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Density-matrix-spectroscopic algorithm for excited-state adiabatic surfaces
and molecular dynamics of a protonated Schiff base
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Excited-state potentials of a short protonated Schiff base cation which serves as a model for the
photoisomerization of retinal are computed by combining a semi-empirical ground-state adiabatic
surface with excitation energies obtained using the time-dependent coupled electronic oscillator
(CEO) approach. Excited-state molecular dynamic simulation of the in-plane motion of
cis-CsHgNH,  following impulsive optical excitation reveals a dominating 1754¢m
m-conjugation mode. A new molecular dynamics algorithm is proposed which resembles the Car—
Parinello ground-state technique and is based on the adiabatic propagation of the ground-state
single-electron density matrix and the collective electronic modes along the trajector$99®
American Institute of Physic§S0021-96069)30717-0

I. INTRODUCTION chemical reaction was studied using a broad range of spec-

h hemical . h i htroscopic techniqué$ both in solution and in a natural state
Photochemical reaction pathways are determined by .40 o protein core. Continuous-wave and long-time nano-

evolution of molecules on excited-state adiabatic surfacegecond to picosecond studies include linear absorptidh
E,(q), whereq are the nuclear coordinates. The computay oot Ramalf, infrared!® hole burning'? second-order

tion of these sgrfaces is a f(_)rm_ldable task which COnSt'tUte%olarizabilities}G and two photon absorptidﬁ. More re-
the bottleneck in many applicatiohs.

We have recently proposed an inexpensive method fo(r:ently a broad variety of sub-picosecond and femtosecond

computing excited-state surfacetn this approach the-th spectroscopé%:o vyere applled. The@se. include
excited-state energy is expressed as pump—probe;’ " optical pump—infrared prob€,time and

frequency resolved fluorescente® and time-resolved
E.(@)=Eo(q)+Q,(a). (1)  Ramart®®’

The ground-state energsy(q) is computed using any stan- Early time-resolved exper_lmeﬁf‘:estlmated the rhodop-
dard quantum-chemistry technique, while the excitation enS" (11<is) to bathorhodopsin(all-trang photoconversion

ergy Q,(q) is obtained using the Coupled Electronic OSCiI_t|me scale to be' about 3 ps. Shorter optical pulses .have re-
lator (CEO) approacﬁs that targets directly the linear \{ealed two transients that.precede the bathc;rhodopsm forma-
response of the system, avoiding the costly computation dfon and appear on the time scale of 2007 fSubsequent
excited-state many-electron wave functions. Normally Onéexp_enment%& have in contrast suggested that the isomer-
first computes potential surfaces and then uses them to corffation photoproduct is fully formed within 200 fs. Strong
pute spectra. Here we reverse these steps: we first comput@UPIing to the torsional degree of freedom has been pro-
adiabatic spectra and then use them to generate the adiabaffesed to cause fast and vibrationally coherent departure from
surfaces of the optically active states at the relevant nucledp® Frank—Condon reglc?ﬁ.Thls conclusion has been ques-
configurations. Excited-state surfaces of short polyenetioned by the recent experimefitsnvolving retinal where
which compare well withab initio calculations and repro- the photoisomerization pathway has been blocked. Compari-
duce the experimental resonant Raman spectra were obtainé@n of the photoisomerization dynamics of different retinal
using this techniqug. isomere$* and substituent§ indicates that the high photoi-

In this paper we employ this algorithm to perform mo- Somerization rate and quantum yield are closely connected.
lecular dynamics simulations for the photoexciteis- These results are commonly interpreted using a two-level
CsHgNH; protonated Schiff base catidisee Fig. L This  picture (ground-state-one optically-allowed  excited
molecule has been used as a “minimal model” for retinalstat¢*-*? whereby the photoisomerization process is de-
photoisomerizatiofi. The photochemistry of retinal and its scribed as Landau—Zener tunnelitig* Transient stimulated
derivatives is one of the most important problems in photo€mission experiments support this motfel.
biology, since this chromophore is responsible for photore- Despite these extensive studies, a complete understand-
ception in vision” A protein of the opsin family changes its ing of this process is yet to be developed. There seem to be
conformation upon the absorption of a single photon by arseveral viewpoints onto both the origin of the fast photore-
embedded Schiff base of retinal. There has been a considerction and the description of relevant electronic and vibra-
able interest in the origin of the extremely fast rate and thdional states. Recent pump-dump—probe experimikfits
high quantum vyield of the photoisomerization of retinal, have been interpreted by assuming that a third, optically
which is one of the fastest known in natdré® This photo-  dark, state participates in the photoisomerization process.

