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Stochastic-trajectories and nonPoisson kinetics in single-molecule
spectroscopy
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Microscopic correlation-function expressions for the stochastic evolution observed in single
molecule spectroscopy are derived using Liouville-space projection operators. The kinetics of a
multilevel quantum system coupled to a single collective overdamped Brownian-oscillator
coordinate is exactly mapped onto a continuous-time-random-walk~CTRW! involving the transition
states~curve-crossing points!. Closed expressions are derived for the stochastic trajectories and the
nonPoissonian distribution of number of flips. When the oscillator relaxation is fast compared with
the reaction rates, the waiting time distribution becomes exponential and the standard Poisson
kinetics is recovered. ©1999 American Institute of Physics.@S0021-9606~99!01340-9#
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I. INTRODUCTION

Recent advances in fluorescence detection and mic
copy allow the studies of single molecules in complex co
densed phase environments at cryogenic as well as r
temperatures.1–7 Single-molecule spectroscopy~SMS! pro-
vides much more detailed microscopic information on
molecule under study and its coupling to the environme
than standard bulk measurements. The technique elimin
ensemble averaging and disorder effects from the ou
without involving spectroscopically-selective methods su
as photon echo8 or hole burning.9 SMS allows to probe mo-
tions which are slow compared to the fluorescence de
time, which is not possible using conventional bulk spectr
copy.

SMS signals show stochastic behavior which origina
from translational10–12 and rotational13 diffusion, spectral
fluctuations,14 conformational motions,15 and chemical-
changes-induced fluorescence blinking.16,17 Detailed infor-
mation on these motions can be obtained through a statis
analysis of the stochastic trajectories. Stochastic model
various kinds18–20 including random jump models21 as well
as continuous-time random walks22 have been used for th
interpretation of SMS experiments.

In this article we compute the stochastic SMS trajec
ries for chemical reactions coupled to a slow solvation co
dinate. Apart from providing detailed information on m
lecular dynamics, SMS also has the capacity to clarify so
fundamental questions regarding the microscopic quan
description of single objects.23–28 The following issues will
be addressed as well: what is the relation between the m
scopic models which describe the dynamics of a system
terms of Liouville space evolution of the density matri
Does the density matrix merely represent ensemble aver
or does it also provide a powerful and useful tool for und
standing the dynamics of single objects?

Kinetic ~rate! equations provide a simple framework fo
the interpretation of chemical dynamics. When this level
theoretical description applies, the statistics of stochastic
7410021-9606/99/111(16)/7416/10/$15.00
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jectories is strictly Poissonian and carries no additional
formation beyond the macroscopic rate constants.16,17Micro-
scopically, rate equations hold when all other degrees
freedom are fast compared with the observed kinetic ti
scales. Once the kinetic variables are coupled to some s
degrees of freedom, the theoretical description must incl
them explicitly, and the simple kinetic equations no long
hold. Under these circumstances the stochastic trajecto
observed in SMS provide an important source of additio
microscopic information about the system. A common mo
is to couple a multilevel system to an overdamped mac
scopic slow coordinate described by the Smoluchow
equation.29–31 In general, solving these equations requir
computing the evolution of coupled nuclear wavepacket32

One of the interesting results of this article is that when
reactions occur at well localized nuclear configurations,
stochastic evolution can be rigorously mapped onto the c
tinuous time random walk~CTRW! model.33,34 In ordinary
random walks, the walker jumps between different sites
fixed regular time intervals. Instead, the CTRW adds a d
tribution of waiting times between successive jumps. T
model was first proposed by Montroll and Weiss.33 Exten-
sions and further developments were made by Klaf
Zumofen, and Shlesinger.22,34 Hopping among the curve
crossing points associated with each pair of states resul
the discrete CTRW. The distribution of waiting times orig
nates from the evolution of the slow coordinate once it
eliminated from the description. Rather than solving a se
coupled partial differential equations for nuclear wavepa
ets, we obtain a random walk where the slow dynamics
rigorously incorporated into the waiting time distributio
One technical difference from the standard CTRW is that
need several waiting time distributions, not just one. Wh
the nuclear coordinate becomes fast, we recover the sim
kinetic equations with Poisson statistics.

