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Microscopic correlation-function expressions for the stochastic evolution observed in single
molecule spectroscopy are derived using Liouville-space projection operators. The kinetics of a
multilevel quantum system coupled to a single collective overdamped Brownian-oscillator
coordinate is exactly mapped onto a continuous-time-random-@alRW) involving the transition
stategcurve-crossing poinjsClosed expressions are derived for the stochastic trajectories and the
nonPoissonian distribution of number of flips. When the oscillator relaxation is fast compared with
the reaction rates, the waiting time distribution becomes exponential and the standard Poisson
kinetics is recovered. €1999 American Institute of PhysidsS§0021-960809)01340-9

I. INTRODUCTION jectories is strictly Poissonian and carries no additional in-
formation beyond the macroscopic rate constaht§Micro-
Recent advances in fluorescence detection and microscopically, rate equations hold when all other degrees of
copy allow the studies of single molecules in complex confreedom are fast compared with the observed kinetic time
densed phase environments at cryogenic as well as roogtales. Once the kinetic variables are coupled to some slow
temperatures.” Single-molecule spectroscopBMS) pro- degrees of freedom, the theoretical description must include
vides much more detailed microscopic information on theghem explicitly, and the simple kinetic equations no longer
molecule under study and its coupling to the environmentyo|q. Under these circumstances the stochastic trajectories
than standard bul!< measurements. The technique eliminateg,served in SMS provide an important source of additional
ensemble averaging and disorder effects from the outsefyicroscopic information about the system. A common model

without involving spectroscppically-selective methods suchg o couple a multilevel system to an overdamped macro-
as photon ecffbor hole burning’ SMS allows to probe mo- scopic slow coordinate described by the Smoluchowski
tions which are slow compared to the fluorescence deca

: hich i ble Lsi onal bulk ¥quatior?®=3! In general, solving these equations requires
time, which s not possible using conventional bu S‘pecnos'computing the evolution of coupled nuclear wavepackets.

CoD}éMS ianals sh tochastic behavi hich originat One of the interesting results of this article is that when the
signais show stochaslic benavior Which onginates., ions occur at well localized nuclear configurations, the

from translationdf~'? and rotationdf® diffusion, spectral hasti uti b i I d H
fluctuations® conformational motion& and chemical- SoC2Stic evolution can be rigorously mapped onto the con-
’ ; tinuous time random walkCTRW) model®** In ordinary

-. . 7 . . _
changes-induced fluorescence blinkifig’ Detailed infor fandom walks, the walker jumps between different sites at

mation on these motions can be obtained through a statistic(f\ d lar time int ls. Instead. the CTRW add di
analysis of the stochastic trajectories. Stochastic models peed reguiar ime intervais. Instead, the Vv adas a dis-
tribution of waiting times between successive jumps. The

various kind$®-?°including random jump modésas well del ! 4 by M I and We
as continuous-time random wafkshave been used for the MOU€! Was Irst proposed by Montroll an efssExten-
sions and further developments were made by Klafter,

interpretation of SMS experiments. Q&% .
In this article we compute the stochastic SMS trajecto-2Umofen, and Shiesingér™ Hopping among the curve-

ries for chemical reactions coupled to a slow solvation coor£r0SSing points associated with each pair of states results in
dinate. Apart from providing detailed information on mo- the discrete CTRW. The distribution of waiting times origi-
lecular dynamics, SMS also has the capacity to clarify som@ates from the evolution of the slow coordinate once it is
fundamental questions regarding the microscopic quanturgliminated from the description. Rather than solving a set of
description of single objectS 2% The following issues will ~coupled partial differential equations for nuclear wavepack-
be addressed as well: what is the relation between the micr&ts, we obtain a random walk where the slow dynamics is
scopic models which describe the dynamics of a system ifigorously incorporated into the waiting time distribution.
terms of Liouville space evolution of the density matrix? One technical difference from the standard CTRW is that we
Does the density matrix merely represent ensemble averagesed several waiting time distributions, not just one. When
or does it also provide a powerful and useful tool for under-the nuclear coordinate becomes fast, we recover the simple
standing the dynamics of single objects? kinetic equations with Poisson statistics.

