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Semiclassical simulations of multidimensional Raman echoes
Shaul Mukamel, Andrei Piryatinski, and Vladimir Chernyak
Department of Chemistry, University of Rochester, Rochester, New York 14627-0216

~Received 4 September 1998; accepted 14 October 1998!

A high-temperature and a weak-nonlinearity~low-temperature! semiclassical expansion are
developed for computing two-dimensional vibrational Raman spectroscopies, and applied to an
exactly solvable Brownian-oscillator model. The origin of photon echoes is discussed using
phase-space-wave-packets. Impulsive and semi-impulsive echoes are shown to satisfy different
phase-matching conditions, and are generated in different directions. ©1999 American Institute of
Physics.@S0021-9606~99!51003-9#
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I. INTRODUCTION

In coherent time-resolved multidimensional Ram
spectroscopy, a molecular system is excited by a train oN
pairs of nonoverlapping electronically off-resonant sh
pulses.1–3 The superposition of vibrational states prepared
these pulses is then detected by the scattering of a final p
pulse~Fig. 1!. The dimensionality~D! of these techniques i
given by the number of time intervals between pulses. C
herent Raman scattering~CRS! is the lowest~1D! technique
which provides information about vibrational frequenci
and relaxation rates.4–8 2D and 3D techniques provide muc
more detailed information regarding intermolecular and
tramolecular structure and dynamics in liquids, protei
polymers, and glasses with complex vibrational structure.9–12

3D coherent Raman scattering, which is similar to stim
lated photon echo9 was first proposed in Ref. 1 and measur
in Refs. 13,14. The lower order~2D! Raman technique, pro
posed by Tanimura and Mukamel2,15 is now the subject of
intense experimental16–21 and theoretical15,22–27,18 activity.
Contributions of the anharmonicity of vibrational modes a
the nonlinear dependence of the electronic polarizability
the optical response have been investigated. New resona
at combinations of single oscillator resonant frequenc
~cross peaks! have been predicted and observed.16,22,23,28In
addition, these techniques can distinguish between hom
neous and inhomogeneous spectral line broadening me
nisms. For inhomogeneous broadening, the signal has a
ton echo form24 and carries information about relaxatio
time scales as well as vibrational mode frequencies. Supp
sion of the photon echo due to the vibrational mode coup
via polarization has been demonstrated by numer
simulations.27

Extracting structural and dynamical information fro
multidimensional signals requires the computation of non
ear response functions,3 taking into account the combine
effect of anharmonicities, nonlinear dependence of the po
izability on nuclear coordinates, and the quantum chara
of nuclear motions. In off-resonant Raman spectroscop
coupling with the radiation field is given by the effectiv
Hamiltonian29

H int~ t !52E 2~ t !a~Q!, ~1.1!
1710021-9606/99/110(3)/1711/15/$15.00
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where a(Q) is the electronic polarizability which depend
on the vibrational coordinates~Q!. In 2D spectroscopy the
radiation field is given by a sum of two nonoverlapping pu
pairs centered at timest1 andt2 ~Fig. 1!,

E~ t !5(
j 51

2

Ej~ t2t j !. ~1.2!

The signal is generated by the scattering of a probe fi
denotedEp(t2tp). The polarization~and the signal field! is
proportional to the square of the field of each of the tw
driving pulses and to the probe field, and is altogether fi
order in the field

P~5!~ t !5E
2`

`

dt18E
2`

`

dt28R
~5!~ t;t28 ,t18!

3E 2
2~t282t2!E 1

2~t182t1!Ep~ t2tp!. ~1.3!

The fifth order response functionR(5)(t,t2 ,t1) is given by a
combination of three-point correlation functions of the pola
izability a

R~5!~ t;t2 ,t1!5S i

\ D 2

^a1~ t !a2~t2!a2~t1!&, ~1.4!

where a1[(1/2)(aL1aR), and a2[aL2aR ;aL (aR) is
the electronic polarization operator acting on the density
peroperator from the left~right!. The time evolution ofa(t)
is given by the free molecular Hamiltonian~without the ra-
diation field!. This expression contains four terms represe
ing all possible combinations of ‘‘left’’ and ‘‘right’’ actions
of the three polarization operators.30 Each term correspond
to a distinct Liouville-space path, and can be represented
a double-sided Feynman diagram Fig. 2.3 The various corre-
lation functions interfere, giving rise to many interesting e
fects such as new resonances.

For completeness we also present the third order~1D!
response,

P~3!~ t !5E
2`

`

dt18R
~3!~ t;t18!E 1

2~t182t1!Ep~ t2tp!, ~1.5!

with
1 © 1999 American Institute of Physics
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R~3!~ t;t1!5
i

\
^a1~ t !a2~t1!&. ~1.6!

In this article we investigate the application of semicla
sical techniques towards the molecular dynamics simula
of the nonlinear response function@Eq. ~1.4!#. Formally,
these techniques employ an expansion in powers of\.31–33

The 1/\2 prefactor in Eq.~1.4! suggests an apparent dive
gence as\→0. However, when the four correlation func
tions are combined, the 1/\2 factor is canceled for small\,
and one obtains a finite classical response, independent\.
Semiclassical simulations should not, therefore, aim at
individual correlation functionŝ a(t1)a(t2)a(t3)& which
do not have an obvious classical limit, but focus instead
the entire response function~which is a specific combination
of four correlation functions!, that must have a classica
limit.

In our earlier studies we have identified two differe
semiclassical expansions which differ in the choice of
zero order~classical! limit. The first starts with the standar
high temperature~HT! limit. When kBT is large compared
with the vibrational frequencies we have34

RHT
~3!~ t;t!5b

d

dt1
^a~ t !a~t1!&c , ~1.7!

RHT
~5!~ t;t2 ,t1!5b2

d2

dt2dt1
^a~ t !a~t2!a~t1!&c

2b
d

dt1
(
i jk

^e i j M jk~t2 ,t1!a~ t !

3a i8~t2!ak8~t1!&c . ~1.8!

Here b5(kBT)21, ^ • • • &c denote classical correlatio
function a i8[]a/]xj and x1[p, x2[q, and e i i [0, e1,2

52e2,151. M jk(t2 ,t1) for i , j 51,2 is the stability matrix
defined as the derivative of a small deviationdxk(t1) at time
t1 with respect to a small deviationdxj (t2) at timet2 , and

FIG. 1. Geometry and time-ordering of the incoming pulse sequence in
order 2D spectroscopy. The first pair of pulses comes att1 and the second
at t2 . t1 and t2 are the time intervals.Dk1[k12k18 , Dk2[k22k28 . Only
one of the nine possible signals pulses~in the directionks5Dk11kp) is
shown.
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relates small deviationsdxj to dxk at different times. For a
single degree of freedom (q,p) this matrix satisfies the equa
tion:

]

]t2
M jk~t2 ,t1!5S 2]2H/]q2 2]2H/]q]p

]2H/]p]q ]2H/]p2 D M jk~t2 ,t1!

~1.9!

with the boundary conditionsM jk(t1 ,t1)5d jk .
The first term in Eq.~1.8!, related to the three-point cor

relation function of the polarizability, is a straightforwar
generalization of the fluctuation-dissipation relation@Eq.
~1.7!#. It can be computed by sampling classical trajector
with thermal equilibrium initial conditions. Unlike the firs
term in Eq.~1.8! which contains no interference~merely av-
eraging over the initial density matrix!, the second term
shows interesting classical interference, as suggested by
presence of the stability matrix; for each initial phase-sp
point we need to launch two trajectories with very close i
tial conditions. The nonlinear response is obtained by add
the contributions of these trajectories and letting them in
fere.