In Sec. II we start with one of the basic postulates
quantum mechanics due to von Neumann to derive gen
expressions for the probability to obtain a certain result i
6 © 1999 American Institute of Physics
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7417J. Chem. Phys., Vol. 111, No. 16, 22 October 1999 Single-molecule spectroscopy
sequence of measurements in terms of a Liouville space m
titime correlation function. It is important to note that th
stochastic model describes the probability of getting a cer
result in a sequence of measurements, rather than the
dynamics of the unperturbed system.28 The result of a se-
quence of measurements will hereafter be referred to a
stochastic trajectory. The probability of a given trajectory
expressed in terms of a multitime Liouville-space correlat
function of the unperturbed system. This establishes a
connection between the microscopic and stochastic des
tions of SMS, and provides a prescription for computing
stochastic trajectories and their statistical properties. In S
III we apply this approach to a kinetic model ofL levels
coupled to a single overdamped Brownian mode. We de
the stochastic model corresponding to this microsco
model, and show that it corresponds to a continuous-tim
random-walk. Expressions for the distribution of the numb
of flips are derived in Appendix A. In Sec. IV we consid
the simplest case of two level kinetics. Numerical calcu
tions which illustrate the nonPoisson nature of the stocha
trajectories, and a brief summary are given in Sec. V.

II. CORRELATION-FUNCTION EXPRESSIONS FOR
THE EFFECTIVE STOCHASTIC MODELS

In this section we derive correlation-function expre
sions which make it possible to interpret SMS signals st
ing with a fully microscopic description of the system. B
cause of the quantum nature of microscopic objects, one
only predict the probability of a certain outcome in a set
measurements rather than the actual result.35 This probability
can be expressed in terms of Liouville-space correlat
functions using the following postulate due to von Neuma
which reflects the Copenhagen interpretation of quan
mechanics.36 A measurement withL possible outcomes ca
be described by decomposing the Hilbert space of statesV of
a quantum system into a direct sumV5V1% V2%¯% VL

where the spaceVj ( j 51,2,...,L) corresponds to thejth out-
come of a measurement. LetPj be the projection operato
associated withVj . According to von Neumann, for a sys
tem whose state is described by a wavefunctionc, the prob-
ability to get the resultj in a measurement is given b
u^cuP̂j uc&u2 and after the measurement the system has
wavefunction P̂j uc&u^cuP̂j uc&u21. If we repeat the same
measurement at timest1 ,t2...tN , apply von Neumann’s
principle N times, and combine it with the time-depende
Schrodinger equation, we get for the probabil
P( j N ,...,j 1 ;tN ,...,t1) to obtain the resultsj 1 ,...,j N in these
measurements:

P~ j N ,...,j 1 ;tN , . . . ,t1!

5^cuP̂j 1
eiHt 1 . . . eiHt N21P̂j N

e2 iHt N21 . . . e2 iHt 1P̂j 1
uc&,

~2.1!

where uc& is the initial wavefunction andtm[tm112tm is
thenth time interval between successive measurements.
distribution, normalized as( j 1 ,...,j N

P( j N ,...,j 1 ;tN ,...,t1)
51, can be recast in Liouville-space form
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P~ j N ,...,j 1 ;tN , . . . ,t1!

5^Pj N
~tn!...Pj 1

~t1!&

[Tr@Pj N
e2 i L̃tN21Pj N21

...e2 i L̃t1Pj 1
r̃ #, ~2.2!

wherer̃5uc&^cu is the equilibrium density matrix,L̃5@H,#
is the Liouville operator, andPj (r)[ P̂jr P̂j are projection
superoperators. Equation~2.2! expresses the probabilit
P( j N ,...,j 1 ;tN ,...,t1) as a Liouville-space correlation func
tion of the projection superoperatorsPj and allows to inter-
pret the SMS signals in terms of Liouville-space dynami
Even though we have derived Eq.~2.2! for a density matrix
r̃ that corresponds to a pure stateuc&, it also holds in the
more general case of a mixed state. This can be obtaine
starting in a pure state in an extended~system and bath!
space. By then integrating out the bath coordinates assum
that the projection operatorsP̂j do not depend on the bath
we recover Eq.~2.2!, where r̃ now represents the reduce
system density matrix.

Consider an experiment involving repeated measu
ments separated by a fixed time intervalt j[t j 112t j5Dt.
Introducing the operatorsUi j [Piexp(2iL̃Dt)Pj we can re-
cast Eq.~2.2! in the form:

P~ j N ,...,j 1!5Tr$Uj Nj N21
...Uj 2 j 1

r̃%. ~2.3!

Equation ~2.3! can be viewed as the probability of
trajectory determined by a sequencej N , . . . ,j 1 for a stochas-
tic model defined on a lattice. The stochastic model
scribed by Eq.~2.3! and formed by the possible outcomesj k

provides a continuous limit representation as long as the t
interval Dt is kept short compared with the Liouville-spac
dynamics time scale. This implies that the flips are rare a
the description of the stochastic dynamics is given by
probability Pf( j N ,...,j 0 ;tN ,...,t1) that the flips occur at
timest1 ,...,tN while at timetk the system flips fromj k21 to
j k . Typically n!N wheren is the number of flips. Expand
ing Uj j 'I 1(Dt)Lj , Ui j '(Dt)v i j for iÞ j the probability
Pf finally assumes the form:

Pf~ j n ,...,j 0 ;tn8 ,...,t18!