Kinetic (rate) equations provide a simple framework for In Sec. Il we start with one of the basic postulates of
the interpretation of chemical dynamics. When this level ofquantum mechanics due to von Neumann to derive general
theoretical description applies, the statistics of stochastic traexpressions for the probability to obtain a certain result in a
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sequence of measurements in terms of a Liouville space mup(j,....i1:7n, .. .,71)

titime correlation function. It is important to note that the

stochastic model describes the probability of getting a certain =(Pj (). Py (1)

result in a sequence of measurements, rather than the free ~ ~ ~

dynamics of the unperturbed systéfnThe result of a se- =Tr[ P e ""N1py ..em Py p], (2.2
guence of measurements will hereafter be referred to as a B
stochastic trajectory. The probability of a given trajectory iswherep=|y)(y] is the equilibrium density matrix, =[H,]
expressed in terms of a multitime Liouville-space correlations the Liouville operator, anch(p)zl"Djpﬁj are projection
function of the unperturbed system. This establishes a ﬁméuperoperators. Equatiof2.2) expresses the probability
connection between the microscopic and stochastic descri@:(j N+ i1i7Ns...,71) @S a Liouville-space correlation func-
tions of SMS, and provides a prescription for computing thetjon of the projection superoperatofs and allows to inter-
stochastic trajectories and their statistical properties. In Segyret the SMS signals in terms of Liouville-space dynamics.

Ill'we apply this approach to a kinetic model aflevels  Eyen though we have derived E@.2) for a density matrix
coupled to a single overdamped Brownian mode. We derive that corresponds to a pure stat), it also holds in the

the stochastic model corresponding to_this microscopi(ﬁ,lore general case of a mixed state. This can be obtained by
model, and show that it corresponds to a continuous-time;

q K E : for the distributi Fh b Starting in a pure state in an extendéxystem and bajh
random-walk. EXpressions or_t e distribution of the num erspace. By then integrating out the bath coordinates assuming
of flips are derived in Appendix A. In Sec. IV we consider

the simplest case of two level kinetics. Numerical calcula-that the projection operatof; do not depend on the bath,

tions which illustrate the nonPoisson nature of the stochastiWe recover Eq(2.2), wherep now represents the reduced

trajectories, and a brief summary are given in Sec. V. system density matrix. - _ _
Consider an experiment involving repeated measure-

ments separated by a fixed time intervgk 7y, 1 — 7=A7.

Il. CORRELATION-FUNCTION EXPRESSIONS FOR Introducing the operators; =7Piexp(-iLA7)P; we can re-
THE EFFECTIVE STOCHASTIC MODELS cast Eq.(2.2) in the form:
In this section we derive correlation-function expres- — p(j ... 1):Tr{uiNiN_1'“uin15}‘ 2.3

sions which make it possible to interpret SMS signals start-
ing with a fully microscopic descri_ption of_the system. Be- Equation (2.3 can be viewed as the probability of a
cause of t_he quantum n_a_\ture of microscopic obje<_:ts, one CqfLyieciory determined by a sequerje . . . ,j; for a stochas-
only predict the probability of a certain outcome in a set ofjc" el defined on a lattice. The stochastic model de-
measurements rather than the actual réSurhis probability scribed by Eq(2.3) and formed by the possible outcorrgs

can be expressed in terms of Liouville-space correlation, o\ ides a continuous limit representation as long as the time
functions using the following postulate due to von Neumannjnseryal A 7 is kept short compared with the Liouville-space

the description of the stochastic dynamics is given by the

be described by decomposing the Hilbert space of states probability P;(jn ..o 7n,...,71) that the flips occur at

a quantum system into a direct sUh=V,&V,&---®VL  timesr, .. 7, while at imer, the system flips fronj,_, to

where the spac¥; (j=1,2,...L) corresponds to thgh out-  j qynically n<N wheren is the number of flips. Expand-
come_of a m_easurement. _L@q be the projection operator ing U ~1+(A7)L;, Uj~(A7)v; for i#] the probability
associated with/; . According to von Neumann, for a sys- P, finally assumes the form:

tem whose state is described by a wavefunctigrthe prob-
ability to get the resulf in a measurement is given by p