FIG. 2. Double-sided Feynman diagrams representing the four Liouv
space pathways contributing to the fifth-order response of the model
monic system coupled to the radiation field via electronic polarizability w
exponential dependence on nuclear coordinates@Eq. ~2.3!#. The coherent
state representation (uzL., and uzR.) is adopted ~Ref. 15!, g
5Q0

21A\/(2MV) @see Eq.~5.1!#. Each diagram corresponds to the prop
gation of the phase-space wave packetra

W(P,Q) given by Eq.~2.11! with
~A! j 50,k51, ~B! j 50,k50, ~C! j 51,k50, and~D! j 51,k51.

th
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Intramolecular and intermolecular vibrational motio
typically span a broad frequency range,~both lower and
higher thankBT/\). In liquid water, for example, the spec
tral density covers the 021000 cm21 range, whereaskBT at
room temperature is;200 cm21. The high-temperature ap
proximation cannot be used to describe high frequency
tions. Fortunately, a classical simulation of the optical
sponse may still be possible, even though the system itse
quantum mechanical.28 This is based on the observation th
the optical response of a linearly driven harmonic oscilla
is always linear and classical, regardless of temperature.
two sources of nonlinearities~anharmonicities and nonlinea
dependence ofa on Q) are therefore responsible for th
nonlinear response as well as for its nonclassical nature.
suggests that a semiclassical expansion for both source
optical nonlinearity may be possible, as long as these n
linearities are sufficiently weak. We denote this the we
nonlinearity~WN! expansion. The lowest order contributio
to the response is temperature-independent; the temper
shows up only in higher-order terms. Explicit expression
the WN are given in Ref. 28 and discussed in Appendix

The HT expansion is formally obtained by expandi
R(5) in powers of\, keepingT fixed, whereas in the WN
expansion we keep the thermal frequencyvT[kBT/\ fixed.
The latter thus contains an implicit dependence on\
~throughvT) even as\→0. For both expansions, in the cla
sical limit ~to zero order in\! the signal can be calculated b
solving the classical equations of motion. The polarizat
~and the classical response! is given by a(t)5a(Q(t)),
where Q(t) evolve using classical trajectories. In the H
expansion the initial conditions should sample the act
phase space equilibrium distribution. The WN expans
only requires a single trajectory with initial zero coordina
and momentum. This trajectory represents the evolution
wave packet induced by coupling to the radiation field.

The Planck constant constitutes a convenient bookke
ing device for computing high order~quantum! corrections
for both expansions. The Wigner–Kirkwood semiclassi
expansion provides quantum corrections to a desired po
in \, using the Wigner~phase-space! representation.35

The article is organized as follows: in Sec. II we deri
an exact quantum mechanical expression for the optica
sponse of a nonlinearly driven Brownian oscillator, and re
resent it using phase-space wave packets. The fifth o
response function is represented in terms of a superpos
of Gaussian wave packets which retain their forms under
system-field interaction.36,37 The exact quantum respons
function R(5) is computed for a simple model of a sing
underdamped Brownian oscillator coupled to the radiat
field via electronic polarizability which has exponential d
pendence on the nuclear coordinates. The classical high
perature~HT! and weak nonlinearity~WN! limits of the re-
sponse function as well as for the phase-space wave pa
are given in Sec. III. By varying two dimensionless para
eters we show how the exact expression forR(5) reduces to
the HT and WN limiting cases. In Sec. IV we compute t
response of an underdamped Brownian oscillator, wh
shows multiple echoes generated by the excitation of h
order coherences. The range of applicability of the HT a
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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WN approximations is explored. We also model the HT o
tical response for a harmonic system with low-frequency
brations with comparable central frequency and homo
neous width. Using the WN expansion we compare t
spectroscopic regimes; impulsive~pulses are shorter the
nuclear dynamics and relaxation time scales! and semi-
impulsive ~pulses are long compared to the time scale
nuclear dynamics but short compared to the inhomogene
dephasing time!. The classical WN picture of the photo
echo based on the phase-space wave packet representa
given in Sec. V. The phase-space WN dynamics associ
with 2D Raman echoes is consistent with the classical p
ture commonly used in NMR spectroscopy.38,39Adopting the
WN approximation, we represent in Sec. VI the signal fro
a multi-mode anharmonic system in the frequency doma
and demonstrate the semiclassical origin of the resonanc
combinations of vibrational frequencies~cross peaks!. Our
results are finally summarized in Sec. VII.

II. THE FIFTH ORDER RESPONSE OF A BROWNIAN
OSCILLATOR

We consider a molecule with a single primary Rama
active harmonic vibrational degree of freedomQ, coupled to
the optical field via the electronic polarizabilitya(Q), and
interacting with a large number of harmonic~bath! coordi-
nates which induce relaxation and dephasing. The Ham
tonian has a form:

H5Hm1H int~ t !1HB . ~2.1!

The molecular Hamiltonian representing the primary Ram
active mode is given by

Hm5
P2

2M
1

MV2Q2

2
, ~2.2!

whereP, Q, V, and M are the momentum, coordinate fre
quency, and mass of the primary mode, andH int @Eq. ~1.1!#
represents its coupling to the driving field. We assume ex
nential dependence of the electronic polarizability on
nuclear coordinate

â~Q!5a0 exp~Q/Q0!. ~2.3!

HB represents the bath Hamiltonian and its coupling to
primary vibrational mode. For clarity we shall first consid
an isolated vibration and setHB50, HB will be specified
later.

In the impulsive limit, where pulse durations are mu
shorter than the delay between pulses and the nuclear
namics time scales, the time-resolved heterodyne sig
S(5)(t2 ,t1) depends on the two time delayst1 andt2 between
pulses~Fig. 1! and is proportional to the fifth-order respon
function

S~ t2 ,t1!5R~5!~ t21t1 ;t1,0!. ~2.4!

For our model, the molecular dynamics underlyingR(5)

can be represented using Gaussian wave packets for the
sity matrix in the Wigner representation.3,37 At thermal equi-
librium we have
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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r̄~P,Q!5
V

2ps
expS 2

P2

4Ms
2

MV2Q2

4s D ~2.5!

with the variance s[(\V/2)/coth(\V/2kBT). Equation
~1.4! depends on the superoperatora25aL2aR

5a0@exp(QL /Q0)2exp(QR/Q0)# which in the Wigner repre-
sentation assumes the form

a25a0 expS Q

Q0
1

i\

2Q0

]

]PD2a0 expS Q

Q0
2

i\

2Q0

]

]PD .

~2.6!

The action of the two terms~corresponding toaL or aR)
in the right-hand side of Eq.~2.6! on a Gaussian wave pack
can be viewed as evolution in imaginary time with respec
an operator linear inQ and ]/]P. This evolution preserves
the Gaussian form of the wave packet; its variances~i.e., the
set of the second moments! do not change whereas the pos
tion of its center~the first moments! are time dependent
Since thea2 operator is a linear combination ofaL andaR

~Eq. ~2.6!!, the density matrixa2r̄ produced att50 as a
result of the first interaction with the driving field is a supe
position of two Gaussian wave packets whose centers su
quently rotate in the (P,Q) phase space with frequencyV. A
straightforward calculation yields the following form of th
wave packet during the first time interval, assuming that
first interaction comes att50,

r~1!~P,Q;t!5 (
j 50,1

~21! j
a0

i\
expF Q̄j~0!

2Q0
G

3
V

2ps
expH 2

@P2 P̄j~t!#2

4Ms

2
MV2@Q2Q̄j~t!#2

4s J , ~2.7!

where j 50,1 stand forL ~left! and R ~right!, respectively,
and

Q̄j~t!5Q̄j~0!cos~Vt!1
P̄j~0!

MV
sin~Vt!, ~2.8!

P̄j~t!5MQG j~t! ~2.9!

describe the classical phase-space trajectories of the w
packet centers with the initial conditions40

Q̄j~0!5
2s

MV2Q0

; P̄j~0!5~21! j 11
i\

2Q0
. ~2.10!

The second interaction with the driving field att5t1

produces a pair of Gaussian wave packets out of each o
two given by Eq.~2.7!. The density matrix during the secon
time interval is thus given by a superposition of four wa
packets,

r~2!~P,Q;t!5 (
jk50,1

r jk
~2!~P,Q;t! ~2.11!

with
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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~2!~P,Q;t!5~21!k1 j

a0
2

~ i\!2
expF Q̄~0!1Q̄j~ t1!

Q0
G ,

3
V

2ps
expF2

~P2 P̄j~t!2 P̄k~t2t1!!2

4Ms

2
MV2~Q2Q̄j~t!2Q̄k~t2t1!!2

4s
G , ~2.12!

where Q̄j (t) and P̄j (t) are given by Eqs.~2.8! and ~2.9!.
The four terms in Eq.~2.12! correspond to four Liouville
space pathways represented by the Feynman diagrams fo
nonlinear response and given in Fig. 2. The subscriptj de-
termines the type~left or right action! of the first interaction
with the driving field, whereask is related to the second
interaction.

Using these wave packets, the impulsive signal is giv
by

S~5!~ t2 ,t1!5E dPE dQa~Q!r~2!~P,Q;t21t1!

