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Semiclassical simulations of multidimensional Raman echoes
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A high-temperature and a weak-nonlineariflow-temperaturg semiclassical expansion are
developed for computing two-dimensional vibrational Raman spectroscopies, and applied to an
exactly solvable Brownian-oscillator model. The origin of photon echoes is discussed using
phase-space-wave-packets. Impulsive and semi-impulsive echoes are shown to satisfy different
phase-matching conditions, and are generated in different direction4998 American Institute of
Physics[S0021-960809)51003-9

I. INTRODUCTION where «(Q) is the electronic polarizability which depends
on the vibrational coordinate®). In 2D spectroscopy the
radiation field is given by a sum of two nonoverlapping pulse
pairs centered at times, and 7, (Fig. 1),

In coherent time-resolved multidimensional Raman
spectroscopy, a molecular system is excited by a traiN of
pairs of nonoverlapping electronically off-resonant short
pulses'~ The superposition of vibrational states prepared by 2
these pulses is then detected by the scattering of a final probe &(t)= E Ei(t—my). (1.2
pulse(Fig. 1). The dimensionalityD) of these techniques is =1

given by the number of time intervals between pulses. Cotne signal is generated by the scattering of a probe field
herent Raman scatterin@RS is the lowest(1D) technique denoteds,(t— 7,). The polarizationand the signal fieldis

which provides information about vibrational freq“e”desproportional to the square of the field of each of the two

. -8 . .
and relaxation rate%. 2D and 3D techniques provide much qyjying pulses and to the probe field, and is altogether fifth
more detailed information regarding intermolecular and in-5.4er in the field

tramolecular structure and dynamics in liquids, proteins,
polymers, and glasses with complex vibrational structaté. % %
i ichis simi i PO(t)= dr d7mRO(t; 75, 77)
3D coherent Raman scattering, which is similar to stimu- 0T G972 172:T1
lated photon echowas first proposed in Ref. 1 and measured
in Refs. 13,14. The lower ord¢2D) Raman technique, pro- X EY(Th— 1) EN Ty — T)E(t—1Tp). (1.3
posed by Tanimura and Mukarmiéf is now the subject of
intense experiment$2! and theoreticdP?2-2"18 activity.  The fifth order response functid®®)(t,7,,71) is given by a
Contributions of the anharmonicity of vibrational modes andcombination of three-point correlation functions of the polar-
the nonlinear dependence of the electronic polarizability tdzability a
the optical response have been investigated. New resonances
at combinations of single oscillator resonant frequencies (5)(+- _
. 23.28 R (t17217-1)
(cross peakishave been predicted and observ&é?2328|n
addition, these techniques can distinguish between homoge- _ _ ) .
neous and inhomogeneous spectral line broadening mech@N€ré @+ =(1/2)(ex +ar), anda_=a, —ag; e (ag) is

nisms. For inhomogeneous broadening, the signal has a ph e electronic polarizatior_1 operator gcting on t_he density su-
ton echo forrd* and carries information about relaxation peroperator from the leftright). The time evolution oi(t)

time scales as well as vibrational mode frequencies. Supprqu- given by the free molecular Hamiltonigwithout the ra-

S\ 2
fli_) <a+(t)a,(72)a,(7-l)>, (1.9

sion of the photon echo due to the vibrational mode couplin iation field. This expression contains four terms represent-

via polarization has been demonstrated by numerical'J all possible combinations of left” and “right” actions
simulations?’ of the three polarization operatoisEach term corresponds

Extracting structural and dynamical information from to da dsitlng'[chL(I)llsz|lle—spac§ path, ag'(;%?hn be r.epresented by
multidimensional signals requires the computation of nonlin-2 double-sided -eynman diagram Fg. ¥he€ various corre-

ear response functiofistaking into account the combined lation functions interfere, giving rise to many interesting ef-
effect of anharmonicities, nonlinear dependence of the polarf-e(:tf’:Such aslnf:w resonancles. t the third ofd&r
izability on nuclear coordinates, and the quantum character or completeness we also present the third o(dey

of nuclear motions. In off-resonant Raman spectroscopiesr?Sponse’

coupling with the radiation field is given by the effective

Hamiltoniarf® PEI(1)= f driRO(tr)EY (i~ r)E(t—Tp), (1.5
Hin(t)=—E%(H) a(Q), (1.D)  with
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FIG. 1. Geometry and time-ordering of the incoming pulse sequence in fifth
order 2D spectroscopy. The first pair of pulses comes, @nd the second © D)
at 7,. t; andt, are the time intervalsAk,;=k;—k;, Ak,=k,—k5. Only
one of the nine possible signals puls@s the directionks=Ak;+kp) is
shown. " o —---Tp
A
IZL+7> t2 <ZR +2]/|
L, SN A \ 4 T .
(3) | A 2
ROt )= (e (Da(m). (16 ol
. . . . L . Y v <ZR + |
In this article we investigate the application of semiclas- ~ ----- ;- --- T
sical techniques towards the molecular dynamics simulation 1

of the nonlinear response functidiq. (1.4)]. Formally, IZ > (z | | > < |
these techniques employ an expansion in powers.8f 32 t . a Zr

2 : .
The 1k prefaCtor In Eq'(1'4) suggests an appar(_ant diver- FIG. 2. Double-sided Feynman diagrams representing the four Liouville
gence ash—0. However, when the four correlation func- space pathways contributing to the fifth-order response of the model har-
tions are combined, the 47 factor is canceled for smaf, monic system coupled to the radiation field via electronic polarizability with
and one obtains a finite classical response, independént of exponential dependence on nuclear coordingfes (2.3)]. The coherent

state representation |7 >, and |zg>) is adopted (Ref. 15, ¥

Semiclassical simulations should not, therefore, aim at the:Qal RI(ZMQ) [see Eq(5.1)]. Each diagram corresponds to the propa-

individual correlation funCtionS{a(Tl)a(7'2)a(7'3)> which gation of the phase-space wave packftP,Q) given by Eq.(2.11) with
do not have an obvious classical limit, but focus instead ona) j=0k=1, (B) j=0k=0, (C) j=1k=0, and(D) j=1k=1.
the entire response functigwhich is a specific combination
of four correlation functions that must have a classical
limit.

In our earlier studies we have identified two different
semiclassical expansions which differ in the choice of th

relates small deviationsx; to ox, at different times. For a
single degree of freedonmg(p) this matrix satisfies the equa-

zero order(classical limit. The first starts with the standard on.-
high temperaturéHT) limit. When kgT is large compared 4 —0?Hlagq? —o?Hlaqap
with the vibrational frequencies we h&fe (;_TZMJK(TZ'Tl): PHIopaq  32HIap? Mijk(72,71)
@ d (1.9
RHT(t;T):Bd_Tl<“(t)“(Tl)>C' @17 \ith the boundary conditions i (7y,71) = S -
The first term in Eq(1.8), related to the three-point cor-
i relation function of the polarizability, is a straightforward
(5)(¢- _p2? ,
Rir(tir2,1) = drzdrl<a(t)a(72)a(71)>° generalization of the fluctuation-dissipation relatipBq.

d (1.7)]. It can be computed by sampling classical trajectories

—-B—> (€M (72, m)a(t) with thermal equilibrium initial conditions. Unlike the first
d7i 7K term in Eq.(1.8) which contains no interferendenerely av-
, , eraging over the initial density matjixthe second term
Xai(72) (7))o (1.8 shows interesting classical interference, as suggested by the