A 5 t(Inseenf0iThaeesTy)
[{(¥|P;j|¢)|* and after the measurement the system has the

. A A -1 T1 T,
wavefunction Pj|4)[(4IPj| )| ~*. If we repeat the same ZJ dTi---J AP ndai D)
measurement at times;,7,...7y, apply von Neumann’'s m—Ar oA
principle N times, and combine it with the time-dependent 2.9

Schrodinger equation, we get for the probability
P(ins---1:7n,-.,71) to Obtain the resultf, ...,y inthese  ith the probability density

measurements:
PONseod 137N -+ 2 0T1) Ps(Jns-i0iTnyeerT1)
— (| ﬁjlethl_ _ _ethwflﬁjNe*thNfl_ _ _e’thlﬁ’hW% =Tr{e‘i£in(7‘7n)vjnjnN_l. . .e‘iﬁil(TZ‘Tl)vjljoe‘wioflf)}.
(2.2) (2.9
where|y) is the initial wavefunction and,= 71— 7, is Equation(2.5) relates the stochastic model of SMS sig-

thenth time interval between successive measurements. Thigals to microscopic quantitie®, can be interpreted as the
distribution, normalized aslj  ; P(jn..--.J1:7n,---,71)  probability of a continuous stochastic trajectory wherBas
=1, can be recast in Liouville-space form is its regularized form.
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l1l. CONTINUOUS-TIME-RANDOM-WALKS FOR wherep=5(q), d,, are the crossing points of the potential
MULTISTATE KINETICS surfaces of states) and|m)

In this section we apply Eq2.5) to derive a stochastic En—E,
model for SMS starting with a microscopic model of an anIQnmzm, (3.6

L-level quantum system coupled linearly to an overdamped - . _
Browninan oscillator with an arbitrary relaxation time scale. kmn @re the transition rates at the crossing points:

We assume that a measurement determines that the system 2
> . . 271'|‘]mn|
occupies one of the levels|n), which are not eigenstates of Kmn=Knm=5 10— 4T 3.7
the system Hamiltoniahi: 7| dm—dy|
ntm and £ is the Smoluchowski operator for the population
Hs=2 En|n><n|+ 2 ‘]nm|n><m|- (3.0 wavepackepmm:
" " o . @ keT)
We further assume a diagonal coupling to a harmonic bath L :A@ (@—dm)+ 27/ dq) (3.9

described by the Hamiltonian: ) ) )
To identify the operatorsC; and v;; required for the

evaluation of Eq(2.5 we need to start with a wavepacket
p;;(Q), propagate it for a short time intervalr, and find
these operators from the conditions

Hint= —; q™ny(n|, (3.2

whereq™ denote the set of collective bath coordinates. All
relevant information about the bath is contained in the matrix ~ pj;(Q,7+ A7) —p;;(d,7)=(A7)L;p;;(d,7),

of spectral densitig&3238
P pii (0, 7+ A7) =(A7)vipj;(Q,7).

Cij(w)= fo drexplion)((qP(7),qP(0)]). (3.3 At is taken to be short compared to the time scale of the
2) - evolution of the population wavepackets, and only terms lin-

I L . ear inA 7 should be retained in the |.h.s.
The Liouville-space dynamics is described by the evolu- Combining Eq.(3.9) with Eq. (3.5 immediately yields

tion of the wavepacketp;j(q) whereq represent the com-
plete set of bath variablesg. can be viewed as a set of col- nAj
lective relevant bath variables and the coordingt&sin Eq. Li=LO=2 kjnp(ad—djn),
(3.2) are linear combinations of the componentsqofThe "
number of collective coordinatége., the number of compo- vi= ki p(q— i)
nents ofq) needed for a reasonable reduced description is 1 1P e
uniquely determined by the matrix of spectral densities Equation(3.10 together with Eq.(2.5 determine the
Cij(w) as well as the temperatute. stochastic model for SMS corresponding to the microscopic
Below we consider a model which includes a singlemodel defined by Eqs3.1)—(3.4). For practical applications
overdamped Brownian oscillator mode, where the collectivave can describe the wavepacksiéq) in Eq. (3.10 as
coordinatesg(™ responsible for the coupling are given by narrow-Gaussians rather thahfunctions. The finite width

(3.9

(3.10

q™=27d,q and the spectral density is: of p(q) which may result from eliminating fast bath degrees
2rA of freedom weakly coupled to the system frees the theory
Cij(w)=d;d, % (3.4  from any divergences.
wt+A The solution of Eq.3.5) is carried out in three steps.

