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Density-matrix-spectroscopic algorithm for excited-state adiabatic surfaces
and molecular dynamics of a protonated Schiff base

E. V. Tsiper, V. Chernyak, S. Tretiak, and S. Mukamel
Department of Chemistry, University of Rochester, Rochester, New York 14627

~Received 7 August 1998; accepted 4 February 1999!

Excited-state potentials of a short protonated Schiff base cation which serves as a model for the
photoisomerization of retinal are computed by combining a semi-empirical ground-state adiabatic
surface with excitation energies obtained using the time-dependent coupled electronic oscillator
~CEO! approach. Excited-state molecular dynamic simulation of the in-plane motion of
cis-C5H6NH2

1 following impulsive optical excitation reveals a dominating 1754 cm21

p-conjugation mode. A new molecular dynamics algorithm is proposed which resembles the Car–
Parinello ground-state technique and is based on the adiabatic propagation of the ground-state
single-electron density matrix and the collective electronic modes along the trajectory. ©1999
American Institute of Physics.@S0021-9606~99!30717-0#
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I. INTRODUCTION

Photochemical reaction pathways are determined by
evolution of molecules on excited-state adiabatic surfa
En(q), whereq are the nuclear coordinates. The compu
tion of these surfaces is a formidable task which constitu
the bottleneck in many applications.1,2

We have recently proposed an inexpensive method
computing excited-state surfaces.3 In this approach then-th
excited-state energy is expressed as

En~q!5E0~q!1Vn~q!. ~1!

The ground-state energyE0(q) is computed using any stan
dard quantum-chemistry technique, while the excitation
ergy Vn(q) is obtained using the Coupled Electronic Osc
lator ~CEO! approach4,5 that targets directly the linea
response of the system, avoiding the costly computation
excited-state many-electron wave functions. Normally o
first computes potential surfaces and then uses them to c
pute spectra. Here we reverse these steps: we first com
adiabatic spectra and then use them to generate the adia
surfaces of the optically active states at the relevant nuc
configurations. Excited-state surfaces of short polye
which compare well withab initio calculations and repro
duce the experimental resonant Raman spectra were obta
using this technique.3

In this paper we employ this algorithm to perform m
lecular dynamics simulations for the photoexcitedcis-
C5H6NH2

1 protonated Schiff base cation~see Fig. 1!. This
molecule has been used as a ‘‘minimal model’’ for retin
photoisomerization.6 The photochemistry of retinal and it
derivatives is one of the most important problems in pho
biology, since this chromophore is responsible for photo
ception in vision.7 A protein of the opsin family changes it
conformation upon the absorption of a single photon by
embedded Schiff base of retinal. There has been a cons
able interest in the origin of the extremely fast rate and
high quantum yield of the photoisomerization of retin
which is one of the fastest known in nature.8–10 This photo-
8320021-9606/99/110(17)/8328/10/$15.00
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chemical reaction was studied using a broad range of s
troscopic techniques11 both in solution and in a natural stat
inside a protein core. Continuous-wave and long-time na
second to picosecond studies include linear absorption,12,13

resonant Raman,14 infrared,15 hole burning,12 second-order
polarizabilities,16 and two photon absorption.17 More re-
cently a broad variety of sub-picosecond and femtosec
spectroscopies were applied. These inclu
pump–probe,18–30 optical pump—infrared probe,31 time and
frequency resolved fluorescence,32–35 and time-resolved
Raman.36,37

Early time-resolved experiments38 estimated the rhodop
sin ~11-cis! to bathorhodopsin~all-trans! photoconversion
time scale to be about 3 ps. Shorter optical pulses have
vealed two transients that precede the bathorhodopsin for
tion and appear on the time scale of 200 fs.27 Subsequent
experiments25,26 have in contrast suggested that the isom
ization photoproduct is fully formed within 200 fs. Stron
coupling to the torsional degree of freedom has been p
posed to cause fast and vibrationally coherent departure f
the Frank–Condon region.23 This conclusion has been que
tioned by the recent experiments39 involving retinal where
the photoisomerization pathway has been blocked. Comp
son of the photoisomerization dynamics of different retin
isomeres24 and substituents40 indicates that the high photoi
somerization rate and quantum yield are closely connec
These results are commonly interpreted using a two-le
picture ~ground-state1one optically-allowed excited
state!41,42 whereby the photoisomerization process is d
scribed as Landau–Zener tunneling.32,24Transient stimulated
emission experiments support this model.43

Despite these extensive studies, a complete underst
ing of this process is yet to be developed. There seem to
several viewpoints onto both the origin of the fast photo
action and the description of relevant electronic and vib
tional states. Recent pump–dump–probe experiments21,20

have been interpreted by assuming that a third, optic
dark, state participates in the photoisomerization proc
8 © 1999 American Institute of Physics

to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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8329J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 Tsiper et al.
This state is believed to be responsible for the two-pho
absorption reported in Ref. 17. The second excited-state
been taken into account in recent theoretical simulation44