5E
t12Dt

t1
dt18 ...E

tn2Dt

tn
dtn8Ps~ j n ,...,j 0 ;tn8 ,...,t18!,

~2.4!

with the probability density

Ps~ j n ,...,j 0 ;tn ,...,t1!

5Tr$e2 iLj n
(t2tn)v j nj nN21

. . . e2 iLj 1
(t22t1)v j 1 j 0

e2 iLj 0
t1r̃%.

~2.5!

Equation~2.5! relates the stochastic model of SMS si
nals to microscopic quantities.Ps can be interpreted as th
probability of a continuous stochastic trajectory whereasPf

is its regularized form.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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III. CONTINUOUS-TIME-RANDOM-WALKS FOR
MULTISTATE KINETICS

In this section we apply Eq.~2.5! to derive a stochastic
model for SMS starting with a microscopic model of a
L-level quantum system coupled linearly to an overdam
Browninan oscillator with an arbitrary relaxation time sca
We assume that a measurement determines that the sy
occupies one of theL levelsun&, which are not eigenstates o
the system HamiltonianHs :

Hs5(
n

Enun&^nu1 (
nm

nÞm

Jnmun&^mu. ~3.1!

We further assume a diagonal coupling to a harmonic b
described by the Hamiltonian:

H int52(
n

q(n)un&^nu, ~3.2!

whereq(n) denote the set of collective bath coordinates.
relevant information about the bath is contained in the ma
of spectral densities37,32,38

Ci j ~v!5
i

2E2`

`

dt exp~ ivt!^@q( i )~t!,q( j )~0!#&. ~3.3!

The Liouville-space dynamics is described by the evo
tion of the wavepacketsr i j (q) whereq represent the com
plete set of bath variables.q can be viewed as a set of co
lective relevant bath variables and the coordinatesq(n) in Eq.
~3.2! are linear combinations of the components ofq. The
number of collective coordinates~i.e., the number of compo
nents ofq) needed for a reasonable reduced descriptio
uniquely determined by the matrix of spectral densit
Ci j (v) as well as the temperature.32

Below we consider a model which includes a sing
overdamped Brownian oscillator mode, where the collect
coordinatesq(n) responsible for the coupling are given b
q(n)52hdnq and the spectral density is:

Ci j ~v!5didj

2hL

v21L2
. ~3.4!

Here L is the relaxation rate ofq whereash denotes its
coupling strength with the multilevel system. In the hig
temperature (L!kBT) limit, the dynamics can be describe
by the evolution of wavepacketsr i j (q) which only depend
on a single collective coordinateq.

The effective Liouville operator which describes th
propagation of the wavepackets in the absence of sys
bath coupling is represented by the Smoluchowski oper
@Eq. ~3.8!#. In the spectral-diffusion (L!A2hkBT) limit, the
off-diagonal~coherence! wavepackets@i.e., r i j (q) for iÞ j ]
can be eliminated from the equations of motion, resulting
a closed system of equations for the diagonal~population!
wavepackets:29

drmm~q,t!

dt
5L m

(0)rmm~q,t!1(
n

kmnr̄~q2qmn!

3@rnn~q,t!2rmm~q,t!#, ~3.5!
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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wherer̄5d(q), qmn are the crossing points of the potenti
surfaces of statesun& and um&

qmn5qnm5
Em2En

2h~dm2dn!
, ~3.6!

kmn are the transition rates at the crossing points:

kmn5knm5
2puJmnu2

2hudm2dnu
, ~3.7!

and L m
(0) is the Smoluchowski operator for the populatio

wavepacketrmm:

L m
(0)5L

]

]q F ~q2dm!1S kBT

2h D ]

]qG . ~3.8!

To identify the operatorsLj and v i j required for the
evaluation of Eq.~2.5! we need to start with a wavepack
r j j (q), propagate it for a short time intervalDt, and find
these operators from the conditions

r j j ~q,t1Dt!2r j j ~q,t!5~Dt!Ljr j j ~q,t!,
~3.9!

r i i ~q,t1Dt!5~Dt!v i j r j j ~q,t!.

Dt is taken to be short compared to the time scale of
evolution of the population wavepackets, and only terms
ear inDt should be retained in the l.h.s.

Combining Eq.~3.9! with Eq. ~3.5! immediately yields

Lj5L j
(0)2(

n

nÞ j

k jnr̄~q2qjn!,

~3.10!
v i j 5k i j r̄~q2qi j !.