First, nonadiabatic transitions are neglected. The Smolu-
chowski equation withl E]?) is solved analytically in each
state, resulting ilN Gaussian Green functiorg. In the sec-
ond step we add the term representing the leaking out from

Here A is the relaxation rate off whereaszn denotes its
coupling strength with the multilevel system. In the high-
temperature A <kgT) limit, the dynamics can be described

by the evolution of wavepackejs;(q) which only depend each statdbut still neglect the retupn This results inZ;

on a single collective coordinatg [Eq. (3.10]. This gives in an L.—1)X (L—1) matrix W(jf

The effective Liouville operator which describes the . R o
. . for each state, representing the waiting time distribution be-
propagation of the wavepackets in the absence of system- . . L . )
tween each pair of crossing points involving that st

bath coupling is represented by the Smoluchowski operatoOr each state of is expressed in a closed form usitRy

[Eq. (3.8)]. In the spectral-diffusionf <2 ykgT) limit, the inall ; hpf I luchowski X

off-diagonal (coherencewavepacketsi.e., p;;i (q) for i #j] Finally we conS|_der the Tu _Smo uchowski equations, ex-
o press the resulting stochastic trajectories usig’, and

can be eliminated from the equations of motion, resulting i Show that they represent a continuous-time-random-walk.

a closed system of equations for the diagofraipulation We start with the first step. According to E@.5), the

9
wavepackets: evolution of the system between flips in staj¢ is deter-
dpmm(Q,7) © _ mined by the effective Liouville operatof; [Eq. (3.10],
—ar  £m pmm(q,r)+§n: KmnP (4~ Amn) which consists of two terms. The first ter{® constitutes
the Smoluchowski operator which describes the diffusion of
X[Pan(A7) = pme( D5 7)1, (3.5 the oscillator coordinate whereas the second term is related
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to the loss of the population at stdie which occurs atthe P(j,,..., jo:n...,71)
crossing pointsyj, . The evolution with the operato(®) is - i
described by the Green functio@$!(q,q’; 7) of the Smolu- =Wj(nj)n_1(7— Tn)W,-L’j‘n’_lz(Tn— Tn-1)---
chowski equations, defined as the solutions of v ©
1 —
dGW(q,q";7) e XszjO(Tz D} f (71 (3.20
LIyl () Y e ( reoy—
dr £5°G¥(a,9%7)=0, G1D e first factor from the righDJ((l)j)z(r) is the probability to

stay in statej,) for time  and jump to stat§j;). We denote
it the doorway function

GY(q.0":.00=p(q—a"). (312 D) (7)=Trv, ; exp(—iL; 7pIo], (3.22

In our model the kinetics is fully determined by the val- -
ues of the Green function§'(q,q’;7) at the crossing andp? isthep; ; (q) component of the stationary solution
points where the populations can change. This yields a set off Eqg. (3.5). Following that, Eq.(3.21) contains a series of
(L—1)x(L—1) matricesGU)(7) with mn=12...j—1, n—1 evolution periods related to the waiting time distribu-
j+1,..L: tions[EQ.3.18)]. Finally the last period is represented by the
window functionwfgj)nil(r) which gives the probability of