The role of the conical intersection point in the photoisom
ization process has drawn considerable attention45,46 Exis-
tence of a barrierless path to adiabatic surface crossing
been shown for short protonated Schiff bases47 as well as for
related conjugated hydrocarbons.48

Recent femtosecond resonant Raman measurem
show that an in-plane motion along the conjugated lengt
the primary event which precedes the photoisomerizatio36

An in-plane primary step of the photoreaction has also b
proposed in Ref. 6, where a minimal energy path for
photoisomerization ofcis-C5H6NH2

1 has been computed us
ing ab initio CI calculations. These calculations show th
the minimal energy path to the crossing point starts with
in-plane bond stretching, while photoisomerization on
takes place after the bond stretching is completed. The
ture of bond stretching prior to isomerization is consist
with the observation of linear dependence between the lin
absorption maximum and Raman shift of the conjugat
vibrational mode.49

Car–Parinello molecular dynamics of a stand-alone r
nal molecule usingab initio ground-state adiabatic surfac
with an external torsional potential was performed in R
50. Extensive molecular-dynamics simulation of the en
Bacteriorhodopsin protein with the retinal embedded in
were performed using CHARMm force field.51,41,52,42 Re-
cently the force field was improved by adjusting the torsio
potential to match CASSCFab initio calculation for a short
retinal analogue, and by using a density-matrix description
avoided level crossing.44

In Sec. II we outline briefly the CEO algorithm an
present a slice of the lowest five potential surfaces of
short protonated Schiff base computed along the dihe
angle, keeping all other coordinates fixed. Excited-state
lecular dynamics simulation of the in-plane motion pe
formed in Sec. III demonstrates the dominant role of
conjugation mode on the 200 fs time scale. In Sec. IV
discuss these results and further propose a computatio
efficient analytical procedure to calculate the excited-s
adiabatic surface derivatives with respect to the nuclear
ordinates. This results in a molecular dynamics algorit
which computes the excited state only once at a star
nuclear configuration. The excited-state surface is then g
erated ‘‘on the fly’’ by propagating the CEO modes~Appen-
dices A–D!.

FIG. 1. Protonated Schiff basecis-C5H6NH2
1 .
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The present propagation of modes bears close ana
with the Car–Parinello molecular dynamics technique for
ground state,53 whereby the electronic structure is propagat
in time together with the nuclear configuration using fi
titious classical equations of motion. The present method
lows the true evolution of the system within the TDHF a
proximation and no fictitious equations of motion are intr
duced. However, the analogy with Car–Parinello lies in
propagation of the electronic structure in time which avo
repetitive solution of the TDHF at every new nuclear co
figuration. Given the low computational cost of CEO calc
lations, we anticipate the possibility of performing larg
scale excited-state molecular-dynamic calculations, tak
into account the surrounding solvent and protein.

II. ADIABATIC POTENTIALS ALONG THE
ISOMERIZATION COORDINATE

The CEO is a reduced description of electronic struct
which only uses a small amount of relevant excited-st
information and is based on the time-dependent sing
electron density matrix of the molecule interacting with
external optical fieldE(t):54

r i j ~ t !5^C~ t !uci
†cj uC~ t !&. ~2!

Here C(t) is the many-electron wave function andci
† (ci)

are the fermionic creation~annihilation! operators for the
atomic orbitali. The diagonal elementsr̄ i i (t) give the elec-
tronic charge distribution across the molecule. Dens
functional theory~DFT!55–62 only retains the diagonal ele
mentsr̄ i i 5^0uci

†ci u0&, whereu0& denotes the many-electro
ground-state. The off-diagonal elements of the density m
trix carry additional information about electronic
coherences5 which is vital for computing optical excitations
When the molecule is driven by an external field, its wa
function uC(t)& and the single-electron density matrixr(t)
[r̄1dr(t) become time-dependent. The field-induced co
ponent of the density matrixdr(t) can be computed by solv
ing the Heisenberg equations of motion forci

†cj . The hier-
archy of many-body dynamics is closed by invoking t
time-dependent Hartree–Fock~TDHF! ansatz~uC(t)& is rep-
resented by a single Slater determinant at all times!, resulting
in closed nonlinear equations of motion fordr(t).63 dr(t) is
further expanded in the eigenmodesjn of the Liouville op-

eratorL̂ ~Appendices A and B!

L̂~q!jn~q!5Vn~q!jn~q!, ~3!

which gives

dr~ t !5(
n

an~ t !jn1(
n

an* ~ t !jn
† . ~4!

