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Understanding the similarities and differences between optical coherence loss of electronic
transitions of chromophores in glasses and in the glass forming solvent requires, in part, linear
response (2-point correlation functions, J(t;T). An approximate excited state vibrational
Hamiltonian H.) which accounts for both linear and quadratic electron—phonon coupling is
derived that is acceptable for mode frequency changes smaller than 30%. The associated linear
response function for the case of no damping is obtained. A response function that includes damping
is proposed for systems whose modes are either linearly or quadratically coupled. It is the product
of three response functions, two of which are phononic and associated with linear and quadratic
modes. The third response function is electronic with a dephasing frequyenthat is the width of

the zero-phonon line. The total response function yields single-site absorption spectra in which
folding of the widths of multi-phonon and sequence transitions occurs. Applications of the new
response functions are made to the temperature dependence of single-site absorption and
hole-burned spectra of the special pair band of the bacterial reaction center and the temperature
dependence of the single site absorption spectrum of Al-phthalocyanine tetrasulphonate in glassy
ethanol. ©1998 American Institute of Physids$S0021-96068)70942-(

I. INTRODUCTION plications of the MBO model the frequency dependence of
¥; is commonly neglected which amounts to a white spec-
Recently, there has been considerable activity in the usgum for the bath(known as Ohmic dissipatignin the case
of femtosecond photon echo spectroscopies to study howf an underdamped mode/(< w;), this leads to a width for
nuclear (vibrationa) motions lead to the coherence loss of the zero-phonon linéZPL) of 2Sj(2n;+1)y;, whereS; is
optical transitions of solute chromophores in liquids at roomthe Huang—Rhys factor antj the thermal occupation num-
temperaturé-*? Of particular interest has been the role of ber of BOj. Only when the frequency dependenceyofis
inertial (librational) intermolecular modes(“phonons™)  properly taken into account doeg(w) vanish asw—0 so
which couple linearly to the electronic transition and lead tothat the phononic relaxation does not contribute to the width
optical dephasing on a timescale shorter than 1(Bsch  of the ZPL, as should be the case. In addition, it would be
modes lead to multi-phonon transitions in tBg—S; ab-  necessary to combine the standard MBO model with other
sorption spectrum.One reason for this interest is that the models for electronic dephasirigide infra since it does not
inertial modes may set the stage for longer timescale, largejccount for such dephasing. Work in this direction is in
amplitude nuclear solvent dynamics which are the rate limprogress.
iting step in condensed phase electron—transfer reactions. As discussed in Refs. 16, 17, hole burning and photon
The multimode Brownian oscillatafMBO) modet®**has  echo spectroscopies have been used to study pure electronic
Oﬂen been Used in the interpretation Of the data. In th|$jephas|ng of the ZPL of Chromophores in g|asses and p0|y_
model the linearly coupled modes are the primary BOsmers at low temperatures since the early 198@e Refs. 18,
which, along with the bath oscillators, are taken to be har4g for reviews. At temperatures lower than about 10 K the
monic. The coupling between a primary BO and the bathomogeneous width of the ZPL is determined by the tunnel-
modes is linear in the BO displacement which results fromng dynamics of the bistable configurations or two-level sys-
electronic excitation of the chromophore. This couplingiems of the glass. Above about 15 K the dephasing is domi-
gives rise to a damping constantj(w), for BO j of fre-  nated by quadratic electron—phonon coupling of the type
quency w;. This gives rise to an effective frequency- igentified earlier for chromophores in host crystals. The stud-
dependent damping/(w))) for the jth BO where the fre- a5 of the ZPL in glasses and polymers led to three important
guency dependence arises from the spectral distribution 9fndings. The first is that the exchange coupling dephasing
the BO.’S coupling to the path oscillatorg;(w) enters into  achanisn?®?! which stems from diagonal quadratic
the optical response functidisee p. 227 of Ref. 15In ap-  gjectron—phonon coupling, often accounts for the homoge-
neous width of the ZPL at higher temperatures. This cou-
dElectronic mail: gsmall@ameslab.gov pling leads to a change in the frequency of a pseudo-
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localized phonon upon electronic excitation of thelnsofar as the temperature dependencieygfand y; are
chromophore. The second finding is that these dephasingpncerned, one need consider different mechanisms and feed
phonons are Franck—Cond¢RC) inactive, i.e., exhibit neg- their T-dependencies intd(t;T), which is standard proce-
ligible linear electron—phonon coupling. The third finding is dure.J(t;T) or, equivalently the lineshape functiggt;T),

that the linearly coupled modes responsible for multi-phonorallows for straightforward evaluation of the 4- and higher-
transitions appear to be infrequently involved in pure elecpoint correlation functions associated with photon echo spec-
tronic dephasing. The last two findings suggest that the sydroscopies. Next, we consider the case where the active
tem phonons can often be divided into two subsets, one asnodes exhibit diagonal quadratic electron—phonon coupling
sociated with linear coupling and the other with quadraticwhich results in mode frequency changes upon electronic
coupling. The most detailed studies which support the abovexcitation of the chromophore. An approximate excited state
findings involved spectral hole burning experiments on Al-vibrational HamiltonianH,, is derived which is shown to be
phthalocyanine tetrasulphonat@PT) in hyperquenched adequate for a mode frequency change smaller than about
glassy films of watet® ethanol and methandlwhich were ~ 30%. (Off-diagonal quadratic electron—phonon coupling or
performed over a very wide temperature range;-330 K.  the Duschinsky effect is neglected since it is expected to be
In the case of water, the exchange coupling modes correlata¢himportant for strongly allowed electronic transitions of
with the 50 and 180 ciit transverse and longitudinal acous- dye molecule$® Such a change may be considered to be
tic modes of liquid water. For ethanol, the exchange couplindarge for low frequency modes of condensed phase systems.
mode frequency is-50 cmi %, close to the first maximum in An expression for the linear response function is derived for
the spectral density of liquid ethanol. High resolution hole-the case of no damping. A linear response function with
burned spectra proved that these modes exhibit little if ang@amping is given for a system whose modes are either lin-
FC activity. For water, ethanol and methanol the FC activityearly or quadratically coupletsee the preceding paragraph
by intermolecular modes is dominated by phonons at 38, 20r motivation. The response function is the product of three
and 17 cm?, respectively. They were assigned as modedgesponse functions, two of which are associated with a
mainly associated with APT librational motion. In the casePhononic contribution, one from linearly coupled modes and
of glassy water, characterization and determination of théhe other from quadratically coupled modes. The third re-
electron—phonon coupling parameter§including the Sponse function is associated with pure electronic dephasing.
Huang—Rhys factor and shape of the one-phonon profile for ~Applications of the new response functions include the
the linearly coupled mode at 38 ¢y and static inhomoge- single-site absorption and hole-burned spectra of the special
neous broadening associated with the pure electronic trandf@ir band of the bacterial reaction center which previous
tion at lower temperatures led to calculated hole-burnedtudies had shown to be characterized by linearly coupled
spectra for higher temperatures in good agreement with thglodes at 30 and 120 crh (Ref. 29 and the temperature
experimental spectrd. The frequency domain hole burning dependence of the single-site absorption spectrum of Al-
theory of Hayest al?22was used for the calculations. The Phthalocyanine tetrasulphonate in glassy ethanol.