Equation ~3.10! together with Eq.~2.5! determine the
stochastic model for SMS corresponding to the microsco
model defined by Eqs.~3.1!–~3.4!. For practical applications
we can describe the wavepacketsr̄(q) in Eq. ~3.10! as
narrow-Gaussians rather thand-functions. The finite width
of r̄(q) which may result from eliminating fast bath degre
of freedom weakly coupled to the system frees the the
from any divergences.

The solution of Eq.~3.5! is carried out in three steps
First, nonadiabatic transitions are neglected. The Sm
chowski equation withL m

(0) is solved analytically in each
state, resulting inN Gaussian Green functionsG. In the sec-
ond step we add the term representing the leaking out f
each state~but still neglect the return!. This results inLj

@Eq. ~3.10!#. This gives in an (L21)3(L21) matrix W( j )

for each state, representing the waiting time distribution
tween each pair of crossing points involving that state.W( j )

for each state ofj is expressed in a closed form usingG.
Finally we consider the full Smoluchowski equations, e
press the resulting stochastic trajectories usingW( j ), and
show that they represent a continuous-time-random-walk

We start with the first step. According to Eq.~2.5!, the
evolution of the system between flips in stateu j & is deter-
mined by the effective Liouville operatorLj @Eq. ~3.10!#,
which consists of two terms. The first termL j

(0) constitutes
the Smoluchowski operator which describes the diffusion
the oscillator coordinate whereas the second term is rel
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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to the loss of the population at stateu j & which occurs at the
crossing pointsqjn . The evolution with the operatorsL j

(0) is
described by the Green functionsG( j )(q,q8;t) of the Smolu-
chowski equations, defined as the solutions of

dG( j )~q,q8;t!

dt
2L 0

( j )G( j )~q,q8;t!50, ~3.11!

with the initial conditions

G( j )~q,q8;,0!5 r̄~q2q8!. ~3.12!

In our model the kinetics is fully determined by the va
ues of the Green functionsG( j )(q,q8;t) at the crossing
points where the populations can change. This yields a se
(L21)3(L21) matricesGmn

( j ) (t) with m,n51,2...,j 21,
j 11,...L:

Gmn
( j ) ~t![G( j )~qm j ,qn j ;t!, ~3.13!

which have the form

Gmn
( j ) ~t!5

1

A2ps~t!
expH 2

@qm j2xn j~t!#2

2s2~t!
J , ~3.14!

with

s2~t![S kBT

2h D2F S kBT

2h D2s0
2Ge22Lt, ~3.15!

xn j~t![dj2~dj2qn j!e
2Lt. ~3.16!

In Eq. ~3.15! s0 is a regularization parameter, representin
finite width at t50, and the wavepacketr̄ in Eq. ~2.5! has
the form

r̄~q!5
1

A2ps0

expS 2
q2

2s0
2D , ~3.17!

which becomes ad-function in the limits050.
Turning to the second step, we consider the followi

sequence of events~history!: the system jumps fromu j k22&
to stateu j k21&, remains in that state for the time intervalt,
and finally jumps to stateu j k&. It follows from Eq.~2.5! that
the probability for this sequence is

Ŵj kj k22

( j k21)
~t![Tr@v j kj k21

exp~2 iLj k21
t!r̄ j k21 j k22

#,

~3.18!

where r̄ j k21 j k22
(q)5 r̄(q2qj k21 j k22

). The operator in the
r.h.s. of Eq.~3.18! can be expressed in terms of the Gre
function of the Smoluchowski equation@Eq. ~3.14!# by
switching to the frequency representation, which yields:

Ŵ( j )~v![k̂ ( j )Ĝ( j )~v!@ I 1k̂ ( j )Ĝ( j )~v!#21, ~3.19!

wherek̂mn
( j ) [dmnkm j and we adopt the following conventio

for the Fourier transform:

W( j )~t!5E
2`

` dv

2p
Ŵ( j )~v! exp~2 ivt!. ~3.20!

Using Eq.~3.10!, the probability for a stochastic trajec
tory @Eq. ~2.5!# becomes:
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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Ps~ j n ,..., ,j 0 ;tn,...,t1!

5Ŵj nj n21

(0) ~t2tn!Ŵj nj n22

( j n21)
~tn2tn21!...

3Wj 2 j 0

( j 1)
~t22t1!D j 1 j 0

(0) ~t1!. ~3.21!