5a0 (
k j50,1

E dPE dQ

3expS Q

Q0
D rk j

~2!~P,Q;t21t1!. ~2.13!

Substitution of Eqs.~2.11! and Eq.~2.12! into Eq.~2.13!
yields the final expression forR(5)

R~5!~ t21t1 ,t1 ;0!

52
2a0

3

\2
A expF \

Q0
2

f ~ t21t1 ,t1 ;0!G
3sinF \

2Q0
2 ~C~ t21t1!1C~ t1!!GsinF \

2Q0
2

C~ t2!G ,

~2.14!

where

f ~ t21t1 ,t1 ;0![C~1 !~ t21t1!1C~1 !~ t2!1C~1 !~ t1!,
~2.15!

A[expF 3\

2Q0
2

C~1 !~0!G .

Here C(t)[( i\)21^Q1(t)Q2(0)& and C(1)(t)
[\21^Q1(t)Q1(0)& are the Liouville space correlatio
functions of the oscillator coordinate operator. These h
the form

C~ t !52u~ t !
4

MV
sin~Vt !,

~2.16!

C~1 !~ t !5
2

MV
cothS \V

2kBTD cos~Vt !.

The third order response is similarly given by
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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R~3!~ t,t1!5
2a0

2

\
expF \

Q0
2

C~1 !~0!G
3expF \

Q0
2

C~1 !~ t2t1!G
3sinF \

2Q0
2

C~ t2t1!G . ~2.17!

Equation ~2.17! may be obtained directly from Eqs.~1.6!
using the second order cumulant expansion. The m
lengthy wave packet approach given here allows us to tr
the semiclassical origin of the response.

To include the coupling to a bath, we adopt the Brow
ian oscillator model by adding a harmonic bath linea
coupled to the primary mode.41 The system-bath dynamics
now determined by the Hamiltonian@Eq. ~2.1!# with

HB5(
a

F pa
2

2ma
1

mava
2

2 S qa2
ca

mava
QD 2G , ~2.18!

where pa ,qa ,ma , and va are the momentum, coordinat
mass and vibrational frequency of thea bath oscillator.

The optical response can again be found by follow
the dynamics of the Gaussian wave packets in the comp
~system plus bath! phase space, since the system-bath Ham
tonianHB is harmonic in the full phase space$P,Q,pa ,qa%.
This is a straightforward generalization of the single mo
case. The response functions retain their form@~Eqs.~2.14!,
~2.15! and ~2.17!#. However the correlation functionsC(t)
andC1(t) are now given by

C~ t !522u~ t !E
2`

` dv

2p
C~v!sin~vt !, ~2.19!

C~1 !~ t ![E
2`

` dv

2p
C~v!cothS \v

2kTD cos~vt !, ~2.20!

with the spectral density

C~v!5
1

M

4vg~v!

~V21vS~v!2v2!214v2g2~v!
. ~2.21!

g ~D! is the imaginary~real! parts of a self-energy operato
representing relaxation~level shift!,

g~v!5p(
a

ca
2@d~v2va!1d~v2va!#,

~2.22!

S~v!52
1

p
PPE

2`

`

dv8
g~v8!

v82v
.

Equations ~2.14!, ~2.15!, and ~2.17!, together with
~2.19!-~2.21! constitute exact expressions for the respo
functions of a single Brownian oscillator whose polarizab
ity a @Eq. ~2.3!# is exponential in the primary coordinate. I
the next section we compare these results with the HT
WN approximations for the optical response and the und
lying wave packets.
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III. CLASSICAL LIMITS FOR THE RESPONSE AND
WAVE PACKETS

The WN response functions are obtained by expand
Eqs. ~2.14! and ~2.17! in powers of\, holding vT fixed. In
this case,C(1)(t) is independent on\. The expansion of
sines in Eq.~2.14! starts with;\2 terms, and the classica
approximation is obtained by retaining only the first term
the expansion, and setting the factor A and the exponen
Eq. ~2.14! to unity. This yields

RWN
~3! ~ t,t1!5

a0
2

Q0
2

C~ t2t1!, ~3.1!

and

RWN
~5! ~ t21t1 ,t1 ;0!5

a0
3

Q0
4 @C~ t2!C~ t21t1!1C~ t2!C~ t1!#.

~3.2!

The HT approximation is obtained by expandingR(3)

and R(5) in powers of\ holding T fixed. The sines in Eqs
~2.14! and ~2.17! are expanded in the same way as for t
WN approximation. Expanding A andf (t11t2 ,t1 ;0) to low-
est order in\ we set coth (\v/2kT)'2kT/\v in Eq. ~2.20!,
and obtain

RHT
~3!~ t;t!5expF2kBT

Q0
2

C̄~0!G
3expF2kBT

Q0
2

C̄~ t2t1!GRWN
~3! ~ t,t1!, ~3.3!

and

RHT
~5!~ t21t1 ,t1 ;0!5Ā expF2kT

Q0
2

f̄ ~ t21t1 ,t1 ;0!G
3RWN

~5! ~ t21t1 ,t1 ;0!. ~3.4!

f̄ is given by Eq.~2.15! by simply replacingC(1)(t) with
C̄(t)

C̄~ t ![E
2`

` dv

2p

C~v!

v
cos~vt !, ~3.5!

and

Ā[expF3kT

Q0
2

C̄~0!G . ~3.6!

Here we have derived the HT and WN approximatio
by expanding the exact solution. For more general mod
where the exact solution is not available, it is still possible
obtain these approximations directly, order by order. For
WN, this procedure is described in Ref. 28, whereas for
HT it is given in Ref. 34.

The significance of both approximations can be clarifi
by following the corresponding wave packet dynamics.
the solution given in Sec. II we start with a single Gauss
wave packetr̄(P,Q), and each interaction with the drivin
field doubles the number of wave packets; we have a su
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



f
m
at
to

es
n

ic
in

ia
e
t

s
h
e
je

n
by

q
lly

ld.

ss-
d
ries

en-

is
s of
e to
-
ur
iou-
the
m
tra-
s
en
nt,
rm

d an

of
th

nd
pec-

ed

.

1716 J. Chem. Phys., Vol. 110, No. 3, 15 January 1999 Mukamel, Piryatinski, and Chernyak
position of two Gaussians duringt1 and a superposition o
four duringt2 . In contrast, in both classical limits the syste
can be represented by a single Gaussian wave packet
times. In the HT limit the wave packets evolve according
classical trajectories, i.e., the wave packetr(P,Q;t) at time
t at the phase-space point~P,Q! is given by the value
r(P0 ,Q0 ;0) of the wave packet att50. P0 andQ0 are the
initial conditions for the classical trajectory which reach
~P,Q! at time t. For a harmonic system, this prescriptio
yields a single Gaussian wave packet at all times. In part
lar for the single-mode model without a bath introduced
Sec. II we have during thet2 time interval

rHT
~2!~P,Q;t!5

a0
2

~2Q0!2
@sin~Vt1!1sin~Vt!#

3sin~V~t2t1!!expF Q̄~0!1Q̄~ t1!

Q0
G

3
V

2pkBT
expF2

~P2 P̄~t!2 P̄~t2t1!!2

4MkBT

2
MV2~Q2Q̄~t!2Q̄~t2t1!!2

4kBT
G , ~3.7!

with the center coordinates

Q̄~0!5
2kBT

MV2Q0

,

Q̄~t!5Q̄~0!cos~Vt!, ~3.8!

P̄~t!5MQG ~t!.

The WN dynamics is also given by a single Gauss
wave packet but for a different reason. For a linearly driv
harmonic system the wave packet remains Gaussian a
times. Adding both types of nonlinearities@anharmonicity
and nonlinearity in the electronic polarizabilitya(Q)# leads
to deviation from the Gaussian form. However, to lowe
order in the nonlinearities~which corresponds to the zerot
order in\ for vT fixed! we can neglect the variation of th
second moments and the nonlinearities only affect the tra
tory through the first moments. This yields

r~P,Q;t!5
V

2ps
expH 2

@P2 P̄~t!#2

4Ms

2
MV2@Q2Q̄~t!#2

4s J ~3.9!

with s[(\V/2)/coth(\V/2kBT). P̄(t), Q̄(t) is the classi-
cal trajectory in the phase space with the initial conditio
P̄(0)5Q̄(0)50.37 The response functions are obtained
expanding the trajectory in powers of the driving field

P̄~t!5 P̄~1!~t !1 P̄~2!~t !1 • • • ,
~3.10!

