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ujσj
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1 + σ0

z
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(H1)

Ĥ ) |g〉Ĥg〈g| + |e〉(ωeg + Ĥe)〈e| (H2)
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Ĥe ) ∑
j

Ĥj
g + Û ) ∑

j

ωj

2
σj

z + ∑
j

ujσj
x (H4)

6632 J. Phys. Chem. A, Vol. 102, No. 33, 1998 Zhao et al.



excited state. For the linear response functionJj(t) we have

where exp(-âHj
g) with â ) 1/kBT is the equilibrium density

matrix of thejth bath spin. A straightforward calculation yields

where

IntroducingJ(t;ω,u) with ω, u substituted forωj, uj and the
distributionn(ω, u), we can recast eq H5 in a form

where we use the normalization

Equations H8 and H6 express the line-shape functiong(t) in
terms of the distribution functionn(ω,u) in the general case.

Now we consider the weak coupling limit whenn(ω,u) is
nonzero only in the regimeu , ω. Expanding ln[Fj(t;ω,u)] in
powers ofu/ω and retaining terms up to sixth order yields

where

Introducing the spectral densityC(ω) by

we reproduce the result of the Brownian oscillator model to
second order inu/ω:
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