The eigenvaluesVn(q) provide the excitation frequencies
The electronic normal modejn(q) is an approximation to the
transition density matrix between the groundu0& and excited
un& states:64 (jn) i j 5^0uci

†cj un&.
Solution of Eq.~3! at various nuclear configurationsq

yields theq-dependent excitation energiesVn. The excited-
state adiabatic surfaceEn(q) is obtained using Eq.~1! by
adding Vn(q) to the ground-state adiabatic surfa
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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8330 J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 Tsiper et al.
E0(q), which is an input to this calculation. Finally, the adi
batic linear polarizability is given in terms ofVn(q) and the
transition dipole momentm0n(q)5tr$m(q)jn(q)% as

a~v;q!5(
n

gum0n~q!u2

~v2Vn~q!!21g2 , ~5!

whereg is a homogeneous dephasing rate.
The AM1 semiempirical ground-state energy surfa

E0(q) was obtained using Gaussian 94.65 The ground-state
electronic density matrixr̄(q) and INDO/S Hamiltonian pa-
rameters were then computed using ZINDO.66 Finally, the
DSMA procedure67 was applied to calculate the excitatio
energiesVn .

We started with the AM1cis-optimized geometry and
then varied the C1—C2—C3—C4 torsional anglef, keeping
all other internal coordinates fixed.f50 and 180° corre-
spond tocis andtransconformations, respectively. We hav
used this algorithm to find four excited states of t
cis-C5H6NH2

1 cation along thecis- to trans-isomerization
coordinate. The resulting potential slices are displayed
Fig. 2 ~only the interval 0<f<180° is shown since the
potential is symmetric aroundf50!. The optically-allowed
Bu type states are depicted by solid curves, whereas the
most forbiddenAg type states are given by dashed curves68

The lowest excitation energy of 3.5 eV atf50 compares
well with 90 kcal/mol ~'3.9 eV! of Ref. 6. The potentials
shown in Fig. 2 are in a good agreement with the results
larger protonated Schiff base obtained using complete ac
space self-consistent field~CASSCF!.44 The noticeably

FIG. 2. Ground- and four lowest excited-state adiabatic surface slices a
the C1–C2–C3–C4 torsional angle coordinate. All other internal coordinat
are held fixed at thecis equilibrium values. The apparentcis and trans
degeneracy is accidental; thetrans-geometry is not the optimal geometr
and therefore have the ground-state energy higher than the energy in th
minimum.
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larger second excitation energy may be attributed to
shorter size of the present molecule.69,70 The ratio of the
excitation energiesV2 /V151.59 at f50 agrees with the
CIS ab initio result of 1.51, obtained at 6-311G level using
Gaussian 94.71 The adiabatic excitation energy reduces thre
fold at f590°, indicating that this configuration is very clos
to the conical crossing point, predicted by Olivucciet al.6

Since the excited-states are nondegenerate, the gradie
the excited-state potentials with respect to the torsional an
is zero atf50.

III. IN-PLANE MOLECULAR DYNAMICS SIMULATION:
THE EFFECTIVE CONJUGATION COORDINATE

We have simulated the vibrational dynamics of the ph
toexcited protonated Schiff base on the lowest excited s
E1(q) surface. The simulation started with the AM1 groun
state equilibrium geometryq0 . Assuming an impulsive opti-
cal excitation, the molecule finds itself on theE1(q) surface
at q5q0 ~vertical Frank–Condon transition!. Vibrational
motions and relaxation start because this geometry does
correspond to the minimum of the excited-state surface.
have used the ground-state normal modes as a coord
system. The position of then-th nucleus is then expanded a

rn~ t !5rn
~0!1 (

a51

3K26

dnaQa~ t !. ~6!

HereK is the number of nuclei,rn
(0) is its ground-state equi

librium position, anddna is the transformation matrix for the
ground state normal modes. Bothrn

(0) and dna are obtained
from ground-state AM1 calculation. The normal mode a
plitudesQa(t) are calculated by solving the classical equ
tions of motion

MaQ̈a52
]E1

]Qa
, ~7!

where Ma is the mass of thea-th normal mode, with the
initial conditionQa(0)50, Q̇a(0)50. The derivatives in the
right-hand side of Eq.~7! were obtained by numerical differ
entiation usingDq50.01 Å. Equation~7! was integrated us-
ing Runge–Kutta–Fehlberg method of 4–5-th order72 with
the effective time step of 0.33 fs, and the trajectory w
computed for 400 fs. The calculation was repeated with h
the time step and the relative error in bond lengths at the
of the time interval was found to be about 1024. The present
molecular dynamics simulation takes approximately 11 re
time seconds per 1 fs of evolution time.73

The molecule starts evolving according to Eq.~7!. By
symmetry, the energy gradient is nonzero only for the fu
symmetric modes, and planar symmetry is therefore ma
tained throughout the simulation. Classical in-plane mot
is preserved even when the molecule is unstable with res
to out-of-plane modes. Thus, in order to induce isomeri
tion one needs to drive the molecule out of the planar geo
etry by adding an out-of-plane driving force.50 Since the pla-
nar geometry is preserved, the actual number of degree
freedom was reduced from 3K26536 to 2K23525.

ng

rue
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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8331J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 Tsiper et al.
The upper panel of Fig. 3 shows the time dependenc
all heavy-atom bond lengths. A dominant mode with 19
period (1754 cm21) is observed. This mode corresponds
shortening the single bonds and elongating the double bo
such that 9.5 fs after the excitation the single and dou
C–C bonds are interchanged, in agreement with recent
perimental observations.36 These changes in molecular g
ometry can be represented by the bond length alterna
parameter~BLA ! shown in Fig. 4~a!