Here B=(kgT)"%, (--.). denote classical correlation presence of the stability matrix; for each initial phase-space
function af =dalox; and x;=p, X,=q, and €;=0, €;,  point we need to launch two trajectories with very close ini-
=—€31=1. Mj(75,71) for i,j=1,2 is the stability matrix tial conditions. The nonlinear response is obtained by adding
defined as the derivative of a small deviatiéx(7;) at time the contributions of these trajectories and letting them inter-
7, with respect to a small deviatiodx;(7,) at timer,, and fere.
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Intramolecular and intermolecular vibrational motions WN approximations is explored. We also model the HT op-
typically span a broad frequency rangéoth lower and tical response for a harmonic system with low-frequency vi-
higher thankgT/%). In liquid water, for example, the spec- brations with comparable central frequency and homoge-
tral density covers the-©1000 cm * range, whereakgT at  neous width. Using the WN expansion we compare two
room temperature is-200 cni 1. The high-temperature ap- spectroscopic regimes; impulsiv@ulses are shorter then
proximation cannot be used to describe high frequency moAuclear dynamics and relaxation time scalesid semi-
tions. Fortunately, a classical simulation of the optical re-impulsive (pulses are long compared to the time scale of
sponse may still be possible, even though the system itself iBuclear dynamics but short compared to the inhomogeneous
quantum mechanicaf. This is based on the observation that dephasing time The classical WN picture of the photon
the optical response of a linearly driven harmonic oscillatorecho based on the phase-space wave packet representation is
is always linear and classical, regardless of temperature. Tt@ven in Sec. V. The phase-space WN dynamics associated
two sources of nonlinearitig@nharmonicities and nonlinear with 2D Raman echoes is consistent with the classical pic-
dependence ofr on Q) are therefore responsible for the ture commonly used in NMR spectroscopy’ Adopting the
nonlinear response as well as for its nonclassical nature. Thi&N approximation, we represent in Sec. VI the signal from
suggests that a semiclassical expansion for both sources afmulti-mode anharmonic system in the frequency domain,
optical nonlinearity may be possible, as long as these norand demonstrate the semiclassical origin of the resonances at
linearities are sufficiently weak. We denote this the weakcombinations of vibrational frequencigsross peaks Our
nonlinearity(WN) expansion. The lowest order contribution results are finally summarized in Sec. VII.
to the response is temperature-independent; the temperature
shows up only in higher-order terms. Explicit expression for
the WN are given in Ref. 28 and discussed in Appendlx C” THE FIFTH ORDER RESPONSE OF A BROWNIAN

The HT expansion is formally obtained by expanding osc|LLATOR
R®) in powers of#i, keepingT fixed, whereas in the WN
expansion we keep the thermal frequensy=kgT/# fixed. We consider a molecule with a single primary Raman-
The latter thus contains an implicit dependence hn active harmonic vibrational degree of freed@ncoupled to
(throughwy) even ash— 0. For both expansions, in the clas- the optical field via the electronic polarizability(Q), and
sical limit (to zero order i) the signal can be calculated by interacting with a large number of harmorticath coordi-
solving the classical equations of motion. The polarizationnates which induce relaxation and dephasing. The Hamil-
(and the classical responsis given by a(7)=a(Q(7)), tonian has a form:
where Q('T) evo_Iv_e_ using c_IassicaI trajectories. In the HT H=H,+H(t)+Hg. 2.1
expansion the initial conditions should sample the actual
phase space equilibrium distribution. The WN expansionl he molecular Hamiltonian representing the primary Raman
only requires a single trajectory with initial zero coordinate active mode is given by
and momentum. This trajectory represents the evolution of a P2 MO2Q2
wave packet induced by coupling to the radiation field. Hm=m+ —

The Planck constant constitutes a convenient bookkeep-
ing device for computing high ordgguantum corrections whereP, Q, , andM are the momentum, coordinate fre-
for both expansions. The Wigner—Kirkwood semiclassicalquency, and mass of the primary mode, &hg [Eq. (1.1)]
expansion provides quantum corrections to a desired powgepresents its coupling to the driving field. We assume expo-
in %, using the Wigne(phase-spageepresentatior® nential dependence of the electronic polarizability on the

The article is organized as follows: in Sec. Il we derive nuclear coordinate
an exact quantum mechanical expression for the optical re-
sponse of a nonlinearly driven Brownian oscillator, and rep- (@)= @0 €XAQ/Qo). 23
resent it using phase-space wave packets. The fifth orde#g represents the bath Hamiltonian and its coupling to the
response function is represented in terms of a superpositigorimary vibrational mode. For clarity we shall first consider
of Gaussian wave packets which retain their forms under than isolated vibration and séiz=0, Hg will be specified
system-field interactiof®’ The exact quantum response later.
function R® is computed for a simple model of a single In the impulsive limit, where pulse durations are much
underdamped Brownian oscillator coupled to the radiatiorshorter than the delay between pulses and the nuclear dy-
field via electronic polarizability which has exponential de- namics time scales, the time-resolved heterodyne signal
pendence on the nuclear coordinates. The classical high ter8®)(t,,t;) depends on the two time delatsandt, between
perature(HT) and weak nonlinearityWWN) limits of the re-  pulses(Fig. 1) and is proportional to the fifth-order response
sponse function as well as for the phase-space wave packdtsction
are given in Sec. lll. By varying two dimensionless param- _ )
eters we show how the exact expression RSt reduces to Stz 1) =R (121 1111,0). 24
the HT and WN limiting cases. In Sec. IV we compute the  For our model, the molecular dynamics underlyRg’
response of an underdamped Brownian oscillator, whickcan be represented using Gaussian wave packets for the den-
shows multiple echoes generated by the excitation of higlsity matrix in the Wigner representatidri’ At thermal equi-
order coherences. The range of applicability of the HT andibrium we have

(2.2
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— Q PZ  MQ2Q? o ad Q(0)+Qi(t
p(P.Q)= 2wo e)('{_4Ma'_ 4o ) @9 p}E)(P’Q;T):(_l)kH i 02 eX[{Q( o 1)}’
(i%) Qo
with the variance o=(%/2)/coth@)/2kgT). Equation D Dt W2
(1.4 depends on the superoperator_=a, —ag Xi exy{— (P—=Pj(1)~Pd(7~ty))
= a o[ exp@Q Q) —expQr/Qy)] which in the Wigner repre- 2ma 4Mo

sentation assumes the form

~ MOAQ-Qy(n)-Qur—ty))?

F<Q+iﬁ a) p(Q i%i a) 4o
a_=ageXg —+ — —=| —ag exg — — =~ —|.
"M Qo 2Qe P/ TP TN Qp  2Qq dP _ _ _
(2.6) where Q;(7) and P;(7) are given by Eqs(2.8) and (2.9).

] ) ' The four terms in Eq(2.12 correspond to four Liouville
~ The action of the two termorresponding ta, or ar)  gpace pathways represented by the Feynman diagrams for the
in the right-hand side of Eq2.6) on a Gaussian wave packet ponjinear response and given in Fig. 2. The subsgrige-
can be viewed as evolution in imaginary time with respect togrmines the typdleft or right action of the first interaction
an operator linear iQ and 9/dP. This evolution preserves i the driving field, whereak is related to the second
the Gaussian form of the wave packet; its variar(ces, the interaction.
set of the second momeio not change whereas the posi-  gjng these wave packets, the impulsive signal is given
tion of its center(the first momentsare time dependent. by
Since thea _ operator is a linear combination ef and ag

