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Fluorescence line shapes and cooperative spontaneous emission in disordered one-dimensional molecular
aggregates are calculated using closed expressions derived by applying the method of optimal fluctuation. A
simple scaling relationLs ∼ ωs

-1/2 is established between the low temperature disorder-induced Stokes shift
ωs and the superradiance enhancement factorLs. Scaling of the Stokes shift with aggregate size, and the
time-dependent Stokes shift are discussed as well. Excellent agreement is obtained with numerical simulations.

I. Introduction

The dynamics of electronic excitations in molecular crystals,
nanostructures (e.g., monolayers and superlattices),J-aggregates
of cyanine dyes, and biological harvesting antennae complexes1-17

can be interpreted in terms of disorder-induced exciton scattering
and localization, as well as exciton self-trapping (dynamic
localization), which originates from strong vibronic
coupling.14,18-30 Various spectroscopic measurements, such as
absorption,4,5 fluorescence,11,12 pump-probe,12 and photon
echo,6,7 have been employed for probing exciton motions in
molecular aggregates.

In this article we calculate the fluorescence line shape and
cooperative spontaneous emission (superradiance) in molecular
aggregates using the Frenkel exciton model with strong diagonal
disorder. Current theories treat strong static disorder using
numerical simulations.10,19,21,22,29,30A similar problem which
appears in calculating the density of states in the band tails in
disordered semiconductors31 has been successfully treated by
an elegant method of optimal fluctuation propose independently
by Halperin and Lifshitz.32,33 We apply this method for
calculating fluorescence spectra and obtain a universal scaling
relation between the fluorescence Stokes shift and the super-
radiance factor.

In Section II we derive an analytical asymptotically exact
expression for the distributionnL(ω) of the lowest exciton energy
ω in a disordered aggregate whereω lies below the band edge
of an ordered reference system. Since at low temperatures the
fluorescence originates from the lowest exciton state, we can
relate the Stokes shiftωs, defined as the shift between the
maxima of the fluorescence and absorption line shapes, to the
disorder strengthσ and the aggregate sizeL (we assume that
the aggregate has a finite size which is large enough to neglect
boundary effects). In Section III we apply the optimal fluctuation
theory and establish a relation between the Stokes shiftωs and
superradiance factorLs, which only depends on aggregate
geometry (i.e., dimensionality and the magnitude of the
intermolecular coupling), and is independent of the magnitude
of the disorder. An analytical expression is derived which relates
Ls to ωs in 1D aggregates. The scaling of the Stokes

shift with aggregate size is analyzed in Section IV. We find
that for large aggregates the Stokes shift is determined by energy
transfer between localized exciton states and may not be
obtained from a static model of eigenstates. Our results are
summarized in Section V where the time-dependent Stokes shift
in disordered aggregates is discussed as well.

II. Optimal Fluctuation Theory for the Stokes Shift and
Superradiance

We consider an ensemble of one-dimensional molecular
aggregates each made out ofL coupled two-level molecules
with periodic geometry. The Frenkel exciton wave functions
φm

R and energiesωR are determined by the Schrodinger equa-
tion

wheren andm label individual molecules and the intermolecular
couplingJmndescribes exciton hopping. The electronic transition
frequency of themth molecules is given byΩ + êm whereêm

represents static diagonal disorder. We assume uncorrelated
Gaussian disorder, where the distribution ofêm is

In the absence of disorder,êm ) 0 and eq 2.1 gives an
excitonic band whose width is determined byJmn. Disorder
changes the exciton energies and leads to the formation of states
below the band edge. Assuming that thermal equilibration of
excitons is much faster than their radiative lifetime, the main
contribution to the fluorescence at low temperatures comes from
the lowest exciton. The position of the lowest exciton thus
determines the electronic Stokes shift of the fluorescence,
whereas the superradiant factor is related to the shape of the
corresponding exciton wave function. Both the lowest energy
level and its wave function have a statistical nature and the
fluorescence spectrum is obtained by averaging over all possible
realizations of disorder
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Here nL(ω) is the lowest state energy distribution, and the
superradiant enhancement factorLs(ω) is the radiative decay
rate relative to a single molecule. In general eq 2.3 should
contain the average of product rather than the products of
averages of both quantities. The factorization employed here is
justified, as will be verified by our numerical simulations.

