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Optical response functions for condensed systems with linear
and quadratic electron–vibration coupling
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Understanding the similarities and differences between optical coherence loss of electronic
transitions of chromophores in glasses and in the glass forming solvent requires, in part, linear
response ~2-point correlation! functions, J(t;T). An approximate excited state vibrational
Hamiltonian (He) which accounts for both linear and quadratic electron–phonon coupling is
derived that is acceptable for mode frequency changes smaller than 30%. The associated linear
response function for the case of no damping is obtained. A response function that includes damping
is proposed for systems whose modes are either linearly or quadratically coupled. It is the product
of three response functions, two of which are phononic and associated with linear and quadratic
modes. The third response function is electronic with a dephasing frequencygel that is the width of
the zero-phonon line. The total response function yields single-site absorption spectra in which
folding of the widths of multi-phonon and sequence transitions occurs. Applications of the new
response functions are made to the temperature dependence of single-site absorption and
hole-burned spectra of the special pair band of the bacterial reaction center and the temperature
dependence of the single site absorption spectrum of Al-phthalocyanine tetrasulphonate in glassy
ethanol. © 1998 American Institute of Physics.@S0021-9606~98!70942-0#
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I. INTRODUCTION

Recently, there has been considerable activity in the
of femtosecond photon echo spectroscopies to study
nuclear~vibrational! motions lead to the coherence loss
optical transitions of solute chromophores in liquids at ro
temperature.1–12 Of particular interest has been the role
inertial ~librational! intermolecular modes~‘‘phonons’’!
which couple linearly to the electronic transition and lead
optical dephasing on a timescale shorter than 1 ps.~Such
modes lead to multi-phonon transitions in theS1←S0 ab-
sorption spectrum.! One reason for this interest is that th
inertial modes may set the stage for longer timescale, la
amplitude nuclear solvent dynamics which are the rate l
iting step in condensed phase electron–transfer reacti
The multimode Brownian oscillator~MBO! model13–15 has
often been used in the interpretation of the data. In t
model the linearly coupled modes are the primary B
which, along with the bath oscillators, are taken to be h
monic. The coupling between a primary BO and the b
modes is linear in the BO displacement which results fr
electronic excitation of the chromophore. This coupli
gives rise to a damping constant,g j (v), for BO j of fre-
quency v j . This gives rise to an effective frequenc
dependent damping (g j (v j )) for the j th BO where the fre-
quency dependence arises from the spectral distributio
the BO’s coupling to the bath oscillators.g j (v) enters into
the optical response function~see p. 227 of Ref. 15!. In ap-

a!Electronic mail: gsmall@ameslab.gov
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plications of the MBO model the frequency dependence
g j is commonly neglected which amounts to a white sp
trum for the bath~known as Ohmic dissipation!. In the case
of an underdamped mode (g j,v j ), this leads to a width for
the zero-phonon line~ZPL! of 2Sj (2n̄ j11)g j , whereSj is
the Huang–Rhys factor andn̄ j the thermal occupation num
ber of BO j. Only when the frequency dependence ofg j is
properly taken into account doesg j (v) vanish asv→0 so
that the phononic relaxation does not contribute to the wi
of the ZPL, as should be the case. In addition, it would
necessary to combine the standard MBO model with ot
models for electronic dephasing~vide infra! since it does not
account for such dephasing. Work in this direction is
progress.

As discussed in Refs. 16, 17, hole burning and pho
echo spectroscopies have been used to study pure elect
dephasing of the ZPL of chromophores in glasses and p
mers at low temperatures since the early 1980s~see Refs. 18,
19 for reviews!. At temperatures lower than about 10 K th
homogeneous width of the ZPL is determined by the tunn
ing dynamics of the bistable configurations or two-level s
tems of the glass. Above about 15 K the dephasing is do
nated by quadratic electron–phonon coupling of the ty
identified earlier for chromophores in host crystals. The st
ies of the ZPL in glasses and polymers led to three impor
findings. The first is that the exchange coupling dephas
mechanism,20,21 which stems from diagonal quadrat
electron–phonon coupling, often accounts for the homo
neous width of the ZPL at higher temperatures. This c
pling leads to a change in the frequency of a pseu
9 © 1998 American Institute of Physics

to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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localized phonon upon electronic excitation of t
chromophore. The second finding is that these depha
phonons are Franck–Condon~FC! inactive, i.e., exhibit neg-
ligible linear electron–phonon coupling. The third finding
that the linearly coupled modes responsible for multi-phon
transitions appear to be infrequently involved in pure el
tronic dephasing. The last two findings suggest that the
tem phonons can often be divided into two subsets, one
sociated with linear coupling and the other with quadra
coupling. The most detailed studies which support the ab
findings involved spectral hole burning experiments on
phthalocyanine tetrasulphonate~APT! in hyperquenched
glassy films of water,16 ethanol and methanol17 which were
performed over a very wide temperature range, 5–;130 K.
In the case of water, the exchange coupling modes correl
with the 50 and 180 cm21 transverse and longitudinal acou
tic modes of liquid water. For ethanol, the exchange coup
mode frequency is;50 cm21, close to the first maximum in
the spectral density of liquid ethanol. High resolution ho
burned spectra proved that these modes exhibit little if
FC activity. For water, ethanol and methanol the FC activ
by intermolecular modes is dominated by phonons at 38
and 17 cm21, respectively. They were assigned as mod
mainly associated with APT librational motion. In the ca
of glassy water, characterization and determination of
electron–phonon coupling parameters~including the
Huang–Rhys factor and shape of the one-phonon profile
the linearly coupled mode at 38 cm21! and static inhomoge
neous broadening associated with the pure electronic tra
tion at lower temperatures led to calculated hole-burn
spectra for higher temperatures in good agreement with
experimental spectra.16 The frequency domain hole burnin
theory of Hayeset al.22–24was used for the calculations. Th
results indicate that the above inhomogeneous broadenin
constant over the temperature range used in the experim
Given the good agreement, the same experimentally de
mined parameters were used to calculate the width of
APT’s origin absorption band in water at room temperatu
The value of 500 cm21 obtained differs by only 10 cm21

from the experimental value. It was suggested that the c
bination of temperature dependent hole burning and pho
echo studies above and below the glass transition of the
vent should provide new insights on optical coherence l
of chromophores in liquids~see also Refs. 25, 26!.