results indicate that the above inhomogeneous broadening is

constant over the temperature range used in the experiments.

Given the good agreement, the same experimentally deterr THEORY AND CALCULATED SPECTRA

mined parameters were used to calculate the width of the . . I _—

APT’s origin absorption band in water at room temperature.f_‘l' App()ircl)_xmate excited ?tate_V|brat5>n§I Hamlrl]tonlan

The value of 500 cm® obtained differs by only 10 cit daen?nin inear response function  J(£; T) with no

from the experimental value. It was suggested that the com- PIng

bination of temperature dependent hole burning and photon Consider absorption from the ground electronic stgje

echo studies above and below the glass transition of the solo an excited electronic state) and letw” andw’ be, re-

vent should provide new insights on optical coherence los§pectively, the ground and excited state frequencies of a vi-

of chromophores in liquidésee also Refs. 25, 26 brational mode. Lety be the dimensionless normal coordi-
We present here linear response or 2-p0int Corre|atiorﬁ]ate of this mode for the grOUnd electronic state. It is related

functions,J(t:T), which do yield single-site absorption and to the mass-weighted coordinat®, by q=(w"/%)"2Q.

hole-burned Spectra at finite temperature that describe th%lmllarly, we defined as the dimensionless translational dis-

essential features of experimental spedffie harmonic ap- Placement between the potential energy minima of the two

proximation is assumed for the optically active moy@he electronic states. For linear and diagonal quadratic electron—

response functions are appropriate for modes which are urphonon coupling the excited state vibrational Hamiltonian is

derdamped,y;<w;.?’ The cases of critically damped and 9iven exactly by’

overdamped modes are treated in Chap. 8 of Ref. 15. The P

case of linear electron—phonon coupling is considered first. He=Hg+ - [(r2—1)g?+2r%qd+r2d?]+4Q, (1)

The form of J(t;T) yields, for example, widthgfwhm) of

Ye(T) +1n;7;(T) for members of the cold absorption pro- \yhere r=(w'/w"). #Q is the adiabatic electronic energy

gression (;=0,1,...) associated with modlavith ve|(T) the 535 Ther2d2 term multiplied by%»"/2 is the optical reor-
contribution from pure electronic dephasing. The linear de'ganization energy. Thus

pendencefolding) on n; is valid for any relaxation mecha-
nism of the active phonon that is linear in its coordinate.  Q,=Q+ w"r2d?/2, 2
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where ), is the vertical (Condon frequency gap. When The most important effect from quadratic coupling for sys-
o' =w", the optical reorganization energy %", with S  tems of the type we are interested in has to do with the
=d?/2 being the familiar Huang—Rhys factor. In Ea), Hyg sequence structure in the absorption spectrum, nles;n’
is the vibrational Hamiltonian for the ground state: transitions which carry different frequencies, one result of
- which could be beats in photon echo decays. The relative
Hy=fo"(@"a+1/2), 3 intensities of such transitions depend, of course, on tempera-
with a* and a the raising and lowering operators for the tUre. Importantly, the expression fét. given by Eq.(5
ground state, i.eq=2"Y%a" +a). For a multimode system retains the sequence stru_cture. It is to be appreciated that, in
one need only sum Eq1) over all modes. When dealing 9€neral, both the effective mass and the frequency may
with fluorescence or resonance Raman, one should intefN@nge upon optical excitation and can contribute to the qua-
changee andg, ' and” and associate with the normal dratic electron—phqton coupling. Equ_ati()h) assumes thaF
coordinate of the excited stafe.g.,d would now equal only the frequency is changed. Our discussion of the limita-

('1%)AQ rather than &"/4)AQ]. The reader is referred to tions of Eq.(5) is based on this reference Hamiltonian. How-
Ref. 31 for a furtheiand simple discussion. ever, if the mass is allowed to change as well, these condi-

Exact solutions to the problem of determining thetions. may change. It is possible, for example, to 'find a
Franck—Condon factors associated with Ef. have been Certain ratio of mass and frequency change for which the
available for many year®-% Thus, the calculation of Hamiltonian Eq.(5) is exact. _ _

“stick” linear absorption spectrag(w), is routine. One can We turn next to the two-point correlation functidit)
introduce shapes to the sticks and calculate the temperatufg10se Fourier transform yields the linear absorption spec-
dependencies of the integrated absorption intensities of th&Um- In the Heisenberg pictufe,

vibronic (phononig transitions. However, doing the equiva- ) )

lent of this in the time domain with Eq1) is both difficult I(t;T)=(eMe" v (q)e e v (q) pg), (7)

and impractical, especially when one is interested in nonlin-

ear spectroscopies such as the 2-pulse and 3-pulse stimulateth p,=exp(—BHy)/Triexp(-pLHy)], B= (kT) "L - de-
photon echo since they involve 4-point correlation functionsnotes the quantum mechanical tra@d&) over the nuclear
From a practical standpoint it is essential, therefore, to apdegrees of freedom. Because we are in the Heisenberg pic-
proximate Eq.(1) even though thécomplicated linear re-  ture, the electronic transition dipole moment operat@r) is
sponse function corresponding to it can be derifredult not  time-independent. In the Condon approximation, which we
shown. In what follows we derive an expression fét,  employ®® the dependence of on the vibrational coordinates
which is adequate for=0.7 (without a loss generality we q is lost, i.e.,,v(q)=v(0), a constant whose magnitude
take w’' < w"). squared contains the square of the pure electronic transition