The first factor from the rightD j 1 j 2

(0) (t) is the probability to

stay in stateu j 0& for time t and jump to stateu j 1&. We denote
it the doorway function

D j 1 j 0

(0) ~t![Tr@v j 1 j 0
exp~2 iLj 0

t!r̃ ( j 0)#, ~3.22!

andr̃ ( j 0) is ther j 0 j 0
(q) component of the stationary solutio

of Eq. ~3.5!. Following that, Eq.~3.21! contains a series o
n21 evolution periods related to the waiting time distrib
tions @Eq.~3.18!#. Finally the last period is represented by th
window functionWj nj n21

(0) (t) which gives the probability of

stateu j n& to survive during the timet, provided it was cre-
ated by a flip from stateu j n21&,

Wj nj n21

(0) ~t![Tr@exp~2 iLj n
t!r̄ j nj n21

#. ~3.23!

A straightforward calculation yields:

Wj nj n21

(0) ~v!52
1

iv F12(
m

Ŵm jn21

( j n)
~v!G , ~3.24!

D̂ j 1 j 0

(0) 5
1

iv Fk j 1 j 0
r̃ j 1 j 0

2(
m

Ŵj 1m
( j 0)

~v!km j0
r̃m j0G , ~3.25!

wherer̃m j0
[r̃ ( j 0)(qj 0m).

The distribution of stochastic trajectories Eq.~3.21! can
be used to compute any desired statistical property of
system. In Appendix A we use a generating function a
proach to calculate the probabilityP( f )(n;t) to haven jumps
during the time intervalt. This distribution is given by

P( f )~n;t!5E
2`

` dv

2p

12e2 ivt

v2 (
mnm8n8

kmnr̃m8n8

3$@A21~v!2A21~v!B~v!A21~v!#

3@B~v!A21~v!#N21%mn,m8n8 . ~3.26!

A andB are the following tetradicL23L2 matrices:

Amn,m8n8~v![dmm8dnn81dmm8kmn8Gnn8
(m)

~v!,

~3.27!
Bmn,m8n8~v![dmn8kmm8Gnm8

(m)
~v!.

In the next section we shall apply the general expressi
derived here to the simplest case ofA
B chemical reaction.

IV. RANDOM WALKS AND TRAJECTORIES FOR
TWO-LEVEL KINETICS

In the present continuous-time random walk~CTRW!
model, the waiting-time distribution of the stateu j k& depends
on the stateu j k21& prior to the last flip. This has a simpl
physical origin. In our model, jumps can only occur at t
curve-crossing pointsqmn , and the jump probability depend
on the population at the crossing points. During the wait
time, the Brownian oscillator undergoes diffusion and c
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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move among the various crossing points. Since the jum
the stateu j k& and u j k21& occurs at the pointsqj kj k21

and
qj k11 j k

, respectively, the time spent in stateu j k& reflects
the flow of population fromqj kj k21

. The waiting-time

distribution Ŵj k11 j k21

( j k) (t) depends therefore on the thre

states u j k11&,u j k&, and u j k21&. Stated differently, the

Lc5 1
2L(L21) crossing points rather than theL states con-

stitute the sites for stochastic jumps. This is why in Sec.
we expressed the distribution of the number of flips in ter
of Lc

23Lc
2 superoperators rather than ordinaryL3L opera-

tors.
The presentL52 case is special since it only has

single crossing pointq125q21. The distributionsŴj k11 j k21

( j k)

can be considered as depending onu j k& only, since given
u j k&,u j k11&, and u j k21& are uniquely determined from th
condition j k115 j k21Þ j k . Ŵ( j ) @Eq. ~3.19!# and the Green
functionsG( j ) therefore loose their matrix structure as we
and become scalars. This results in an ordinary two-s
CTRW model with the waiting-time distribution.

W( j )~t!5E
2`

` dv

2p
e2 ivtŴ( j )~v!. ~4.1!

Equation~3.19! which becomes a scalar rather than a ma
expression immediately gives

Ŵ( j )~v!5
kG( j )~v!

11kG( j )~v!
. ~4.2!

The distribution of number of flips P( f )(N,t)
@Eq. ~3.26!# also simplifies considerably in this case. T
superoperatorsA andB @Eq. ~3.27!# act in a two-dimensiona
space with the basisumn& represented byuab& and uba&.
Denoting these basis elementsu1&[uab&,u2&[uba& @Eq.
~3.27!# yields

Amn~v!5dmn@11kG(m)~v!#,
~4.3!

Bmn~v!5~12dmn!kG(m)~v!.

Substituting Eq.~4.3! into Eq. ~3.26! and making use of the
fact that the matricesA(v) and B(v) have only diagonal
and off-diagonal components, respectively, we obtain

P( f )~2m21;t!

52kr̃E
2`

` dv

2p

12e2 ivt

v2

@Ŵ(1)~v!Ŵ(2)~v!#m

k2G(1)~v!G(2)~v!
, ~4.4!

P( f )~2m;t!