S5~ l NC1
1 l C2C3

1 l C4C5
!/32~ l C1C2

1 l C3C4
!/2, ~8!

wherel mn denotes the bond length between atomsm andn.
This is the average difference between single and dou
bonds. The fundamental period seen in the BLA is 19 fs.
comparison, the main period of the N–H bond in Fig. 4 is 9
fs (3415 cm21). A strong correlation between BLA and th
adiabatic excitation energyV1(t) @Fig. 4~b!# is observed.
This is a consequence of the fact that the excitation energ
a p-conjugated system depends crucially on the conjuga
length. This observation forms the basis for the Effect
Conjugation Coordinate~ECC! model for vibrational spectra
of polyconjugated molecules.49 This model introduces a col
lective vibrational coordinate strongly coupled top-electrons
~R mode! which in the case of polyenes coincides with t
BLA parameter.R describes a collective oscillation tha
moves nuclei from the ground electronic state geometry
the optimal geometry of the first excited electronic state. T

FIG. 3. Upper panel: time evolution of the bond lengths between he
atoms following an impulsive optical excitation. Lower panel: same cal
lation but with a critical damping introduced into the classical equations
motion.
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ECC model provides a clear interpretation of infrared a
Raman spectra of many conjugated molecules.49

The upper panel in Fig. 5 presents the time-evolution
the normal mode amplitudesQa(t). This molecular-
dynamics algorithm can also be used to obtain the exci
state equilibrium geometry. The lower panel in Fig. 5 de
onstrates the convergence of the normal mode amplitude
the excited-state equilibrium values when a classical frict
term 2gaQ̇a is added to the right-hand side of Eq.~7!. The
critical dampingga52va /Ma was chosen to minimize the
cooling time which is then approximately equal to one osc
lation period of the corresponding mode. The simulati
time ~about 400 fs! necessary to obtain the excited-sta
equilibrium geometry is thus determined by the lowe
frequency mode~Fig. 5!.

We note, however, that low-frequency vibrational mod
hardly affect the local arrangement of nuclei, which is us
ally associated with high-frequency modes. Thus the near
neighbor bond lengths and angles converge faster than
true energy minimum. The lower panel on Fig. 3 shows
convergence of the C–C bond lengths which occurs at ab
20 fs, i.e., one period of the dominant vibration.

Figure 6 displays the energies associated with the vib
tional normal modes

Wa~ t !5
Ma

2
@Q̇a

2~ t !1va
2Qa

2~ t !#. ~9!

y
-
f
FIG. 4. Evolution of~a! bond length alternation parameter and~b! adiabatic
excitation energyV1 following an impulsive optical excitation.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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8332 J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 Tsiper et al.
Hereva is the frequency of the nuclear modea. The upper
panel displays the five most highly excited modes while
lower panel shows the remaining 21 normal modes with
ergies less than 120 cm21. The power spectrum is clearl
dominated by two modes with frequencies 1742 a
1843 cm21 which are close to the dominant frequency se
in the BLA. Thus, a combination of these modes could
identified as the Effective Conjugation Coordinate~ECC!.49

Both modes are associated with the bond length alterna
as can be clearly seen from the atomic displacements
picted in Fig. 7. Intramolecular vibrational redistribution
induced by theE1 surface anharmonicity. The present d
namical picture is not limited to the specific Schiff base stu
ied here. We have also observed the dominant role of
ECC mode in all-trans configuration of the same Schiff ba
in cis- and trans-hexatriene and in cyclohexadiene.

IV. DISCUSSION AND EXTENSIONS

The present excited-state molecular-dynamics techn
uses potential surfaces obtained from inexpensive calc
tions of adiabatic spectra. This method should be particul
useful in the study of photochemical reaction pathways
large molecules.

The TDHF approximation using semi-empirical INDO
Hamiltonian gives reasonable accuracy in the description
optical excitations of a large variety of molecules.67,74,5,75,76

FIG. 5. Upper panel: evolution of the normal mode amplitudesQa(t) @Eq.
~6!#. Lower panel: the same quantities when critical damping is introdu
into the classical equations of motion.
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Good accuracy of the excited-state adiabatic surfaces,
bronic modes and excited-state geometry of short polye
has been obtained in Ref. 3, compared withab initio CIS
calculations using sufficiently large basis sets. Although
better accuracy for the excited states may be reached u
more elaborate treatments, this usually requires a consi
ably greater computational effort, incompatible with the r
quirements set by molecular-dynamics simulations. A n
table advantage of the present approach is also in that w
not need to compute one excited state at a time, since m
states are generated simultaneously.