Our approach involves a first-order Taylor series expandipole. Settindv (0)|? multiplied by other constants equal to
sion of ther?—1 andr? terms in Eq.(2) aboutr=1 (e.g., 1 for convenience, we are left with
r2—1~2r—1). When it is recognized that; of Eq. (3) is
exactly equivalent to J(t;T):<engt/ﬁe_iHet/ﬁpg>’ (8)

— ! + " + "

Hy=fhw'(a’ar 1 —ho'(r=l)ata-ho"(r 1)/(24:) to evaluate withH, and H, given by Eqgs.(3) and (5). In

doing so we employed coherent states for the phonon field

it follows easily that rather than number states. The reader is referred to Refs.
1 39-42 for discussions on advantages gained in the utilization
He~ho'||ata+=|+(2—r YHd(a™+a)/v2 of coherent states as a complete basis set. In Appendix A we

2 review some basic properties of coherent states, including

their evolution under the time-evolution operator. We men-
+1Q, (5) tion here only that a coherent stdtgis an eigenvector of the
non-Hermitian lowering operata,

+(2—r"YHd?2

when the term 2% o’ (1—r ") (a*2+a?) is dropped. It is

the elimination of this term that leads to the desired simpli-  a|z)=2|z), 9
fication. The &2+ a?) operator brings intensity, in first or-

der, to phononic transitions for which the quantum number \where the eigenvalue can be complex, thge) can be ex-
changes by=2. However, the contributions from that opera- pressed as a superposition of phonon number states and that

tor to such transitions which carry sufficient intensity from coherent states obey a special type of closure relationship:
linear coupling to be relevant to linear and nonlinear optical

experiments are small for=0.7. The effect of the *? 1 12)(z|
+a?) operator on transitions for which the quantum number — — f d?z e =1, (10)
change is odd is also small for sucivalues(see below for T
supportive resulls The vertical transition frequency from ) . o 2
Eq. (5) is whered“z=d(Re2d(Im 2). It is the elimination of thea
anda? operators fronH, that allows for a relatively straight-
Q,=Q0+w'(2-r YHd?2. (6)  forward evaluation ofi(t;T). The result i§®
v
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TABLE I. Franck—Condon factors fd8=0.8 andr =0.7 and 0.§in parentheses

(n’,n")? Equation(17) ExacP Englmars
(0,0 0.63 (0.55 0.51 (0.49 0.46 (0.45
(1,0 0.30 (0.33 0.40 (0.39 0.28 (0.28
(2,0 0.070 (0.10 0.091 (0.11) 0.087 (0.089
(3,0 0.010 (0.020 0.0040 (0.013 0.0200 (0.020
(0,2 0.29 (0.33 0.28 (0.30
(1,2 0.19 (0.088 0.057 (0.040
2,2 0.34 (0.32 0.43 (0.37
(3,1 0.14 (0.19 0.22 (0.29
0,2 0.066 (0.10 0.13 (0.149
(1,2 0.34 (0.32 0.17 (0.22)
2,2 0.023 (0.00020 0.00044 (0.013
(3,2 0.29 (0.21) 0.30 (0.23
0,3 0.010 (0.020 0.053 (0.048
1,3 0.14 (0.19 0.17 (0.19
2,3 0.29 (0.21) 0.044 (0.069
3,3 0.0035 (0.048 0.055 (0.083

" andn’ are the initial and final electronic state vibrational quantum numbers’/w”.
bCalculated usingiaTHEMATICA with exact harmonic oscillator wavefunctions.
‘Calculated using the equation on p. 121 of Ref. 35.

J(t'T)=£f ks (z|eMolhe=Hellhp |7) (11 a(w-T)=i fMJ(t-T)eiwtdt (16)
’ m ) (z|z) Py ' 2w ) w7 '
cC(1 f The result is(Appendix
=—(—)exp{—2+f3 , (12) SApp B
Q fl 1:1 a'(w,T)
where Q=Tr[exp(=BHg)] is the canonical partition func- (Sl &
tion, :2_1(1_e_ﬁﬁw”)e_seff2 —( e1;f 2 e_nnﬁﬁwn”!
=0 q ”"_
Q=[2 sinH Bhw"2)]" %, (13) ! =0
n” m
and m+1lH—2m
X —
” P ’ " i mz:O |ZO ( 1) 2
CEe—Bﬁw /Ze—l(w ) )t/Ze—IQv'[7 (14@
_ /YN N (4Seff)m(2m)!6|
=1_ Bho" +i(0"—o')t ~_ ’
f,i=1-e ! (14b) (M2 —m)i(m+ D (m—1y | 8@ 1)
fZESeffefﬁhwwriwrrt(efiw't_1)2, (140) +§(Z)+|w’)]' (17)
fa=iSeri't+Sep(€ 1@ 1= 1). (14d  where ¢ is the von Neumann symbdk,=1, =2 for |
I _ C1\2.42 =1) and
The derivation of EQ.(12) leads toSg.s=(2—r " 7)=d“/2
which contains a term of higher order than should be re- G=w—-Q—qo’+(0"—')(n"+1/2). (18

tained. For this reason and because the first term ot Eq)
should cancel out the contribution @, from the optical
reorganization energy in the last exponential of 84.a), we
use in what follows:

Sq¢1 is defined by Eq(15). In Eq.(17) n” is the initial state
quantum number of the absorption transition. We performed
calculations which confirmed that E(.7) and the numerical
Fourier transform(FT) of Eq. (12) yield identical spectra.
Serr=(2—r7)d?/2. (15 Franck—Condon factors fon”—n’ transitions can be ob-