with the initial conditions

) -=g) e T
Ginnl(7) =G (mj Oy 3 7). 313 state|j,) to survive during the time, provided it was cre-
which have the form ated by a flip from statéj,_,),
0 1 [Gmj— Xnj(D)]? WO (D=Texp~iL; Dpj . ] (3.23
G =—=——exp ———————, (314
V2mo(7) 20°(7) A straightforward calculation yields:
with 1 e
WO (0)=—[1-2 W (w)), (3.24
nln-1 | w Mjh—1
5 kgT kgT 2l _on m
o(n)=|5—|—|| 5| —oale” ", (3.15
o O3 | oS W0 |- 329
i i1ioPiq] ' migPmig |’ :
Xoj(7) =0 = (d )& (316 o e TR A e
In Eq. (3.19 o is a regularization parameter, representing avherepm; =pYo(aj m)-
finite width at7=0, and the wavepacket in Eq. (2.5 has The distribution of stochastic trajectories E§.21) can
the form be used to compute any desired statistical property of the
system. In Appendix A we use a generating function ap-
_ 1 > proach to calculate the probabiliBt?(n; 7) to haven jumps
p(q)= 2mo exp — 202)" (317 during the time interval. This distribution is given by
. . L » dw l—e o7 ~
which becomes @-function in the limitoo=0. . PO (n:7)= - 2 > kP
Turning to the second step, we consider the following % 2T mnn n’

sequence of eventhistory): the system jumps fromj, ) 4 1 1
to state|j,_1), remains in that state for the time interval X{[A™ (@) =A"(@)B(w)A™ ()]
and finally jumps to statf). It follows from Eq.(2.5) that X[B(@)A X o) N Bmnmen - (3.26

the probability for this sequence is , o ,
A andB are the following tetradi¢. <X L matrices:

Alik—1) _ ; —
ijlj(k,lz(T)zTr[vikJ'k—lexq_lﬁjk—lT)ka—lik—z]’

(3.19 Amn,m’n’(w)Eémm’ Snny + Omny KmnfGE:::),(a)),

— — ; | Bmn m’n’(w)E5mn’Kmm’G(m)r(w)- (329
where p; ;. (d)=p(q—0q;_,; ,)- The operator in the ’ nm
r.h.s. of EQ.(3.18 can be expressed in terms of the Greenln the next section we shall apply the general expressions
function of the Smoluchowski equatiofEq. (3.14] by derived here to the simplest casefaf=B chemical reaction.

switching to the frequency representation, which yields:

WO ()= kOGO (w)[1+ KDED(w)] 1, (319 V. RANDOM WALKS AND TRAJECTORIES FOR
_ TWO-LEVEL KINETICS
wherex) = 8,.xm; and we adopt the following convention

for the Fourier transform: In the present continuous-time random waRTRW)

model, the waiting-time distribution of the stdfg) depends
_ do . . ) on the statdj,_,) prior to the last flip. This has a simple
W(’)(T)If WZW(J)(w) exp—iwT). (320 physical origin. In our model, jumps can only occur at the
curve-crossing pointg,,,, and the jump probability depends
Using Eq.(3.10, the probability for a stochastic trajec- on the population at the crossing points. During the waiting
tory [Eq. (2.5] becomes: time, the Brownian oscillator undergoes diffusion and can

©
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move among the various crossing points. Since the jump to (% do 1l—eier
the statelj,) and |j,—1) occurs at the pointsy; ;, and P(f)(O;T):l—KpJ 577
Qi i, respectively, the time spent in stalp) reflects o @

the frow of population fromqjkjk g The waiting-time

distribution W(‘k)1k (7) depends therefore on the three
states |jis1),]ik) and lix_1). Stated differently, the o
L.=21L(L—1) crossing points rather than thestates con- Wherep=p1,=po. _ " _

stitute the sites for stochastic jumps. This is why in Sec. Il The Green function$G"’(w) which enter Eqgs(4.4),

we expressed the distribution of the number of flips in termg4.5), (4.6) both directly and throughV)(w) have the form
of L2>< L2 superoperators rather than ordindrx L opera-
tors.

The presentL=2 case is special since it onIy has a G(J)(w)_J dTeXp{le}\/_g(T)
single crossing poing,=0,;. The distributions\/VJJk+ diks - )
can be considered as depending |pg) only, since given Xexp[ _MJ 4.7
lik)liks1), and|j_1) are uniquely determined from the 202(7)
condition j, 1=jk_1#jk. W [Eq. (3.19] and the Green
functionsGY) therefore loose their matrix structure as well,
and become scalars. This results in an ordinary two-state x. i(1)=d;— (dj_yje—AT, (4.8
CTRW model with the waiting-time distribution.