We present here linear response or 2-point correla
functions,J(t;T), which do yield single-site absorption an
hole-burned spectra at finite temperature that describe
essential features of experimental spectra.~The harmonic ap-
proximation is assumed for the optically active modes.! The
response functions are appropriate for modes which are
derdamped,g j,v j .27 The cases of critically damped an
overdamped modes are treated in Chap. 8 of Ref. 15.
case of linear electron–phonon coupling is considered fi
The form of J(t;T) yields, for example, widths~fwhm! of
gel(T)1njg j (T) for members of the cold absorption pro
gression (nj50,1,...) associated with modej with gel(T) the
contribution from pure electronic dephasing. The linear
pendence~folding! on nj is valid for any relaxation mecha
nism of the active phonon that is linear in its coordina
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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Insofar as the temperature dependencies ofgel and g j are
concerned, one need consider different mechanisms and
their T-dependencies intoJ(t;T), which is standard proce
dure.J(t;T) or, equivalently the lineshape functiong(t;T),
allows for straightforward evaluation of the 4- and highe
point correlation functions associated with photon echo sp
troscopies. Next, we consider the case where the ac
modes exhibit diagonal quadratic electron–phonon coup
which results in mode frequency changes upon electro
excitation of the chromophore. An approximate excited st
vibrational Hamiltonian,He , is derived which is shown to be
adequate for a mode frequency change smaller than a
30%. ~Off-diagonal quadratic electron–phonon coupling
the Duschinsky effect is neglected since it is expected to
unimportant for strongly allowed electronic transitions
dye molecules.28 Such a change may be considered to
large for low frequency modes of condensed phase syste
An expression for the linear response function is derived
the case of no damping. A linear response function w
damping is given for a system whose modes are either
early or quadratically coupled~see the preceding paragrap
for motivation!. The response function is the product of thr
response functions, two of which are associated with
phononic contribution, one from linearly coupled modes a
the other from quadratically coupled modes. The third
sponse function is associated with pure electronic dephas

Applications of the new response functions include t
single-site absorption and hole-burned spectra of the spe
pair band of the bacterial reaction center which previo
studies had shown to be characterized by linearly coup
modes at 30 and 120 cm21 ~Ref. 29! and the temperature
dependence of the single-site absorption spectrum of
phthalocyanine tetrasulphonate in glassy ethanol.

II. THEORY AND CALCULATED SPECTRA

A. Approximate excited state vibrational Hamiltonian
He and linear response function J „t ; T… with no
damping

Consider absorption from the ground electronic state~g!
to an excited electronic state~e! and letv9 and v8 be, re-
spectively, the ground and excited state frequencies of a
brational mode. Letq be the dimensionless normal coord
nate of this mode for the ground electronic state. It is rela
to the mass-weighted coordinate,Q, by q5(v9/\)1/2Q.
Similarly, we defined as the dimensionless translational d
placement between the potential energy minima of the
electronic states. For linear and diagonal quadratic electr
phonon coupling the excited state vibrational Hamiltonian
given exactly by30

He5Hg1
\v9

2
@~r 221!q212r 2qd1r 2d2#1\V, ~1!

where r 5(v8/v9). \V is the adiabatic electronic energ
gap. Ther 2d2 term multiplied by\v9/2 is the optical reor-
ganization energy. Thus,

Vv5V1v9r 2d2/2, ~2!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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where Vv is the vertical ~Condon! frequency gap. When
v85v9, the optical reorganization energy isSv9, with S
5d2/2 being the familiar Huang–Rhys factor. In Eq.~1!, Hg

is the vibrational Hamiltonian for the ground state:

Hg5\v9~a1a11/2!, ~3!

with a1 and a the raising and lowering operators for th
ground state, i.e.,q5221/2(a11a). For a multimode system
one need only sum Eq.~1! over all modes. When dealin
with fluorescence or resonance Raman, one should in
changee andg, v8 andv9 and associateq with the normal
coordinate of the excited state@e.g., d would now equal
(v8/\)DQ rather than (v9/\)DQ#. The reader is referred to
Ref. 31 for a further~and simple! discussion.

Exact solutions to the problem of determining t
Franck–Condon factors associated with Eq.~1! have been
available for many years.32–35 Thus, the calculation of
‘‘stick’’ linear absorption spectra,s~v!, is routine. One can
introduce shapes to the sticks and calculate the tempera
dependencies of the integrated absorption intensities of
vibronic ~phononic! transitions. However, doing the equiva
lent of this in the time domain with Eq.~1! is both difficult
and impractical, especially when one is interested in non
ear spectroscopies such as the 2-pulse and 3-pulse stimu
photon echo since they involve 4-point correlation functio
From a practical standpoint it is essential, therefore, to
proximate Eq.~1! even though the~complicated! linear re-
sponse function corresponding to it can be derived~result not
shown!. In what follows we derive an expression forHe

which is adequate forr *0.7 ~without a loss generality we
takev8,v9!.

Our approach involves a first-order Taylor series exp
sion of ther 221 andr 2 terms in Eq.~2! aboutr 51 ~e.g.,
r 221'2r 21!. When it is recognized thatHg of Eq. ~3! is
exactly equivalent to

Hg5\v8~a1a11/2!2\v9~r 21!a1a2\v9~r 21!/2,
~4!

it follows easily that

He'\v8F S a1a1
1

2D1~22r 21!d~a11a!/&

1~22r 21!d2/2G1\V, ~5!

when the term 221\v8(12r 21)(a121a2) is dropped. It is
the elimination of this term that leads to the desired sim
fication. The (a121a2) operator brings intensity, in first or
der, to phononic transitions for which the quantum numben
changes by62. However, the contributions from that oper
tor to such transitions which carry sufficient intensity fro
linear coupling to be relevant to linear and nonlinear opti
experiments are small forr *0.7. The effect of the (a12

1a2) operator on transitions for which the quantum numb
change is odd is also small for suchr-values~see below for
supportive results!. The vertical transition frequency from
Eq. ~5! is

Vv5V1v8~22r 21!d2/2. ~6!
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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The most important effect from quadratic coupling for sy
tems of the type we are interested in has to do with
sequence structure in the absorption spectrum, i.e.,n95n8
transitions which carry different frequencies, one result
which could be beats in photon echo decays. The rela
intensities of such transitions depend, of course, on temp
ture. Importantly, the expression forHe given by Eq. ~5!
retains the sequence structure. It is to be appreciated tha
general, both the effective mass and the frequency m
change upon optical excitation and can contribute to the q
dratic electron–photon coupling. Equation~1! assumes tha
only the frequency is changed. Our discussion of the lim
tions of Eq.~5! is based on this reference Hamiltonian. How
ever, if the mass is allowed to change as well, these co
tions may change. It is possible, for example, to find
certain ratio of mass and frequency change for which
Hamiltonian Eq.~5! is exact.