. . . tained from Eq(12) by setting the value af” and the value
With this equation and Ed), Egs.(149 and(14d become of w for then”—n’ transition of interest. One then sets the

C=g Bho"l2g=i(0' —w")ti2g=i0t (14a) (1—exp(-pho") and expE-n"phe”) terms equal to unity
and adds the terms in E(L7) whose delta functions give the
and correctw-value. All appropriate delta functions are then set
f3ESeff(e“‘°/‘—1). (14d) equal to unity. This procedure is somewhat cumbersome for

hot transitions. For cold transitions;’=0, it is simple be-

At this point it is important to establish the reliability of causeq in Eq. (17) is n” and m and | are zero. Table |
J(1;T) as given by Eq(12); i.e., one need check the Franck— compares our approximate FC factors for a few transitions
Condon(FC) factors. The easiest way to do this is to Fourierwith the exact FC factors calculated using harmonic oscilla-
transformJ(t;T) to obtain the linear absorption spectrum: tor wavefunctions withMATHEMATICA 2.2. [We confirmed
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TABLE Il. Franck—Condon factors fa=2.0 andr =0.7 and 0.§in parenthesgs

(n',n")? Equation(17) ExacP Englmari
(0,0 0.32 (0.22 0.19 (0.17 0.14 (0.149
(1,0 0.36 (0.33 0.37 (0.33 0.14 (0.19
(2,0 0.21 (0.25 0.30 (0.29 0.068 (0.068
(3,0 0.080 (0.13 0.12 (0.15 0.022 (0.022
0,2 0.36 0.33 0.26 0.27
1, 0.0070 (0.056 0.077 (0.10
2, 0.13 (0.042 0.045 (0.017
3, 0.24 (0.19 0.27 (0.20
0,2 0.21 (0.25 0.22 (0.29
1,2 0.13 (0.042 0.0024 (0.0012
2,2 0.13 (0.17 0.14 (0.15
(3,2 0.0061 (0.016 0.016 (0.043
0,3 0.080 (0.13 0.15 (0.1
13 0.24 (0.19 0.068 (0.079
2,3 0.0061 (0.016 0.0610 (0.070
3,3 0.17 (0.1 0.046 (0.040

" andn’ are the initial and final electronic state vibrational quantum numbers’/w”.
bCalculated usingiaTHEMATICA with exact harmonic oscillator wavefunctions.
‘Calculated using the equation on p. 121 of Ref. 35.

that, for pure linear coupling, Eq17) gives FC factors in 9;(t;T) = S[ coth B w]/2) (1 cog w]'t))
exact agreement with the values calculated using the latter o
method] The results given in Tables | and Il are for0.7 +i sin(wjt)]. (21)

and 0.8 andS=0.8 (Table ) and 2.0(Table Il) with S
=d2/2. Sy¢¢ in Eq. (17) is determined using Eq15). Over-
all, the agreement between the approximate and exact F

factors may be said to be quite satisfactdiyhe agreement . o i . .
for r=0.8 is better than for=0.7) As expected, the agree- tion spectrum consisting of delta-function peaks; see Eq.

) . The problem, therefore, is to introduce damggidgn a
ment for small FC factors worsens. However, the assomategj) P . R

- ) . way that yields physically acceptable spectra.
transitions would contribute relatively weakly to the absorp-

Equation(21) is a well-known resul{for convenience we set
e adiabatic electronic energy gdp, equal to zerp Since
amping is not included, the FT &f(t;T) yields an absorp-

approximate FC factors calculated using the bottom equatiop : o .
on p. 121 of Englmatt which is restricted to cold transi- phononic contribution ta (t;T) of the form

tions. We conclude that far=0.7, the excited state vibra- IPN(t; Ty =exd —gP"(t;T)], (22)
tional Hamiltonian given by Eq5) for linear and quadratic

coupling is a useful approximation for condensed phas&/here

phononic transitions which contribute significantly to the ab-

sorption spectrum. Condensed phase systems which exhibit gP"(t;T)=2, gP"(t;T) (23
r-values smaller than 0.7 for the intermolecular modes !
should be rare. and

gP(t;T) = Si{coth Brw;/2) — e~ "It

B. A linear response function for a multimode system X[ coth Bh wj/2)coq wjt) —i sin(w;t)]}.
with linear electron—phonon coupling

(24)
Here, y; is the damping constant of moglandS; andw; are
its Huang—Rhys factor and frequency. The FT of
exq—g}’h(t;'l’)] yields a delta-function line-shape for the ZPL
Ji(t;T)y=exd —g(t;T)], (19 and, for example, widthgfwhm) of nj’ y; for the “cold”
phonon transitionsni=0—n;=1,..., vide infra The linear
dependence of the width onj’ is expected for a decay
mechanism of modgthat is linear in its coordinate. Let,
g(t;T)=§j: g;(t;T), (200 pe the actual width of the ZPL. The response function,

The response function for the case of linear coupling
only is obtained from Eq(12) by settingw’ = »". For the
multimode system,

where the lineshape function

with j labeling the mode and QT =IP"ET)-32(tT), (25
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with J,”h(t;T) given by Eq.(22) and which lead to larger widths for higher quantum number tran-
elir-Ty — . sitions, are also apparent. A further discussion of folding is
JE(t; T) =exp( — v (T)|t]/2), (26) given later.
yields a ZPL with a width ofy,,. (We remind the reader that In Appendix C we show that withy, = y;=0, one re-

the temperature dependencies)gf and they;’s depend on  covers the well-known frequency domain residee, e.g.,
the mechanisms of dephasingror then{=0—n;=0,1..., Eq.(8.43 of Ref. 15:
progression, the widths of the members ayg+ nj’ Y- Bho
Clearly the addition ofy, to the widths of the cold multi- o-j(w;T)=exr{—Sj Cotr( _J”
phonon transitions has a physical basis. 2
The FT of Eq.(25) for modej is (Appendix Q

oi(w;:T) xm;w expMBh w;/2)1 1(2o) S w—Me;),
=ex{ —S; coth Bhw;/2)] (28)
c 2 (Sjcosechlgﬁwj/z))m*'ﬂ where z,=S; cosechffiw;/2) and I(z,) are modified
X _2 Z (i< D)2 Bessel functions. We have also proven {hdq. (27) is
m=-e =0 LT mathematically equivalent to E¢l7) of Hayeset al,?* an
X exp(mpBhw;/2) equation whose structure is quite different than that of Eq.