(4.6

WD (w)  WO(w) 1
kGW(w) kGO (w) ’

with

the crossing point

W(J')(T):foc d_we—im\iv(i)(w) (4.2 Ei—E>

—w 2T ' ' X=— (4.9
2n(d;—dy)

Equation(3.19 which becomes a scalar rather than a matrix,ng

expression immediately gives

1 1
) 5= 41
WOl ()= C @) @2 7 V2w exd (x—dy) 225+ exd (X—dp)?1257] 419

with o2=kgT/27.

The distribution of number of flips P(O(N,7) Equations(4.4)—(4.6) together with Eqs.(4.7)—(4.10
[Eq. (3.26] also simplifies considerably in this case. The constitute a closed set of expressionsRPé?(N; 7) in a two-
superoperatorA andB [Eq. (3.27)] act in a two-dimensional level kinetics. Let us consider first the limiting case where
space with the basifmn) represented byab) and |ba). the bath relaxation raté is fast compared with the kinetics.

Denoting these basis elements)=|ab),|2)=|ba) [Eq. In this case the system can be described by an ordinary rate
(3.27] yields equation for the level populations rather than by Ej5)
which describes the dynamics of the population wavepack-
Amn(®) = S 1+ kG M(w)], ets, and the trajectory has a simple Poisson statistics. To
(4.3 recover this limit we replac&¥(w) by its long-time(i.e.,
Bmn(@)= (1= pnp) kG (w). low-frequency asymptotic formG$’(w):
Substituting Eq(4.3) into Eq. (3.26) and making use of the _ 1 1 (x—d)?
fact that the matriceé\(») and B(w) have only diagonal GP(w)=— — —= exp{ — | (4.11)
and off-diagonal components, respectively, we obtain 1o \/E‘T 20

the kinetic rate to go from state to n now assumes the

(f) —1-
Pr(2m=1:7) Marcus forni®
~ (= do l1—e T [WD(w)W3(w)]™ _
:2Kpf7 pye 5 26D ()G ) (4.9 Ko = (1— 6. K ox _(x—dm)2 412
w K w w nm mn/\/z»a_ 052 .
N om-
PO(2m; ) Equation(4.12 represents the Marcus rat&sSubstituting
5 do 1—e io7 o 2=kgT/27 and using the expressions fefEq. (3.7)] and
—Kpf 5 —[W(l)(w)w(z)(w)]m X [Eq. (4.9)] yields
e w2
W W Ko =(1— 8,0) 2" p[ (AGmnt 1)* 4.13
=(1-6pp)—exg —————|, (4.
(w) (w) (45) mn mn ,—47TkB)\T 4)\kBT

[«GM(@)]? [«kGP)(w)]?

where A= 5(d,—d,)? is the reorganization energy, and
form=1,2,... and AG,,=(E, ndm) (En— 77dn) is the reaction free energy.
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Substituting Eq.(4.11) in Egs. (4.1) and (4.2) yields 100
WOD(w)=—ky(iw—ky) * and W(w)=—k(iw
—kyy) L. The waiting time distributions Ed4.1) and (4.2
become exponential

W (7) =Ky expl —Kgy7); WA (7)=kypexp( —Kyor).
(4.19

Substituting these in Eq$4.5 and (4.6) yields after some 3
straightforward transformations

Kotkior (Kiom)™ H(kpyr)™ 1
k12+ k21 (Zm_l)l
XM(m,m;(ky;—Kkjp) 7), (4.19

 (Kygkarm) (Kyom)™ (ko)™ ) K1
Kot ko (2m)!

PO(2m—1;7)=2e k"

P (2m; 1)

FIG. 1. Waiting time distributionV(7) for relaxation rates\ =10k (solid

X{kyy7€~ k21m\ (m+1,m;(Ky;—Kkqp) 7) line), A=k (dashed ling A=0.0% (dotted ling, and A=0.0k (dashed-
dotted ling. The other parameters are given in the text.