We turn next to the two-point correlation functionJ(t)
whose Fourier transform yields the linear absorption sp
trum. In the Heisenberg picture,15

J~ t;T!5^eiH gt/\v~q!e2 iH et/\v~q!rg&, ~7!

with rg5exp(2bHg)/Tr@exp(2bHg)#, b5(kT)21. ^¯& de-
notes the quantum mechanical trace~Tr! over the nuclear
degrees of freedom. Because we are in the Heisenberg
ture, the electronic transition dipole moment operatorv(q) is
time-independent. In the Condon approximation, which
employ,36 the dependence ofv on the vibrational coordinate
q is lost, i.e., v(q)5v(0), a constant whose magnitud
squared contains the square of the pure electronic trans
dipole. Settinguv(0)u2 multiplied by other constants equal t
1 for convenience, we are left with

J~ t;T!5^eiH gt/\e2 iH et/\rg&, ~8!

to evaluate withHg and He given by Eqs.~3! and ~5!. In
doing so we employed coherent states for the phonon fi
rather than number states. The reader is referred to R
39–42 for discussions on advantages gained in the utiliza
of coherent states as a complete basis set. In Appendix A
review some basic properties of coherent states, includ
their evolution under the time-evolution operator. We me
tion here only that a coherent stateuz& is an eigenvector of the
non-Hermitian lowering operatora,

auz&5zuz&, ~9!

where the eigenvaluez can be complex, thatuz& can be ex-
pressed as a superposition of phonon number states and
coherent states obey a special type of closure relationsh

1

p E d2z
uz&^zu
^zuz&

51, ~10!

whered2z5d(Rez)d(Im z). It is the elimination of thea12

anda2 operators fromHe that allows for a relatively straight
forward evaluation ofJ(t;T). The result is43
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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TABLE I. Franck–Condon factors forS50.8 andr 50.7 and 0.8~in parentheses!.

(n8,n9)a Equation~17! Exactb Englmanc

~0,0! 0.63 ~0.55! 0.51 ~0.49! 0.46 ~0.45!
~1,0! 0.30 ~0.33! 0.40 ~0.39! 0.28 ~0.28!
~2,0! 0.070 ~0.10! 0.091 ~0.11! 0.087 ~0.089!
~3,0! 0.010 ~0.020! 0.0040 ~0.013! 0.0200 ~0.020!
~0,1! 0.29 ~0.33! 0.28 ~0.31!
~1,1! 0.19 ~0.088! 0.057 ~0.040!
~2,1! 0.34 ~0.32! 0.43 ~0.37!
~3,1! 0.14 ~0.19! 0.22 ~0.24!
~0,2! 0.066 ~0.10! 0.13 ~0.14!
~1,2! 0.34 ~0.32! 0.17 ~0.21!
~2,2! 0.023 ~0.00020! 0.00044 ~0.013!
~3,2! 0.29 ~0.21! 0.30 ~0.23!
~0,3! 0.010 ~0.020! 0.053 ~0.048!
~1,3! 0.14 ~0.19! 0.17 ~0.19!
~2,3! 0.29 ~0.21! 0.044 ~0.068!
~3,3! 0.0035 ~0.048! 0.055 ~0.083!

an9 andn8 are the initial and final electronic state vibrational quantum numbers.r 5v8/v9.
bCalculated usingMATHEMATICA with exact harmonic oscillator wavefunctions.
cCalculated using the equation on p. 121 of Ref. 35.
-
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1

p E d2z

^zuz&
^zueiH gt/\e2 iH et/\rguz& ~11!

5
C

Q S 1

f 1
DexpF f 2

f 1
1 f 3G , ~12!

where Q[Tr@exp(2bHg)# is the canonical partition func
tion,

Q5@2 sinh~b\v9/2!#21, ~13!

and

C[e2b\v9/2e2 i ~v82v9!t/2e2 iVvt, ~14a!

f 1[12e2b\v91 i ~v92v8!t, ~14b!

f 2[Se f fe
2b\v91 iv9t~e2 iv8t21!2, ~14c!

f 3[ iSe f fv8t1Se f f~e2 iv8t21!. ~14d!

The derivation of Eq.~12! leads to Se f f5(22r 21)2d2/2
which contains a term of higher order than should be
tained. For this reason and because the first term of Eq.~14d!
should cancel out the contribution toVv from the optical
reorganization energy in the last exponential of Eq.~14a!, we
use in what follows:

Se f f[~22r 2!d2/2. ~15!

With this equation and Eq.~6!, Eqs.~14a! and~14d! become

C[e2b\v9/2e2 i ~v82v9!t/2e2 iVt ~14a’!

and

f 3[Se f f~e2 iv8t21!. ~14d’!

At this point it is important to establish the reliability o
J(t;T) as given by Eq.~12!; i.e., one need check the Franck
Condon~FC! factors. The easiest way to do this is to Four
transformJ(t;T) to obtain the linear absorption spectrum:
Mar 2001 to 128.151.176.185. Redistribution subject 
-

r

s~v;T!5
1

2p E
2`

1`

J~ t;T!eivtdt. ~16!

The result is~Appendix B!

s~v;T!

5221~12e2b\v9!e2Se f f(
q50

`
~Se f f!

q

q! (
n950

`

e2n9b\vn9!

3H (
m50

n9

(
l 50

m

~21!m1 l222m

3
~4Se f f!

m~2m!! e l

~m! !2~n92m!! ~m1 l !! ~m2 l !! J @d~ṽ2 lv8!

1d~ṽ1 lv8!#, ~17!

where e l is the von Neumann symbol~e051, e l52 for l
>1! and

ṽ5v2V2qv81~v92v8!~n911/2!. ~18!