(27). In that paper, Eq(17) is the basis for a frequency
(vert (m+21)y)2m 27) domain theory of hole-burned spectra. By setting
(0—m))?+((yer+(Mm+21)y))/2)?]’ coth(Bhw/2)=1 in Eq.(24) and taking the FT of;(t), Eq.
whereT is the gamma function. This equation describes thd2, one obtains for thd =0 K spectrum.
absorption spectrum associated with mgdeAs expected oi(w)
from Eq.(24) and Eq.(26), the last term in Eq(27) leads to

Lorentzian lineshapes for all bands. Unfortunately, the com- = ,m (Yert my;)/2m

plexity of Eq.(27) does not lend itself to ready visualization =exp(—Sj)mE:0 m! | (@—ma;))2+((ye+my))/2)%)’
of the absorption spectrum. The presence mf2l)y; in

the Lorentzian suggests that there can be negative contribu- (29

tions to oj. However, the properties of thi function are  with { } a normalized Lorentzian with widths given by
such thatl’'(m+1+1)=*« for (m+2l)<0 so that nega- _
tive contributions do not arise. Figure 1 shows a spectrum (Whm)m= yertmy;, (30
calculated with EQ.(27) for ;=25 cm L, S=138, v for the progression membems,=0,1,... . Here, the nature of
=3cm !, yo=1cm ! and T=50K. The spectrum calcu- the folding is clear and one has the desired result fhat
lated by taking the numerical FT of the response function igrom pure electronic dephasing, adds to the widths of the
identical. The sharp ZPL appears superimposed on theulti-phonon transitions. Equatid@7), with its Poisson dis-
broader(1,1) and (2,2 transitions. The effects of folding, tribution for the Franck—Condon factors, can also be ob-
tained, starting with Eq(27). The derivation is quite lengthy
and will be given elsewher®. ~
In summary the postulated response functigt;T) of

Eq. (25), with JP" and J®' defined by Eqs(22) and (26),
leads to a frequency domain expression for the absorption
spectrum, Eq(27), which yields physically reasonable spec-
tra, as will become more apparent. Thus, single-site absorp-
tion and hole-burned spectra at finite temperature can be con-
veniently calculated by numerically Fourier transforming
Ji(t;T); see Sec. Il D. As written](t; T) yields Lorentzian

U lineshapes for all transitions. The modifications necessary to
U introduce different lineshapes are discussed in the final sec-
tion of the paper.

Absorption

C. A linear response function for a system whose
modes are either linearly or quadratically coupled

200 -100 0 100 200 300 As pointed out in the Introduction, there appear to be a
number of systems of chromophores in amorphous solids
Wavenumbers (cm™) where modes are either linearly or quadratically coupled. We

FIG. 1. Single-site absorption spectrum calculated with(E@). for a model consider ﬂrSt_ pure quadrati@) coupllng._ Th_e I|_near re-
system:w;=25cm Y y,=3cm L S=18; yo=1lcm* and T=50 K. sponse function for the case of no damping is given by_Eq.
The spectrum calculated by taking the numerical FT of @6) is identical. ~ (12) with S;¢; set equal to zero. Guided by the mathematical
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l I | | I I with the three terms on the R.H.S. defined by E@2),
(31b) and(26). Equation(34) is the main result of this paper.
Figure 2 shows the absorption spectrum calculated by taking
the numerical FT of Eq(34) for a model system consisting
of one linearly(l) mode and one quadratically) coupled
mode. For the formerp,=200cm !, $=0.7, y;=5cm?
and for the latter,wg=50cm’, wo=35cm ' and y,
=2cm L v, is set equal to 1 cm and T=100K. The
location of the ZPL at—7.5 cmi ! is a zero-point energy
effect due to the quadratically coupled mode. The width of
the ZPL in Fig. 2 is 1 cm', as expected sincey,
a,n =1cm L The measured widths of the (1glpnd (2,2),

>l (1,0, sequence transitions to the left of the ZPL are 3 and 5%m
ﬁ}h in accordance with Eq32). The cold (1,0) transition due to

\ /J\ the linearly coupled 200 cit mode carries a width of 5

T T T I I T ] I cm %, in accordance with Eq30). To the left of the (1,0)
-100 50 0 50 100 150 200 250 band are the sequence transitions due to the quadratic mode.
The measured width of the band to the immediate left of the
(1,0), band is 7 cm?, which is the sum ofy,=1 cm * and
the phononic contributions to the widths of the (1,Bnd
FIG. 2. Single-site absorption spectrum fb=100 K calculated by taking ~ (1,0) transitions.
the numerical FT of Eq(34) for a two-mode system with one mode linearly
coupled (1) and the other quadratically coupled): w,=200cm?’; S
=0.7; 71|:5 cmh wp=50cm Y wg=35cmY; yg=2cm Y and v,
=lcm ™.

ZPL

Absorption

Wavenumbers (cm')

D. Application to real systems

The lowest energy$,(Q,) S, absorption band of the
_ special BChla pair (P) of the bacterial reaction center has
insights gained in the development §{t;T), Eq. (25, we been investigated in detail using hole burning
were led to the following expression as a potentially usefulspectroscopy®** For Rb. sphaeroidethis so-calledP-band
response function which includes dampitdephasing of  is characterized by strong linear electron-coupling involving
the phonons and pure electronic dephasipg)( modes centered ab,,=30 cm ! and wgsp=120 cml The
former is most likely due to protein phonons. The Huang—

T ot hes. .