0021-9606/99/110(17)/8328/10/$15.00 8328 © 1999 American Institute of Physics

Downloaded 08 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 Tsiper et al. 8329

The present propagation of modes bears close analogy
with the Car—Parinello molecular dynamics technique for the
ground stat& whereby the electronic structure is propagated
in time together with the nuclear configuration using fic-
titious classical equations of motion. The present method fol-
lows the true evolution of the system within the TDHF ap-

proximation and no fictitious equations of motion are intro-
‘u duced. However, the analogy with Car—Parinello lies in the
propagation of the electronic structure in time which avoids
FIG. 1. Protonated Schiff baggs-CsHgNH, . repetitive solution of the TDHF at every new nuclear con-
figuration. Given the low computational cost of CEO calcu-
lations, we anticipate the possibility of performing large-

This state is believed to be responsible for the two—photor_?’Cale excited-state moIec_;uIar—dynamic calcula_ltions, taking
absorption reported in Ref. 17. The second excited-state hdto account the surrounding solvent and protein.

been taken into account in recent theoretical simulatféns.

The role of the conical intersection point in the photoisomer-l. ADIABATIC POTENTIALS ALONG THE

ization process has drawn considerable attefitibhExis- ISOMERIZATION COORDINATE

tence of a barrierless path to adiabatic surface crossing has
been shown for short protonated Schiff b4ées well as for
related conjugated hydrocarboffs.

The CEO is a reduced description of electronic structure
which only uses a small amount of relevant excited-state
information and is based on the time-dependent single-

. . . %Fectron density matrix of the molecule interacting with an
show that an in-plane motion along the conjugated length ISy ternal optical fielcE(t):5

the primary event which precedes the photoisomerizafion.
An in-plane primary step of the photoreaction has also been  pj;(t)=(¥(t)|c]c;|¥(1)). 2
proposed in Ref. 6, where a minimal energy path for th
photoisomerization otis-CsHgNH, has been computed us-

ing ab initio CI calculations. These calculations show that . . it The diagonal elements (1) give the elec-
the minimal energy path to the crossing point starts with aYyonic charge distribution across theI molecule. Density-
in-plane bond stretching, while photoisomerization Onlyfunctional theory(DFT)®™ %2 only retains the diagonal ele-
takes place after the bond stretching is completed. The picﬁwentsﬁi —(0|clc;|0), where|0) denotes the many-electron

tu.:ﬁg bot;'d str?_tchmfgl_prlor (;0 |so(rjner|zago?w|s cotr;]ssl_tent round-state. The off-diagonal elements of the density ma-
Wi € observation of linear dependence between the inegf;, carry additional information about electronic

a_bsor_ptlon max”’l,‘“m and Raman shift of the conjugation; o e renceswhich is vital for computing optical excitations.
vibrational modé'

. . .When the molecule is driven by an external field, its wave
Car—Parinello molecular dynamics of a stand-alone reti

: o ) . function | ¥ (t)) and the single-electron density matyxt
nal molecule usingab initio ground-state adiabatic surface W (1) 9 y o)

: . : X =p+ Sp(t) become time-dependent. The field-induced com-
with an external torsional potential was performed in Ref. P op(t) b

. . . . _ 'ponent of the density matrigp(t) can be computed by solv-
50. Extensive molecular-dynamics simulation of the entlrep y o(t) P y

. . . . . . .1ng the Heisenberg equations of motion tdrc- . The hier-
Bacteriorhodopsin protein with the retinal embedded in it ] o I .
were performed using CHARMmM force fief*-5242 Re- archy of many-body dynamics is closed by invoking the

) . . . ___time-dependent Hartree—Fo€kDHF) ansatz| W (t)) is rep-
cently the force field was improved by adjusting the torslonalresenteol by a single Slater determinant at all tiyesulting

potential to match CASSCEb initio calculation for a short .

tinal anal A by s density-matrix descriofi kn closed nonlinear equations of motion #(t).%2 6p(t) is
retinal analogue, and by using a density-matrix description o, e, expanded in the eigenmodgsof the Liouville op-
avoided level crossinf