The classical description of nuclear motions is exact
harmonic vibrational modes and should hold for anharmo

d

FIG. 6. Total ~kinetic1potential! energiesWa(t) @Eq. ~9!# of the normal
modes. The five most highly excited modes are displayed on the u
panel, while the lower panel shows the remaining modes. Slow intramol
lar vibrational redistribution is due to a weak anharmonicity of the excit
state adiabatic surface.

FIG. 7. Schematic depiction of atomic displacements associated with
dominant modes seen in Fig. 5. Solid lines give the equilibrium atom
positions, and dotted line show the positions of atoms, when the corresp
ing mode amplitude is 0.5 Å.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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8333J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 Tsiper et al.
modes as long as their energies are higher than their vi
tional quantum\va . Good accuracy is thus expected f
low-frequency modes. Our results for high-frequency mo
therefore hold provided their anharmonicities are sm
However, the isomerization process,~which was not simu-
lated here! involves a high energy in the low-frequency to
sional coordinate~see Fig. 2!, where the classical pictur
should apply even for strong anharmonicities.

A fully quantum treatment of high-frequency vibration
requires diagonalization of the excited-state Hamiltonian
can only be done for small systems. For larger syste
wave-packet propagation techniques can be used.77 The
present technique can serve as an ingredient of these m
ods for computing the excited-state potentials in relev
nuclear configurations.

The bottleneck in the present molecular-dynamics sim
lations is the repetitive computation ofEn(q) at each nuclear
configurationq, since the right-hand side of Eq.~7! needs to
be evaluated at every time step. Usually an empiri
ground-state potential energy function is used in ground-s
molecular dynamics calculations,78 as implemented, e.g., in
the CHARMm code.79 A combination of CHARMm poten-
tial with a one-dimensional slice of a first-principle excite
state potential along the torsional coordinate was used
cently in the molecular-dynamics simulation
bacteriorhodopsin.44 Analytic derivative techniques are com
monly employed in quantum chemistry calculations65,80 to
reduce computational cost. In these techniques the HF o
calculation is carried out only once for the equilibrium co
figurationq0 , and the solution is expanded analytically in
vicinity.81–83This results in the Coupled-Perturbed Hartre
Fock ~CPHF! equations. An analogous procedure, t
coupled-perturbed collective electronic oscillator~CPCEO!,
which computes the excited-state adiabatic surface usinab
initio or semi-empirical electronic Hamiltonian by propag
tion of the Hamiltonian, is developed in Appendices C a
D. In Appendix B we outline the spectral properties of t
superoperatorL̂ necessary to derive the perturbation theo
for its eigenmodesjn and eigenfrequenciesVn . These prop-
erties are then used in Appendix C for the analytic deri
tives procedure for computing first and second derivative
the CEO excitation energy at a given nuclear configurat
q. These make it possible to obtain the derivatives of
CEO solution with respect to nuclear coordinates by solv
the CEO equations only once at thisq.

Let q denote the set of mass-weighted nuclear coo
nates. Then, a classical trajectory is computed by propa
ing the following system of CPCEO equations:

]2q

]t2 52E0
q2Vn

q , ~10a!

]r̄

]t
5 r̄q

]q

]t
, ~10b!

]jn

]t
5jn

q ]q

]t
. ~10c!
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Here aq superscript denotes a derivative with respect toq.
The ground-state potential gradientsE0

q5E0
q( r̄;tq,Vq) are

calculated~see Appendix C! as

E0
q52 tr~ r̄tq1 1

2r̄V̂qr̄ !. ~11!

The excitation energy gradientsVn
q5Vn

q( r̄,jn ; r̄q,tq,Vq) are
obtained using Eq.~D3!:

Vn
q5~jnu@ tq1V̂qr̄,jn#1@V̂qjn ,r̄ #1@V̂r̄q,jn#

1@V̂jn ,r̄q#ujn!. ~12!

The ground-state density matrix gradientsr̄q5rq( r̄;tq,Vq)
are calculated by solving CPHF linear system~see Appendix
C!

L̂ r̄q5@ r̄,tq1V̂qr̄ #. ~13!

Finally the gradients of the collective electronic modesjn
q

5jn
q( r̄,jn ; r̄q,tq,Vq) are computed using Eq.~D6! by solv-

ing the equation

~ L̂2Vn!jn
q5~@ tq1V̂qr̄,jn#1@V̂qjn ,r̄ #2Vn

q

1@V̂r̄q,jn#1@V̂jn ,r̄q# !jn . ~14!