‘]q(t’T):Jg (tT)- 35T, (318 Rhys factorS,,= 1.8 and the effective damping constant is
with J¢' defined by Eq(26) and the phononi¢ph) contribu-  y,»~30-40 cmi™. In the calculations which follow a value
tion to the response function given by of 20 cm * for y,, was used in order to enhance the structure

in the single-site absorption and hole-burned spectra. The

Jgh(t;T):H Jgf}(t;T), (31b 120 cmi! mode is referred to as the special pair marker

j ’ mode. Its effective damping constantjig,= 25 cm tand its
with Huang—Rhys factor iS;,= 1.5. At sufficiently low tempera-
. tures the homogeneous width of the pure electronic transition
oh (1—e Bhoj)gi(wj—wpu2 is 5 cm ! due to the 1 ps primary charge separation process
Jg (6T = 1— e Bho] —i(w] —o)t=ylt2’ (310 that depopulates the excited state. The hole burning results

indicate that the width of the ZPL remains constant at 5
The FT of Eq.(31) yields a delta-function lineshape for the cm™ between 1.8 K and 15 K, at which temperature the

ZPL (n{=0—n{=0 transition and widths for thenf—n;  ZPH is nearly Franck—Condon forbidden. Thus, over this

=nj{ sequence transitions of temperature range the contribution to the homogeneous
(whm)n/=n"y;; n'=2,.., (32 Wldth _of the ZPL from interaction with the bath modes is
o ! negligible.
where y; is the width of thenf=1—n/=1 transition. For The upper frame of Fig. 3 is ¢h0 K single-site absorp-

the sake of brevity we do not give the proof of E§2), but  tion spectrum of the special pair calculated with E25).

see a discussion of Fig. 2jde infra The FT ofJgf}(t;T) The parameter values given above were used. The spectrum

multiplied by J®'(t; T) [Eq. (26)] yields a width ofy,, for the  is very similar to that calculated by Reddt al*® in the

ZPL defined above. Equatidi32) becomes frequency domain. The washing out of structure for the

_ v higher energy bands is due to folding. The spectrum for 15 K

(fWhm)”j Yatnjyii Nj=01... (33 is shown in the bottom frame of Fig. 3. The most significant
With the results of this and the preceding subsection, thélifference between &0 K and 15 K spectra is that the ZPL

response function for a system whose modes are either lif2f the latter is considerably weaker. This is due to a reduc-

ear|y or quadratica”y Coup]ed can be written as tion in its FC factor Stemming from the Iinearly Coupled 30
- . o ol cm * mode. Also, the lower frame shows a hot bandwat
J1q(T) =3P T) -5 (L T) - %L T), (349  =—-30cm ! due to(0,1) transition.
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FIG. 3. Single-site absorption spectra for the special pair of the bacteriaf|G. 4. Hole-burned spectra for the special pair band of the bacterial reac-
reaction center calculated with EQZS) atT=0kK (tOp frame and 15 K tion center calculated with Eq35) for T=0K (top frame andT=15K
(bottom fram¢ with w,=30cm™, S,=18, y,=20cm', g,  (bottom framg w=62cm %, v,=we=0cm ! andkr=0.004. Other pa-
=120cm?, Sp=15, y,=25cm ! and y,=5cm . y,, for the bottom  rameter values are as given in the caption to Fig. 3.

frame is 15 cm?; see the text for more details.

quency domain theory of Hayes al?* (not shown is good.
We now extend the calculations to the hole-burned specNote the very weak intensity of the ZPH ag which carries
trum of the P-band. The absorption spectrum following a a width of 2y,=10 cm %, as expectedi’ The weakness of

burn for time 7 is given by>~24 the ZPH can be understood from its FC factarexp
o B [—2{Sn(N(wm) +1)+ss(N(wsp+ 1)}, where then's are ther-
Uf(w;T):f dOx(Q—v)d(w—Q) mal occupation numbers. Fdr=0 K, the FC factor is exp
— (—6.6)=0.0014. Elevation of the temperature to 15 K is suf-

~ ficient to significantly reduce the intensity of the ZPH, in
xex —k(wp=Q)7], (39 agreement with experimefit. The effect of increasingy,y,
where() is the frequency of the ZPL of a single absorber andfrom 20 cm* to 40 cm %, the value used in Ref. 24, would
wg Is the burn frequencyy(Q — v,,) is a Gaussian function, be to significantly fill in the valley between the ZPH af

with variancew? centered at,,,, which governs the distri- and the phonon sideband hole @+ w,,, resulting in an
bution of ZPL frequencies due to structural heterogendity. apparent weakening of the ZPH.

is the product of three terms: the absorption cross-section, As a final application we consider the chromophore APT
the laser burn flux and the quantum yield for hole burning.in hyperquenched glassy films of ethanol which has been
Ji(w—Q) is the absorption spectrum of a single site whosethoroughly studied by nonphotochemical hole burning
ZPL frequency is{). Note that for 7=0, Eq. (34) is the spectroscopy’ This system is characterized by a linearly
inhomogeneously broadened absorption spectrum. The holeoupled mode withw, =25 cni?, S=0.5 andy,~10 cmi*
burned spectrum is defined here@gw;T) — oo(w;T). The  and a quadratically coupled mode wiik,= 50 cm 1 which

0 K (upper framg¢and 15 K(lower frame hole-burned spec- is responsible for dephasing of the zero-phonon transition.
tra shown in Fig. 4 correspond to the single-site absorptioror the calculations we satl’q=35 cm * which represents a
spectra of Fig. 3. The value for the standard deviation 0f30% frequency change. The temperature-dependent data of
x(Q—v,,) used was 64 cimt (Ref. 29 (v,, was set equal to Ref. 17 indicate thay(T) =8ﬁ(wg) cm ! and furthermore,
zero with wg set equal tov,,). kT was set at 0.004. The that yq(T)zs(ﬁ(wg)Jrl) cm ! when the theoretical model
calculation ofo(w;T) involved* taking the numerical Fou- of Jackson and Silb&Yis used.y, is taken to be temperature
rier transform of Eq(25). The agreement between the 0 K independent. The single-site absorption spectrd fed5, 60
hole-burned spectrum of Fig. 4 and the experimentahnd 100 K shown in Fig. 5 were calculated by the numerical
spectrun® as well as the spectrum calculated using the freFT of Eq. (34). In all three spectra the ZPL is located at
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adds to the widths of the multi-phonon transitions, a result
which has a physical basis. As expected, the widths of the
multi-phonon, sequence and combination transitions exhibit
folding. The phononic contributigs) to the response func-
tions of Eqgs.(25) and (319 lead to folding of the widths of
(1,0), multi-phonon, sequencen{=nj’) and combination band
transitions. For example, the widths of the cold multi-phonon