Q̄~t!5Q̄~1!~t !1Q̄~2!~t !1 • • • .

P̄( j )(t), Q̄( j )(t) can be computed by the substitution of E
~3.10! into the classical equations of motion of the externa
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driven system and solving them order by order in the fie
Substituting the wave packets@Eqs.~3.7! and~3.9!# in to Eq.
~2.13! yields the response functionsR(5) in the form of Eqs.
~3.2!and~3.4!, respectively.

Although the reason why we only have a single Gau
ian is different for the HT and WN, it can be rationalize
using the same argument. Different phase-space trajecto
determined by Eqs.~2.8! and ~2.9! and related to different
Gaussian wave packets coincide if we set the initial mom
tum P̄j (0) @Eq. ~2.10!# to zero. The magnitude ofP̄j (0) is
proportional to\ and is independent of temperature. Th
means that for both HT and WN, semiclassical expansion
all the Gaussian wave packets in the superposition merg
a single Gaussian in the\→0 limit. The exact quantum den
sity matrix of our model is given by a superposition of fo
Gaussian wave packets each associated with a distinct L
ville space pathway. In both semiclassical expansions
width of the equilibrium wave packet along the momentu
direction is larger than the separation between the four
jectories determined byP̄j (0), andthese four wave packet
can be approximated by a single one. In the HT limit wh
both anharmonicity and nonlinearity are taken into accou
the wave packet strongly deviates from a Gaussian fo
whereas in the WN the deviations are assumed small an
expansion in these deviations is made.

In the next section we present numerical calculations
impulsive 2D signals, and test the regions of validity of bo
semiclassical expansions.

IV. MULTIPLE FIFTH-ORDER ECHOES

In this section we study the role of homogeneous a
inhomogeneous broadening as probed by impulsive 2D s
troscopy. We use the Brownian oscillator model@Eq. ~2.21!#
with a v-independent damping termg ~Ohmic dissipation!
which immediately impliesS50.

We first consider a high-frequency weakly-damp
mode withg!V. The correlation functionsC(t) and C(1)

3(t) are then given by

C~ t !52u~ t !
4

MV
sin~Vt !e2gt,

~4.1!

C~1 !~ t !5
2

MV
cothS \V

2kTD cos~Vt !e2gutu.

Substituting Eq.~4.1! into Eq. ~2.14! and making use of Eq
~2.4! we obtain

S~5!~ t2 ,t1!52
8

~g\!2
~ ã~1!!2ã~2!A

3expFg\ cothS g\

2gT
D f̃ ~ t2 ,t1!G

3sin$g\~sin~V~ t21t1!!e2g~ t21t1!

1sin~Vt1!e2gt1!%sin$g\ sin~Vt2!e2gt2%, ~4.2!

where
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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f̃ ~ t2 ,t1![cos~V~ t21t1!!e2g~ t21t1!

1cos~Vt1!e2gt11cos~Vt2!e2gt2,
~4.3!

A[expF3

2
g\ cothS g\

2gT
D G .

Here ã (1)[a0 /(AMVQ0) anda (2)[a0
2/(MVQ0).

To analyze the range of applicability of both expa
sions, we first introduce the quantum lengthQ\ :\V
[(1/2)MV2Q\

2 , and the thermal length QT :kT
[(1/2)MV2QT

2 related to the zero-point and thermal ene
gies, respectively. By dividing these lengths by the non
earity length scaleQ0 we obtain the dimensionless param
eters g\[(Q\ /Q0)2 and gT[(QT /Q0)2. The WN
expansion holds wheng\ ,gT!1. Expanding Eq.~4.2! to
lowest order in these parameters gives

SWN
~5! 528~ ã~1!!2ã~2!

3~sin~V~ t11t2!!sin~Vt2!e2g~ t112t2!

1sin~Vt1!sin~Vt2!e2g~ t11t2!!. ~4.4!

The HT expansion requiresQ\!QT . Taking the limit
g\→0, Eq. ~4.2! yields for a fixed value ofgT ,

SHT
~5![exp~3gT!exp@2gTf̃ ~ t1 ,t2!#SWN

~5! . ~4.5!

Making two-dimensional Fourier transformation of E
~4.2!, the exact optical signalS(t2 ,t1)[R(5)(t21t1 ;t1,0) as-
sumes the form

S~ t2 ,t1 ;V!

5 (
n,m52`

`

e2 iV~mt22nt1!Fnm~e2gt2,e2gt1;g\ ,gT!. ~4.6!

The two-dimensional Fourier coefficientsFnm in Eq. ~4.6!
have the form

Fnm52
8

~g\!2
~ ã~1!!2ã~2!E

2p

p du1

2p E
p

pdu2

2p

3expFg\ cothS g\

2gT
D f̃ ~u2 ,u1!G

3sin$g\~sin~u21u1!e2g~ t21t1!

1sin~u1!e2gt1!%sin$g\ sin~u2!e2gt2%ei ~mu22nu1!,

~4.7!

where f̃ (u2,u1)[cos(u21u1)e
2g(t21t1)1cos(u1)e

2gt1

1cos(u2)e
2gt2. The magnitudes ofFnm which vary on the

homogeneous relaxation time-scaleg21 and depend para
metrically ong\ , andgT determine the relative amplitude
of the signal components. In the HT approximation, the
pansion coefficients adopt the form

Fnm
HT524~ ã~1!!2ã~2! (

j ,k561
jk@Kn1 j ,m1ke

2g~ t11t2!

1Kn1 j ,m1k21e2g~ t112t2!#, ~4.8!

with the auxiliary functionKnm
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Knm5 (
l 52`

`

~21!m1n1 l I l 1n~gTe2gt1!I l 2m~gTe2gt2!

3I l~gTe2g~ t11t2!!, ~4.9!

whereI i(x) ( i 50,1,2,...) are the modified Bessel function
Taking thegT→0 limit in Eq. ~4.8! and making use of

the fact that onlyI 0(0)51 does not vanish for zero argu
ment, we find that only four coefficients survive in the W
expansion of Eq.~4.6!

Fnm
WN58mn~ ã~1!!2ã~2! exp@2g~ t11t2!#,

~4.10!
Fn;m61

WN 58mn~ ã~1!!2ã~2! exp@2g~ t112t2!#,

wherem,n561.
We next assume that the oscillator frequency has an

homogeneous Gaussian distribution,

W~V!5
1

A2pD
expF2

~V2V0!2

2D2 G , ~4.11!

where the inhomogeneous widthD satisfies

\g!\D!\V0 ,kT. ~4.12!

When the oscillator is weakly-damped and the linewidth
dominated by inhomogeneous dephasing, the 2D sig
shows an echo.3 Convoluting Eq.~4.6! with the Gaussian
distribution functionW~V! @Eq. ~4.11!# we obtain for the
signal

S~ t2 ,t1![E dVW~V!S~ t2 ,t1 ;V!, ~4.13!

S~ t2 ,t1!5(
m

e2 imV0t2(
n

expF2
~mD!2

2 S t22
nt1
m D 2G

3einV0t1Fnm~e2gt2,e2gt1;g\ ,gT!. ~4.14!

This signal shows multiple echoes at all possible tim
combinationst25(n/m)t1 , m,n51,2,3, . . . . The relative
magnitudes of the echo peaks and the echo decay du
homogeneous broadening are determined byFnm . The echo
decay reflects the homogeneous dephasing time scaleT2

5g21. For a fixedt1 , oscillations of the echo signal witht2

are independent ofn and have the period (mV0)21. The
width of the echo signal at a fixedt1 is also independent ofn
and reflects the inhomogeneous dephasing time scaleTI

5(mD)21. The multiple echoes presented by Eq.~4.14!
originate from high order vibrational coherences created
the exponential electronic polarizabilitya(Q) which con-
tains all orders inQ/Q0 . Computer simulations of HT mul-
tiple echoes for different values ofgT were presented in
Ref. 23.