+ k127'67 k21TM (m+ 11m1 ( k12_ k21) T)}’
4.16

whereM denotes the confluent hypergeometric function. ~ Where

Whenk,= k,, the distributions given by Eq$4.15 and "
(4.16 are Poissonian. Otherwise the statistics described in g(j)(w)zc(j)—iwf dre' 7 —
Eqgs.(4.4)—(4.6) represents a convolution of two Poissonians. 0 \/Zcr( 7)
Deviations from Poisson statistics are noticeable once the — 2
bath relaxation rate becomes comparable to or slower than X F{ — M] —c
the kinetics, and the simple kinetic description no longer 202(7)

holds. These will be demonstrated in the next section. Substituting this expression for into E@.4), the k2 factor
is cancelled, and we can now compute the expression

1

. (5.3

V. NUMERICAL RESULTS AND DISCUSSION

~(* do
To illustrate the two-level kinetics, we consider a sym- |°(f)(2m_1?T)EZKPJ_oc on
metric reaction in which the reactant and product free energy
is the sameAG,=0. The minima of the two potential en- _ [WO(0)WE()]™
ergy surfaces are equal, i.&;—E,=0, and the position of Xexp—iwT) 2D A '
the minima ared,=0.05 andd,= —0.05. We choose the KgH(0)g (@)
coupling constani=0.003 cm %, the temperatur&=300 K, (5.9

and the vibronic couplingy=5000cm . With this choice by using a standard FFT routine, and obtain

of parameters, the Marcus rate becorkes4.41x 10°s™ L. P(f)(Zm_l;T)Ep(f)(Zm_l;T)_p(f)(Zm_l;O)'_ p()(2m; 1)

The regularization parameter is set 4g=0?/10, and the [Eq.(4.5)] can be calculated in a similar way. The probabil-

relaxation rateA is varied between 0.®&dand 1(k. |ty for zero Jumps[Eq (46)] can be Computed as follows.
The numerical calculations require some care. The intesypstituting Eq(5.2) into Eq. (4.6) gives

grand in Eq.(4.7) does not vanish at long times. We there- ,

fore rewrite Eq. (4.7) by subtracting and adding the P(f)(O.T):l_KBfw do ZSIr(fM/Z)

asymptotic value of the integrar@{!) under the integral, i.e., ’ — 27 wexpiwT/2)

(5.5

WD (w)  WO(w) l
kgM(w)  kg®@(w)]

G(j)(w)=f dre'e”
0

1
V2mo(T)
[X— Xj(T)]Z ‘ i The integrand is regular fas— 0, and this expression can be
exp — o2 | ch)| + C(])Z’ easily computed using numerical integration.
o(7) By symmetry, the two waiting time distributions coin-
(5.1)  cide: WV (7)=WR)(7)=W(7). Figure 1 shows a logarith-
() — N2 : mic plot of W(7) for fast, intermediate and slow relaxation,
whereC exd —(x—d))720 ]/\/_Zmr. The mt_egrand now ' 1o (solid), A=k (dashetdl A=0.0% (dotted, and
decays to zero, and the numerical computation can be per: _ .
. . A=0.0k (dashed-dotted respectively. We clearly see the
formed by using a standard fast Fourier transf¢FRT) rou- X ; S
. expected exponential decay Wf(7) [Eq. (4.16] in the limit
tine. We now have . . . .
. ‘ of fast relaxation, and the increasingly nonexponential be-
G(w)=-gW(w)liw, (5.2 havior for slower relaxation rates.
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FIG. 2. ProbabilityP?(n; 7) of havingn jumps at timer. The four panels represent different relaxation ratess indicated in each panel. The tinlesare
0.77 (squareg 1.53(circles, 2.30(triangles, 3.83(diamond$, and 5.75(crosses