J progressionni=0—n;, are given byye+n;y;, wherey,
—
[
N

ZPL

is the damping constant for mogleThe linear dependence
on the excited state mode quantum numluxf:r,, is expected
for damping mechanisms which are linear in the coordinate
g; of modej. Mixed crystal spectra, taken at liquid helium

temperatures, have shown this dependésee, for example,
Refs. 31, 48 Mechanisms that yield such a dependence in-
clude the Duschinsky effect where, in the excited state vibra-

tional Hamiltonian, one hag;Qg terms(with the Qg's the

= (1,0, bath coordinates and anharmonic coupling terms that are
N \ linear in g;. (The Duschinsky effect is actually the decay
mechanism for the primary oscillators of the MBO model;
see Chap. 8 of Ref. 1pb.

From the properties of Fourier transforms, it follows that
our response functions yield Lorentzian lineshapes for all
phonon transitions. In amorphous hosts structural heteroge-
: . : : , neity can result in a distribution of frequencies for the pri-
-200 -100 0 100 200 mary oscillators. The modification of the response functions

Wavenumbers (cm) required to take into account such inhomogeneity is straight-

FIG. 5. Single-site absorbtion e of Alohthalocvanine tetrasuiohon tforward. For example, if one desires Voigt profiles, one need
in giaésy Ie?thsc;IeCZICSlﬁaFt)elg bf/pglz(ir?gothe r?um:ricé;)llaF'll' (e;f (qu?svl\J/i?h ° a%nly multiply eXp(_'yJ'|t|/2) In thze response ;ant'Ody"e_e
w=250mY, §=05, y=10cm’, w=50cm’ w/=35cm? y,  E0S-(24) and(310)] by exp(-Aft’/2), whereA? is the vari-
=5(Ng(wj)+1) cm * and ye=8n4(wy) cm % The top, middle and bot- ance of the distribution ofv; frequencies. In the limity,
tom spectra are fof =15, 60 and 100 K, respectively. <Aj, the folding of the aforementioned cold multi-phonon
progression carries onn[)*%dependence, rather than an
. _ L n;-dependencé’
—(50-35)/2 cm -~ relative to 0 cm* which would be the An approximate excited state vibrational Hamiltonian
position in the absence of quadratic coupling. At 15t&p [He of Eq. (5)] which accounts for linear and quadratic
frame only the ZPL and cold (1,Q)transition is observed. gjectron—phonon coupling and is acceptable for mode fre-
At 60 K, the sequence (1,4 )ransition and hot (0,1)tran-  guency changes smaller than about 30% was derived as was
sition appear as well as the (2,and. The structure is the |inear response function it gives rise to for the case of no
diminished at 100 Kbottom frame due to the higher prob- damping [Eq. (12)]. Inclusion of damping for a system
ability for multi-phonon transitions and sequence transitionsynhose modes are both linearly and quadratically coupled re-
with largern” values as well as folding and the temperaturegjts in a complex linear response functi¢fine complexity
dependencies imposed o, andy, . At 300 K all structure s far greater for the nonlinear response functions associated

(1D, (1,0),

Absorption
s

is lost (the result not shown with photon echo spectroscopiedhus, we presented only
the response function for a system whose modes are either
Ill. CONCLUSIONS linearly or quadratically coupled. Nevertheless, our approxi-

This paper is the result of our interest in understandingi“ate Hamjltopian sh_ould be useful .in future studies devpted
the relationship and differences between the optical coher® the derivation of linear and nonlmear response funct.lons
ence loss of a chromophore in a glass and in the liquid phad@" Systéms whose modes are both linearly and quadratically
of the glass forming solvert. Linear response functions coupled. ) . o

were presented which allow for a consistent approach to the AS stated in the Introduction, the combination of
calculation of single-site and inhomogeneously broadenelfMPerature-dependent hole burning and photon echo studies
absorption spectra and hole-burned spectra. The respon@80Ve and below the glass transition of the solvent should
functions are appropriate for systems whose modes are uffovide new insights on optical coherence loss of chro-

derdamped. Two cases were treated: a system whose modg@9Phores in liquids. The results presented will be applied to
exhibit only linear electron—phonon couplifig. (25)]; and photon echo spectroscopy in a subsequent public&tion.

a system whose modes are either linearly or quadratically
coupled[Eg. (31a]. The response functions take into ac- ACKNOWLEDGMENTS

count pure electronic dephasing,, which is responsible Research at lowa State University was supported by Na-
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0030. =(dldz)exp(za")[0), (A14)
=dldz|z). (A15)

Recall that(z|z)# 1. Equation(A15) confirms that exp@")
is a translational operator.

Coherent states form a complete and nonorthogonal ba- I\N_e next show hov‘{a zéolves in time under the time
sis set. They are very useful in radiation theory and quanturﬁvO ution operator expfiHgt/f),

APPENDIX A: PROPERTIES OF COHERENT STATES

optics. The coherent stafg) is an eigenvector of the non- exp(—iH 4t/A)[z(0))=|z(t)). (Al6)
|I-Z|>eir;n|t|an operatoa. The eigenvalue equation for the vector Using Eq.(A2) one obtains
exp(—iH t/%|z(0

alz)=12|z). (A1) P~ iHt/A[2(0)
Thus z, which can be complex, is the eigenvalueafWe — E 2" ex —iw"(a*a+1/2)t]|n) (A17)
can expres{z) in terms of the number statés) as i=0 n!