To find nL(ω) we introduce the probabilityF(ω) that there is
a level belowω. Since low-energy excitons are localized and
do not communicate, this probability thus satisfies Poisson
statistics

where L is the number of molecules in the aggregate, and
n(ε) is the normalized exciton density of states
(i.e., ∫-∞

∞ dω n(ω) ) 1). Since the statements “the lowest
exciton level lies belowω” and “there is an exciton level below
ω” are equivalent,F(ω) also describes the probability for the
lowest level to lie belowω. This impliesnL(ω) ) dF (ω)/dω
which by making use of eq 2.4 yields the following expression
for nL(ω) in terms of the density of states

A more careful derivation shows that eqs 2.5 and 2.3 hold
provided the high-order level correlation functions (multidi-
mensional density of states) can be factorized for energies below
ω, which is asymptotically true whenω is sufficiently low. This
can be done using the exact relation

where the average in the rhs of eq 2.6 should be understood as

andn(j) are the multi-level correlation functions.
A closed expression for the lowest state energy distribution

nL(ω) can be obtained by substituting into eq 2.5 the exact
expression forn(ω) ) dN(ω)/dω where the cumulative density
of states is given by

Hereafter we choose the zero energy to correspond to the
bottom of the exciton band in an ordered reference system. For
1D systems with nearest-neighbor hopping, i.e.,Jn,n+1 ) Jn+1,n

) -J, in the continuum limit we have34,35

Here Ai and Bi are the Airy functions36 and σ0 ) σ(σ/4J)1/3.
The asymptoticω f -∞ expression forN(ω) which follows
from eq 2.9 and has the form

Equation 2.10, together with eqs 2.5 and 2.3, describe the
low-temperature relaxed fluorescence signal. Equation 2.10 can
be alternatively obtained using the optimal fluctuation method
as discussed below.

The superradiance factorLs, defined as the ratio of the
radiative decay rate of an aggregate to that of a single
chromophore, is given by29

whereMmn ≡ dm‚dn is the window function expressed in terms
of the unit vectorsdm in the direction of the single chromophore
transition dipole moments andFmn is the thermally relaxed
single-exciton density matrix at zero temperature, given by

where the summation overj reflects the fact thatφ(0) can be
centered at any chromophore.

The method of optimal fluctuation31-33 is based on the
observation that the conditional probabilityW(ê; ω) of a disorder
configurationê subject to the constraint that the lowest exciton
has energyω, is sharply peaked atê ) ê(0), known as the optimal
fluctuation, provided the exciton energyω is far below the
exciton band edge. For large aggregates the lowest energy state
lies far below the band edge for most of the aggregates in the
ensemble. This implies that the wave functionφ(0) of the emitting
state in a large aggregate is given by the solution of eq 2.1 for
ên ) ên

(0). To determineφ(0), we find the extremum ofW(ê)
for a fixed exciton energy (which is equivalent to finding the
extremum ofW(ê) - gε(ê), whereε(ê) is the lowest exciton
energy andg is the Lagrange multiplier). Making use of
∂ε/∂êj ) - |φj|2 (which is a direct consequence of perturbation
theory,37 we obtain êj ) - g|φj|2, which yields upon the
substitution into eq 2.1

with hmn ) (Ω - Ω0)δmn + Jmn, whereΩ0 is the exciton band
edge (we reiterate that the zero energy corresponds to the exciton
band edge in an ordered reference system). The wave function
φn

(0) is obtained by solving eq 2.13 whereas the Lagrange
multiplier g is determined by the normalization condition eq
2.14. We note that the same system of equations 2.13 and 2.14
determines the superradiance factorLs for polaron control of
excitonic coherence in the case of diagonal vibronic coupling
in the adiabatic limit.29 Static disorder and vibronic coupling
thus lead to the same relation between the superradiance factor
and the Stokes shift. However, there is one important differ-
ence: in the polaron case in eq 2.13g represents vibronic
coupling and the Stokes shift is obtained by solving the system
of equations. In the present case of static disorderg represents
a Lagrange multiplier whereasω is the lowest exciton energy
and should be given as an input.