Se f f is defined by Eq.~15!. In Eq. ~17! n9 is the initial state
quantum number of the absorption transition. We perform
calculations which confirmed that Eq.~17! and the numerical
Fourier transform~FT! of Eq. ~12! yield identical spectra.
Franck–Condon factors forn9→n8 transitions can be ob
tained from Eq.~12! by setting the value ofn9 and the value
of v for the n9→n8 transition of interest. One then sets th
(12exp(2b\v9)) and exp(2n9b\v9) terms equal to unity
and adds the terms in Eq.~17! whose delta functions give th
correctv-value. All appropriate delta functions are then s
equal to unity. This procedure is somewhat cumbersome
hot transitions. For cold transitions,n950, it is simple be-
causeq in Eq. ~17! is n8 and m and l are zero. Table I
compares our approximate FC factors for a few transitio
with the exact FC factors calculated using harmonic osci
tor wavefunctions withMATHEMATICA 2.2. @We confirmed
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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TABLE II. Franck–Condon factors forS52.0 andr 50.7 and 0.8~in parentheses!.

(n8,n9)a Equation~17! Exactb Englmanc

~0,0! 0.32 ~0.22! 0.19 ~0.17! 0.14 ~0.14!
~1,0! 0.36 ~0.33! 0.37 ~0.33! 0.14 ~0.14!
~2,0! 0.21 ~0.25! 0.30 ~0.29! 0.068 ~0.068!
~3,0! 0.080 ~0.13! 0.12 ~0.15! 0.022 ~0.022!
~0,1! 0.36 ~0.33! 0.26 ~0.27!
~1,1! 0.0070 ~0.056! 0.077 ~0.10!
~2,1! 0.13 ~0.042! 0.045 ~0.017!
~3,1! 0.24 ~0.19! 0.27 ~0.20!
~0,2! 0.21 ~0.25! 0.22 ~0.24!
~1,2! 0.13 ~0.042! 0.0024 ~0.0012!
~2,2! 0.13 ~0.17! 0.14 ~0.15!
~3,2! 0.0061 ~0.016! 0.016 ~0.043!
~0,3! 0.080 ~0.13! 0.15 ~0.16!
~1,3! 0.24 ~0.19! 0.068 ~0.077!
~2,3! 0.0061 ~0.016! 0.0610 ~0.070!
~3,3! 0.17 ~0.11! 0.046 ~0.040!

an9 andn8 are the initial and final electronic state vibrational quantum numbers.r 5v8/v9.
bCalculated usingMATHEMATICA with exact harmonic oscillator wavefunctions.
cCalculated using the equation on p. 121 of Ref. 35.
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that, for pure linear coupling, Eq.~17! gives FC factors in
exact agreement with the values calculated using the la
method.# The results given in Tables I and II are forr 50.7
and 0.8 andS50.8 ~Table I! and 2.0 ~Table II! with S
5d2/2. Se f f in Eq. ~17! is determined using Eq.~15!. Over-
all, the agreement between the approximate and exact
factors may be said to be quite satisfactory.~The agreemen
for r 50.8 is better than forr 50.7.! As expected, the agree
ment for small FC factors worsens. However, the associa
transitions would contribute relatively weakly to the abso
tion spectrum. Furthermore, for small FC factors anharmo
or even Duschinsky contributions to the intensities can
expected to be non-negligible. Also included in the tables
approximate FC factors calculated using the bottom equa
on p. 121 of Englman35 which is restricted to cold transi
tions. We conclude that forr *0.7, the excited state vibra
tional Hamiltonian given by Eq.~5! for linear and quadratic
coupling is a useful approximation for condensed ph
phononic transitions which contribute significantly to the a
sorption spectrum. Condensed phase systems which ex
r-values smaller than 0.7 for the intermolecular mod
should be rare.

B. A linear response function for a multimode system
with linear electron–phonon coupling

The response function for the case of linear coupl
only is obtained from Eq.~12! by settingv85v9. For the
multimode system,

Jl~ t;T!5exp@2g~ t;T!#, ~19!

where the lineshape function

g~ t;T!5(
j

gj~ t;T!, ~20!

with j labeling the mode and
Mar 2001 to 128.151.176.185. Redistribution subject 
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gj~ t;T!5Sj@coth~b\v j9/2!~12cos~v j9t !!

1 i sin~v j9t !#. ~21!

Equation~21! is a well-known result~for convenience we se
the adiabatic electronic energy gap,V, equal to zero!. Since
damping is not included, the FT ofJl(t;T) yields an absorp-
tion spectrum consisting of delta-function peaks; see
~17!. The problem, therefore, is to introduce damping~s! in a
way that yields physically acceptable spectra.

The linear response and lineshape functions which
low stem from our study of the consequences of the MB
model ~see Chap. 8 of Ref. 15! for linear absorption and
hole-burned spectra~unpublished results!. We propose a
phononic contribution toJl(t;T) of the form

Jl
ph~ t;T!5exp@2gph~ t;T!#, ~22!

where

gph~ t;T!5(
j

gj
ph~ t;T! ~23!

and

gj
ph~ t;T!5Sj$coth~b\v j /2!2e2g j utu/2

3@coth~b\v j /2!cos~v j t !2 i sin~v j t !#%.

~24!

Here,g j is the damping constant of modej andSj andv j are
its Huang–Rhys factor and frequency. The FT
exp@2gj

ph(t;T)# yields a delta-function line-shape for the ZP
and, for example, widths~fwhm! of nj8g j for the ‘‘cold’’
phonon transitions,nj950→nj851,..., vide infra. The linear
dependence of the width onnj8 is expected for a decay
mechanism of modej that is linear in its coordinate. Letgel

be the actual width of the ZPL. The response function,

J̃l~ t;T!5Jl
ph~ t;T!•Jel~ t;T!, ~25!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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with Jl
ph(t;T) given by Eq.~22! and

Jel~ t;T!5exp~2gel~T!utu/2!, ~26!

yields a ZPL with a width ofgel . ~We remind the reader tha
the temperature dependencies ofgel and theg j ’s depend on
the mechanisms of dephasing.! For the nj950→nj850,1...,
progression, the widths of the members aregel1nj8g j .
Clearly the addition ofgel to the widths of the cold multi-
phonon transitions has a physical basis.

The FT of Eq.~25! for modej is ~Appendix C!

s j~v j ;T!

5exp@2Sj coth~b\v j /2!#

3 (
m52`

`

(
l 50

` H ~Sjcosech~b\v j /2!!m12l

l !G~m1 l 11!2~m12l !