(Eq. (2.6)), the density matrixx_p produced atr=0 as a s B 2 _
result of the first interaction with the driving field is a super- S7(tz,ty)= | dP | dQa(Q)p™™(P.Qita+1ty)
position of two Gaussian wave packets whose centers subse-

| e

quently rotate in theR,Q) phase space with frequen€y A = ap E d PJ’ dQ
straightforward calculation yields the following form of the kj=0.1
wave packet during the first time interval, assuming that the 0
first interaction comes at=0, Xex;{ _) Pﬁ)(P,Q;tzﬂl)- (.13
_ 0
: i(0
pD(P,Q;n)= > (—1) a—; exp[%} Substitution of Eqs(2.11) and Eq.(2.12 into Eq.(2.13
=01 ! Qo yields the final expression fdR(®)
—P(112
Xi _ m R(s)(t2+t1,t1§0)
270 AM o
2 0. 2 2agA f f( 0)
MQTQ—-Qj(7)] =— 5 Aexg S T(txtty,ty;
- T (27 A lQp
g
where j=0,1 stand forL (left) and R (right), respectively, X sin L(C(tz+t1)+0(t1)) sin iC(tz) ,
and 2Q5 2Q5
3(7-g0cosan + 2 o @9 e
N RV s ' where
EJ'(T):'\/'éj(T) (2.9 f(ta+t1,t1;0)=C(ty+1t) +CH (1) +CH(ty),
2.1
describe the classical phase-space trajectories of the wave 3% (2.19
packet centers with the initial conditidl{s AEex;{—ZC(*)(O)l.
2Qq
_.0:2—0- 50:_11411 21 =(i%)"1 d ()
Q;(0) > Pi(0)=(-1) 205" (210  Here  C()=(in)"(Q+()Q-(0))  an C(t)
MQ*Qq 0 =%"1Q,(t)Q.,(0)) are the Liouville space correlation

The second interaction with the driving field at=t, functions of the oscillator coordinate operator. These have

produces a pair of Gaussian wave packets out of each of tH8€ form
two given by Eq(2.7). The density matrix during the second 4
time interval is thus given by a superposition of four wave  C(t)=— g(t)m sin(Qt),

packets,
) 0 (2.16
2) P (2 . (F)(t)= —— el
PP(P.Qin= 3 pd(P.Qi7) (.19 CHM=5g cotr<2kBT)cos<m>.
with The third order response is similarly given by
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lll. CLASSICAL LIMITS FOR THE RESPONSE AND
WAVE PACKETS

2
RO(t, )= % exr{éc(“(O)
° The WN response functions are obtained by expanding
Egs.(2.14 and(2.17) in powers offi, holding wt fixed. In
this case,C(*)(t) is independent orii. The expansion of
sines in Eq.(2.14 starts with~#%2 terms, and the classical
1 approximation is obtained by retaining only the first term in

h

xXexg —C ™ (t— 1)

p[ Qs

X sin (217 the expansion, and setting the factor A and the exponent in
Eq. (2.14) to unity. This yields

fi
2_Q(2)C(t_ T1)

Equation (2.17) may be obtained directly from Eq$1.6) o2
using the second order cumulant expansion. The more R@?\](t,ﬁ):—gc(t—n), (3.2
lengthy wave packet approach given here allows us to trace 0

the semiclassical origin of the response. and
To include the coupling to a bath, we adopt the Brown-
ian oscillator model by adding a harmonic bath linearly ag
coupled to the primary mode.The system-bath dynamics is RN (t2+t1,1150) = —[C(t2) C(ty+1t1) +C(to) C(ty)].
now determined by the Hamiltonidikq. (2.1)] with Qo (3.2

Ho=S p N m,? _ Cq 2 (2.18 The HT approximation is obtained by expandiR§®
B < |2m, 2 | e mawaQ ’ : andR®) in powers of# holding T fixed. The sines in Egs.
(2.14) and (2.17) are expanded in the same way as for the

wherep,,q,,m,, and w, are the momentum, coordinate WN approximation. Expanding A arfdt; +t,,t;;0) to low-
mass and vibrational frequency of thebath oscillator. est order ii we set coth § w/2kT)~ 2k T/A w in Eq.(2.20),

The optical response can again be found by followingand obtain
the dynamics of the Gaussian wave packets in the complete
(system plus bafiphase space, since the system-bath Hamil- o5 . ZkBTE 0
tonianHg is harmonic in the full phase spa¢B,Q,p,,0q.}- Hr(t7) =ex 2 C(0)
This is a straightforward generalization of the single mode 0
case. The response functions retain their f¢(Eqs. (2.14), o F{ZkBT_

ex

(2.15 and (2.17)]. However the correlation functiong(t) > C(t—m7y) Rygn(t,71), (3.3

andC™(t) are now given by 0

d and
* w
C()=-26(1) | 5—C(w)sin(wt), (2.19 ok
e R<H5T’<t2+t1,t1;0)=Aexr{—2f<t2+t1,t1;0>
Qo
()= ) d—wC( ycot ho coq wt) (2.20 (5)
crn= 2w oY 2kT Lob), : XRwn(ta+1t1,t1;0). (3.9
with the spectral density f__is given by Eq.(2.15 by simply replacingC(*)(t) with
C(t)
1 doy(w)
Clw)=— . (22 — * do C(w)
()= (Q%+ 03 (0)— 0?)*+40°y*(w) 21 C(t)EﬁwE cogwt), (3.9

v (A) is the imaginary(rea) parts of a self-energy operator gpq
representing relaxatiotievel shift,

_ 3kT—
A=expg —-C(0) |. (3.9
Hw)=m2 80— 0,)+ 0=, '{QS
(2.22 Here we have derived the HT and WN approximations
Y(w') by expanding the exact solution. For more general models

1 S
2w)==— pr_wdw' where the exact solution is not available, it is still possible to
obtain these approximations directly, order by order. For the

Equations (2.14), (2.19, and (2.17, together with ~WN, this procedure is described in Ref. 28, whereas for the
(2.19-(2.22) constitute exact expressions for the responsdiT it is given in Ref. 34.
functions of a single Brownian oscillator whose polarizabil- ~ The significance of both approximations can be clarified
ity « [Eq. (2.3)] is exponential in the primary coordinate. In by following the corresponding wave packet dynamics. In
the next section we compare these results with the HT anthe solution given in Sec. Il we start with a single Gaussian
WN approximations for the optical response and the underwave packep(P,Q), and each interaction with the driving
lying wave packets. field doubles the number of wave packets; we have a super-

o' —w
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position of two Gaussians duririy and a superposition of driven system and solving them order by order in the field.
four duringt,. In contrast, in both classical limits the system Substituting the wave packdt&gs.(3.7) and(3.9)] in to Eq.

can be represented by a single Gaussian wave packet at &8.13 yields the response functiof&® in the form of Egs.
times. In the HT limit the wave packets evolve according to(3.2and3.4), respectively.

classical trajectories, i.e., the wave packéP,Q;7) at time Although the reason why we only have a single Gauss-
7 at the phase-space poiiP,Q is given by the value ian is different for the HT and WN, it can be rationalized
p(Pg,Qq;0) of the wave packet at=0. P, andQq are the  using the same argument. Different phase-space trajectories
initial conditions for the classical trajectory which reachesdetermined by Eqs(2.8) and (2.9) and related to different
(P,Q at time 7. For a harmonic system, this prescription Gaussian wave packets coincide if we set the initial momen-
yields a single Gaussian wave packet at all times. In particuyym P: i(0) [Eq. (2.10] to zero. The magnitude P i(0) is

lar for the single-mode model without a bath introduced Inproport|ona| to# and is independent of temperature This

Sec. Il we have during thg, time interval means that for both HT and WN, semiclassical expansions of
o2 all the Gaussian wave packets in the superposition merge to
p2(P,Q;7)= 0 _[Sin(Qty) +sin(Q7)] a single Gaussian in the—0 limit. The exact quantum den-
(2Qp sity matrix of our model is given by a superposition of four

_ — Gaussian wave packets each associated with a distinct Liou-
X Sin(Q(7—t ))eX%Q(O)JrQ(tl)} ville space pathway. In both semiclassical expansions the
! Qo width of the equilibrium wave packet along the momentum
_ _ ) direction is larger than the separation between the four tra-
XL ex;{ _(P=P(n)—P(1—1y) jectories determined bf;(0), andthese four wave packets
2mkgT 4AMkgT can be approximated by a single one. In the HT limit when
— — both anharmonicity and nonlinearity are taken into account,
2 _ _ _ 2
— MOTQ~Q(7)~Q(r—t)) } (3.7 the wave packet strongly deviates from a Gaussian form

4kgT whereas in the WN the deviations are assumed small and an
with the center coordinates expansion in these deviations is made.
In the next section we present numerical calculations of

O(0) = 2kgT impulsive 2D signals, and test the regions of validity of both

Q(0)= MQZQO’ semiclassical expansions.