In Sec. Il we outline briefly the CEO algorithm and €ratorL (Appendices A and B
present a slice of the lowest five potential surfaces of the _
short protonated Schiff base computed along the dihedral .L(q)lgy(q) (e, ®
angle, keeping all other coordinates fixed. Excited-state mowhich gives
lecular dynamics simulation of the in-plane motion per-
formed in Sec. Il demonstrates the dominant role of the  dp(H)=2, a,(t)&,+ >, a*(t)él. (4)
conjugation mode on the 200 fs time scale. In Sec. IV we g g
discuss these results and further propose a computationallyhe eigenvalue<),(q) provide the excitation frequencies.
efficient analytical procedure to calculate the excited-statd he electronic normal modg,(q) is an approximation to the
adiabatic surface derivatives with respect to the nuclear caransition density matrix between the groufd and excited
ordinates. This results in a molecular dynamics algorithmv) statesﬁ.“(gy)ij=<0|c?cj|v>.
which computes the excited state only once at a starting Solution of Eq.(3) at various nuclear configuratiorts
nuclear configuration. The excited-state surface is then geryields theq-dependent excitation energi€s,. The excited-
erated “on the fly” by propagating the CEO modgsppen-  state adiabatic surfacgE,(q) is obtained using Eq(l) by
dices A-D. adding Q,(g) to the ground-state adiabatic surface

eHere\If(t) is the many-electron wave function anﬁi (c)
are the fermionic creatiorfannihilatior) operators for the
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larger second excitation energy may be attributed to the
shorter size of the present molecti€? The ratio of the
excitation energie€),/Q,=1.59 at =0 agrees with the
CIS ab initio result of 1.51, obtained at 6-31G level using
Gaussian 94! The adiabatic excitation energy reduces three-
fold at »=90°, indicating that this configuration is very close
to the conical crossing point, predicted by Olivuetial®

Since the excited-states are nondegenerate, the gradient of
the excited-state potentials with respect to the torsional angle
. is zero at¢=0.

Energy (eV)

lll. IN-PLANE MOLECULAR DYNAMICS SIMULATION:
THE EFFECTIVE CONJUGATION COORDINATE

We have simulated the vibrational dynamics of the pho-
toexcited protonated Schiff base on the lowest excited state
E,(q) surface. The simulation started with the AM1 ground-
state equilibrium geometrg,. Assuming an impulsive opti-
cal excitation, the molecule finds itself on tkg(q) surface
at g=qg (vertical Frank—Condon transitipn Vibrational
motions and relaxation start because this geometry does not
correspond to the minimum of the excited-state surface. We
Have used the ground-state normal modes as a coordinate
system. The position of the-th nucleus is then expanded as

0 30 60 90 120 150 180
torsional angle (deg.)

FIG. 2. Ground- and four lowest excited-state adiabatic surface slices alon
the G—C,—C;—C, torsional angle coordinate. All other internal coordinates
are held fixed at theis equilibrium values. The apparewis and trans
degeneracy is accidental; tliensgeometry is not the optimal geometry
and therefore have the ground-state energy higher than the energy in the true
minimum.

3K—-6

M(O=r+ 2 dnaQa(t). ®

HereK is the number of nuclet,() is its ground-state equi-
librium position, andd,,, is the transformation matrix for the
ground state normal modes. Bat}f’ andd,, are obtained
from ground-state AM1 calculation. The normal mode am-
plitudesQ,(t) are calculated by solving the classical equa-
tions of motion

Eq(q), which is an input to this calculation. Finally, the adia-
batic linear polarizability is given in terms é1,(q) and the
transition dipole momenu®”(q) =tr{ u(q) £,(q)} as

YInl(q)?

q)= ) 5
(=2 0 @7 © e
.. l
wherey is a homogeneous dephasing rate. M,Q.,=— 70, (7

The AM1 semiempirical ground-state energy surface
Eo(q) was obtained using Gaussian GAThe ground-state whereM , is the mass Of.'[hel-th normal mode, with the
electronic density matriy(q) and INDO/S Hamiltonian pa- initial conditionQ,(0)=0, Q,(0)=0. The derivatives in the
rameters were then computed using ZINBRCEinally, the  right-hand side of Eq(7) were obtained by numerical differ-
DSMA proceduré” was applied to calculate the excitation entiation usingAq=0.01 A. Equation(7) was integrated us-
energies() . ing Runge—Kutta—Fehlberg method of 4—5-th of8levith

We started with the AMIcis-optimized geometry and the effective time step of 0.33 fs, and the trajectory was
then varied the &—C,—C5—C, torsional anglep, keeping  computed for 400 fs. The calculation was repeated with half
all other internal coordinates fixedb=0 and 180° corre- the time step and the relative error in bond lengths at the end
spond tocis andtrans conformations, respectively. We have of the time interval was found to be about 10 The present
used this algorithm to find four excited states of themolecular dynamics simulation takes approximately 11 real-
cis-CsHgNH, cation along thecis- to transisomerization time seconds per 1 fs of evolution time.
coordinate. The resulting potential slices are displayed in  The molecule starts evolving according to E@). By
Fig. 2 (only the interval B<¢$=<180° is shown since the symmetry, the energy gradient is nonzero only for the fully
potential is symmetric aroung=0). The optically-allowed symmetric modes, and planar symmetry is therefore main-
B, type states are depicted by solid curves, whereas the afained throughout the simulation. Classical in-plane motion
most forbiddenA, type states are given by dashed cuitfes. is preserved even when the molecule is unstable with respect