5kr̃E
2`

` dv

2p

12e2 ivt

v2
@Ŵ(1)~v!Ŵ(2)~v!#m

3H Ŵ(1)~v!

@kG(1)~v!#2
1

Ŵ(2)~v!

@kG(2)~v!#2J , ~4.5!

for m51,2, . . . and
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P( f )~0;t!512kr̃E
2`

` dv

2p

12e2 ivt

v2

3F Ŵ(1)~v!

kG(1)~v!
1

Ŵ(2)~v!

kG(2)~v!
G , ~4.6!

wherer̃[r̃125 r̃21.
The Green functionsG( j )(v) which enter Eqs.~4.4!,

~4.5!, ~4.6! both directly and throughŴ( j )(v) have the form

G( j )~v!5E
0

`

dt exp$ ivt%
1

A2ps~t!

3expH 2
@ x̄2xj~t!#2

2s2~t!
J , ~4.7!

with

xj~t![dj2~dj2 x̄!e2Lt, ~4.8!

the crossing point

x̄[
E12E2

2h~d12d2!
, ~4.9!

and

r̃5
1

A2ps̃

1

exp@~ x̄2d1!2/2s̃2#1exp@~ x̄2d2!2/2s̃2#
, ~4.10!

with s̃2[kBT/2h.
Equations~4.4!–~4.6! together with Eqs.~4.7!–~4.10!

constitute a closed set of expressions forP( f )(N;t) in a two-
level kinetics. Let us consider first the limiting case whe
the bath relaxation rateL is fast compared with the kinetics
In this case the system can be described by an ordinary
equation for the level populations rather than by Eq.~2.5!
which describes the dynamics of the population wavepa
ets, and the trajectory has a simple Poisson statistics.
recover this limit we replaceG( j )(v) by its long-time~i.e.,
low-frequency! asymptotic formG0

( j )(v):

G0
( j )~v!52

1

iv

1

A2ps̃
expF2

~ x̄2dj !
2

2s̃2 G , ~4.11!

the kinetic rate to go from statem to n now assumes the
Marcus form31

knm5~12dmn!
k

A2ps̃
expF2

~ x̄2dm!2

2s̃2 G . ~4.12!

Equation ~4.12! represents the Marcus rates.31 Substituting
s̃ 25kBT/2h and using the expressions fork @Eq. ~3.7!# and
x̄ @Eq. ~4.9!# yields

kmn5~12dmn!
2pJ2

A4pkBlT
expF2

~DGmn1l!2

4lkBT G , ~4.13!

where l[h(d22d1)2 is the reorganization energy, an
DGmn[(Em2hdm

2 )2(En2hdn
2) is the reaction free energy
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Substituting Eq.~4.11! in Eqs. ~4.1! and ~4.2! yields
W(1)(v)52k21( iv2k21)

21 and W(2)(v)52k12( iv
2k21)

21. The waiting time distributions Eq.~4.1! and ~4.2!
become exponential

W(1)~t!5k21exp~2k21t!; W(2)~t!5k12exp~2k12t!.
~4.14!

Substituting these in Eqs.~4.5! and ~4.6! yields after some
straightforward transformations

P( f )~2m21;t!52e2k21t
k21k12t

k121k21

~k12t!m21~k21t!m21

~2m21!!

3M ~m,m;~k212k12!t!, ~4.15!

P( f )~2m;t!5
~k12k21t!

k121k21

~k12t!m21~k21t!m21)

~2m!!

3$k21te2k21tM ~m11,m;~k212k12!t!

1k12te2k21tM ~m11,m;~k122k21!t!%,

~4.16!

whereM denotes the confluent hypergeometric function.
Whenk125k21 the distributions given by Eqs.~4.15! and

~4.16! are Poissonian. Otherwise the statistics describe
Eqs.~4.4!–~4.6! represents a convolution of two Poissonian
Deviations from Poisson statistics are noticeable once
bath relaxation rate becomes comparable to or slower
the kinetics, and the simple kinetic description no long
holds. These will be demonstrated in the next section.

V. NUMERICAL RESULTS AND DISCUSSION

To illustrate the two-level kinetics, we consider a sym
metric reaction in which the reactant and product free ene
is the same,DG1250. The minima of the two potential en
ergy surfaces are equal, i.e.,E12E250, and the position of
the minima ared150.05 andd2520.05. We choose the
coupling constantJ50.003 cm21, the temperatureT5300 K,
and the vibronic couplingh55000 cm21. With this choice
of parameters, the Marcus rate becomesk54.413103 s21.
The regularization parameter is set tos0

25s̃2/10, and the
relaxation rateL is varied between 0.01k and 10k.