3exp~mb\v j /2!

3
~gel1~m12l !g j !/2p

~v2mv j !
21~~gel1~m12l !g j !/2!2J , ~27!

whereG is the gamma function. This equation describes
absorption spectrum associated with modej. As expected
from Eq.~24! and Eq.~26!, the last term in Eq.~27! leads to
Lorentzian lineshapes for all bands. Unfortunately, the co
plexity of Eq. ~27! does not lend itself to ready visualizatio
of the absorption spectrum. The presence of (m12l )g j in
the Lorentzian suggests that there can be negative cont
tions to s j . However, the properties of theG function are
such thatG(m1 l 11)56` for (m12l )<0 so that nega-
tive contributions do not arise. Figure 1 shows a spectr
calculated with Eq.~27! for v j525 cm21, Sj51.8, g j

53 cm21, gel51 cm21 and T550 K. The spectrum calcu
lated by taking the numerical FT of the response function
identical. The sharp ZPL appears superimposed on
broader~1,1! and ~2,2! transitions. The effects of folding

FIG. 1. Single-site absorption spectrum calculated with Eq.~27! for a model
system: v j525 cm21; g j53 cm21; Sj51.8; gel51 cm21 and T550 K.
The spectrum calculated by taking the numerical FT of Eq.~25! is identical.
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which lead to larger widths for higher quantum number tra
sitions, are also apparent. A further discussion of folding
given later.

In Appendix C we show that withgel5g j50, one re-
covers the well-known frequency domain result@see, e.g.,
Eq. ~8.43! of Ref. 15#:

s j~v;T!5expF2Sj cothS b\v j

2 D G
3 (

m52`

`

exp~mb\v j /2!I m~z0!d~v2mv j !,

~28!

where z05Sj cosech(b\v j /2) and I m(z0) are modified
Bessel functions. We have also proven that43 Eq. ~27! is
mathematically equivalent to Eq.~17! of Hayeset al.,24 an
equation whose structure is quite different than that of E
~27!. In that paper, Eq.~17! is the basis for a frequenc
domain theory of hole-burned spectra. By setti
coth(b\vj/2)51 in Eq. ~24! and taking the FT ofJ̃l(t), Eq.
~25!, one obtains for theT50 K spectrum.

s j~v!

5exp~2Sj ! (
m50

` Sj
m

m! H ~gel1mg j !/2p

~v2mv j !
21~~gel1mg j !/2!2J ,

~29!

with $ % a normalized Lorentzian with widths given by

~ fwhm!m5gel1mg j , ~30!

for the progression members,m50,1,... . Here, the nature o
the folding is clear and one has the desired result thatgel ,
from pure electronic dephasing, adds to the widths of
multi-phonon transitions. Equation~27!, with its Poisson dis-
tribution for the Franck–Condon factors, can also be o
tained, starting with Eq.~27!. The derivation is quite lengthy
and will be given elsewhere.43

In summary the postulated response functionJ̃l(t;T) of
Eq. ~25!, with Jl

ph and Jel defined by Eqs.~22! and ~26!,
leads to a frequency domain expression for the absorp
spectrum, Eq.~27!, which yields physically reasonable spe
tra, as will become more apparent. Thus, single-site abs
tion and hole-burned spectra at finite temperature can be
veniently calculated by numerically Fourier transformin
J̃l(t;T); see Sec. II D. As written,J̃l(t;T) yields Lorentzian
lineshapes for all transitions. The modifications necessar
introduce different lineshapes are discussed in the final
tion of the paper.

C. A linear response function for a system whose
modes are either linearly or quadratically coupled

As pointed out in the Introduction, there appear to be
number of systems of chromophores in amorphous so
where modes are either linearly or quadratically coupled.
consider first pure quadratic~q! coupling. The linear re-
sponse function for the case of no damping is given by
~12! with Se f f set equal to zero. Guided by the mathemati
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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insights gained in the development ofJ̃l(t;T), Eq. ~25!, we
were led to the following expression as a potentially use
response function which includes damping~dephasing! of
the phonons and pure electronic dephasing (gel):

J̃q~ t;T!5Jq
ph~ t;T!•Jel~ t;T!, ~31a!

with Jel defined by Eq.~26! and the phononic~ph! contribu-
tion to the response function given by

Jq
ph~ t;T!5)

j
Jq, j

ph~ t;T!, ~31b!

with

Jq, j
ph~ t;T!5

~12e2b\v j9!e2 i ~v j82v j9!t/2

12e2b\v j92 i ~v j82v j9!t2g j utu/2
. ~31c!

The FT of Eq.~31! yields a delta-function lineshape for th
ZPL ~nj950→nj850 transition! and widths for thenj9→nj8
5nj9 sequence transitions of

~ fwhm!nj95nj9g j ; nj95,2,..., ~32!

whereg j is the width of thenj951→nj851 transition. For
the sake of brevity we do not give the proof of Eq.~32!, but
see a discussion of Fig. 2,vide infra. The FT of Jq, j

ph(t;T)
multiplied byJel(t;T) @Eq. ~26!# yields a width ofgel for the
ZPL defined above. Equation~32! becomes

~ fwhm!n
j9
5gel1nj9g j ; nj950,1,... . ~33!

With the results of this and the preceding subsection,
response function for a system whose modes are either
early or quadratically coupled can be written as

J̃l ,q~ t;T!5Jl
ph~ t;T!•Jq

ph~ t;T!•Jel~ t;T!, ~34!

FIG. 2. Single-site absorption spectrum forT5100 K calculated by taking
the numerical FT of Eq.~34! for a two-mode system with one mode linear
coupled ~l! and the other quadratically coupled~q!: v l5200 cm21; Sl

50.7; g l55 cm21; vq9550 cm21; vq9535 cm21; gq52 cm21; and gel

51 cm21.
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with the three terms on the R.H.S. defined by Eqs.~22!,
~31b! and~26!. Equation~34! is the main result of this paper
Figure 2 shows the absorption spectrum calculated by tak
the numerical FT of Eq.~34! for a model system consistin
of one linearly~l! mode and one quadratically~q! coupled
mode. For the former,v l5200 cm21, Sl50.7, g l55 cm21

and for the latter,vq9550 cm21, vq8535 cm21 and gq

52 cm21. gel is set equal to 1 cm21 and T5100 K. The
location of the ZPL at27.5 cm21 is a zero-point energy
effect due to the quadratically coupled mode. The width
the ZPL in Fig. 2 is 1 cm21, as expected sincegel

51 cm21. The measured widths of the (1,1)q and (2,2)q
sequence transitions to the left of the ZPL are 3 and 5 cm21,
in accordance with Eq.~32!. The cold (1,0)l transition due to
the linearly coupled 200 cm21 mode carries a width of 5
cm21, in accordance with Eq.~30!. To the left of the (1,0)l
band are the sequence transitions due to the quadratic m
The measured width of the band to the immediate left of
(1,0)l band is 7 cm21, which is the sum ofgel51 cm21 and
the phononic contributions to the widths of the (1,1)q and
(1,0)l transitions.