The arguments in these expressions show the exp
dependence on the relevant variables (r̄,jn ; r̄q,tq,Vq). For
example, computingE0

q using the CPHF@Eq. ~11!# requires
r̄ and the derivativestq andVq of the matrix elements, while
obtainingVn

q using CPCEO@Eq. ~14!# requires alsojn and
r̄q. The proposed CPCEO analytic derivatives proced
yields the excited-state surface in the vicinity of a giv
nuclear configuration. Using these equations, the CEO ca
lation should be carried out only once at the beginning of
simulation and the electronic ground stater̄ and modesjn

are propagated along the trajectory, in the spirit of the C
Parinello approach for ground-state simulations.53 The ab-
sence of long range electronic coherence may be use
reduce the number of density matrix elements from;N2 to
;N3Nc where the coherent sizeNc denotes the number o
orbitals of closely lying atoms.84,85 A favorable linear
N-scaling of computational effort with size is then possib
since typicallyNc!N. This is analogous to similar develop
ments in ground state calculations.86,87
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APPENDIX A: THE CEO ALGORITHM

We consider the adiabatic molecular Hamiltonian for
molecule driven by an external fieldE(t)62

H5( t i j cis
† cj s1( ^ i j ukl&cj s

† cis8
† cks8cls

2E~ t !( mi j cis
† cj s . ~A1!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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The first two terms represent the free molecule, whereas
last term describes the coupling to an external optical elec
field E(t). Single-electron matrix elementst i j , Coulomb
matrix elementŝ i j ukl&, and dipole moment matrix elemen
mi j may be expressed in terms of the atomic orbitalsx is(r )
as

t i j 5E dr x i* ~r !@D r1vcore~r !#x j~r !, ~A2a!

^ i j ukl&5EEdr dr 8x i* ~r !x j* ~r 8!ur2r 8u21xk~r !x l~r 8!,

~A2b!

mi j 5E dr x i* ~r !rx j~r !. ~A2c!

Herevcore is the potential created by atomic cores. All matr
elementst i j , ^ i j ukl&, andmi j depend parametrically on th
nuclear configurationq: t i j 5t i j (q), etc.

The CEO algorithm starts with computing the groun
state density matrix which may be obtained by solving
Hartree–Fock equation62

@F~ r̄ !,r̄ #50. ~A3!

The brackets@¯,¯# denote the commutator of two oper
tors in the Hilbert space.F5t1V̂r̄ is the Fock operator
which is the sum of the hopping matrixt and the Coulomb
matrix V̂r̄. The linear superoperatorV̂ is defined by

~V̂j! i j 5(
kl

Vi j ,kljkl , ~A4a!

Vi j ,kl52^ iku j l &2^ i j ukl&, ~A4b!

where indicesi, j, etc. run over a fixed basis set of singl
electron atomic orbitals.V̂ is Hermitian and preserves th
Hermiticity of the matrix on which it acts (Vi j ,kl5Vkl,i j*
5Vji ,lk):62

^V̂aub&5^auV̂b&, ~A5a!

~V̂a!†5V̂a†. ~A5b!

Here the scalar product^¯& of two matrices is defined a
^aub&5tr(a†b).

For a weak external field, the linearized equation of m
tion for the time-dependent density matrix reads67,4

idṙ5L̂dr1E~ t !@ r̄,m#, ~A6!

where the Liouville superoperatorL̂ is defined by its action
on the arbitrary matrixj:

L̂j5@F,j#1@V̂j,r̄ #. ~A7!

Here j, F, m, r̄ are N3N matrices,N being the basis se
size.

Equation~A6! can be viewed as an equation of motio
for a system of coupled externally driven classical harmo
oscillators. The oscillator coordinates are the matrix e
ments ofdr. The eigenmodesjn of L̂ are the ‘‘electronic
normal modes’’ of the system of coupled electronic oscil
Downloaded 08 Mar 2001 to 128.151.176.185. Redistribution subject 
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tors ~these should not be confused with the vibrational n
mal modes! and the eigenfrequenciesVn provide the elec-
tronic excitation energies.4

In the atomic-orbital representation, diagonal eleme
(jn) i i represent the field-induced charges associated w
given atomic orbitals, while the off-diagonal elements gi
the field-induced coherences, or changes in chemical bo
ing. The Density–Matrix–Spectral-Moments Algorithm
~DSMA!67 is a numerically efficient scheme for solving th
CEO equations and computing the electronic modes and
tical spectra.5

APPENDIX B: SPECTRAL PROPERTIES OF THE
LIOUVILLE OPERATOR

Since the TDHF wave function is represented by a sin
Slater determinant, the total density matrixr(t) must be a
projector~idempotent! at all times:

@ r̄1dr~ t !#25 r̄1dr~ t !. ~B1!

Consequently, not all of its matrix elements are independ
The number of degrees of freedom ofdr subject to the con-
dition Eq. ~B1! is precisely the number of its particle-ho
matrix elements.67 The projector property of the ground-sta
density matrix,r̄25 r̄ splits the total single-particle Hilber
space of dimensionalityN into the particle~occupied! and
hole ~virtual! subspaces of dimensionalitiesNp and Nh re-
spectively. The Liouville space of allN3N-dimensional ma-
trices can be then partitioned into the (Np

21Nh
2)-dimensional

subspace of the block-diagonal matrices with respect to
particle and hole subspaces, and the 2NpNh-dimensional
subspace of block-off-diagonal matrices. The latter subsp
which will be denotedM is the actual phase-space of th
system of electronic oscillators. AnyN3N idempotent den-
sity matrix r in the vicinity of r̄ can be uniquely param
etrized by its particle-hole blockj:

r5 r̄1j1T~j!. ~B2!