We next compare the exact, HT and the WN approxim
tions to Eq.~4.14! using numerical simulations. We discus
the results using the (g\ ,gT)-phase diagram shown in Fig. 3
The WN holds when only the first term which is unity in th
expansion of the exponential prefactor in Eq.~4.2! can be
retained as well asg\ is small enough to retain only the firs
term in the expansion of the sines. To neglect the contri
tion of the second term in the expansion of the exponen
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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prefactor we require it to be less or equal to 0.1, wh
amounts togT<g\/2 arcoth(0.1/g\). The region where this
inequality holds is denoted in the plot as WN. The HT ho
for small values ofg\,0.1, provided the argument of th
exponential prefactor in Eq.~4.2! is approximated as
g\ coth(g\ /(2gT));2gT which is satisfied providedgT>g\ .
This region is marked HT. The WN and HT regions m
overlap. Transition through the common boundary from H
to WN leads to the decrease ofgT in the argument of the
exponential prefactor in Eq.~4.5!, making it small enough to
approximate the exponent by unity. In this case Eqs.~4.4!
and ~4.5! coincide. Transition from the WN to HT region
increases the value ofgT , and higher order terms in th
expansion of the exponent in Eq.~4.5! should be included.
We refer to these high temperature corrections as classi

The WN echo, shown in Fig. 4~a! whose magnitude is
determined by the functionsF11(gT→0) and F2121(gT

→0) @Eq. ~4.10!#, appears only in thet25t1 direction. The
first classical corrections to the WN signal at a small value
gT @F6162(gT) andF6261(gT), Eq. ~4.8!#, show up accord-
ing to Eq. ~4.14! as additional echoes att25t1/2,2t1 . We
present the HT signal at the pointgT50.05 (g\50) which
lies on the boundary between the WN and HT regions of
phase diagram in Fig. 4~b!. Additional echoes associate
with classical corrections to the WN signal are clearly se
in this plot. As gT is increased the number of echoes
creases as well,23 and the WN approximation fails. The exa
signal computed forg\50 irrespective ofgT coincides with
signals in the classical approximations.

The corrections to the WN on the boundary which do
not overlap with the HT region on the phase diagram are
to the expansion of the exponential prefactor and sines in
~4.2! in powers ofg\ . A general procedure for computin
these ‘‘quantum’’ corrections was developed in Ref. 28. A
cording to Eq.~4.14!, quantum corrections result in add
tional echoes. In the same way, additional echoes ap
when g\ exceeds the value where the high temperature
proximation holds. To demonstrate this we present in F
4~c! the exact signal computed atg\50.5 andgT50.05.
Comparing it with the HT~b! and WN~a! signals we observe
additional echoes att253t1 ,t1/3. Both classical approxima
tions fail in this case.

FIG. 3. (gT ,g\)-phase diagram showing range of applicability of the hi
temperature~HT! and the weak nonlinearity~WN! approximations. The re-
gion where both classical approximation fail is denoted ‘‘exact.’’
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We next turn to low frequency intermolecular mode
We consider a weakly overdampedV0&g oscillator with
V0520 cm21 andg530 cm21, and the following form for
the inhomogeneous distribution:

W~V!}NV4 expF2
~V2V0!2

2D2 G . ~4.15!

The V4 prefactor provides a low-frequency cutoff which
required to get physically acceptable signals.

We setgT50.05 and varied the inhomogeneous widthD
between 10 cm21 and 60 cm21. We have computed the
high-temperature response function@Eq. ~2.14!#. The time
domain spectral densities Eqs.~2.19! and~2.20! and the sig-
nal averaged over the distribution given by Eq.~4.15! were
calculated numerically. The results are presented in Fig

FIG. 4. Absolute square of the echo signalsuS(5)(t1 ,t2)u2 computed for an
underdamped harmonic system exponentially coupled to the radiation
with central frequencyV5508 cm21, homogeneous widthg51 cm21, and
inhomogeneous widthD530 cm21. ~a! WN approximation,g\5gT50.
Only one echo is seen in the directiont15t2 . ~b! HT approximationg\

50, gT50.05, additional echoes int1 /t251/2,2 show that the WN approxi-
mation is not valid for this set of parameters.~c! Exact quantum response
g\50.5, gT50.05, additional echoes in thet1 /t251/3,1/2,2,3 directions
demonstrate that neither the WN nor the HT hold for this set of parame
In all plots the signal stretched alongt2 axis, t150 is due to the vibrational
state population excitation.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Panel ~a! shows a contour plot of the signal forD
510 cm21. No echo is observed in this case. IncreasingD to
30 cm21 and 60 cm21 @panels~b!,~c!# leads to the generatio
of a weak echo att15t2 . Panel~c! further shows oscillations
of the echo with a period determined by the frequency spr
in the interval (V0 ,V01D/2).

V. THE CLASSICAL ORIGIN OF PHOTON ECHOES

In the previous section we have compared the exact
signals with the HT and WN approximations. For strong
homogeneous broadening, the signals show echoes in
the quantum and classical regime. This implies that the p
ton echo is not necessarily a quantum phenomenon, as m
be inferred from the standard calculation for a two-lev
system.38,39 In this section we first present a simple classi
picture of WN photon echoes using phase-space wave p
ets in the impulsive regime where pulse durationstp are
short compared to the vibrational periodstp!V21. We then
discuss another interesting ‘‘semi-impulsive’’ case whe
this condition does not hold.

FIG. 5. Absolute square of the signaluS(5)(t1 ,t2)u2 computed in the HT
approximation for the model low frequency harmonic system exponent
coupled to the radiation field with central frequencyV560 cm21, homoge-
neous width g530 cm21, and gT50.05. Inhomogeneous width~a! D
510 cm21, no echo,~b! D530 cm21 weak echo stretched int15t2 direc-
tion, and~c! D560 cm21 signal oscillations are clearly seen.
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As shown in Sec. III, WN signals are determined by t
classical phase-space trajectory of the Gaussian wave pa
center. For clarity, we consider a single inhomogeneou
broadened mode and neglect the bath, settingg50. We fur-
ther introduce the complex variablez(t) which maps the
phase space onto the complex plane

z~t!5
1

~2MV!1/2
@MVQ̄~t!1 i P̄~t!# ~5.1!

and constitutes the classical analog of the oscillator ann
lation operator. The signalS(5) is determined by Eq.~2.13!.
To obtain the WN approximation we expand the exponen
factor in this expression to first order inQ/Q0 . Integration
over P andQ using the wave packet@Eqs.~3.9! and ~3.10!#
shows that the response function is proportional toQ̄(2)(t).
In terms of our complex coordinate it is given by the re
part of the second-order termz(2) of the expansion ofz(t) in
powers of the driving field,

Sh5A2ã~1! Re@z~2!~t !#Ep~t!Eh* ~t!, ~5.2!

whereã (1)5a0 /AMVQ0 , andEp andEh are the envelopes
of the probe and heterodyne fields. The phase-matching
dition for the signal which determines its propagation dire
tion is discussed in Appendix A. For impulsive excitatio
the second-order solution of the classical equation of mo
~following the interaction with the two pulse-pairs! can be
represented in the matrix form

Z~ t21t1!5GV~ t2!X2GV~ t1!Z1 , ~5.3!

where

Z~ t ![S z~2!~ t !

z~2!* ~ t !
D , ~5.4!

Z1[
i

2A2
ã~1!F1~11cos~Dk1•r !!S 1

21D , ~5.5!

X2[
i

4
ã~2!F2~11cos~Dk2•r !!S 1 1

21 21D , ~5.6!

GV~ t ![S e2 iVt 0

0 eiVtD , ~5.7!

whereDkj, F j ( j 51,2) are defined by Eqs.~A5! and ~A9!.
Equation~5.3! describes the dynamics of the system in ter
of the complex variablesz(t) and ~its complex conjugate!
z* (t) in the complex plane (q,ip). Initially, the system is at
thermal equilibrium andz5z* 50. The first pulse produces
stateZ1 @Eq. ~5.5!#. In this state, the vectorz(0) @z* (0)# @the
upper~lower! component of~5.5!# is oriented along the posi
tive ~negative! direction of the imaginary axisip. The
Green’s functionGV(t1) propagates this state during the fir
time interval between the pulses, rotatingz(0) andz* (0) in
opposite directions with the angular frequencyV. For an
ensemble of systems with a broad frequency distribut
W(V), the t1-propagation dephases the coherence, dest
ing the signal. The action of the second pulse is described
the matrixX2 @Eq. ~5.6!#. The diagonal elements only chang
the absolute values and phases~by p/2) of z(t1) andz* (t1);

ly
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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the subsequentt2 evolution GV(t2) only increases the
dephasing and the optical signal vanishes on the inhom
neous broadening time scale. In contrast, the off-diago
elements ofX2 not only change the magnitudes and pha
of the z(t1) and z* (t1) but also switch these vectors suc
that their t2-propagation is represented by rotation with t
same frequencyV but in the reverse direction compared wi
the t1-rotation. This gives rise to rephasing which ultimate
leads to the photon echo.38

Computing Rez(2)(t11t2) with the help of Eqs.~5.3!–
~5.7! and inserting the result into Eq.~5.2! one obtains for
the heterodyne signal

Sih
~5!~ t1 ,t2 ;V!5 1

8 ~ ã~1!!2ã~2!F1F2Fpai~ks!