Since, as will be demonstrated below, for large aggregates
Fmn(ω) changes slowly in the region wherenL(ω) has a sharp
peak, the Stokes shift is determined by the position of the
maximum of the lowest state energy distributionnL(ω). The
maximum of the optical absorption corresponds to the bottom
of the exciton band in the reference ordered systemω ) 0
(according to our convention). This implies that at low tem-
peratures the Stokes shift is given by the lowest exciton energy
ωs ) ω. Eqs 2.13 and 2.14, together with eqs 2.11 and 2.12,
establish the relation between the Stokes shift and the super-

Ls(ω) ) ∑
mn

MmnFmn(ω) (2.11)

Fmn ) ∑
j

φm+j
(0)

φn+j
(0) (2.12)

∑
n

hmnφn
(0) - ωφm

(0) - g|φm
(0)|2 φm

(0) ) 0 (2.13)

∑
m

|φm
(0)|2 ) 1 (2.14)

F(ω) ) 1 - exp(-L ∫-∞

ω
dεn(ε)) (2.4)

nL(ω) ) L n(ω) exp[-L ∫-∞

ω
dεn(ε)] (2.5)

nL(ω) ) L〈n̂(ω) exp(-L ∫-∞

ω
dεn̂(ε))〉 (2.6)

〈n̂(ε1) ... n̂(εj)〉 ) n(j)(ε1, ...,εj) (2.7)

N(ω) ≡ ∫-∞

ω
dεn(ε) (2.8)

N(ω) ) 2
π (σ0

J )1/2

[Ai
2(-ω/σ0) + Bi

2(-ω/σ0)]
-1 (2.9)

N(ω) ) 2
π(|ω|

J )1/2
exp[- 4

3 (|ω|
σ0

)3/2] (2.10)
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radiance factor: solving eq 2.13 forω ) ωs, yieldsφ(0), which
determinesLs upon substitution into eq 2,12. In the next section
we use these results to derive a closed analytical relation
between the Stokes shift and the superradiant factor of 1D
aggregates.

III. Comparison with Numerical Simulations

We consider 1D aggregates with fixed parallel orientation
of the molecular transition dipoles (e.g.,J-aggregates). The
generalization to circular aggregates such as light-harvesting
systems and 2D monolayers is straightforward. We present
analytical expressions in the continuum limit and compare with
simulations. We start by deriving closed expressions forωs and
Ls. If for the relevant energies the exciton localization length is
much smaller than the system size and much larger than the
lattice constant, eqs 2.13 and 2.14 can be solved in the
continuum limit, which yields the Ginzburg-Landau soliton for
the wave function29

with a0 ) 4J/g and ω ) -J/a0
2, where -J is the nearest-

neighbor intermolecular coupling. The parametera0 is defined
by the energy of the localized state which gives the Stokes shift.
The solution given by eq 3.1 corresponds to the continuum limit
of an infinite system. Equations 2.13 and 2.14 can be solved
analytically in the continuum limit in a periodic system. The
solution in this case is expressed in terms of elliptic functions.38

When the localization length is comparable with the lattice
constant, eqs 2.13 and 2.14 should be solved numerically.

For parallel dipole orientation,Mmn ) 1, and the substitution
of φ(n) into eqs 2.12 and 2.11 and replacing the sum in eq 2.12
by an integral yields

Note that this simple scaling relation between the superradiant
factorLs and the Stokes shiftωs is independent of the magnitude
of disorder.

Using these expressions we have calculated the lowest exciton
distribution nL(ω), the fluorescences spectrumf(ω), and the
superradiant factorLs(ω) of the lowest exciton in a cyclic
aggregate with the parallel dipole orientation which consists of
L ) 18 chromophores, resembling the LH2 harvesting complex
of purple bacteria.12