Q(7)=Q(0)cog 1), (39

=y = IV. MULTIPLE FIFTH-ORDER ECHOES

P(7)=MQ(7).

The WN dynamics is also given by a single Gaussian In this section we study the role of homogeneous and
wave packet but for a different reason. For a linearly drivennhomogeneous broadening as probed by impulsive 2D spec-
harmonic system the wave packet remains Gaussian at dfloscopy. We use the Brownian oscillator mofigd). (2.21)]
times. Adding both types of nonlinearitidanharmonicity = With a w-independent damping term (Ohmic dissipation
and nonlinearity in the electronic polarizabilitg Q)] leads ~ Which immediately implies:=0.
to deviation from the Gaussian form. However, to lowest ~We first consider a high-frequency weakly-damped
order in the nonlinearitieéwhich corresponds to the zeroth mode with y<Q. The correlation function€(t) and Ct*)
order in# for w7 fixed) we can neglect the variation of the X(t) are then given by
second moments and the nonlinearities only affect the trajec-

4
tory through the first moments. This yields C(t)=—16(1) IO sin(Qt)e ",
[P—P(1)T? @3
p(P,Q;T)=—eXp{—— 2 hQ
AM (F)(t)= It
o C\)(t) = MO cot KT cogQt)e”
2 O 2
- MOTQ-Q(7)] } (3.9  Substituting Eq(4.D) into Eq.(2.14 and making use of Eq.
4o (2.4 we obtain
with o= (4Q/2)/coth@Q/2ksT). P(7), Q(7) is the classi- o
cal trajectory in the phase space with the initial conditionsS'®)(t,,t;)=— ——(a'")%a?
P(0)=Q(0)=02" The response functions are obtained by (97)
expanding the trajectory in powers of the driving field 95 |~
_ _ _ X exg gx cotl-(— f(ty,ty)
P(T):P(l)(T)+P(2)(T)+- - 297

(3.10 X sin{g; (sin(Q(t,+1,))e” vttt
+sin(Qty)e” "1)}sin{g, sin(Qt,)e” "2}, (4.2

QnN=QY(n+Q?(n)+

PW(7), QW(7) can be computed by the substitution of Eq.
(3.10 into the classical equations of motion of the externallywhere
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hf‘(tz Jt)=cogQ(t,+tg))e” y(ta+tg)

+cogQty)e "1+ cog Ot,)e "z,

. 3 Ox
A= exp{zgﬁ coﬂ( 2_91')

Herea®W=a4/(VMQQy) and a®=a3/(MQQy).

4.3

To analyze the range of applicability of both expan-

sions, we first introduce the quantum leng@®, A Q)
=(1/2MQ%Q2, and the thermal length Q7:kT

=(1/2)M QZQ$ related to the zero-point and thermal ener-
gies, respectively. By dividing these lengths by the nonlin- (
earity length scal€, we obtain the dimensionless param-

eters g,=(Q;/Qp)*> and gr=(Qr/Qg)% The WN
expansion holds whewg; ,gr<<1. Expanding Eq.(4.2) to

lowest order in these parameters gives
5(,\/3,)\‘: _8((}(1))23(2)

X (Sin(Q(t;+1,))sin(Qty) e rta+2t)

+sin(Qt,)sin(Qt,)e Yatt)),

The HT expansion require®;<<Qy. Taking the limit
g;—0, Eq.(4.2) yields for a fixed value ofjr,

S\ =exp(3gr)exil 29+ (t1,t2) 1SN - (4.5
Making two-dimensional Fourier transformation of Eq.
(4.2), the exact optical signd(t,,t;)=R®)(t,+1,;t;,0) as-
sumes the form
S(ty,t1;02)

[

4.9

P e*iﬂ(mtzintl)an(ef '}’tzye* ‘ytl;gh ,gT). (4.6)

The two-dimensional Fourier coefficienks,,, in Eq. (4.6
have the form

X ex;{ s cotl'( Zg—gT)"f( 6,, 01)}
X sin{gy (sin( 6+ 6;)e” "2+
+sin(6;)e” "1)}sin{g; sin( 6,)e” 2l (MP2=n0y)
(4.7)
where T(0,,0,)=cos@,+6)e "D+ cos@)e M

+cos@,)e 2. The magnitudes of,, which vary on the
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[’

Kom= 2 (=)™ "l n(gre” ")l _n(gre™ ")

|=—o

X1)(gre~ "), (4.9

wherel;(x) (i=0,1,2,...) are the modified Bessel functions.

Taking thegt—0 limit in Eq. (4.8 and making use of
the fact that onlyl;(0)=1 does not vanish for zero argu-
ment, we find that only four coefficients survive in the WN
expansion of Eq(4.6)

Fam =8mn(a™)%a® exd — y(t;+tp)],
~ ~ 4.10
Frme1=8mn(a™)?a® exf — y(t;+2t,)],
wherem,n==*1.
We next assume that the oscillator frequency has an in-
homogeneous Gaussian distribution,

W(Q) = — exp[— (©-0)° , (4.1
V27A 2A?
where the inhomogeneous widthsatisfies
hy<hA<hQg,kT. (4.12

When the oscillator is weakly-damped and the linewidth is
dominated by inhomogeneous dephasing, the 2D signal
shows an echd.Convoluting Eq.(4.6) with the Gaussian
distribution functionW(Q) [Eqg. (4.11)] we obtain for the
signal

Sty ty)= f dOW(Q)S(tr. 1150, 413
| A)? 2
S(tz,tl):§ e*lmﬂotzg exr{_%( o= %H) }
xeouF | (e 267 Mg, ,07). (4.14

This signal shows multiple echoes at all possible time
combinationst,=(n/m)t;, m,n=1,2,3,... . The relative
magnitudes of the echo peaks and the echo decay due to
homogeneous broadening are determinedrpy. The echo
decay reflects the homogeneous dephasing time stale
=+~ For afixedt;, oscillations of the echo signal with
are independent ofi and have the periodnfQo) 1. The
width of the echo signal at a fixdd is also independent of
and reflects the inhomogeneous dephasing time stale
=(mA)~L. The multiple echoes presented by H¢.14
originate from high order vibrational coherences created by
the exponential electronic polarizabilitg(Q) which con-
tains all orders iMQ/Q,. Computer simulations of HT mul-

homogeneous relaxation time-scaje* and depend para- tiple echoes for different values af; were presented in
metrically ong; , andg; determine the relative amplitudes Ref. 23.

of the signal components. In the HT approximation, the ex-  We next compare the exact, HT and the WN approxima-
pansion coefficients adopt the form tions to Eq.(4.14) using numerical simulations. We discuss
the results using theg(; ,g7)-phase diagram shown in Fig. 3.
The WN holds when only the first term which is unity in the
expansion of the exponential prefactor in E4.2) can be
retained as well ag; is small enough to retain only the first
term in the expansion of the sines. To neglect the contribu-
tion of the second term in the expansion of the exponential