The lowest excitation energy of 3.5 eVé&t0 compares to out-of-plane modes. Thus, in order to induce isomeriza-
well with 90 kcal/mol (=3.9eV) of Ref. 6. The potentials tion one needs to drive the molecule out of the planar geom-
shown in Fig. 2 are in a good agreement with the results foetry by adding an out-of-plane driving foré®Since the pla-
larger protonated Schiff base obtained using complete activear geometry is preserved, the actual number of degrees of
space self-consistent fieldCASSCH.** The noticeably freedom was reduced fromK3-6=36 to 2K —3=25.
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FIG. 3. Upper panel: time evolution of the bond lengths between heavy time (fs)

atoms following an impulsive optical excitation. Lower panel: same calcu-
lation but with a critical damping introduced into the classical equations of
motion.

FIG. 4. Evolution of(a) bond length alternation parameter &b adiabatic
excitation energy), following an impulsive optical excitation.

JCC model provides a clear interpretation of infrared and

The upper panel of Fig. 3 shows the time dependence X
Raman spectra of many conjugated molecffes.

all heavy-atom bond lengths. A dominant mode with 19 fs o ) )
period (1754 cm?) is observed. This mode corresponds to The upper panel in Flg. 5 presents the_tlme-evolutlon of
shortening the single bonds and elongating the double bondg?e n(_)rmal m_ode amplitudesQ,(t). This molecular-_
such that 9.5 fs after the excitation the single and doubl@Ynamics algorithm can also be used to obtain the excited-
C—C bonds are interchanged, in agreement with recent ex3tate equilibrium geometry. The lower panel in Fig. 5 dem-
perimental observatiori. These changes in molecular ge- onstrates the convergence of the normal mode amplitudes to

ometry can be represented by the bond length aIternatioWe excited-state equilibrium values when a classical friction

parameteBLA) shown in Fig. 4a) term — y,,Q,, is added to the right-hand side of Eg). The
critical dampingy,=2w,/M, was chosen to minimize the
S=(Inc, T lee, T le,c)/3— (e, T lee)/2, (8 cooling time which is then approximately equal to one oscil-

lation period of the corresponding mode. The simulation

o . . time (about 400 f§ necessary to obtain the excited-state
This is the average difference between single and dOUblsquiIibrium geometry is thus determined by the lowest-
bonds. The fundamental period seen in the BLA is 19 fs. FOErequency modéFig. 5)

](c:omparison_,lthe main period OT the N—H bond in Fig. 4 ish9.8 We note, however, that low-frequency vibrational modes
S _(341_5 cm )_' A strong corre atlon_ betweeq BLA and the hardly affect the local arrangement of nuclei, which is usu-
adiabatic excitation energf,(t) [Fig. 4b)] is observed. ally associated with high-frequency modes. Thus the nearest-

This isa_lconsequence of the fact that_the excitation energy cﬁeighbor bond lengths and angles converge faster than the
a m-conjugated system depends crucially on the conjugatio}, o energy minimum. The lower panel on Fig. 3 shows the
length. This observation forms the basis for the Effective

) X ) o convergence of the C—C bond lengths which occurs at about
Conjugation CoordinatéECC) model for vibrational spectra 20 fs, i.e., one period of the dominant vibration
of p_oncc_mjugated moIepuIé‘é’.Ths model introduces a col- Figure 6 displays the energies associated with the vibra-
lective vibrational coordinate strongly coupledseelectrons ..

S o ) tional normal modes

(R mode which in the case of polyenes coincides with the
BLA parameter.R describes a collective oscillation that
moves nuclei from the ground electronic state geometry to
the optimal geometry of the first excited electronic state. The

wherel ,,, denotes the bond length between atamandn.

M, .
Wo(t) = 57 [Q(D) + @i Qa(D)]. 9
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0 20 40 6.0 3'0 100 FIG. 6. Total (kinetict+potentia) energieswW,(t) [Eqg. (9)] of the normal
R modes. The five most highly excited modes are displayed on the upper
time (fs) panel, while the lower panel shows the remaining modes. Slow intramolecu-
lar vibrational redistribution is due to a weak anharmonicity of the excited-
FIG. 5. Upper panel: evolution of the normal mode amplitu@e$t) [Eq. state adiabatic surface.