3sin~Vt1!sin~Vt2!, ~5.8!

whereai(ks) is the angular distribution factor given by Eq
~A13! which confines the signal to the nine directions giv
by ks5kp1mDk11nDk2 , m,n50,61. Averaging over the
Gaussian distribution Eq.~4.11! yields the echo signal given
in Eq. ~A12!.

So far all our calculations assumed impulsive excitat
with tp!V21, (tp being the pulse duration!. Another inter-
esting regime is when the pulses are long compared to
vibrational periods but short compared to the inhomogene
dephasing time scaleD21, V21!tp!D21. Expressions for
semi-impulsive WN echoes are derived in Appendix B sta
ing with Eq. ~3.2!. This is done in the rotating frame b
introducing a new variablew(t): z(t)5w(t)exp(2iV0t). V0

is the center frequency of the distribution functionW(V0)
given by Eq.~4.11!. In terms ofw(t) andw* (t) the second
order solution of the classical equation of motion can
recast in the following matrix form:

W~ t21t1!5GV2V0
~ t2!Y2GV2V0

~ t1!W1 , ~5.9!

with

W~ t ![S w~2!~ t !

w~2!* ~ t !
D , ~5.10!

W1[
i

4A2
ã~1!S F 1eiDk1r

2F1* e2 iDk1r D , ~5.11!

Y2[
i

8
ã~2!S F2* e2 iDk2r F 2eiDk2r

2F2* e2 iDk2r 2F 2eiDk2r D , ~5.12!

whereFj j 51,2 are given by Eq.~B7! and the Green’s func
tion GV2V0

(t) is given by Eq.~5.7!. The rotating wave ap-
proximation~RWA! has been employed in the derivation
Eq. ~5.12!; we only retain those elements inW1 and Y2

which do not oscillate with the optical frequencyV. The
discussion of the dynamics of the system which intera
with semi-impulsive pulses in terms ofw(t) and w* (t) is
similar to that of the impulsive case in terms ofz(t) and
z* (t). The heterodyne signal, derived using Eqs.~5.2!,~5.9!–
~5.12!, has the form
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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Ssih
~5!~ t1 ,t2 ;V!5

~a~1!!2a~2!

128~MV!2
$~2p!3

3d~3!~ks2kp2Dk11Dk2!

3Re@F1F2*F pe2 i ~V2V0!~ t11t2!#

1~2p!3d~3!~ks2kp1Dk12Dk2!

3Re@F1*F2F pe2 i ~V2V0!~ t22t1!#%. ~5.13!

Equation ~5.13! shows two components of the sign
propagating in the directionsks5kp1Dk12Dk2 (ks5kp

2Dk11Dk2) determined by the diagonal~off-diagonal! el-
ements of the matrixY2 in Eq. ~5.9!. The first signal vanishes
on the inhomogeneous time scale whereas the second g
ates an echo. Averaging Eq.~5.13! over the Gaussian distri
bution W(V0) @Eq. ~4.11!# we obtain Eq.~B8! for the semi-
impulsive signal.

The WN provides a clear picture for impulsive and sem
impulsive echoes. The semi-impulsive regime is intermed
between the pure impulsive and the CW~frequency domain!
coherent 2D Raman scattering. Semi-impulsive pulses ha
narrow bandwidth which allows a selective excitation of sp
cific vibrations. The RWA which applies in this case leads
the generation of a signal in a single spatial direction.
contrast, impulsive excitation cannot discriminate betwe
various propagation wave vectors, and the echo appea
all possible directions.

The effect of damping has been neglected in our wa
packets Eqs.~2.7!, ~2.12!, ~3.7!, and~A12!. Since the center
of the Gaussian wave packet obeys classical equation
motion, a friction force can be introduced. This force leads
a spiral motion of the wave packet center towards
origin.42,43 The relaxation in the Brownian oscillator mod
represents vibrational relaxation (T1) and does not include
pure vibrational dephasing (T2). The latter requires an an
harmonic system-bath coupling of the formQ2q. Pure
dephasing can then be treated perturbatively. 2D Ram
spectroscopy can probe both theT1 and T2 homogeneous
relaxation time scales.23,44 The signal stretched along thet2

axis (t150) in all panels of Fig. 4, is associated with th
vibrational population excitation and should decay onT1

time scale,44 whereas the echo signal decays on the deph
ing (T2) time scale.

VI. SEMICLASSICAL ORIGIN OF CROSS PEAKS

The fifth-order response function of multi-mode vibr
tional systems carries information about intermode coupl
through the electronic polarizabilitya(Q) and anharmonic-
ity V(Q). Anharmonicity neglected in previous section c
be readily taken in the WN approximation. In Appendix
we present the multi-mode underdamped Brownian oscilla
Hamiltonian Eq.~C1! used in Ref. 28. For this model, anha
monicities@Eq. ~C2!# yield an additional contribution to the
echo single which shifts the phase of its oscillations.23 This
is the case since the leading WN term does not affect
energy levels of the harmonic oscillator and they still form
harmonic ladder. As the anharmonicity is increased furth
the level structure deviates from a simple harmonic ladd
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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leading to dephasing and to the eventual disappearance o
echo. Suppression of the echo due to anharmonicities ca
investigated in the HT limit using semiclassical simulation

Cross correlations between modes are best displaye
the frequency domain

S~v2 ,v1!5E
0

`

dt1E
0

`

dt2eiv1t11 iv2t2R~5!~ t21t1 ;t1 ;0!

~6.1!

as the Fourier transform of the response functionR(5) with
respect to the time intervals. Intermode couplings give n
resonances on combinations of vibrational frequencies~cross
peaks!. As shown in Appendix C, the WN signal has thr
contributions. The first term contributing to the total sign
S1(v2 ,v1) @Eq. ~C6!# shows (v1 ,v2)-resonances at the vi
brational frequencies (6Vn ,6Vn) and (7Vn ,6Vn). The
second termS2(v2 ,v1) @Eq. ~C7!# shows cross peak
(6Vn ,6(Vn1Vm)), (6Vn ,6(Vm2Vn)), (nÞm) aris-
ing from nonlinear intermode coupling via off-diagonal el
ments of polarizabilityãnm

(2) (nÞm) as well as overtones an
zero-frequency resonances associated with diagonal elem
of ãnn

(2) . The anharmonicity enters through the third comp
nent S3(v2 ,v1) @Eq. ~C8!# which has the same resonanc
as S1(v2 ,v1) and S2(v2 ,v1) but their amplitudes are dif
ferent. The cross peaks in this case are due to the anharm
intermode coupling via off-diagonal elements ofṼ(3). The
2D Raman spectra of two coupled weakly anharmonic os
lators are presented in Fig. 6. Panel~A! displays the contri-
bution to the total signal given by the first term@Eq. ~C6!#
with the resonances on the vibrational frequencies o
Panel~B! shows the signal associated with the second te
@Eq. ~C7!# which consists of cross peaks 5 – 8 and 58– 88 due
to intermode coupling via the polarizability componentsã12

(2)

and ã21
(2) . Panel~C! presents the cross peaks 5–8 and 58–88

associated with the anharmonicity coupling viaṼ112
(3) , Ṽ121

(3) ,
Ṽ211

(3) , Ṽ122
(3) , Ṽ212

(3) , Ṽ221
(3) . The total signal displayed in pane

~D! shows all the resonances of panels~A!–~C!. Cross peaks
have been observed experimentally in mixtures of liquid16

The semiclassical response function given here allows u
compute these peaks in complex systems by solving clas
equations of motion for vibrational coordinates.