Here T(j) is a block-diagonal matrix containing only th
particle–particle and hole–hole matrix elements that can
expressed in terms ofj as67

T~j!5~122r̄ !
12A124j2

2

5~122r̄ ! (
m51

`
2m~2m23!!!

2m!
j2m. ~B3!

Whenj is small,T'(122r̄)j2 is quadratic inj.
M is an invariant subspace ofL̂. Namely, for any block-

off-diagonalj, L̂j is also block-off-diagonal@see Eq.~A7!#.
The operatorL̂ restricted to theM subspace has 2NpNh

eigenmodesjn that belong toM. These eigenmodes come
pairs,jn ,jn

† due to the property

L̂j†52~ L̂j!†, ~B4!

which follows directly from the definition Eq.~A7! and Eq.
~A5b!. The corresponding eigenfrequencies6Vn differ only
in sign.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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A scalar product in the space ofN3N matrices can be
introduced aŝ juh&5tr(j†h). This definition has a draw
back since the Liouville operatorL̂ is not Hermitian with
respect to it. Anticipating the need for the perturbative e
pansion of the eigenmodes ofL̂, the Hermiticity of the op-
erator L̂ is strongly desired. To that end we note that t
projector properties ofr̄ allow to introduce a different scala
product onM88,4

~juh![tr~j†@ r̄,h#!5^ju@r,h#&. ~B5!

The Liouville operator is Hermitian with respect to this sc
lar product:

~ L̂j,h!5~j,L̂h!. ~B6!

Equation~B5! obeys the following properties:

~juh!5~huj!* 52~j†uh†! ~B7!

Note that this scalar product is unusual since~j,j! can be
zero for a nonzero matrixj. In particular, (juj)50 if
j5j† and (juj†)50 for anyj. Due to the Hermiticity ofL̂,
its eigenmodes can be chosen orthonormal such that

~jmujn!5gndmn , ~B8!

where gn5sign(Vn). Note that half of the eigenmode
~those with negative eigenfrequencies!, also have negative
norms.

Using the scalar product Eq.~B5!, any block-off-
diagonal matrixj can be expanded as

uj)5(
n

gnujn)~jnuj!. ~B9!

The present bra~ket! notation underlines the similarity with
Dirac’s Hilbert space.

APPENDIX C: GROUND-STATE ENERGY
DERIVATIVES: THE CPHF EQUATIONS

In this Appendix we review the coupled perturbe
Hartree–Fock~CPHF! equations which allow to compute de
rivatives of the HF energy Eq.~11! and the ground-state
density matrix Eq.~13!.81–83 In Appendix D we develop an
analogous excited-state analytic derivative procedure.

The HF equations for the ground-state density matrixr̄
and energyE0 at an arbitrary nuclear configuration are:

r̄25 r̄, ~C1a!

@F,r̄ #50, ~C1b!

E052 tr~ r̄t1 1
2r̄V̂r̄ !. ~C1c!

Hereafter we denote derivatives with respect to nuclear
ordinates by superscripts~e.g., r̄q[]r̄/]q!. Derivatives of
Eqs.~C1a!–~C1c! give the complete system of equations f
calculating derivatives ofE0 andr̄. Taking the derivatives of
Eq. ~C1a! we obtain

r̄q5 r̄ r̄q1 r̄qr̄. ~C2!
Downloaded 08 Mar 2001 to 128.151.176.185. Redistribution subject 
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It immediately follows thatr̄q has only particle-hole matrix
elements:r̄ r̄qr̄5(12 r̄) r̄q(12 r̄)50. Taking derivatives of
Eq. ~C1c! we obtain Eq.~11!. Note that all terms that contain
r̄q cancel. Indeed,

2 tr~ r̄qt1 1
2r̄

qV̂r̄1 1
2r̄V̂r̄q!52 tr~F r̄q!50, ~C3!

since r̄q is block-off-diagonal andF is block-diagonal with
respect to the particle and hole subspaces. ThusE0

q can be
readily obtained as soon as the HF equations are solved

Second derivatives ofE0 can be obtained by an add
tional differentiation of Eq.~11!. However, the terms con
taining r̄q no longer cancel, and the calculation requires
evaluation ofr̄q. Differentiating Eq.~C1b!, we obtain the
following set of linear equations Eq.~13! for r̄q. Note that
the Liouville operatorL̂ appears naturally in the left-han
side of Eq.~11!. Since r̄q must be Hermitian and shoul
contain only particle-hole matrix elements, only the partic
hole block of the matrix equation Eq.~11! is relevant, which
gives a set ofNp3Nh linear equations forr̄q:

~ L̂ r̄q!ph5Fq̃
ph . ~C4!