D. Application to real systems

The lowest energy (S1(Qy)←S0 absorption band of the
special BChla pair ~P! of the bacterial reaction center ha
been investigated in detail using hole burnin
spectroscopy.29,44 For Rb. sphaeroidesthis so-calledP-band
is characterized by strong linear electron-coupling involvi
modes centered atvm530 cm21 and vsp5120 cm21. The
former is most likely due to protein phonons. The Huan
Rhys factorSm51.8 and the effective damping constant
gm;30– 40 cm21. In the calculations which follow a value
of 20 cm21 for gm was used in order to enhance the structu
in the single-site absorption and hole-burned spectra.
120 cm21 mode is referred to as the special pair mark
mode. Its effective damping constant isgsp525 cm21 and its
Huang–Rhys factor isSsp51.5. At sufficiently low tempera-
tures the homogeneous width of the pure electronic transi
is 5 cm21 due to the 1 ps primary charge separation proc
that depopulates the excited state. The hole burning res
indicate that the width of the ZPL remains constant a
cm21 between 1.8 K and 15 K, at which temperature t
ZPH is nearly Franck–Condon forbidden. Thus, over t
temperature range the contribution to the homogene
width of the ZPL from interaction with the bath modes
negligible.

The upper frame of Fig. 3 is the 0 K single-site absorp
tion spectrum of the special pair calculated with Eq.~25!.
The parameter values given above were used. The spec
is very similar to that calculated by Reddyet al.45 in the
frequency domain. The washing out of structure for t
higher energy bands is due to folding. The spectrum for 1
is shown in the bottom frame of Fig. 3. The most significa
difference between the 0 K and 15 K spectra is that the ZP
of the latter is considerably weaker. This is due to a red
tion in its FC factor stemming from the linearly coupled 3
cm21 mode. Also, the lower frame shows a hot band atv
5230 cm21 due to~0,1! transition.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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We now extend the calculations to the hole-burned sp
trum of the P-band. The absorption spectrum following
burn for timet is given by22–24

st~v;T!5E
2`

1`

dVx~V2nm!J̃l~v2V!

3exp@2kJ̃l~vB2V!t#, ~35!

whereV is the frequency of the ZPL of a single absorber a
vB is the burn frequency.x(V2nm) is a Gaussian function
with variancew2 centered atnm , which governs the distri-
bution of ZPL frequencies due to structural heterogeneityk
is the product of three terms: the absorption cross-sect
the laser burn flux and the quantum yield for hole burnin
J̃l(v2V) is the absorption spectrum of a single site who
ZPL frequency isV. Note that fort50, Eq. ~34! is the
inhomogeneously broadened absorption spectrum. The h
burned spectrum is defined here asst(v;T)2s0(v;T). The
0 K ~upper frame! and 15 K~lower frame! hole-burned spec
tra shown in Fig. 4 correspond to the single-site absorp
spectra of Fig. 3. The value for the standard deviation
x(V2nm) used was 64 cm21 ~Ref. 29! ~nm was set equal to
zero with vB set equal tonm!. kt was set at 0.004. The
calculation ofst(v;T) involved46 taking the numerical Fou
rier transform of Eq.~25!. The agreement between the 0
hole-burned spectrum of Fig. 4 and the experimen
spectrum29 as well as the spectrum calculated using the f

FIG. 3. Single-site absorption spectra for the special pair of the bact
reaction center calculated with Eq.~25! at T50 K ~top frame! and 15 K
~bottom frame! with vm530 cm21, Sm51.8, gm520 cm21, vsp

5120 cm21, Ssp51.5, gsp525 cm21 and gel55 cm21. gm for the bottom
frame is 15 cm21; see the text for more details.
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quency domain theory of Hayeset al.24 ~not shown! is good.
Note the very weak intensity of the ZPH atvB which carries
a width of 2gel510 cm21, as expected.47 The weakness of
the ZPH can be understood from its FC factor,n̄ exp
@22$Sm(n̄(vm)11)1ssp(n̄(vsp11)%#, where then̄’s are ther-
mal occupation numbers. ForT50 K, the FC factor is exp
(26.6)50.0014. Elevation of the temperature to 15 K is su
ficient to significantly reduce the intensity of the ZPH,
agreement with experiment.29 The effect of increasinggm

from 20 cm21 to 40 cm21, the value used in Ref. 24, woul
be to significantly fill in the valley between the ZPH atvB

and the phonon sideband hole atvB1vm , resulting in an
apparent weakening of the ZPH.

As a final application we consider the chromophore A
in hyperquenched glassy films of ethanol which has b
thoroughly studied by nonphotochemical hole burni
spectroscopy.17 This system is characterized by a linear
coupled mode withv l525 cm21, Sl50.5 andg l;10 cm21

and a quadratically coupled mode withvq9550 cm21 which
is responsible for dephasing of the zero-phonon transit
For the calculations we setvq8535 cm21 which represents a
30% frequency change. The temperature-dependent da
Ref. 17 indicate thatgel(T)58n̄(vq9) cm21 and furthermore,
that gq(T)55(n̄(vq9)11) cm21 when the theoretical mode
of Jackson and Silbey21 is used.g l is taken to be temperatur
independent. The single-site absorption spectra forT515, 60
and 100 K shown in Fig. 5 were calculated by the numeri
FT of Eq. ~34!. In all three spectra the ZPL is located

alFIG. 4. Hole-burned spectra for the special pair band of the bacterial r
tion center calculated with Eq.~35! for T50 K ~top frame! and T515 K
~bottom frame!. v562 cm21, nm5vB50 cm21 and kt50.004. Other pa-
rameter values are as given in the caption to Fig. 3.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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2(50235)/2 cm21 relative to 0 cm21 which would be the
position in the absence of quadratic coupling. At 15 K~top
frame! only the ZPL and cold (1,0)l transition is observed
At 60 K, the sequence (1,1)q transition and hot (0,1)l tran-
sition appear as well as the (2,0)l band. The structure is
diminished at 100 K~bottom frame! due to the higher prob
ability for multi-phonon transitions and sequence transitio
with largern9 values as well as folding and the temperatu
dependencies imposed ongel andgq . At 300 K all structure
is lost ~the result not shown!.