Fin=—4(@)?a® > JK[Kqejmee 700
jk==1

+Kn+j,m+k71e77(tl+2t2)]v (4.8

with the auxiliary functionK,,,,
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(a)
8t
15
g 104
0.1 =
5
0.05 % 3 10 15 20
t, (ps)
0 0.1 g 20
’ (b)
FIG. 3. (@,94)-phase diagram showing range of applicability of the high 15
temperaturgHT) and the weak nonlinearitf/N) approximations. The re- é
gion where both classical approximation fail is denoted “exact.” P 10}
o )
. . . 5
prefactor we require it to be less or equal to 0.1, which
amounts togr=<g;/2 arcoth(0.1d;). The region where this o

inequality holds is denoted in the plot as WN. The HT holds 0 5 10120
for small values ofg;<0.1, provided the argument of the
exponential prefactor in Eq(4.2) is approximated as
g;, coth@; /(297))~2g; which is satisfied provided=g; . (c)
This region is marked HT. The WN and HT regions may
overlap. Transition through the common boundary from HT
to WN leads to the decrease gt in the argument of the
exponential prefactor in Ed4.5), making it small enough to
approximate the exponent by unity. In this case Hdsd)
and (4.5 coincide. Transition from the WN to HT regions
increases the value ajy, and higher order terms in the
expansion of the exponent in E@.5 should be included.
We refer to these high temperature corrections as classical.
The WN echo, shown in Fig.(d whose magnitude iS FIG. 4. Absolute square of the echo signg8&)(t, ,t,)|2 computed for an
determined by the function&,,(gt—0) and F_;_;(g underdamped harmonic system exponentially coupled to the radiation field
—0) [Eq. (4.10], appears only in thé,=t, direction. The with central frequency) =508 cni !, homogeneous widtly=1 cm™?, and

. . . . inhomogeneous widtlA =30 cm % (@ WN approximation,g, =gr=0.
first classical corrections to the WN signal at a small value ot)nly one echo is seen in the directiop=t,. (b) HT approximationg,,

gt [F+1-2(97) andF . ,.4(97), Eq.(4.8)], show up accord- =0, g;=0.05, additional echoes i /t,= 1/2,2 show that the WN approxi-

ing to Eq. (4.14 as additional echoes &4=t,/2,2t;. We mation is not valid for this set of parametefs) Exact quantum response

present the HT signal at the poig}=0.05 (gﬁ=0) which 9,=0.5, g7=0.05, a_lddmonal echoes in trtq/t2=1/3,1{2,2,3 directions

lies on the boundarv between the WN and HT reaions of th demonstrate that neither the WN nor the HT hold for this set of parameters.
. . y . . g A qn all plots the signal stretched alongaxis,t;=0 is due to the vibrational

phase diagram in Fig.(d). Additional echoes associated state population excitation.

with classical corrections to the WN signal are clearly seen

in this plot. Asgy is increased the number of echoes in-

creases as weif and the WN approximation fails. The exact

signal computed fog; =0 irrespective ofj; coincides with We consider a weakly overdampe¥i,=<y oscilator with

signals in the classical approximations. - 1 = ) )
The corrections to the WN on the boundary which doeStQhOe_inzr?o(r:rr:)geir;%Zs_c:j)’igt(r:irguti,or?-nd the following form for

not overlap with the HT region on the phase diagram are due
to the expansion of the exponential prefactor and sines in Eq. (Q—0Q0)?
(4.2) in powers ofg, . A general procedure for computing W(Q)=NQ* exg — Toaz |’
these “quantum” corrections was developed in Ref. 28. Ac- 2
cording to Eq.(4.14), quantum corrections result in addi- The Q* prefactor provides a low-frequency cutoff which is
tional echoes. In the same way, additional echoes appeaequired to get physically acceptable signals.

wheng; exceeds the value where the high temperature ap- We setg;=0.05 and varied the inhomogeneous width
proximation holds. To demonstrate this we present in Figbetween 10 cm! and 60 cm?'. We have computed the
4(c) the exact signal computed af,=0.5 andgr=0.05. high-temperature response functipeq. (2.14]. The time
Comparing it with the HT(b) and WN(a) signals we observe domain spectral densities Eq2.19 and(2.20 and the sig-
additional echoes db=3t,,t,/3. Both classical approxima- nal averaged over the distribution given by E4.15 were
tions fail in this case. calculated numerically. The results are presented in Fig. 5.

t, (ps)

t, (ps)

We next turn to low frequency intermolecular modes.

(4.15
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As shown in Sec. lll, WN signals are determined by the
classical phase-space trajectory of the Gaussian wave packet
center. For clarity, we consider a single inhomogeneously
broadened mode and neglect the bath, setjin®. We fur-
ther introduce the complex variabl& 7) which maps the
phase space onto the complex plane

t, (ps)

2(7) [MQQ(7)+iP(7)] (5.1

- (ZMQ)lIZ

and constitutes the classical analog of the oscillator annihi-
lation operator. The sign®® is determined by Eq(2.13.

To obtain the WN approximation we expand the exponential
factor in this expression to first order @/Q,. Integration
over P and Q using the wave pack¢Egs.(3.9) and (3.10]
shows that the response function is proportionaDf®(7).

In terms of our complex coordinate it is given by the real
part of the second-order terf?) of the expansion of(t) in
powers of the driving field,

Sv=12aM REZP(1)]EL(TER (1), (5.2

wherea™=ay/\MQQy, and&, and&, are the envelopes

of the probe and heterodyne fields. The phase-matching con-
dition for the signal which determines its propagation direc-
tion is discussed in Appendix A. For impulsive excitation,
the second-order solution of the classical equation of motion
(following the interaction with the two pulse-pajirsan be
represented in the matrix form

Z(ty+17) =Gq(t2) X,Gq(t1)Zy, (5.3

where

1, (ps)

t, (ps)

FIG. 5. Absolute square of the signg®)(t,,t,)|> computed in the HT 2
approximation for the model low frequency harmonic system exponentially _( Z9(t) )

coupled tp the radiation field with central frequerf@y=60 cm 1, 'homoge— 2(2)% (t) (5.9
neous width y=30cni'?, and gr=0.05. Inhomogeneous widtia) A
=10cm !, no echo,b) A=30cni ! weak echo stretched in=t, direc- . 1
tion, and(c) A=60 cnm ! signal oscillations are clearly seen. Z,= '—'&<1>F1(1+ cog Ak, - I’))( ) (5.5
V2 -1/

; i~ 1 1
Panel (@) shows a contour plot of the signal foA Xo=—a'?F 5(1+ cog Ak,- r))( ) , (5.6)
=10cm . No echo is observed in this case. Increaginip 4 -1 -1
30cm ! and 60 cm ! [panels(b),(c)] leads to the generation RETTE
of a weak echo at; =t,. Panel(c) further shows oscillations Gﬂ(t)z( ol (5.7)
of the echo with a period determined by the frequency spread 0 €
in the interval (2o, Qo+A/2). whereAk;, F; (j=1,2) are defined by Eq$A5) and (A9).