z)=C ny. A2 =exp(—iw"t/2 exp(—inw"t)[n), Al18

2) OHEOMH (A2) p(w)ngoﬁmwm (A18)
One of the most appealing properties of coherent states is _ Z [zexp(—iw"t)]"
that they can be chosen to be unnormalized states by setting =exp(—i w"t/Z)nZO D In), (A19)
Co=1. Since|n) can be written as '

(a*)" =exp —iw"t/2)|exp —in"t)z(0)), (A20)

In)= \/m |0), (A3) =z(t)). (A21)
where |0) is the vacuum state of the oscillator, E2) To operate with exp{iH.t/f:) ong(O)), one of the fol-
becomes lowing approaches may be used: Feynman's formula for

noncommuting exponential operatdfsl.ie algebra for dis-
|z)=exp(za")|0). (A4) entangling noncommuting exponential operafSrsr the In-
verse Campbell-Baker—Hausdorff formul@assenhause

Applying a to Eq.(A2), one obtains formula).>=>% All three approaches worked equally well

© g0 when we eliminated the? anda " operators irH, . The Lie
alz)= Z gt \/ﬁ|n—1>, (A6)  algebra approach was found to be straightforward for pure
=0 Nn: quadratic coupling. We found that using the Zassenhause
-1 formula without eliminatinga® and a*’ led to an unrecog-
=7 — [n—1), (A7)  nized pattern of infinite terms which we were not able to
n=0 y(n—1)! simplify.
=7|z). (A8)

APPENDIX B: DERIVATION OF EQUATION 17
Equations(A7) and(A8) show thatlz) is an eigenvector o

with eigenvaluez. Coherent states lack the property of or-
thogonality because

Here we provide a derivation of Eq1l7) starting with
Eq. (12). We definea;=exp(f3) [f5 is given in Eq.(14d)],
upon power series expansion we obtain

(z|z'y=exp(z*z")#0. (A9) " o,
(Serie™ '@ h)
With Eq. (A1) one can show that alzeXp(—Seff)qu — (B1)
exp(ca)|z)=exp(cz)|z), (A10)  \we have
wherec is a constant, while with EqA4) it follows that c/1 ) - g 10tgmilo' 02 _ g=pho") -
expica’)|z)—|z+c). (A11) Q\fy 1— g Bho"+i(e"—w")t ' (B2)
Note that expfa®) acts as a translational operator in coher-where() is the adiabatic gap and, from E@.3),
ent state space with the translational parameter B . -1
We now show howa™ acts on|2). By taking the Her- Q=[2sinf(pho"2)]
mitian conjugate of Eq(Al), we obtain =exp— Bhw"l2)-[1—exp — Bhw")] L.
|zya® =z*(z]. (A12)  For notational simplicity we define
Using Eq.(A4), f,=Seppe AR Tl (@m0 t_1)2=_ 4 ¢, (B3)
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where ay=—Sepe@ (et 1)2 and a  J(ET)

—a Bho"+io"t-iw't f _
e . With Egs.(B1)—(B3), J(t) becomes —exi] — velt|/2—S, coth Bhw;/2)]

1 s
J(t)= E ay —— ex;{ _ ra ) (B4) xexpSe Vl‘t‘/Z\/COch(Bhw]—/Z)— 1 cogwit—¢j)}.
Q l-«a l-« )
With J(t) in this form, one can utilize the generating func- Here
tion for Laguerre polynomials: )
—i
1 % ] Q= arctar{ m) Iﬁﬁw /2. (C3
exd_a’2a/(1_a)]<_) - E Fa(az)a™ . (B5) (B wjl2)
1-a 32 To proceed further, one needs to decompose (EQ) by

using the generating function for modified Bessel functions,

With Eq. (B5), J(t) becomes b
c Ji(t;T)=exd — yel|t]/2— S coth( Bhw/2)]

J)== exp(— S, ) *
Q " X _2 {I(S; coseckiphw;/2)e"ilt72)

)

2 ;%hu(az)an"- (BG) Xexp(lmwjt—mﬁﬁwJ/Z)} (C4)

n"=0

iw’t)q

% E effe

i S . The time-dependent argumentlgf makes Fourier transform
Equation(B6) needs further simplification which can be ac- ey gifficult. However, this is dealt with by using the defi-
complished by noting thata,=4S, sirf(w't/2) and nition of 1 ,(W,):

Zw(as) can be rewritten as me

*© (W /2)m+2l
o B i Ly n” ) a2m a7 m(W) |=20 ||r m=+1 +1) (C5)
~Jn”(a2)_m=0 ( ) n"—m W ( ) where
J(t) can now be written as W,=S; cosechpfiw;/2)e It (C6)
©  w o't Substitution of Eq(C5) into Eq.(C4) results in
C (Sere™'” )4 ~
)= eXH—Ser) 2, 2: —q 3(t, T)=exq —S; coth( Bfiw;/2)]
n” ” ; ' S COSGChBha) /2)]m+2|
N\ [4Ser SiP(0't2)]™] L
[ E (= ( m) = m! a, szm |Eo 2”‘*2'I!F(m+|+1)
(BY) XexpmpBhw;/l2)exd —imwjt—((m+2l)y;
The[sin(w't/2)]?™ factor can be dealt with using the follow- +ven|t]/2]. (C7)
ing identity: The Fourier transform of EqC7) leads directly to Eq(27).
" | Note that we have switched the signs in enpgt
in o’ 1/2)2M= 22" 2m)1 E —1)'€ cog2lw't/2) —mpBhiw;/2) so that the high and low energy sides of the
@ B = (m+H(m=H! spectrum relative to the ZPL have positive and negative en-

(B9)  ergies, respectively.
Finally, Eq. (28) is obtained from Eq(C4) by setting

Equations(B8) and (B9) lead directly to Eq.(17) via a Yer=7;=0:

straightforward Fourier transform. B
It T)=exd — S, coth Bhw;/2)] >, emhei2
m=—o

QZIE)EZI\;}DIX C: DERIVATION OF EQUATIONS 27 X1, cosechBfiw;/2)lexp —imw;t). (C8)
The straightforward Fourier transformation of EG8) leads
In this appendix we show the derivation of EG7) and  directly to Eq.(28).
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