VII. SUMMARY

In this article we have compared two different semicla
sical expansions of the fifth-order off-resonant respo
function. We have analyzed their range of applicability us
an exactly solvable model of a single-mode Brownian os
lator coupled to the radiation field via electronic polarizab
ity which depends exponentially on nuclear coordinates. T
exact quantum expression for the response function@Eq.
~4.2!# reduces to the HT@Eq. ~4.5!# and WN @Eq. ~4.4!#
limits by varying the dimensionless parametersg\ and gT ,
as shown in the phase-diagram~Fig. 3!. The underdamped
Brownian oscillator shows multiple-echoes associated w
vibrational coherences between all vibrational states.
relative amplitudes of multiquantum coherences are de
mined by the Taylor expansion ofa(Q). In the WN approxi-
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mation we truncate this expansion at (Q/Q0)2, constraining
the excitations to the first three vibrational levels, resulting
a single echo att15t2 . In the HT (gT>1) limit all terms in
the expansion ofa(Q) contribute to the response, resultin
in a multitude of echoes. Quantum effects which give ad
tional echoes can be neglected wheng\!1. The HT and WN
both hold wheng\!gT!1.

For simplicity we have assumed in this paper an ex
nential form ofa(Q) @Eq. ~2.3!#. For this model the Gauss
ian form of the wave packets is maintained. The pres
results can however be used to compute the wave pac
and response functions for an arbitrary dependence ofa(Q).
To that end we perform the Fourier transform

a~Q!5E
2`

`

dkã~k!exp~ ikQ!, ~7.1!

a(Q) is then represented as a sum~or an integral! over ex-
ponentials.

Denoting the wave packet given by Eq.~2.7! by
a0r (1)(P,Q;1/Q0 ,t) ~highlighting its parametric depen

FIG. 6. 2D Raman spectrumuS(v2 ,v1)/ãu of two coupled oscillators de-
scribed by the Hamiltonian Eq.~C1! with vibrational frequenciesV1

5311 cm21, andV25525 cm21, dampingg15g255 cm21 and anharmo-

nicity Ṽnms
(3) 526 cm21, ~for all n,m,s51,2). Calculations were made usin

Eqs. ~C6!–~C8!, setting ã1
(1)5ã2

(1) , ã1,1
(2)5ã2,2

(2)5ã1,2
(2)5ã2,1

(2)ã1
(1)/ã1,1

(2)510,

and definingã5(ã1
(1))2ã1,1

(2) . The total signal has the following contribu

tions: ~A! uS1 /ãu @Eq. ~C6!# with resonances on oscillator vibrational fre

quencies (6V1 ,6V2), and (7V1 ,6V2), ~B! uS2 /ãu @Eq. ~C7!# with
overtones 1. (V1,2V1), 2. (V2,2V2), zero-frequency resonances 3. (V1,0),
4. (V2,0), and cross peaks 5. (V1 ,V11V2), 6. (V2 ,V11V2), 7.
(2V1 ,V22V1), 8. (V2 ,V12V2) ~resonances 18– 88 are related to 1 – 8

by inversion symmetry!, and~C! uS3 /ãu with the same resonances as in~A!
~unmarked! and ~B!(1 – 8, 18– 88). In ~A!–~B! intermode coupling origi-

nates from off-diagonal elements of the polarizabilityãnm
(2) (nÞm; n,m

51,2), whereas in~C! it originates from off-diagonal anharmonicitiesṼnms
(3)

(nÞmÞs; n,m,s51,2). ~D! The total signalu(S11S21S3)/ãu which con-
tains all resonances shown in~A!–~C!.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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dence onQ0), and making use of Eq.~7.1! we obtain for the
wave packetr (1)(P,Q;t) which is related to an arbitrary
form of the electronic polarizationa(Q)

r~1!~P,Q;t!5E
2`

`

dkã~k!r~1!~P,Q; ik,t!. ~7.2!

The third-order response function similarly adopts the fo

R~3!~ t;t1!5E
2`

`

dkE
2`

`

dPE
2`

`

dQã~k!a~Q!

3r~1!~P,Q; ik,t!. ~7.3!

The present expressions for the wave packets~and re-
sponse functions! can thus be used asgenerating functions
for computing these quantities in the general case. The w
packet associated with each Liouville space pathway is gi
as a superposition of Gaussians throughout the propaga

Finally we note that an extremely useful alternative
gorithm for computing the quantum nonlinear response
high frequency modes is possible by using equations of
tion for dynamical variables that include higher powers of
and P, instead of the formal expansion in\. The resulting
nonlinear exciton equations~NEE! ~Refs. 3,45–47! which
have been developed and applied to models of coupled c
mophores can then be effectively used to describe the n
linear response of coupled vibrations.
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APPENDIX A: PHASE-MATCHING FOR IMPULSIVE
PHOTON ECHOES

In this appendix we compute the impulsive photon ec
signals in the WN limit@Eq. ~3.2!#. We first consider a single
harmonic mode with the spectral density,

C~v!5
2p

MV
@d~v2V!2d~v1V!#. ~A1!

Substitution of Eq.~A1! into Eq. ~2.19! gives

C~ t !52
4u~ t !

MV
sin~Vt !. ~A2!

To compute the optical response we substitute Eq.~A2!
into Eq. ~3.2! retaining only the second, echo-type, ter
Further substitution of the resulting expression
R(5)(t2 ,t1) into Eq. ~1.3! yields

P~5!~ t !54~ ã~1!!2a~2!E
2`

`

dt18E
2`

`

dt28

3sinV~ t2t28!sinV~t282t18!

3E 2
2~t282t2!E 1

2~t182t1!Ep~ t2tp!, ~A3!

whereã (1)5a0 /AMVQ0and ã (2)5a0 /(MVQ0).
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We assume that each pair of pulses have the same
poral profile but different directions. The optical field is re
resented in the form

Ej~ t !5 1
2 Ej~ t !e2 iv0t@eik j8•r1eik j9•r#1c.c. ~A4!

In Eq. ~A4!, k8 andk88 are the two wave vectors of a pai
v0 is its optical frequency,r is the position,Ej (t) is a com-
plex field representing the positive frequency part of t
field.

The expression for the signal@Eq. ~A3!# contains the
square of the optical field. Neglecting terms which oscilla
with the optical frequency yields

E j
2~ t !5 1

2 uEj~ t !u2@11cos~Dk j•r !# ~A5!

with Dk j[k j82k j9 . Taking the probe fieldEp(t) in the form

Ep~ t !5 1
2 Ep~ t !e2 iv0teikp•r1c.c. ~A6!

and making use of the fact that the impulsive pulses are s
compared toV21 the polarizationP(5)(t) in Eq. ~A3! adopts
the form

P~5!~ t !5e2 iv0~ t2tp!Ep~ t2tp!

3(
ks

P̄~ t2 ,t1 ;ks!e
iks•r1c.c., ~A7!

where the signal wave vectorks in the sum in the r.h.s. of
Eq. ~A7! assumes the valuesks5kp1m1Dk11m2Dk2 with
m1 ,m250,61 and

P̄~ t2 ,t1 ;ks![
1
2 ~ ã~1!!2ã~2!am2m1

sin~Vt2!

3sin~Vt1!F1F2 , ~A8!

whereamn51/2umu1unu and

F j[E
2`

`

uEj~t!u2dt. ~A9!

Assuming a large number of molecules per cubic wavelen
l3, the polarizationP̄(t2 ,t1 ;ks) determines the signal in th
directionks .

It is convenient to use the probe field as the local os
lator in heterodyne detection,

Eh~ t !5 1
2 e2 iv0~ t2tp!Ep~ t2tp!1c.c. ~A10!

The heterodyne signalSh(t2 ,t1 ;ks) measured in the direc
tion ks is given by

Sh~ t2 ,t1 ;ks![E
2`

`

dtP~5!~ t;ks!Eh~ t ! ~A11!

and can be computed by the substitution of Eqs.~A7! and
~A10! into Eq. ~A11! which yields the signal in the form o
Eq. ~5.8!. @Equation~5.8! has been obtained in Sec. V usin
an alternative derivation scheme based on wave packet
namics.# Averaging the signal@Eq. ~5.8!# over the distribu-
tion function @Eq. ~4.11!# yields for t1 ,t2@D21
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Si
~5!~ t2 ,t1 ;ks!5

1

8
~ ã~1!!2ã~2!ai~ks!expF2

D2~ t22t1!2

2 G
3cos@V0~ t22t1!#F1F2Fp . ~A12!

Equation ~A12! shows an echo signal att25t1 with the
width D21. The echo signal which includes anV0 oscilla-
tion, shows up in all nine possible directionsks5kp

1m1Dk11m2Dk2 with relative intensity given by the fac
tors ai(ks),

ai~ks!5 (
m,n50,61

~2p!3

2unu1umu
d~kp1mDk11nDk22ks!.