Equation(5.3) describes the dynamics of the system in terms

V. THE CLASSICAL ORIGIN OF PHOTON ECHOES of the complex variableg(t) and (its complex conjugade

Z* (t) in the complex planed,ip). Initially, the system is at

In the previous section we have compared the exact 2Bhermal equilibrium and=z* =0. The first pulse produces a
signals with the HT and WN approximations. For strong in-stateZ,; [Eq. (5.5)]. In this state, the vect@(0) [z* (0)] [the
homogeneous broadening, the signals show echoes in botipper(lower) component of5.5)] is oriented along the posi-
the quantum and classical regime. This implies that the phative (negative direction of the imaginary axisp. The
ton echo is not necessarily a quantum phenomenon, as miglireen’s functiorG(t;) propagates this state during the first
be inferred from the standard calculation for a two-leveltime interval between the pulses, rotatir{@) andz* (0) in
systent®3°In this section we first present a simple classicalopposite directions with the angular frequen@y For an
picture of WN photon echoes using phase-space wave packnsemble of systems with a broad frequency distribution
ets in the impulsive regime where pulse duratiapsare  W({1), thet,-propagation dephases the coherence, destroy-
short compared to the vibrational perioqséﬂ‘l. We then ing the signal. The action of the second pulse is described by
discuss another interesting ‘“semi-impulsive” case wherethe matrixX, [Eq.(5.6)]. The diagonal elements only change
this condition does not hold. the absolute values and phaskyg 7/2) of z(t,) andz* (t,);
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the subsequent, evolution Gq(t,) only increases the (aD)2a@

dephasing and the optical signal vanishes on the inhomogé(s?g(tl,tz;ﬂ): —2{(277)3

neous broadening time scale. In contrast, the off-diagonal 128MQ)

elements ofX, not only change thel magnitudes and phases > 5(3)(ks—kp—Akl+Ak2)

of the z(t;) and z* (t;) but also switch these vectors such _

that theirt,-propagation is represented by rotation with the X Re Fy 73 Fpe (@ o)titt)]

same frequenc{) but in the reverse direction compared with

3 4(3) _ _
thet,-rotation. This gives rise to rephasing which ultimately +(2m)%6 (ks kp+Aki—Aky)

leads to the photon echb. XRE P FpFpe (@20 (513
Computing Re®(t;+1,) with the help of Eqs(5.3- _ _
(5.7) and inserting the result into E¢5.2) one obtains for Equation (5.13 shows two components of the signal

the heterodyne signal propagating in the directiongs=k,+Ak;—Ak, (ks=k,

—Ak;+Ak,) determined by the diagoné&bff-diagona) el-
ements of the matriX, in Eq.(5.9). The first signal vanishes
on the inhomogeneous time scale whereas the second gener-
X sin(Qt)sin(Qt,), (5.8  ates an echo. Averaging E(p.13 over the Gaussian distri-
butionW(Q,) [Eg. (4.11)] we obtain Eq(B8) for the semi-
wherea;(kg) is the angular distribution factor given by Eqg. impulsive signal.
(A13) which confines the signal to the nine directions given  The WN provides a clear picture for impulsive and semi-
by ks=k,+mAk;+nAk,, m,n=0,=1. Averaging over the impulsive echoes. The semi-impulsive regime is intermediate
Gaussian distribution Eq4.11) yields the echo signal given between the pure impulsive and the G¥#equency domain
in Eqg. (A12). coherent 2D Raman scattering. Semi-impulsive pulses have a
So far all our calculations assumed impulsive excitationnarrow bandwidth which allows a selective excitation of spe-
with Tp<Q‘1, (7, being the pulse duratignAnother inter-  cific vibrations. The RWA which applies in this case leads to
esting regime is when the pulses are long compared to thine generation of a signal in a single spatial direction. In
vibrational periods but short compared to the inhomogeneousontrast, impulsive excitation cannot discriminate between
dephasing time scalaé !, Q1< 7p<A*1. Expressions for various propagation wave vectors, and the echo appears in
semi-impulsive WN echoes are derived in Appendix B start-all possible directions.
ing with Eq. (3.2). This is done in the rotating frame by The effect of damping has been neglected in our wave
introducing a new variable/(t): z(t) =w(t)exp(=iQgt). Qg packets Egs(2.7), (2.12), (3.7), and(A12). Since the center
is the center frequency of the distribution functig¥((),) of the Gaussian wave packet obeys classical equations of
given by Eq.(4.13. In terms ofw(t) andw* (t) the second motion, a friction force can be introduced. This force leads to
order solution of the classical equation of motion can bea spiral motion of the wave packet center towards the

SPN(ty,t2;Q) = §(aV)2a@F, F,F jai (k)

recast in the following matrix form: origin.*>* The relaxation in the Brownian oscillator model
represents vibrational relaxatiof{) and does not include
W(ta+11) =G0 (t2)Y2G0-q (t) W, (5.9  pure vibrational dephasingTl§). The latter requires an an-
harmonic system-bath coupling of the for@2q. Pure
with dephasing can then be treated perturbatively. 2D Raman
spectroscopy can probe both tiig and T, homogeneous
w(t) relaxation time scales:** The signal stretched along the
E(\N(g)*(t)), (5.10  axis (t;=0) in all panels of Fig. 4, is associated with the
vibrational population excitation and should decay Bn
i F itk time scalé’* whereas the echo signal decays on the dephas-
W, = m0((1)( _;Dl*e—iAklf)’ (5.11) ing (T,) time scale.

VI. SEMICLASSICAL ORIGIN OF CROSS PEAKS

(5.12 The fifth-order response function of multi-mode vibra-
tional systems carries information about intermode coupling
through the electronic polarizabilitg(Q) and anharmonic-

whereF;j=1,2 are given by EqB7) and the Green’s func- ity V(Q). Anharmonicity neglected in previous section can

tion G (t) is given by Eq.(5.7). The rotating wave ap- pe readily taken in the WN approximation. In Appendix C

proximation(RWA) has been employed in the derivation of we present the multi-mode underdamped Brownian oscillator

Eq. (5.12; we only retain those elements W; and Y, Hamiltonian Eq(C1) used in Ref. 28. For this model, anhar-

which do not oscillate with the optical frequen€y. The  monicities[Eg. (C2)] yield an additional contribution to the

discussion of the dynamics of the system which interact®cho single which shifts the phase of its oscillatiGh3his
with semi-impulsive pulses in terms @i(t) andw*(t) is is the case since the leading WN term does not affect the

similar to that of the impulsive case in terms ft) and  energy levels of the harmonic oscillator and they still form a

Z* (t). The heterodyne signal, derived using E@s2),(5.9—-  harmonic ladder. As the anharmonicity is increased further,

(5.12, has the form the level structure deviates from a simple harmonic ladder,

i ]:vzke—iAkzr fzeiAkzr
Yo=<a?
2 8 ’

_fgefiAkzr _]_—zeiAkzr
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leading to dephasing and to the eventual disappearance of the  1000{" tooof o i¥e
echo. Suppression of the echo due to anharmonicities can be 500 e e " 1 Ie
investigated in the HT limit using semiclassical simulations. ++ 41 ,4/7 I s
Cross correlations between modes are best displayed in g 0 of 4dga b g
the frequency domain o 4 44 aII A
-500 +4+ 4+ -500 y
© 0 . i 6" 5
Slwz,01)= fo dtlfo dtpel 1T 22ROty 1:11:0) -100(-)1000 500 0 500 1000 -100?135%%&?—5077)60
(6.1 Q, (em™) Q, em™)
as the Fourier transform of the response funcf® with
respect to the time intervals. Intermode couplings give new 10001 o .. 2 1000f :
resonances on combinations of vibrational frequen@esss ;ﬁt <$L
peaks. As shown in Appendix C, the WN signal has three 500 _,,3;9 ! — 500 q_# —
contributions. The first term contributing to the total signal E o 44¢3 3 fﬁ 0 + QI +
Si(w,, 1) [Eq. (C6)] shows @, ,w,)-resonances at the vi- pet -B?tI» & . 4L .
brational frequencies%Q,,,=Q,) and (+Q,,+Q,). The Rl & S 500 ‘Tt” :
second termS,(w,,w;) [Eq. (C7)] shows cross peaks 1000 _2‘ ¥ ao00 "
(iani(Qn+Qm)), (iini(Qm_Qn))! (n¢ m) ariS- -1000 -500 O 500 1000 -1000 -500 © 500 1000
ing from nonlinear intermode coupling via off-diagonal ele- @, (om’) @, fem’)