Figure 1 showsnL(ω) (upper panel),f(ω) (middle panel), and
Ls(ω) (lower panel) for a nearest-neighbor coupling of
J ) 34.7 meV andσ ) 23.5 meV. The dashed and dotted lines
in the upper and middle panels displaynL(ω) obtained using eq
2.5 andf(ω) (eq 2.3), wheren(ω) is taken from eq 2.10 and
2.9, respectively. The dashed line in the lower panel displays
Ls(ω) computed using eq 3.2. To test the validity of the
approximate analytical expressions we have computed the same
quantities by direct numerical simulations. Simulations are
averaged over 1 million disorder realizations. The direct
numerical results given by the solid lines in all panels show an
excellent agreement with the red part of the fluorescence spectra
up to its maximum. The zero of the energy scale coincides with
the energetic position of the lowest exciton in the absence of
disorder. The dashed dotted lines in the upper and middle panels
display nL(ω) (eq 2.5) andf(ω) (eq 2.3) takingn(ω) directly
from the simulations. Figures 2 and 3 display the same quantities

for different values of the disorder parameterσ ) 70.5 andσ
) 117.5 meV, respectively. The agreement with simulations is
similar to Figure 1.

Our analytical expression does not apply to the blue part of
the fluorescence spectra since this spectral region lies in the
vicinity of the band edge of the ordered reference system, where
the factorization of the higher-order level correlation functions
(eq 2.7) is not justified and the optimal fluctuation theory is
inapplicable. We note that already forL ) 18 the analytical
theory reproduces the red half of the fluorescence spectra. When
L is increased further the spectra are red-shifted, which increases
the range of applicability of the theory. It is important to note
that a good agreement is obtained only if we use eq 2.5 for
nL(ω) with n(ω) obtained from a simulation rather then from
eq 2.9 or eq 2.10. This can be rationalized as follows. Eq 2.5
contains the density of statesn(ε) in the exponent with a large
pre-factor ofL. nL(ω) is therefore extremely sensitive to small
deviations ofn(ε) from its exact value. In the case of eqs 2.9
and 2.10 these deviations originate from the continuum ap-
proximation. For low energies, however, the analytical expres-
sions predict the energy dependence ofnL(ω) and f(ω) as
obtained from the simulations.

IV. Scaling of the Stokes Shift with Aggregate Size

To investigate the variation of the Stokes shift with aggregate
size we note that at low temperatures the fluorescence originates

φ(n) ) (2a0)
-1/2 sech(n/a0) (3.1)

Ls ) π2

2 ( J
|ωs|)

1/2
(3.2)

Figure 1. Upper panelsthe distribution of lowest-energy excitonnL-
(ω); middle panelsthe low-temperature fluorescence spectrumf(ω);
lower panelsthe superradiant factorLs(ω) for a cyclic disordered
aggregate withL ) 18 chromophores with nearest-neighbor coupling
of J ) 34.7 meV considering Gaussian, uncorrelated, diagonal disorder
(see eq 2.2) withσ ) 23.5 meV. The zero of the energy scale coincides
with the energetic position of the lowest exciton in the absence of
disorder. The solid lines are the results of direct numerical simulations.
The dashed and dotted lines in the upper and middle panels display
nL(ω) using eq 2.5 andf(ω) using eq 2.3, wheren(ω) is taken from
eqs 2.10 and 2.9, respectively, and the dashed dotted lines display the
same quantities usingn(ω) taken directly from the simulations. The
dashed line in the lower panel displaysLs (ω) according to eq 3.2.
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from the lowest exciton. The Stokes shift can therefore be
obtained by finding the maximum of the distribution of the
lowest energy statenL(ω), given by eq 2.5. Alternatively, the
Stokes shift can be estimated using the following argument:
the average number of states with energies belowω is LN(ω),
whereN(ω) (eq 2.9) is the cumulative density of states. The
Stokes shiftωs can then be estimated by requiringLN(ωs) ) 1,
i.e., the number of one-exciton states with energies belowωs

should be on the order of one. TheL-dependentωs can thus be
obtained by solving the equation

SinceN(ω) is a monotonically increasing function, eq 4.1
predicts a monotonic decrease ofωs with aggregate sizeL. This
is unphysical since in a sufficiently large aggregate an exciton
does not have enough time to reach this state during its lifetime
τ. The Stokes shift is then controlled by the dynamics of energy
transfer between low-energy localized exciton states. This leads
naturally to a new coherence sizeL0 defined as the size of the
segment on which an exciton has enough time to reach the
lowest-energy state. In Appendix A we derive an expression
for L0

whereτ0 is the radiative lifetime of a single chromophore. For
L < L0 the Stokes shift is determined by eq 4.1. ForL > L0 it
becomes independent of size and is obtained by the solution of
N(ωs) ) L0

-1. For typical J-aggregate withJ ∼ 300 cm-1,
τ0 ∼ 10 ns, we haveL0 ∼ 100.