III. CONCLUSIONS

This paper is the result of our interest in understand
the relationship and differences between the optical co
ence loss of a chromophore in a glass and in the liquid ph
of the glass forming solvent.17 Linear response function
were presented which allow for a consistent approach to
calculation of single-site and inhomogeneously broade
absorption spectra and hole-burned spectra. The resp
functions are appropriate for systems whose modes are
derdamped. Two cases were treated: a system whose m
exhibit only linear electron–phonon coupling@Eq. ~25!#; and
a system whose modes are either linearly or quadratic
coupled @Eq. ~31a!#. The response functions take into a
count pure electronic dephasing,gel , which is responsible
for the homogeneous width of the ZPL. Furthermore,gel

FIG. 5. Single-site absorption spectra of Al-phthalocyanine tetrasulpho
in glassy ethanol calculated by taking the numerical FT of Eq.~34! with
v l525 cm21, Sl50.5, g l510 cm21, vq9550 cm21, vq9535 cm21, gq

55(n̄q(vq9)11) cm21 and gel58n̄q(vq9) cm21. The top, middle and bot-
tom spectra are forT515, 60 and 100 K, respectively.
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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adds to the widths of the multi-phonon transitions, a res
which has a physical basis. As expected, the widths of
multi-phonon, sequence and combination transitions exh
folding. The phononic contribution~s! to the response func
tions of Eqs.~25! and ~31a! lead to folding of the widths of
multi-phonon, sequence (nj95nj8) and combination band
transitions. For example, the widths of the cold multi-phon
progression,nj950→nj8 , are given bygel1nj8g j , whereg j

is the damping constant for modej. The linear dependenc
on the excited state mode quantum number,nj8 , is expected
for damping mechanisms which are linear in the coordin
qj of mode j. Mixed crystal spectra, taken at liquid helium
temperatures, have shown this dependence~see, for example,
Refs. 31, 48!. Mechanisms that yield such a dependence
clude the Duschinsky effect where, in the excited state vib
tional Hamiltonian, one hasqjQb terms~with the Qb’s the
bath coordinates!, and anharmonic coupling terms that a
linear in qj . ~The Duschinsky effect is actually the deca
mechanism for the primary oscillators of the MBO mod
see Chap. 8 of Ref. 15.!

From the properties of Fourier transforms, it follows th
our response functions yield Lorentzian lineshapes for
phonon transitions. In amorphous hosts structural hetero
neity can result in a distribution of frequencies for the p
mary oscillators. The modification of the response functio
required to take into account such inhomogeneity is straig
forward. For example, if one desires Voigt profiles, one ne
only multiply exp(2gjutu/2) in the response functions@see
Eqs.~24! and~31c!# by exp(2Dj

2t2/2), whereD j
2 is the vari-

ance of the distribution ofv j frequencies. In the limitg j

!D j , the folding of the aforementioned cold multi-phono
progression carries on (nj8)

1/2-dependence, rather than a
nj -dependence.17

An approximate excited state vibrational Hamiltonia
@He of Eq. ~5!# which accounts for linear and quadrat
electron–phonon coupling and is acceptable for mode
quency changes smaller than about 30% was derived as
the linear response function it gives rise to for the case of
damping @Eq. ~12!#. Inclusion of damping for a system
whose modes are both linearly and quadratically coupled
sults in a complex linear response function.~The complexity
is far greater for the nonlinear response functions associ
with photon echo spectroscopies.! Thus, we presented only
the response function for a system whose modes are e
linearly or quadratically coupled. Nevertheless, our appro
mate Hamiltonian should be useful in future studies devo
to the derivation of linear and nonlinear response functio
for systems whose modes are both linearly and quadratic
coupled.

As stated in the Introduction, the combination
temperature-dependent hole burning and photon echo stu
above and below the glass transition of the solvent sho
provide new insights on optical coherence loss of ch
mophores in liquids. The results presented will be applied
photon echo spectroscopy in a subsequent publication.49
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APPENDIX A: PROPERTIES OF COHERENT STATES

Coherent states form a complete and nonorthogonal
sis set. They are very useful in radiation theory and quan
optics. The coherent stateuz& is an eigenvector of the non
Hermitian operatora. The eigenvalue equation for the vect
uz& is

auz&5zuz&. ~A1!

Thus z, which can be complex, is the eigenvalue ofa. We
can expressuz& in terms of the number statesun& as

uz&5C0(
n50

`
zn

An!
un&. ~A2!

One of the most appealing properties of coherent state
that they can be chosen to be unnormalized states by se
C051. Sinceun& can be written as

un&5
~a1!n

An!
u0&, ~A3!

where u0& is the vacuum state of the oscillator, Eq.~A2!
becomes

uz&5exp~za1!u0&. ~A4!

Applying a to Eq. ~A2!, one obtains

auz&5 (
n50

`
zn

An!
Anun21&, ~A6!

5z(
n50

`
zn21

A~n21!!
un21&, ~A7!

5zuz&. ~A8!

Equations~A7! and~A8! show thatuz& is an eigenvector ofa
with eigenvaluez. Coherent states lack the property of o
thogonality because

^zuz8&5exp~z* z8!Þ0. ~A9!

With Eq. ~A1! one can show that

exp~ca!uz&5exp~cz!uz&, ~A10!

wherec is a constant, while with Eq.~A4! it follows that

exp~ca1!uz&2uz1c&. ~A11!

Note that exp(ca1) acts as a translational operator in coh
ent state space with the translational parameterc.

We now show howa1 acts onuz&. By taking the Her-
mitian conjugate of Eq.~A1!, we obtain

uz&a15z* ^zu. ~A12!

Using Eq.~A4!,
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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a1uz&5a1 exp~za1!u0&, ~A13!

5~]/]z!exp~za1!u0&, ~A14!

5]/]zuz&. ~A15!