ments of pOIarizab”itwgzr% (n#m) as well as overtones and g 6. 2p Raman spectru®(w,,»;)/a| of two coupled oscillators de-
zero-frequency resonances associated with diagonal elemenigibed by the Hamiltonian Eq(C1) with vibrational frequencies),
of «?). The anharmonicity enters through the third compo-=311¢m*, and,=525 cn*, dampingy,=y,=5 cm™* and anharmo-
nent S;(w,,w;) [Eq. (C8)] which has the same resonances Nicity V&) =26 cm L, (fgr all n.m,s= 1,2).~CaIcLJIatiorls were Enade using
as Sy(w,, ) and Sy(w,, ;) but their amplitudes are dif- E9S-(CO-(CB), setingait=al?), af=aff)=al)=affal"/af}}=10,
ferent. The cross peaks in this case are due to the anharmorfid defininga=(ai”)a{? . The total signal has the following contribu-
intermode coupling via off-diagonal elements \6f). The tions: (A) [$, /o [Eq. (C6)] with resonances on oscillator vibrational fre-
. . quencies £Q,,=0Q,), and FQ,,%=Q,), (B) |S,/a| [Eg. (C7)] with
2D Raman spectra of two coupled weakly anharmonic 0sCilgerones 1.0,,20,), 2. (2,,20,), zero-frequency resonances & (0),
lators are presented in Fig. 6. Pa@) displays the contri- 4. (0,,0), and cross peaks 5.0(,Q,;+Q,), 6. (Q,,0,+Q,), 7.
bution to the total signal given by the first tefag. (C6)]  (—Q1,Q,—-9Q4), 8. (Q2,Q,-Q,) (resonances k-8’ are related to 1-8
with the resonances on the vibrational frequencies onlyby inversion symmetiy and(C) |S;/| with the same resonances as(A)
Panel(B) shows the signal associated with the second terni:nmarked and (B)(1-8, 1'~8"). In (A)~(B) intermode coupling origi-
[Eqg. (C7)] which consists of cross peaks 5—8 arié-8’ due nates from off-diagonal elements of the polarizabiiid?) (n+m; n,m

. . . . - ~(2) =1,2), whereas ifC) it originates from off-diagonal anharmoniciti®4)
to mie(;r)node coupling via the polarizability componeaﬁ.% (n<ms; n.m.s=1.2). (D) The total signal (S, + S, + S,)/a| which con-
anday;’ . Panel(C) presents the cross peaks 5—-8 and®  tains all resonances shown (A)—(C).
associated with the anharmonicity coupling W), V{3,

Ve, V&), V), V). The total signal displayed in panel
(D) shows all the resonances of pan@s—(C). Cross peaks o0 we truncate this expansion &/Q,)2, constraining

have been observed experimentally in mixtures of liqiflds. (e excitations to the first three vibrational levels, resulting in

The semiclassical response function given here allows us tg single echo at,=t,. In the HT (gy=1) limit all terms in

compute these peaks in complex systems by solving classicgle exnansion of(Q) contribute to the response, resulting
equations of motion for vibrational coordinates. in a multitude of echoes. Quantum effects which give addi-
tional echoes can be neglected wiggre 1. The HT and WN
VIl. SUMMARY both hold_ whgrgﬁ<gT<1. _ .
For simplicity we have assumed in this paper an expo-

In this article we have compared two different semiclas-nential form ofa(Q) [Eg. (2.3)]. For this model the Gauss-
sical expansions of the fifth-order off-resonant respons¢an form of the wave packets is maintained. The present
function. We have analyzed their range of applicability usingresults can however be used to compute the wave packets
an exactly solvable model of a single-mode Brownian oscil-and response functions for an arbitrary dependencg @)).
lator coupled to the radiation field via electronic polarizabil- To that end we perform the Fourier transform
ity which depends exponentially on nuclear coordinates. The
exact quantum expression for the response funcfion. w
(4.2)] reduces to the HTEq. (4.5] and WN [Eq. (4.4)] a(Q)=f dka(k)expikQ), (7.1
limits by varying the dimensionless parametggsand g, *
as shown in the phase-diagrafiig. 3. The underdamped
Brownian oscillator shows multiple-echoes associated withw(Q) is then represented as a suar an integral over ex-
vibrational coherences between all vibrational states. Th@onentials.
relative amplitudes of multiquantum coherences are deter- Denoting the wave packet given by Ed2.7) by
mined by the Taylor expansion ef(Q). In the WN approxi-  agp®(P,Q;1/Q,,7) (highlighting its parametric depen-
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dence 0rmQg), and making use of Eq7.1) we obtain for the We assume that each pair of pulses have the same tem-
wave packetp™(P,Q;7) which is related to an arbitrary poral profile but different directions. The optical field is rep-
form of the electronic polarization(Q) resented in the form

pV(P,Q;7)= J dka(k)p (P, Q;ik, 7). (7.2 &)= 3Ej(De e T+ M +cuc. (A4)

In Eq. (A4), k’ andk’' are the two wave vectors of a pair,

The third-order r nse function similarl ts the form ™ — " . : o :
e third-order response function similarly adopts the fo wy is its optical frequencyy is the positionE;(t) is a com-

R(3)(t;71):f°° dkfw dpf‘” dQa(K) a(Q) ]E:Lelg field representing the positive frequency part of the
L _ The expression for the sign@Eq. (A3)] contains the
X p(P,Q;ik, 7). (7.3 square of the optical field. Neglecting terms which oscillate

The present expressions for the wave packatsl re-  With the optical frequency yields
sponse functionscan thus be used agnerating functions 201 )
for computing these quantities in the general case. The wave ejv= '|E'(t)| [1+cog Ak )] (AS)
packet associated with each Liouville space pathway is g|veul th Ak;= k’ k”
as a superposition of Gaussians throughout the propagation.

Finally we note that an extremely useful alternative al- £ ()=
gorithm for computing the quantum nonlinear response of P
high frequency modes is possible by using equations of moand making use of the fact that the impulsive pulses are short

tion for dynamical variables that include higher powers of Qcompared td) ~* the polarizatiorP®)(t) in Eq. (A3) adopts
and P, instead of the formal expansionfin The resulting the form

nonlinear exciton equation®NEE) (Refs. 3,45—-4y which _

have been developed and applied to models of coupled chro- P®(t)=e "0t %E (t—t,)

mophores can then be effectively used to describe the non-

linear response of coupled vibrations. x; P(t,,t1;ks)e*s " +c.c., (A7)

Taking the probe field,(t) in the form

N

Ep(t)e 'wotekn T+ c.c. (A6)

where the signal wave vectdr, in the sum in the r.h.s. of

Eq. (A7) assumes the valudg=Kk,+m;Ak; +m,Ak, with
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APPENDIX A: PHASE-MATCHING FOR IMPULSIVE wherea,, .= 1/2m*+ I and

PHOTON ECHOES

In this appendix we compute the impulsive photon echo F,Ef |E;(7)|%dT. (A9)
signals in the WN limi{ Eq. (3.2)]. We first consider a single o

harmonic mode with the spectral density, Assuming a large number of molecules per cubic wavelength

A3, the polarizatiorP(t,,t;:ks) determines the signal in the
directionks.

It is convenient to use the probe field as the local oscil-
lator in heterodyne detection,

2
C(w)=m[5(w—ﬂ)—5(w+ﬂ)]. (A1)

Substitution of Eq(Al) into Eq.(2.19 gives

46(t)
C(t)=— g SNQ. (A2) En(t)= 3e 1o WE (t—t,) +c.C. (A10)
To compute the optical response we substitute(B§)  The heterodyne signd,(t,,t;;ks) measured in the direc-
into Eqg. (3.2 retaining only the second, echo-type, term.tion kg is given by
Further substitution of the resulting expression for

R(S)(tz,tl) into EC](13) Y|e|dS Sh(tzyt]_y f dtP (t ks)gh(t) (All)

PG)(1) = 4( D)2 <2)f°° d ,F 47!
(D=4(a"")"a LY B and can be computed by the substitution of Eds7) and

(A10) into Eq. (A11) which yields the signal in the form of

XsinQ(t—75)sinQ (75— 71) Eqg. (5.9). [Equation(5.8) has been obtained in Sec. V using

X E(7h— o) EX( 7 — 1)) En(t—1t,) (A3) an alternative derivation scheme based on wave packet dy-
2 2 ~1 vee namics] Averaging the signalEq. (5.8)] over the distribu-
wherea®=aq/\\MQQpand a®= ay/(MQQ,). tion function[Eq. (4.11)] yields fort, ,t,>A"*
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Az(tz_tl)z} Ey(T 1) = 3E (1)e*e 10T c .,

1. ~
S§5>(t2,t1;ks>=g(a<1>>2a<2>ai(ks>exp{— .