HereafterFq̃[(]F/]q) r̄5tq1V̂qr̄ denote the partial deriva
tive of the Fock operator at fixedr̄. In the basis of molecular
orbitals, these CPHF equations read:

~ep2eh!r̄ph
q 2Aph,p8h8r̄p8h8

q
5Fq̃

ph , ~C5!

where Aph,p8h854^pp8uhh8&2^phup8h8&2^phuh8p8&. In-
dices p (p8) and h (h8) run over particle~occupied! and
hole ~virtual! orbitals, respectively. Usingr̄q we can then
compute the expectation value of the derivative of a
single-electron~such as the dipole! operator:

d

dq
^0umu0&5

d

dq
tr~ r̄m!5tr~ r̄qm!1tr~ r̄mq!. ~C6!

APPENDIX D: DERIVATIVES OF THE EXCITED STATE
ENERGY: CPCEO EQUATIONS

To develop an analytic derivative procedure for t
excited states we start with Eq.~3! and expand the CEO
excited-state adiabatic surface and the electronic nor
modes in the vicinity ofq0 . This results in Eqs.~12! and
~14! which we shall denote the Coupled-Perturbed CE
~CPCEO! equations.

We first construct a set of CEO relations89 analogous to
Eqs. ~C1! for the ground-state normalization condition fo
the electronic modes@Eq. ~B8!#, expression for excitation
frequencyVn , and the eigenvalue equation forL̂jn @Eq. ~3!#

~jnujn!51, ~D1a!

Vn5~jnuL̂ujn!, ~D1b!

L̂jn5Vnjn . ~D1c!

We next take the derivative of the normalization con
tion Eqs.~D1a!:

~jn
qujn!1~jnujn

q!1tr~ r̄q@jn
† ,jn#!52~jn

qujn!50. ~D2!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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The third term appears due to the definition of scalar prod
which depends onr̄. This term vanishes becauser̄q is block-
off-diagonal due to Eq.~C2!, while @jn

† ,jn# is block-
diagonal, and as a result, the trace is zero. Thus, the de
tive of the normal mode is orthogonal to the mode itself w
respect to the scalar product@Eq. ~B5!#.

By differentiating the expression forVn @Eqs. ~D1b!#,
we obtain

Vn
q5~jnuLq̃ujn!1~jnuL r̃ujn!, ~D3!

where

Lq̃j5@Fq̃,j#1@V̂qj,r̄ #, ~D4a!

L r̃j5@V̂r̄q,j#1@V̂j,r̄q#. ~D4b!

The terms withjn
q cancel due to Eq.~D2! and the Hermiticity

property of L̂. Eqs. ~D3!, ~D4a!, and ~D4b! give a closed
analytic expression Eq.~12! for Vn

q .
Finally, the derivative of the Eq.~D1c! gives the equa-

tion for the derivative of the electronic modejn :

~ L̂2Vn!jn
q52~Lq̃2Vn

q1L r̃ !jn . ~D5!

Substituting Eqs.~D4a! and~D4b! into Eq. ~D5! we ob-
tain Eq. ~14!. This matrix equation represents a system
2NpNh equations for the particle-hole elements of the ma
jn

q . We assume for simplicity that the modejn is nondegen-
erate. In this case the operatorL̂2Vn has one zero eigen
value. One of the equations is therefore redundant
should be replaced by the normalization condition, Eq.~D2!.

Equation ~D5! is formally very similar to the CPHF
@Eqs. ~C4!# for the derivative ofr̄. The main difference is
that the matrixjn is non-Hermitian, so that both particle-ho
and hole-particle components of the matrix equation
needed, which doubles the number of equations. The e
tion for jn

q can further be written using the molecular-orbit
representation, similar to Eq.~C5!:

~ep2eh2Vn!jph
q 2Aph,p8h8jp8h8

q
5zph ,

~D6!
~eh2ep2Vn!jhp

q 2Ahp,h8p8jh8p8
q

5zhp ,

wherez is the matrix in the right-hand side of Eq.~D5!.
In close analogy with Eq.~C6!, jn

q allows to compute the
derivative of the transition matrix element of any sing
particle operator and in particular the dipole-moment ope
tor @cf. Eq. ~C6!#:

d

dx
^0umun&5

d

dx
tr~jnm!5tr~jn

qm!1tr~jnmq!. ~D7!

The first derivative ofjn together with the second de
rivative of r̄ allows to compute the second derivative ofVn .
Taking derivative of Eq.~D3! we obtain

Vn
xy52~jn

yuLq̃1L r̃ujn!1~jnuLxỹ1Lr x̃1Lr ỹ1Lrr̃ujn!.
~D8!

Here the operatorsLxỹ, Lr ỹ, andLrr̃ are defined as

Lxỹj5@Fxỹ,j#1@V̂xỹj,r̄ #, ~D9a!
Downloaded 08 Mar 2001 to 128.151.176.185. Redistribution subject 
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Lr ỹj5@V̂yr̄q,j#1@V̂yj,r̄q#, ~D9b!

Lrr̃j5@V̂r̄xy,j#1@V̂j,r̄xy#, ~D9c!

where the superscripts onF̃ andṼ̂, denote partial derivatives
at fixed r̄, which are the input to the calculations.
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