~A13!

The dependence of the signal on the pulse envelopes is g
by Eq. ~A9!.

APPENDIX B: PHASE-MATCHING FOR SEMI-
IMPULSIVE PHOTON ECHOES

We first represent the signal in the form

Ssi
~5!~ t2 ,t1 ;ks!5ReE

2`

`

dVW~V!E dre2 iks•r

3E
2`

`

dtP~5!~ t,r ;V!Eh~ t2tp!, ~B1!

wheret2 andt1 are the time delays between pulses,ks is the
signal wave vector andP(5) is given by Eq.~A3!. Substitut-
ing Eq. ~A3! into Eq. ~B1! and making a simple transforma
tion of the time integration-variables yields

Ssi
~5!~ t2 ,t1 ,ks!54~ ã~1!!2ã~2! ReE

2`

`

dVW~V!E dreiks•r

3E
2`

`

dt18E
2`

`

dt28E
2`

`

dt8

3sin@Vt21V~t82t28!#

3sin@Vt11V~t282t18!#

3E 2
2~t28 ,r !E 1

2~t18 ,r !Ep~t8,r !Eh~t8!. ~B2!

In the semi-impulsive regime the pulse durationstp satisfy
the condition V21!tp!D21. The excitation should be
resonant with vibronic transitions. Since the excitation
vibronic levels is produced by the square of the optical fi
@see, e.g., Eq.~A3!# this can be accomplished using pairs
pulses whose carrier frequency difference is tuned to be r
nant with the vibrational transitions. The optical field
Ej (t,r ), j 51,2 in the exciting pulses is thus taken in th
form

Ej~t,r !5 1
2 @Ej8~t!eik j8•r2 iv0t1Ej88~t!eik j9•r2 i ~v01 j V0!t#

1c.c. ~B3!

It is clearly seen from Eq.~B3! that the first pulse is resonan
with the single-excitation vibronic transition whereas t
second pulse produces a double excitation. The probe
heterodyne pulses have the form
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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Ep~t,r !5 1
2 Ep~t!eikp•r2 iv0t1c.c.,

~B4!
Eh~t!5 1

2 Eh~t!e2 i ~v01V0!t1c.c.

The reason for the choice of the frequency differences
Eqs. ~B3! and ~B4! is as follows: to get an echo, the firs
pulse should produce a single excitation in the right com
nent of the density matrix whereas the second pulse sh
create a double excitation in the left component, wh
yields the frequency shifts ofV0 and 2V0 respectively, in
Eq. ~B3!. The polarization is induced by the matrix eleme
between the singly and doubly-excited levels. This impl
that the signal frequency is shifted byV0 with respect to the
probe, and the heterodyne frequency should be equal tov0

1V0 .
Neglecting terms which oscillate at optical frequenc

we have

Em
2 ~t,r !5 1

4 Em9 ~t!Em8* ~t!e2 imV0t1 ikm•r1c.c., ~B5!

with m51,2 andDkm[km9 2km8 and

Ep~t,r !Eh~t!5 1
4 Eh~t!Ep* ~t!e2 iV0t2 ikp•r. ~B6!

In Eq. ~B5! we have also omitted the terms which do n
oscillate with vibrational frequencies since they do not co
tribute to the echo. To derive the final expression for t
signal, we first substitute Eqs.~B5! and ~B6! into Eq. ~B2!,
represent the sines in Eq.~B2! as linear combinations o
exponents, and retain only the echo-contributing terms,
those which contain exp@6 iV(t22t1)#. We then integrate
over t18 , t28 , andt8 applying the rotating wave approxima
tion, i.e., neglecting integrands oscillating with vibration
frequencies and making use of the fact that the pulses
much shorter thanV21. These integrations yield the facto
F1*F2Fp where

Fm[E
2`

`

dtEm9 ~t!Em8* ~t! m51,2,

~B7!

Fp[E
2`

`

dtEp~t!Eh* ~t!.

Further integration overr in Eq. ~B2! yields a signal in the
form of Eq. ~5.13! with the spatial phase-matching facto
asi(ks)[(2p)3d@ks2(kp1Dk22Dk1)#. Integrating over
V using Eq.~4.11! we finally obtain for the semi-impulsive
echo signal

Ssi
~5!~ t2 ,t1 ;ks!5

1

128
asi~ks!~ ã~1!!2ã~2!

3expF2
D2~ t22t1!2

2 G3Re~F1*F2Fp!.

~B8!

Equation~B8! gives an echo att25t1 in a single direction
ks5kp1Dk22Dk1 . Its magnitude is determined by Eq
~B7!, and in contrast to the impulsive regime the sem
impulsive echo does not show vibrational frequency osci
tions.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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APPENDIX C: FREQUENCY-DOMAIN WEAK-
NONLINEARITY RESPONSE OF A MULTIMODE
ANHARMONIC OSCILLATOR SYSTEM

We consider a molecular system withN primary Raman-
active vibrational coordinates$Qj% ( j 51, . . . ,N), coupled
to the optical field and interacting with harmonic bath co
dinates. The Hamiltonian has the form of Eq.~2.1!, where
the molecular Hamiltonian is

Hm5(
j 51

N S Pj
2

2M j
1

M jV j
2Qj

2

2 D 1V~Q!, ~C1!

with conjugated momentaPj , harmonic oscillator frequen
ciesV j , and massesM j . Anharmonicity of the nuclear po
tential energy is introduced byV(Q) which can be expande
in the power series

V~Q!5 (
k53

`

(
j 1 ,..,j k51

N
1

k!
Vj 1 ,...,j k

~k! Qj 1
•••Qj k. ~C2!

Coupling to the electric field is given by Eq.~1.1! in which
the electronic polarizability depends on the primary osci
tor coordinatesQ and can be represented by the expansi

a~Q!5 (
k52

`

(
j 1 ,..,j k51

N
1

k!
a j 1 ,...,j k

~k! Qj 1
•••Qj k. ~C3!

In theWN approximation we retain only first terms@k53 in
Eq. ~C2! andk52 in Eq. ~C3!#.

The response functionR(5)(t21t1 ;t1 ;0) in the WN ap-
proximations has three contributions

R~5!~ t21t1 ;t1 ;0!5 (
a51

3

Ra
~5!~ t21t1 ;t1 ;0!. ~C4!

Expressions for allRa
(5) were given in Ref. 28. We adopt th

multi-mode underdamped Brownian oscillator model d
scribed by the Hamiltonian

HB5(
j ,a

F pa
2

2ma
1

mava
2

2 S qa2
cj a

mava
Qj D 2G , ~C5!

with cj a being the coupling constant between the prima
oscillator and bath coordinates. The signal in the freque
domain@Eq. ~6.1!#, for underdamped oscillators is given by
sum of three contributions

S1~v2 ,v1!516(
mn

ãm
~1!ãn

~1!ãmn
~2!

3
VmVn

@~v11 igm!22Vm
2 #@~v21 ign!22Vn

2#
,

~C6!
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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S2~v2 ,v1!

58(
mn

ãm
~1!ãn

~1!ãmn
~2!

1

~v11 igm!22Vm
2

3H ~v11 igm!@v21 i ~gm1gn!#1Vm~Vm2Vn!

@v21 i ~gm1gn!#22~Vm2Vn!2

2
~v11 igm!@v21 i ~gm1gn!#1Vm~Vm1Vn!

@v21 i ~gm1gn!#22~Vm1Vn!2 J ,

~C7!

S3~v2 ,v1!

5232(
mns

Ṽmns
~3! ãm

~1!ãn
~1!ãs

~1!
Vs

~v21 igs!
22Vs

2

3H 1

v11 igm2Vm

Vn

@v21 i ~gm1gn!2Vm#22Vn
2

2
1

v11 igm1Vm

Vn

@v21 i ~gm1gn!1Vm#22Vn
2J ,

~C8!

wheren,m,s51,...,N. The coefficients in Eqs.~C6!–~C8!

are ãn
(1)5an

(1)/(MnVn)1/2, ãn,m
(2) 5an,m

(2) /(MnMmVnVm)1/2,
Ṽmns

(3) 5Vmns
(3) /(MmMnMsVmVnVs)

1/2. These expressions ar
used in Fig. 6.
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