Note that our theory is based on the factorization of the
multidimensional densities of states for energies lower thanωs.
This is justified provided the distance between optimal fluctua-
tions L0(ω) is much larger than the exciton localization length
lA. Our previous numerical simulations have shown
lA ∼ Ls/3.29 The maximum superradiant factor observed
experimentally reachesLs ∼ 50,11 which giveslA ∼ 15. Our
theory thus applies to disorderedJ-aggregates. Another impor-
tant consequence of these estimates is that numerical simulations
of equilibrated low-temperature fluorescence spectra in disor-
dered aggregates with sizeL > 100 will in general be unrealistic
since the lowest-energy exciton states in such aggregates are
not accessible. The same applies to pump-probe spectra with
a long time delay between pump and probe.

The present analysis did not take energy-transfer between
aggregates into account. This can be accounted for by replacing
L in eq 4.1 byL1 defined as the number of chromophores in
the volume of sizeL0. This may increase substantially the Stokes
shift for closely packed aggregates.

V. Discussion

Equations 2.11-2.14 and 4.1 constitute a closed system of
equations which express both the superradiant factor and the
Stokes shift in terms of the density of statesn(ω). The
asymptotic form of the density of statesn(ω) which enters
eq 2.5 can be obtained by applying the method of optimal
fluctuation. In contrast toFmn which is expressed in terms of
the solution of eqs 2.13 and 2.14 alone,n(ω) also involves
calculation of the determinant of the linear operator which
originates from the integration over dê, in the vicinity of
ê ) ê(0), when the integrand is approximated by a Gaussian. In
1D systems the determinant can be evaluated analytically;
otherwise it should be computed numerically. The red wing of
the fluorescence spectrum all the way to its maximum is well
described by eqs 2.3 and 2.5 even forL )18.

To obtain a universal estimate for the coherence size (eq 4.2)
we have used a simple model by settingΓ(ω) ) V(ω) (see
Appendix A for the definitions ofΓ andV). The transfer rate
Γ(ω) in a realistic situation depends on the vibronic coupling.
When the couplingV(ω) is sufficiently small (which is always
true for sufficiently low energyω) the transfer rateΓ(ω) can
be calculated using Forster’s theory, which yieldsΓ(ω) )
[V(ω)2]/∆] where ∆ is determined by the spectral density of
the exciton-bath coupling. The latter can be readily calculated

Figure 2. Same as Figure 1 but forσ ) 70.5 meV.

Figure 3. Same as Figure 1 but forσ ) 117.5 meV.

N(ωs) ) L-1 (4.1)

L0 ) (Jτ0)
1/3 (4.2)
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for a given model of the chromophore-bath coupling, since the
shape of the exciton wave function is known. This together with
eq A3 could give a closed expression forΓ(ω) for a general
model of the chromophore-bath coupling. Such analysis goes,
however, beyond the scope of this article.

We emphasize that the fact that an excitation does not have
enough time to reach the lowest state of a large aggregate
strongly affects the Stokes shift, and leads to its saturation for
aggregates larger than the coherence sizeL0. The relation
betweenLs andωs, however, is not affected provided there is
enough time for an excitation to reach an exciton whose energy
is sufficiently low, so that optimal fluctuation theory is
applicable.

We have addressed the low-temperature fluorescence in
disordered molecular aggregates when the effects of disorder
are most pronounced. When the temperatureT is increased but
the main contribution to the signal comes from several lowest
states, one can still use the optimal fluctuations theory to find
the profile of ên. Finding the exciton states for this optimal
realization of disorder and weighing the exciton contributions
with the Boltzmann distribution one obtainsLs for finite T. This
approach breaks down when temperature effects in the formation
of Ls become stronger than their disorder-induced counterparts.
In that case the effects of disorder may be neglected andLs can
be found by performing calculations in an ordered reference
system.