(6)]. Lower panel: the same quantities when critical damping is introduced
into the classical equations of motion.

Good accuracy of the excited-state adiabatic surfaces, vi-

. bronic modes and excited-state geometry of short polyenes
Here w, is the frequency of the nuclear mode The upper has been obtained in Ref. 3, compared wath initio CIS

panel displays the five most highly excited modes while thecalculations using sufficiently large basis sets. Although a

Iow_e ' pla nel tshhowiztge_rfrq%mmg 21 normatl mod_es \lN'thlenbetter accuracy for the excited states may be reached using
ergies less than ¢ € power Speclium 1S clearly ,5re elaporate treatments, this usually requires a consider-

iggl"’xﬁjwﬁ?&ht\g& cToosdeefo méh d;:ﬁ%gi?iizuézg SEelgnably greater computational effort, incompatible with the re-
; . uirements set by molecular-dynamics simulations. A no-
in the BLA. Thus, a combination of these modes could b J y y

identified as the Effective Conjugation CoordindECC) *° Sable advantage of the present approach is also in that we do

. ! ._not need to compute one excited state at a time, since many
Both modes are associated with the bond length aIternatlogtates are generated simultaneously

as can be clearly seen from the atomic displacements de- The classical description of nuclear motions is exact for

picted in Fig. 7. Intramolecular vibrational redistribution is harmonic vibrational modes and should hold for anharmonic
induced by theE; surface anharmonicity. The present dy-

namical picture is not limited to the specific Schiff base stud-
ied here. We have also observed the dominant role of the ‘ .
ECC mode in all-trans configuration of the same Schiff base, (a) 1742 cm™ mode (b) 1843 cm™ mode
in cis- and trans-hexatriene and in cyclohexadiene. ‘

IV. DISCUSSION AND EXTENSIONS

The present excited-state molecular-dynamics technique
uses potential surfaces obtained from inexpensive calcula-
tions of adiabatic spectra. This method should be particularly
useful in the study of photochemical reaction pathways of

large molecules. _ o o _ _
The TDHF approximation using semi-empirical INDO/S F'C: 7- Schematic depiction of atomic displacements associated with two
0gomlnant modes seen in Fig. 5. Solid lines give the equilibrium atomic

Hamiltonian g_ives reasonable accuracy in the deacsriYL;ti?(gn ositions, and dotted line show the positions of atoms, when the correspond-
optical excitations of a large variety of molecufég** "> ing mode amplitude is 0.5 A.
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modes as long as their energies are higher than their vibradere aq superscript denotes a derivative with respect|to
tional quantumfiw,. Good accuracy is thus expected for The ground-state potential gradierg=Egd(p;t9,VY) are
low-frequency modes. Our results for high-frequency modegalculated(see Appendix Cas
therefore hold provided their anharmonicities are small. q g ¢
However, the isomerization procegsyhich was not simu- Eg=2 tr(pt?+2pV). (11
lated herg involves a high energy in the low-frequency tor- The excitation energy gradients?=Q%p, £, ;p%t9,V9) are
sional coordinate(see Fig. 2, where the classical picture optained using Eq(D3):
should apply even for strong anharmonicities. . . .

A fully quantum treatment of high-frequency vibrations Q3= (&,|[t9+V%,&,1+[VI¢, p]+[Vp%E,]
requires diagonalization of the excited-state Hamiltonian and N
can only be done for small systems. For larger systems, +[VE, p[)- (12)
wave-packet propagation techniques can be 0(Sethe The ground-state density matrix gradiepi&=p%(p;t9,Vv9)
present technique can serve as an ingredient of these methre calculated by solving CPHF linear syst&ae Appendix
ods for computing the excited-state potentials in relevant)
nuclear configurations. N _ -

The bottleneck in the present molecular-dynamics simu- Lp%=[p,t9+Vp]. (13

lations is the repetitive computation Bf(q) at each nuclear Finally the gradients of the collective electronic modds
configurationq, since the right-hand side of E(f) needsto =9 £, 5% t9,v9 are computed using EGD6) by solv-
be evaluated at every time step. Usually an empiricaing the equation