Figure 2 shows the probabilit("(n;7) of havingn

jumps for different relaxation rates (as indicated in each
pane). The various curves correspond to five valuek of
represented by squarekr=0.77), circles(1.53, triangles
(2.30, diamonds(3.83), and crosse$s.75. The connecting

lines are added to guide the eye. The fast relaxatiomoes occur. Due to the long lifetime of the wavepacket at the
(A=10k) limit gives a Poisson distribution, as expected.crossing point, the probability that a jump does occur repre-

ation, this wavepacket has a long lifetime at the crossing
point, so that the system can jump back and forth several
times. Thus, for slow relaxation, we have to think of the

system as having a certain probabil®y"(0;7) that a jump
does not occur, and a probability-1P("(0;7) that a jump

With decreasing relaxation rate, a strong deviation fromsents a broad range of the number of jummpsso that the
Poisson statistics can be clearly discerned. The most prgrobability P()(n;7) for exactly n jumps to occur is fairly
nounced feature is a peak at zero jumps. This can be undesmall in comparison t®("(0;7).

stood as follows. If a jump occurs and the relaxation rate is
fast, then the wavepacket produced at the crossing point isreasing A is further illustrated in Fig. 3, which shows

The increasing deviation from Poisson statistics with de-

quickly equilibrated. However, in the case of slow relax- P()(n;7) as a function of timékr for different values ofA
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FIG. 3. ProbabilityP(n;7) of havingn jumps at timer, plotted vsr. The four panels represent different relaxation ratess indicated in each panel. The
number of jumpsh are represented by dash-dot-dottee=Q), solid (h=1), dashedif=2), dotted 6=3), and dash-dotted lines & 4), respectively. The
curve forn=0 has been reduced in the ordinate direction by a factor of 5.

as in the previous figure. Different numbers of jumpare  Air Force office of scientific research is gratefully acknowl-
represented by dash-dot-dotted<0), solid (h=1), dashed edged.

(n=2), dotted 1=3), and dash-dotted linem&4), re-

spectively. The curves far=0 have been reduced by a fac- APPENDIX A: DISTRIBUTIONS OF NUMBERS OF

tor of 5. With decreasing\ the temporal maximum of g |ps

P(™(n;7) shifts to earlier times, and the function acquires a
long tail. With increasingn, the maximum of the curves
shifts to later times.

The expressions derived in Sec. [Egs.(3.21), (3.29),
and(3.19] give the probabilityP of a stochastic trajectory
in terms of the Green functiong{}), of the Smoluchowski
equations. In this appendix we apply these expressions to
compute the probabilitP(?(n;7) to haven jumps during
The support of the National Science Foundation througtthe time intervalr. P(") is defined by the time-ordered inte-
Grants No. CHE-9526125 and No. PHY94-15583, and thegrals:
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T h T2
P“)(n;r):J drnf dTn_l...f dr,
0 0 0

><j Ej Plinseer0iTneasT1)- (A1)
0---In
Combining Egs(Al) and(3.21) yields
Onm= | 2% A©)
PN (n;7) J_m ZWjOZ.jnW]”]”‘l(w)
A in-1) 201D\ (0
XW 2 (0) . WP (@) D) ()
Xexp —iwT). (A2)

The summation allows us to interpret E42) as a prod-

Chernyak, Schulz, and Mukamel

1.
Pmn(®@)=— mpmn+ EK Kmngnlz)(w)
X[epkm(®) = pm @) ], (A7)
where we have introduced the notatipf(w)= pfﬁa(w).

Equation(A7) can be solved by introducing the super-
operators Eq(3.27). Substituting the solution of EqA7)
into Eq. (A6) we obtain

Tr{exd —i L(¢) 7]p}

©» dw 1—e"'e7
- aee 3

> Kmn
w mnn'n’

X[A(®) = @B(@)] 11 P - (A8B)

uct of superoperators acting in the space of operators geneGombining Eqs(A8) and Eq.(A4) we finally get Eq.(3.26).

ated byli)(j|. This can be obtained directly from EGA2).
We will obtain it, however, in an alternative indirect way
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1 4 -
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The r.h.s of Eq(A4) can be evaluated in the following
way: The set of wavepackeis™(q,7)=pmm(q,7) which
describe exp-iL(¢)7]p can be obtained by solving the
equation

p™(q,7)

o =L@ 1)+ X knup(d— A
n
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(AB)
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