Finally we note that the optimal fluctuation approach can also
be applied to calculate the time-dependent Stokes shift. Since
we know the distribution of optimal fluctuations and the
couplingV between them, exciton transport can be simulated
in a straightforward way by a Monte Carlo sampling of the
distribution of the optimal fluctuations. Making some rough
approximations such as neglecting the memory allows us to
derive simple equations for the time-evolution of the Stokes
shift. For example, assuming that the energy transfer occurs
with rate Γ(ω) into all accessible energies lower thanω, the
time derivative of the Stokes shift can be estimated as
[Γ(ω)]-1ε(ω), where

is the average value of the energy with for the states lying below
ω. This yields for the time-dependent Stokes shift

whereΓ(ω) can be calculated usingV(ω) (eq A3) for an arbitrary
model of chromophore-bath coupling.
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Appendix A. Exciton Dynamics Control of Fluorescence

In this appendix we consider the coherence sizeL0, and
evaluate it for 1DJ-aggregates. Since all exciton states in a
disordered 1D aggregate are localized, only hopping transport
induced by vibronic coupling takes place. If an exciton occupies
a localized state with energyω, at low temperature it can
typically hop to a state with lower energy thus leading to a time-
dependent Stokes shift. To find the long-time Stokes shift we
assume that the relaxed fluorescence originates from the state

for which the transfer time to a lower energy becomes
comparable to the exciton lifetimeτ: Γ(ω)τ ) 1 whereΓ(ω)
is the energy relaxation rate of an exciton with energyω.

To find Γ(ω) we first determine the couplingV(ω) between
the states participating in the energy transfer. For making a
simple estimate we setΓ(ω) ) V(ω). To determineV(ω) we
note that the number of exciton states with energy smaller than
ω is LN(ω), which implies that a typical distance between the
states participating in the transfer process isL0(ω) ) [N(ω)]-1.
This yields for the coherence sizeL0 ) L0(ω). Since both states
are formed by optimal fluctuations, their wave functions are
known (eqs 2.13 and 2.14) and the coupling can be found in a
standard way.39 We should, however, be careful when imple-
menting the nearest-neighbor approximation for intermolecular
coupling. ForJ-aggregates it has a dipole-dipole form with
the dipoles oriented along the chain which yieldsJmn ) J/|m -
n|3. This implies that nearest-neighbor hopping constitutes a
good approximation for determining the exciton wave function
in the region of the trap, but it fails to describe the long-distance
asymptote of the wave function which determines the coupling
V(ω). In particular, in the nearest-neighbor case the asymptotic
behavior shows exponential decay of the wave function whereas
in the dipole-dipole case it is long range. The couplingV
between two states localized in different traps (1) and (2) in
the long-range hopping case is given by a simple expression

where the wave functionsφ(1)(m) can be determined by solving
the Schro¨dinger equation with nearest-neighbor hopping. Eq A1
gives the coupling to first-order in the long-range hopping.

Equation A1 can be also derived formally by evaluating the
long-distance asymptote of the wave function and making use
of the well-known expression forV in terms of the overlap of
wave functions.39 When the exciton size is smaller than the
distance between the traps, which, as outlined above, is given
by L0, we can substituteJ/L0

3 for Jmn in eq A1 to obtain

Substituting forφ(1) andφ(2) the solution of eqs 2.13 and 2.14
(eq 3.1) and recalling the definition of the superradiant factor
(2.11 and 2.12) we obtain from eq A2

SinceL0(ω) ) [N(ω)]-1, eq A3 constitutes a closed expression
for the coupling between the states at the energyω.

As outlined before, the coherence sizeL0 is given byL0(ω),
and eq A3 allows us to findL0 by settingω ) ωs. Since in our
model Γ(ωs) ) V(ωs) and Γ(ωs)τ ) 1 where the radiative
lifetime τ is related to that of a single chromophoreτ0 through
the superradiant factorLs: τ ) τ0Ls

-1, eq A3 yields atω) ωs,
Lsτ0

-1 ) JLsL0
-3, which gives eq 4.2. The superradiant factorLs

is canceled out and eq 4.2 expresses the coherence sizeL0 in
terms of the intermolecular coupling and the radiative lifetime
of a single chromophore. The Stokes shift in large aggregates
(L . L0) can be found by combining eq 4.2 with the relation
N(ωs) ) L0

-1.
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