Recall that̂ zuz&Þ1. Equation~A15! confirms that exp(ca1)
is a translational operator.

We next show howuz& evolves in time under the time
evolution operator exp(2iHgt/\),

exp~2 iH gt/\!uz~0!&5uz~ t !&. ~A16!

Using Eq.~A2! one obtains

exp~2 iH gt/\uz~0!&

5 (
n50

`
zn

An!
exp@2 iv9~a1a11/2!t#un&, ~A17!

5exp~2 iv9t/2! (
n50

`
zn

An!
exp~2 inv9t !un&, ~A18!

5exp~2 iv9t/2! (
n20

`
@z exp~2 iv9t !#n

An!
un&, ~A19!

5exp~2 iv9t/2!uexp~2 iv9t !z~0!&, ~A20!

5uz~ t !&. ~A21!

To operate with exp(2iHet/\) on uz(0)&, one of the fol-
lowing approaches may be used: Feynman’s formula
noncommuting exponential operators,50 Lie algebra for dis-
entangling noncommuting exponential operators,30 or the In-
verse Campbell–Baker–Hausdorff formula~Zassenhause
formula!.51–53 All three approaches worked equally we
when we eliminated thea2 anda12

operators inHe . The Lie
algebra approach was found to be straightforward for p
quadratic coupling. We found that using the Zassenha
formula without eliminatinga2 and a12

led to an unrecog-
nized pattern of infinite terms which we were not able
simplify.

APPENDIX B: DERIVATION OF EQUATION 17

Here we provide a derivation of Eq.~17! starting with
Eq. ~12!. We definea1[exp(f3) @f 3 is given in Eq.~14d!#,
upon power series expansion we obtain

a15exp~2Se f f! (
q50

`
~Se f fe

2 iv8t!q

q!
. ~B1!

We have

C

Q S 1

f 1
D5

e2 iVte2 i ~v82v9!t/2~12e2b\v9!

12e2b\v91 i ~v92v8!t
, ~B2!

whereV is the adiabatic gap and, from Eq.~13!,

Q5@2 sinh~b\v9/2!#21

5exp~2b\v9/2!•@12exp~2b\v9!#21.

For notational simplicity we define

f 25Se f fe
2b\v91 iv9t~e2 iv8t21!2[2a2a, ~B3!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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where a2[2Se f fe
iv8t(e2 iv8t21)2 and a

[e2b\v91 iv9t2 iv8t. With Eqs.~B1!–~B3!, J(t) becomes

J~ t !5
C

Q
a1

1

12a
expF2

a2a

12aG . ~B4!

With J(t) in this form, one can utilize the generating fun
tion for Laguerre polynomials:

exp@2a2a/~12a!#S 1

12a D5 (
n950

`

Ln9~a2!an9. ~B5!

With Eq. ~B5!, J(t) becomes

J~ t !5
C

Q
exp~2Se f f!

3 (
q50

`
~Se f fe

2 iv8t!q

q! (
n950

`

Ln9~a2!an9. ~B6!

Equation~B6! needs further simplification which can be a
complished by noting thata254Se f f sin2(v8t/2) and
Ln9(a2) can be rewritten as

Ln9~a2!5 (
m50

n9

~21!mS n9
n92mD a2

m

m!
. ~B7!

J(t) can now be written as

J~ t !5
C

Q
exp~2Se f f! (

q50

`

(
n950

`
~Se f fe

2 iv8t!q

q!

3H (
m50

n9

~21!mS n9
n92mD @4Se f f sin2~v8t/2!#m

m! J an9,

~B8!

The @sin(v8t/2)#2m factor can be dealt with using the follow
ing identity:

sin~v8t/2!2m5222m~2m!!(
l 50

m
~21! le l cos~2lv8t/2!

~m1 l !! ~m2 l !!
.

~B9!

Equations~B8! and ~B9! lead directly to Eq.~17! via a
straightforward Fourier transform.

APPENDIX C: DERIVATION OF EQUATIONS 27
AND 28

In this appendix we show the derivation of Eq.~27! and
the recovery of Eq.~28!. J̃l(t;T) for one mode is (V50)

J̃l~ t;T!5exp$2gelutu/22Sj coth~b\v j /2!

1Sje
2g j utu/2@coth~b\v j /2!cos~v j t !

2 i sin~v j t !#%, ~C1!

which can be rewritten as
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J̃l~ t;T!

5exp@2gelutu/22Sj coth~b\v j /2!#

3exp$Sje
2g j utu/2Acoth2~b\v j /2!21 cos~v j t2w j !%.

~C2!

Here

w j5arctanS 2 i

coth~b\v j /2! D52 ib\v j /2. ~C3!

To proceed further, one needs to decompose Eq.~C2! by
using the generating function for modified Bessel functio

J̃l~ t;T!5exp@2gelutu/22Sj coth~b\v j /2!#

3 (
m52`

`

$I m~Sj cosech~b\v j /2!e2g j utu/2!

3exp~ imv j t2mb\v j /2!%. ~C4!

The time-dependent argument ofI m makes Fourier transform
very difficult. However, this is dealt with by using the defi
nition of I m(Wj ):

I m~Wj !5(
l 50

`
~Wj /2!m12l

l !G~m1 l 11!
, ~C5!

where

Wj[Sj cosech~b\v j /2!e2g j utu/2. ~C6!

Substitution of Eq.~C5! into Eq. ~C4! results in

J̃l~ t,T!5exp@2Sj coth~b\v j /2!#

3 (
m52`

`

(
l 50

`
@Sj cosech~b\v j /2!#m12l

2m12l l !G~m1 l 11!

3exp~mb\v j /2!exp@2 imv j t2~~m12l !g j

1gel!utu/2#. ~C7!

The Fourier transform of Eq.~C7! leads directly to Eq.~27!.
Note that we have switched the signs in exp(imvjt
2mb\vj/2) so that the high and low energy sides of t
spectrum relative to the ZPL have positive and negative
ergies, respectively.

Finally, Eq. ~28! is obtained from Eq.~C4! by setting
gel5g j50:

Jl~ t;T!5exp@2Sj coth~b\v j /2!# (
m52`

}

emb\v j /2

3I m@Sj cosech~b\v j /2!#exp~2 imv j t !. ~C8!

The straightforward Fourier transformation of Eq.~C8! leads
directly to Eq.~28!.
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