. (B4)
—1 —I(w0+(),0)'r+ C.

X cog Qo(ty— 1) IF1F oF . (A12) En(n)=z2En(7)e e

Equation (A12) shows an echo signal dp=t; with the

width A~1. The echo signal which includes &b, oscilla-

tion, shows up in all nine possible directiors=k,

+m;Ak;+m,Ak, with relative intensity given by the fac-

The reason for the choice of the frequency differences in
Egs. (B3) and (B4) is as follows: to get an echo, the first
pulse should produce a single excitation in the right compo-
nent of the density matrix whereas the second pulse should
create a double excitation in the left component, which

tors a;(ky), X ) . .
(2m)? yields the frequency shifts di)y and ), respectively, in
_ _ ™ . Eqg. (B3). The polarization is induced by the matrix element
3i(ks) m,nzzo,tl olnl+|m| O(kpt mAkyFnlky k). between the singly and doubly-excited levels. This implies

(A13) that the signal frequency is shifted b}, with respect to the

The dependence of the signal on the pulse envelopes is givé)rEObe’ and the heterodyne frequency should be equabto

+Q
by Eq.(A9). 0 . . . . .
y Eq.(A9) Neglecting terms which oscillate at optical frequencies
we have
APPENDIX B: PHASE-MATCHING FOR SEMI- E2(7,r)=EN(NEF (ne Momtikm Ty e, (BB)

IMPULSIVE PHOTON ECHOES
] ) ) with m=1,2 andAk,,=k;,—k/, and
We first represent the signal in the form
Ep(T.1)E(T)= FEn(T)Ep (r)e o Tk, (B6)

S(s?)(tz,tl;ks)=Ref dQW(Q)fdre*iks-r _ |
" In Eq. (B5) we have also omitted the terms which do not

. oscillate with vibrational frequencies since they do not con-
xf dtp(5)(t,r;Q)gh(t_tp), (B1) tribute to the echo. To derive the final expression for the
—en signal, we first substitute EqéB5) and (B6) into Eq. (B2),

represent the sines in E4B2) as linear combinations of
exponents, and retain only the echo-contributing terms, i.e.,
those which contain expiQ(t,—t;)]. We then integrate
over 71, 75, and 7' applying the rotating wave approxima-
tion, i.e., neglecting integrands oscillating with vibrational
frequencies and making use of the fact that the pulses are
much shorter thaf) ~1. These integrations yield the factor
F1 FrF, where

wheret, andt, are the time delays between pulsksis the
signal wave vector anB(®) is given by Eq.(A3). Substitut-
ing Eq.(A3) into Eqg.(B1) and making a simple transforma-
tion of the time integration-variables yields

S5(tz.t ko) =4(a)Za'? Ref_‘ dQW(Q)f dreiks

XJ dTij dréf dr’ o

R S Fa= | drEnmER (1) m-12
XS Qt+ (7 — 75)] ®7)
xsifQt;+Q(75—11)] prJ drEp(7)ER (7).

2, 1 2/ 1 ’ ’

€72 DELTLOE(TNET). (B Further integration over in Eq. (B2) yields a signal in the
In the semi-impulsive regime the pulse duratiafssatisfy  form of Eq. (5.13 with the spatial phase-matching factor
the condition Q"'<7,<A~! The excitation should be asi(ky)=(2m)38[ ks— (ko + Ak, —Aky)]. Integrating over
resonant with vibronic transitions. Since the excitation of() ysing Eq.(4.11) we finally obtain for the semi-impulsive
vibronic levels is produced by the square of the optical fieldecho signal
[see, e.g., EqA3)] this can be accomplished using pairs of
pulses whose carrier frequency difference is tuned to be res%w
nant with the vibrational transitions. The optical fields ~si
&(nr), j=1,2 in the exciting pulses is thus taken in the

form Xex;{—
cc,'j(T,I')Z %[E;(T)eikjl'r_ion-i‘ Ej, /(T)eikjf/-r—i(wo-%-j!)o)f]

1 ~ ~
(t2 ot ks) = Esasi( ks)(a’(l))za(z)

A%(ty—t)?
2

X Re(FT Fr ).

(B8)

ree. (B3) Equation(B8) gives an echo at,=t; in a single direction
It is clearly seen from EqB3) that the first pulse is resonant ks=k,+Ak,—Ak;. Its magnitude is determined by Egs.
with the single-excitation vibronic transition whereas the(B7), and in contrast to the impulsive regime the semi-
second pulse produces a double excitation. The probe arithpulsive echo does not show vibrational frequency oscilla-
heterodyne pulses have the form tions.
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APPENDIX C: FREQUENCY-DOMAIN WEAK-
NONLINEARITY RESPONSE OF A MULTIMODE
ANHARMONIC OSCILLATOR SYSTEM

We consider a molecular system whhprimary Raman-
active vibrational coordinatefQ;} (j=1,... N), coupled

to the optical field and interacting with harmonic bath coor-

dinates. The Hamiltonian has the form of EG.1), where
the molecular Hamiltonian is

M;Q7Q7

5 +V(Q),

(CD

with conjugated moment®;, harmonic oscillator frequen-
cies();, and masseM;. Anharmonicity of the nuclear po-
tential energy is introduced By(Q) which can be expanded
in the power series

© N
ViQ=> X

k=3 j1,..,jk=1

(C2

Coupling to the electric field is given by E¢L.1) in which

the electronic polarizability depends on the primary oscilla-
tor coordinate) and can be represented by the expansion

£ N
aQ=> >

k=2 jq,..Jk=

(C3

1H ijll...Qlk_

In the WN approximation we retain only first termpig=3 in
Eqg. (C2) andk=2 in Eq.(C3)].

The response functioR®)(t,+t;:t;;0) in the WN ap-
proximations has three contributions

3
R(5)(t2+t1,t1,0): E R(as)(tz'f'tl,tl,o)
1

a=

(C4

Expressions for alR{>) were given in Ref. 28. We adopt the

multi-mode underdamped Brownian oscillator model de-

scribed by the Hamiltonian

o

p2

2m,

2
m,w?,

a

2

Cja

(CH

o]

HB=E[

Ja My,

Mukamel, Piryatinski, and Chernyak

Sy(w;,w1)
~ g~ i~ 1
1)~ ()72
=83 G a
mn (w1+iym) _Qm

» (01tiym[w2+i(Ymt )]+ Qn(Qm—Q4)
[woti(ymt ')’n)]z_(ﬂm_ﬂn)z

_ (o1 +iym w2+ i(ymt+ ¥n) ]+ Qm(Qpn+Qp)
[w+i(ymt 'yn)]z_(Qm+Qn)2

(C7
83((')21(01)
Vi) S;(l);(l);(l)#
A P

1 Q,
@1+ Ym= O [wo+i(ymt Yn)_Qm]z_Qﬁ

1 O
B 01ty t Qp [woFi(ymt 7n)+Qm]2_Qﬁ ,

(CY
wheren,m,s=1,...,N. The coefficients in Eqs(C6)—(C8)
are aM=a®MI(M Q)2 2@ =a@/(MoM 2,02
V= Vind (MMM Q0,02 These expressions are

mns

used in Fig. 6.
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