ground-state potential energy function is used in ground-state =~ _ R .
molecular dynamics calculatiori®as implemented, e.g., in (L—Q,) &= ([t9+VIp,£,]+[ VI, p] - Q]
the CHARMm cod€® A combination of CHARMm poten- - -
tial with a one-dimensional slice of a first-principle excited- HIVPLEIHIVE, pDE, - (14
state potential along the torsional coordinate was used re- The arguments in these expressions show the explicit
cently in the molecular-dynamics simulation of dependence on the relevant variablesé( ; p9,t% VY. For
bacteriorhodopsifi? Analytic derivative techniques are com- example, computingd using the CPHFEQ. (11)] requires
monly employed in quantum chemistry calculatit® to 5 and the derivativet® andV? of the matrix elements, while
reduce computational cost. In these techniques the HF or G@btaining Q% using CPCEJEQ. (14)] requires alsc, and
calculation is carried out only once for the equilibrium con-59. The proposed CPCEO analytic derivatives procedure
figurationgy, and the solution is expanded analytically in its yields the excited-state surface in the vicinity of a given
vicinity.**~%3This results in the Coupled-Perturbed Hartree—nuclear configuration. Using these equations, the CEO calcu-
Fock (CPHR equations. An analogous procedure, thejation should be carried out only once at the beginning of the
coupled-perturbed collective electronic oscillai@PCEQ, simulation and the electronic ground stateand modest,
which computes the excited-state adiabatic surface WiNg are propagated along the trajectory, in the spirit of the Car—
initio or semi-empirical electronic Hamiltonian by propaga- Parinello approach for ground-state simulatiohdhe ab-
tion of the Hamiltonian, is developed in Appendices C andsence of long range electronic coherence may be used to
D. In Appendix B we outline the spectral properties of thereduce the number of density matrix elements froN? to
superoperatot. necessary to derive the perturbation theory~NX N, where the coherent si2¢, denotes the number of
for its eigenmodesg, and eigenfrequencie®, . These prop- orbitals of closely lying atom&° A favorable linear
erties are then used in Appendix C for the analytic derivaN-scaling of computational effort with size is then possible,
tives procedure for computing first and second derivatives ofince typicallyN.<N. This is analogous to similar develop-
the CEO excitation energy at a given nuclear configuratiomments in ground state calculatioff<’
g. These make it possible to obtain the derivatives of the
CEO solution with respect to nuclear coordinates by solving
the CEO equations only once at thijs ACKNOWLEDGMENTS

Let g denote the set of mass-weighted nuclear coordi-
nates. Then, a classical trajectory is computed by propagagCi
ing the following system of CPCEO equations:
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7*q — _E9-Q0
—z= B~y (108 APPENDIX A: THE CEO ALGORITHM

We consider the adiabatic molecular Hamiltonian for a
Jp _dq molecule driven by an external fielg(t)®?
P _—q21 (10b)
a P e

H=2 ticlci,+> (ijlklcl cf

ij“iovjo J >Cjacig’ck(r’clfr

€, aq
Pt (109 —EMX piclyCio- (A1)
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The first two terms represent the free molecule, whereas thters (these should not be confused with the vibrational nor-
last term describes the coupling to an external optical electrimal mode$ and the eigenfrequenci€d, provide the elec-
field £(t). Single-electron matrix elements;, Coulomb  tronic excitation energieb.

matrix elementgij |kl), and dipole moment matrix elements In the atomic-orbital representation, diagonal elements
pi; may be expressed in terms of the atomic orbisgls(r) (&,)ii represent the field-induced charges associated with
as given atomic orbitals, while the off-diagonal elements give
the field-induced coherences, or changes in chemical bond-
tj ZJ dr X (N[A+vcord 1) 1x5(1), (A2a) ing. The Density—Matrix—Spectral-Moments ~Algorithm
(DSMA)®" is a numerically efficient scheme for solving the

CEO equations and computing the electronic modes and op-
(ij|k|)=ffdr dr’Xi*(r)XJ*(r’)|r—r’|*1Xk(r)X,(r’), tical spectra.
(A2b)

Y (A2 APPENDIX B: SPECTRAL PROPERTIES OF THE
Hij Xi ADTXE)- LIOUVILLE OPERATOR

Herev ., iS the potential created by atomic cores. All matrix Since the TDHF wave function is represented by a single
elementst;;, (ij|kl), and u;; depend parametrically on the Slater determinant, the total density matyigt) must be a
nuclear configurationy: t;; =t;;(q), etc. projector(idempotenk at all times:
The CEO algorithm starts with computing the ground- _ 5 —
state density matrix which may be obtained by solving the [P 9P(D]"=p+dp(1). (BD)
Hartree—Fock equati6h Consequently, not all of its matrix elements are independent.
_ The number of degrees of freedom &f subject to the con-
[F(p).p]=0. (A3) dition Eq. (B1) is precisely the number of its particle-hole
The bracketg- --,---] denote the commutator of two opera- matrix element§’ Tif projector property of the ground-state
tors in the Hilbert spaceE=t+Vp is the Fock operator, density matrix,p?=p"splits the total single-particle Hilbert
which is the sum of the hopping matrtxand the Coulomb ~SPace of dimensionaliti into the particle(occupied and