The numerical calculations require some care. The in
grand in Eq.~4.7! does not vanish at long times. We ther
fore rewrite Eq. ~4.7! by subtracting and adding th
asymptotic value of the integrandC( j ) under the integral, i.e.

G( j )~v!5E
0

`

dteivtF 1

A2ps~t!

3expH 2
@ x̄2xj~t!#2

2s2~t!
J 2 C( j )G 1 C( j )

i

v
,

~5.1!

whereC( j )5exp@2(x̄2dj)
2/2s̃2#/A2ps̃. The integrand now

decays to zero, and the numerical computation can be
formed by using a standard fast Fourier transform~FFT! rou-
tine. We now have

G( j )~v!52g( j )~v!/ iv, ~5.2!
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g( j )~v!5C( j )2 ivE
0

`

dteivtF 1

A2ps~t!

3expH 2
@ x̄2xj~t!#2

2s2~t!
J 2 C( j )G . ~5.3!

Substituting this expression for into Eq.~4.4!, the 1/v2 factor
is cancelled, and we can now compute the expression

p( f )~2m21;t![2kr̃E
2`

` dv

2p

3exp~2 ivt!
@Ŵ(1)~v!Ŵ(2)~v!#m

k2g(1)~v!g(2)~v!
,

~5.4!

by using a standard FFT routine, and obta
P( f )(2m21;t)[p( f )(2m21;t)2p( f )(2m21;0). P( f )(2m;t)
@Eq. ~4.5!# can be calculated in a similar way. The probab
ity for zero jumps@Eq. ~4.6!# can be computed as follows
Substituting Eq.~5.2! into Eq. ~4.6! gives

P( f )~0;t!512kr̃E
2`

` dv

2p

2sin~vt/2!

vexp~ ivt/2!

3F Ŵ(1)~v!

kg(1)~v!
1

Ŵ(2)~v!

kg(2)~v!
G . ~5.5!

The integrand is regular forv→0, and this expression can b
easily computed using numerical integration.

By symmetry, the two waiting time distributions coin
cide: W(1)(t)5W(2)(t)[W(t). Figure 1 shows a logarith
mic plot of W(t) for fast, intermediate and slow relaxatio
L510k ~solid!, L5k ~dashed!, L50.05k ~dotted!, and
L50.01k ~dashed-dotted!, respectively. We clearly see th
expected exponential decay ofW(t) @Eq. ~4.16!# in the limit
of fast relaxation, and the increasingly nonexponential
havior for slower relaxation rates.

FIG. 1. Waiting time distributionW(t) for relaxation ratesL510k ~solid
line!, L5k ~dashed line!, L50.05k ~dotted line!, andL50.01k ~dashed-
dotted line!. The other parameters are given in the text.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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FIG. 2. ProbabilityP( f )(n;t) of havingn jumps at timet. The four panels represent different relaxation ratesL as indicated in each panel. The timeskt are
0.77 ~squares!, 1.53 ~circles!, 2.30 ~triangles!, 3.83 ~diamonds!, and 5.75~crosses!.
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Figure 2 shows the probabilityP( f )(n;t) of having n
jumps for different relaxation ratesL ~as indicated in each
panel!. The various curves correspond to five values ofkt,
represented by squares (kt50.77), circles~1.53!, triangles
~2.30!, diamonds~3.83!, and crosses~5.75!. The connecting
lines are added to guide the eye. The fast relaxa
(L510k) limit gives a Poisson distribution, as expecte
With decreasing relaxation rate, a strong deviation fr
Poisson statistics can be clearly discerned. The most
nounced feature is a peak at zero jumps. This can be un
stood as follows. If a jump occurs and the relaxation rate
fast, then the wavepacket produced at the crossing poin
quickly equilibrated. However, in the case of slow rela
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ation, this wavepacket has a long lifetime at the cross
point, so that the system can jump back and forth sev
times. Thus, for slow relaxation, we have to think of th
system as having a certain probabilityP( f )(0;t) that a jump
does not occur, and a probability 12P( f )(0;t) that a jump
does occur. Due to the long lifetime of the wavepacket at
crossing point, the probability that a jump does occur rep
sents a broad range of the number of jumpsn, so that the
probability P( f )(n;t) for exactly n jumps to occur is fairly
small in comparison toP( f )(0;t).