- — . s : hole (virtual) subspaces of dimensionalitiég, and N, re-
matrix Vp. The linear superoperat®f is defined b . o . ~h
P perop y spectively. The Liouville space of all X N-dimensional ma-

trices can be then partitioned into i3+ N7)-dimensional

(VE)ij :% Vi ki (Ada) subspace of the block-diagonal matrices with respect to the
particle and hole subspaces, and thid,R,-dimensional
Vij i =2(ik][jly = (ij [k, (Adb)  subspace of block-off-diagonal matrices. The latter subspace

which will be denotedM is the actual phase-space of the
system of electronic oscillators. Ay X N idempotent den-
sity matrix p in the vicinity of p can be uniquely param-
etrized by its particle-hole block

where indiced, j, etc. run over a fixed basis set of single-

electron atomic orbitalsV is Hermitian and preserves the
Hermiticity of the matrix on which it acts\(ij'k,=v’k‘|’ij

=V;i )% _

. . p=p+E+T(E). (B2)
(Valb)=(alVb), (AS3) Here T(&) is a block-diagonal matrix containing only the
(Va)t=Val. (A5b) particle—particle and hole—hole matrix elements that can be

expressed in terms gfag’
Here the scalar product--) of two matrices is defined as .
(a|by=tr(a'b). (T ViT4s
. L . T(§)=(1-2p)
For a weak external field, the linearized equation of mo- 2
tion for the time-dependent density matrix redds o
. =(1-2p) > Mgm (B3)
i 0p=Lop+ EOpr 4], (A6) =20) & —2m |

where the Liouville superoperatdris defined by its action When¢ is small, T~(1—2p)£? is quadratic iné.
on the arbitrary matrix: M is an invariant subspace bf Namely, for any block-
Le=[F.e]+[VeD]. (A7) '|O'fr: dlagonalg,nLg is glso block-off-diagondlsee Eq(A7)].
e operatorL restricted to theM subspace hasNgNy,
Here & F, p, p are NXN matrices,N being the basis set eigenmodeg, that belong toM. These eigenmodes come in
size. pairs,gy,gl due to the property
Equation(A6) can be viewed as an equation of motion - <t
for a system of coupled externally driven classical harmonic LE=—(LE, (B4)
oscillators. The oscillator coordinates are the matrix elewhich follows directly from the definition Eq{A7) and Eq.
ments of &. The eigenmodesg, of L are the “electronic  (A5b). The corresponding eigenfrequencie$), differ only
normal modes™ of the system of coupled electronic oscilla-in sign.
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A scalar product in the space dbFX N matrices can be It immediately follows thafp® has only particle-hole matrix
introduced agé|7)=tr(¢5). This definition has a draw- elementsppp=(1—p)p%(1—p)=0. Taking derivatives of
back since the Liouville operatdr is not Hermitian with ~ Ed. (C10 we obtain Eq(11). Note that all terms that contain
respect to it. Anticipating the need for the perturbative ex-p” cancel. Indeed,
pansion of the eigenmodes bf the Hermiticity of the op-
erator L is strongly desired. To that end we note that the
projector properties g5 allow to introduce a different scalar sincep® is block-off-diagonal andr is block-diagonal with

2 tr(p%t+ 3pWVp+ 3pVpY) =2 tr(Fp%) =0, (C3

product onM 884 respect to the particle and hole subspaces. HEflisan be
. _ readily obtained as soon as the HF equations are solved.
(&l m=tr(&Tp, 7D =(éllp. 7]). (BS) Second derivatives o, can be obtained by an addi-
The Liouville operator is Hermitian with respect to this sca-tional differentiation of Eq.(11). However, the terms con-
lar product: taining p® no longer cancel, and the calculation requires the
R R evaluation ofpY. Differentiating Eq.(C1b), we obtain the
(L&) =(&Ln). (B6)  following set of linear equations Eq13) for p". Note that
Equation(B5) obeys the following properties: the Liouville operatorﬁ appears naturally in the left-hand
side of Eq.(11). Sincep" must be Hermitian and should
(&lm)=(n&)*=—(&"n"H (B7)  contain only particle-hole matrix elements, only the particle-

hole block of the matrix equation E¢L1) is relevant, which

Note that this scalar product is unusual singg) can be gives a set oN,x N, linear equations fop®:

zero for a nonzero matrix. In particular, € &)=0 if
&=¢" and ¢ &7 =0 for any & Due to the Hermiticity of_, ([m)ph:ﬁph_ (C4)
its eigenmodes can be chosen orthonormal such that —_ .
HereafterF 9= (JF/9q),=t9+ V9 denote the partial deriva-
(§M|§v) =90, (B8) tive of the Fock operator at fixed In the basis of molecular

where g,=sign(Q,). Note that half of the eigenmodes °rbitals, these CPHF equations read:

those with negative eigenfrequendiealso have negative ~
fWOfmS. g g a o g (6p_6h)ﬁgh_Aph,p’h'Eg/h/=quhv (CH
_ Using thg scalar product Eq(B5), any block-off- where Ay, o =4(pp’|hh")—(ph|p’h’)—(phlh’'p’). In-
diagonal matrix; can be expanded as dicesp (p’) andh (h') run over particle(occupied and
hole (virtual) orbitals, respectively. Using® we can then
&)= 9,|£,)(&,]9). (B9) compute the expectation value of the derivative of any

single-electronsuch as the dipojeoperator:

The present bréket) notation underlines the similarity with d
Dirac’s Hilbert space. ﬁ(0|;u|0>= ﬁtr(ﬁp)ﬂr(ﬁqp) +tr(ppu). (Co)

APPENDIX D: DERIVATIVES OF THE EXCITED STATE
APPENDIX C: GROUND-STATE ENERGY ENERGY: CPCEO EQUATIONS

DERIVATIVES: THE CPHF EQUATIONS
To develop an analytic derivative procedure for the

In this Appendix we review the coupled perturbed gyciteq states we start with E¢3) and expand the CEO
Hartree—FockCPHBP equations which allow to compute de- oy ited-state adiabatic surface and the electronic normal

rivatives of the HF energy Eq11) and the ground-state ., 4es in the vicinity ofge. This results in Eqs(12) and

density matrix _EQ(13)'81_83|n Appendix D we develop an 14y which we shall denote the Coupled-Perturbed CEO
analogous excited-state analytic derivative procedure. (CPCEQ equations.

The HF equations for the ground-state density magrix

\ , , We first construct a set of CEO relatidisinalogous to
and energyE, at an arbitrary nuclear configuration are:

Egs. (C1 for the ground-state normalization condition for

p2=7, (C1a the electronic mode§Eqg. (B8)], expression for excitation
frequency(),, and the eigenvalue equation o, [Eq. (3)]
[F,p]=0, (C1b
) (£1€)=1, (D1a)
Eo=2 tr(pt+ 3pVp). (Clo .
o . Q,=(&L[E,), (D1b)
Hereafter we denote derivatives with respect to nuclear co-
ordinates by superscrip{®.g., p%=dpldq). Derivatives of Le,=0,8,. (D1c)
Egs.(Cla—(C10 give the complete system of equations for o o _
calculating derivatives dE, andp. Taking the derivatives of We next take the derivative of the normalization condi-
Eq. (C1a we obtain tion Egs.(D1a):
PI=pp%+ 5. (c2) (E1€,)+(&|ED+tr(pUe].6,)=2(£)£,)=0. (D
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The third term appears due to the definition of scalar product I”_?{, —[WY5U £+ E DO D9b
which depends op. This term vanishes becatg®is block- E=IVPPR el Ve, (b9
off-diagonal due to Eq.(C2), while [&],£,] is block- LPpe=[Vp™, e]+[VE Y], (D9Q)

diagonal, and as a result, the trace is zero. Thus, the deriva- ~ ~
tive of the normal mode is orthogonal to the mode itself withwhere the superscripts dghandV, denote partial derivatives

respect to the scalar prody&q. (B5)]. at fixedp, which are the input to the calculations.
By differentiating the expression fd, [Egs. (D1b)],
we obtain
— — 1J. Michl and V. Bonacic-KouteckyElectronic Aspects of Organic Photo-
q_ q + p chemistry(Willey, New York, 1990; M. Klessinger and J. MichExcited
Q, (§,,|L |§”) (§,,|L |§”)’ (D3) States and Photochemistry of Organic Molecul®CH, New York,
where ,1999. .
E. Deumens, A. Diz, R. Longo, and Y. Ohrn, Rev. Mod. PH§6. 917
~ ~ JR— (1994.
qu: [anf] + [qu,p], (D4a) 3E. V. Tsiper, V. Chernyak, S. Tretiak, and S. Mukamel, Chem. Phys. Lett.
~ ~ ~ 302 77(1999.
LPE=[VpY, E]+[VE Y. (D4b) 4V. Chernyak and S. Mukamel, J. Chem. Phy84, 444 (1996.
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