The increasing deviation from Poisson statistics with d
creasingL is further illustrated in Fig. 3, which show
P( f )(n;t) as a function of timekt for different values ofL
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



e

7423J. Chem. Phys., Vol. 111, No. 16, 22 October 1999 Single-molecule spectroscopy
FIG. 3. ProbabilityP( f )(n;t) of havingn jumps at timet, plotted vst. The four panels represent different relaxation ratesL as indicated in each panel. Th
number of jumpsn are represented by dash-dot-dotted (n50), solid (n51), dashed (n52), dotted (n53), and dash-dotted lines (n54), respectively. The
curve forn50 has been reduced in the ordinate direction by a factor of 5.
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as in the previous figure. Different numbers of jumpsn are
represented by dash-dot-dotted (n50), solid (n51), dashed
(n52), dotted (n53), and dash-dotted lines (n54), re-
spectively. The curves forn50 have been reduced by a fa
tor of 5. With decreasingL the temporal maximum o
P( f )(n;t) shifts to earlier times, and the function acquires
long tail. With increasingn, the maximum of the curves
shifts to later times.

ACKNOWLEDGMENTS

The support of the National Science Foundation throu
Grants No. CHE-9526125 and No. PHY94-15583, and
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
h
e

Air Force office of scientific research is gratefully acknow
edged.

APPENDIX A: DISTRIBUTIONS OF NUMBERS OF
FLIPS

The expressions derived in Sec. III@Eqs.~3.21!, ~3.24!,
and ~3.19!# give the probabilityPs of a stochastic trajectory
in terms of the Green functionsGmn

( j ) of the Smoluchowski
equations. In this appendix we apply these expression
compute the probabilityP( f )(n;t) to haven jumps during
the time intervalt. P( f ) is defined by the time-ordered inte
grals:
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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P( f )~n;t!5E
0

t

dtnE
0

tn
dtn21 . . . E

0

t2
dt1

3 (
j 0 . . . j n

Ps~ j n ,...,j 0 ;tn ,...,t1!. ~A1!

Combining Eqs.~A1! and ~3.21! yields

P( f )~n;t!5E
2`

` dv

2p (
j 0 . . . j n

Ŵj nj n21

(0) ~v!

3Ŵj nj n22

( j n21)
~v! . . . Ŵj 2 j 0

( j 1)
~v!D̄ j 1 j 0

(0) ~v!

3exp~2 ivt!. ~A2!

The summation allows us to interpret Eq.~A2! as a prod-
uct of superoperators acting in the space of operators ge
ated byu i &^ j u. This can be obtained directly from Eq.~A2!.
We will obtain it, however, in an alternative indirect wa
where the superoperator structure arises more naturally
that end we introduce the operatorsL[( jLj andv[( i j v i j

which act in the total space of population wavepackets.
fining a family of operatorsL(w)[L1wv parametrized by
w, expanding the operator exp@2iL(w)# in powers ofw, and
making use of Eqs.~A1! and ~2.5! we obtain

Tr$exp@2 iL~w!t#r̃%5 (
n50

`

wnP( f )~n;t!. ~A3!

This serves as a generating function for the distribution
jumps, and we immediately have

P( f )~n;t!5
1

n!

]n

]wn
Tr$exp@2 iL~w!t#r̃%uw50 . ~A4!

The r.h.s of Eq.~A4! can be evaluated in the followin
way: The set of wavepacketsr (m)(q,t)[rmm(q,t) which
describe exp@2iL(w)t#r̃ can be obtained by solving th
equation

r (m)~q,t!

dt
5L m

(0)r (m)~q,t!1(
n

kmnr̄~q2qmn!

3@wr (n)~q,t!2r (m)~q,t!#, ~A5!

with the initial conditionr (n)(q,0)5 r̃ (n)(q). For w51 Eq.
~A5! yields Eq. ~3.5!. Since the Smoluchowski operato
L m

(0) conserve the trace, time integration of Eq.~A5! gives

Tr$exp@2 iL~w!t#r̃%

511(
mn

kmnE
0

t

dt8@wr (n)~qmn ,t8!2r (m)~qmn ,t8!#.

~A6!

The r.h.s. of Eq.~A6! only involves the values of the
wavepackets at the crossing pointsrmn

(n)(t8)[r (n)(qmn ,t8) .
These can be expressed in terms of the Green functionsGmn

( j )

using a standard solution of Eq.~A5!. In the frequency do-
main this yields the following equation:
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rmn~v!52
1

iv
r̃mn1(

k
kmkGnk

(m)~v!

3@wrkm~v!2rmk~v!#, ~A7!

where we have introduced the notationrmn(v)[rmn
(m)(v).

Equation~A7! can be solved by introducing the supe
operators Eq.~3.27!. Substituting the solution of Eq.~A7!
into Eq. ~A6! we obtain

Tr$exp@2 iL~w!t#r̃%

512E
2`

` dv

2p

12e2 ivt

v2
~12w! (

mnm8n8
kmn

3@A~v!2wB~v!#mn,m8n8
21 r̃m8n8 . ~A8!

Combining Eqs.~A8! and Eq.~A4! we finally get Eq.~3.26!.
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