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Exciton transport in molecular aggregates probed by time
and frequency gated optical spectroscopy
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The signatures of exciton relaxation in time-resolved fluorescence spectroscopy of molecular
aggregates excited by a short pulse are expressed as an overlap of a Doorway wavepacket
representing the exciton density matrix with a Window wavepacket which describes the time and
frequency resolved detection. Transport and relaxation of the excitons are accounted for using the
Redfield equations for the density matrix, and the complete temporal and spectral profiles of the
excitation pulse and detection gate are incorporated using Wigner spectrograms. The spread in the
off diagonal elements of the density matrix in the chromophioeal spacgrepresentation provides

a natural measure of the relevant exciton coherence size20@ American Institute of Physics.
[S0021-960600)00518-3

I. INTRODUCTION and frequency-gated fluorescen€BFGP?2° (which is a
_ _ ) ~ linear incoherent techniqudrom molecular aggregates us-
Exciton transport plays an important role in the photom-ing| the Doorway—Window(DW) representation. The DW

: 3
duced d_yna§m|cs of molecular aggfegdte&ysm'g and  picture in Liouville space, first developed by Yan and Muka-
superlattices.Extensive recent activity had focused ®ag- | for describing the nuclear density matrix for vibrations

. _11 .
gregaltes sgf_zzcya(;nne -dyéé’,d photosyn_tﬂeltlc lgntgnna. and the solvent? offers an intuitive physical picture of the
colmp e'?[(et', an cor:uugzlalte tslystergs v(\;lt_rﬁé)?céal\:;ze .topt|- process. In this picture, the signal generation is described as
cal excitations, €.9., phenylacetylene aenarl ESPIE 3 three step process involving the preparation, propagation,

thheotgier:iltlh\cl:eelg ;'nr:g:ﬁicztril:ftrl’:slegzlaerle;trogcag(sc'?;fxss’%nd detection of a wavepacket representing the exciton den-
P y ggreg Sity matrix. First, the system interacts twice with the pump

complex interplay of strong vibronic coupling, the broad dis- Ulse. creating the Doorway wavepacket. that subsequent
tribution of time scales of nuclear motions, and static disor ' 9 yu packet, q y
der. in the second step evolves during the time delay between the

Computing the coupled exciton—phonon dynamics orPump and the detection. In the third step, the Window wave-

the microscopic level constitutes a formidable task since ipacket IS created F’y the ;pontaneously em|t_teq photon to-
involves solving dynamical equations for wavepackets thaPether with the gating device, and the signal is finally com-
are matrices in the exciton space and depend on a large nuffuted as the overlap of these two wavepackets in Liouville
ber of intramolecular and solvent vibrational coordingfes. SPac€. 32T he DW representation for the pump-probe
The relevant variable phase space can be, however, substafignaf® which is very similar to the DW representation for
tially reduced when separation of time scales exists betweeffi€ TFGF is discussed elsevyhé?é[he pump pulse and gat-
different types of motions. Faster degrees of freedom can b9 device are described using Wigner spectrograms, utiliz-
eliminated and incorporated through relaxation kernels fof"9 & mixed temporal and spectral representation of nonlin-
the slow variables that should be treated explicitly. A theo-8a Spectroscopy developed in Ref. 34. Wigner spectrograms
retical description of aggregate photodynamics starts, theréiccount for arbitrary pulse shapes and durations and interpo-
fore, by determining the relevant set of slow variables.  late naturally between the impulsivéme-resolved and the
When nuclear relaxation is much faster than excitonideal frequency-resolved limits.
transport, it is possible to follow the dynamics of the exciton ~ This paper is organized as follows. In Sec. Il we intro-
density matrixN,4(t) (see Sec. IY where all vibrational ~duce the aggregate Hamiltonian described as a Frenkel-
degrees of freedom are traced out. This level of reductiogxciton system coupled to a harmonic bath, and discuss the
will be used in this paper. When nuclear dynamics is not fastlinear absorption. In Sec. Il we present the DW representa-
it is possible to identify a set of relevant collective vibra- tion for the TFGF for an arbitrary Wigner spectrogram of the
tional variables that together with the excitonic variables arexcitation pulse and arbitrary gating device. Details of the
treated explicitly. A procedure for constructing the relevantderivations based on Green function and projection operator
slow collective variables based on the spectral densities dechniques are given in Appendix A. In Sec. IV we introduce
the system-bath coupling is described in Ref. 25. This treatthe Redfield equation for exciton transpdtt>® Formal ex-
ment, however, goes beyond the scope of the present papg@ressions for the Redfield relaxation superoperator for the
Exciton transport can be probed by a variety of nonlinearexciton density matrix are given in Appendix B, and explicit
spectroscopic techniques, such as pump—pfol?®2’and  expressions for this superoperator calculated using the
three-pulse echt/~*°In this article we calculate the time- Brownian oscillator spectral density are presented in Appen-
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dix C. Numerical simulations are presented in Sec. V. Fi- _ _
nally, we discuss the results and the connection with the Gmn= 2 M 02(Smnn »+ Inn )G, (2.9
master equation approach to transport in Sec. VI. !
we introduce the matrix of spectral densities defined as the
Fourier transform of the linear response functions of the col-
Il. THE FRENKEL-EXCITON MODEL AND LINEAR lective coordinate$;*®
ABSORPTION

i (= . — _
Consider an aggregate made outlointeracting two- Cm”""(w):Eﬁmdtexmwt)<[qm”(t)’qk'(0)]>' 2.9

level chromophores. To describe its electronic states we in—h. . he f o
troduce the exciton creatidannihilation operators3! (B,) This matrix represents the frequency-dependent distribution

which add(eliminatg an excitation on th@th chromophore oflcoupilr!gfconst?nts f(t))r trletgatrkl)otshm_lla;'l[ors, and cotr;]tamls al
and satisfy the commutation relatig relevant information about the bath influence on the elec-

tronic system. Its frequency profile characterizes the dissipa-
[Bm.Ba]=8mn(1—2B]By). (23  ton,

The total Hamiltonian representing the system coupled
to the optical fields(t) is

Hi(t)=H-&(1)P, (2.10

Using these operators, the Frenkel Hamiltonian reads
HEHe+ th+ Hint- (22)

The first term represents the purely excitonic system: i L
whereP is the polarization operator

He=> h,B'B,, (2.3 .

oo P=> un(Bl+B,), (2.1

n

whereh,, =Qmémnt Imn, Om is the exciton energy on the _ N _
mth chromophore and,,, is the exciton transfer matrix and u, is the transition dipole moment of theth chro-
element H, describes a tightly bound electron-hole p@r ~mophore. . _ _
Frenkel excitoh that moves coherently across the aggregate. 10 compute the optical response, we first define the ex-
It is a quasiparticle description that restricts the electron-hol&iton Green function
pair to reside on the same molecule at all times and further _ - ot
prohibits two excitons from residing on the same molecule. Grmr(1)= 0(D)(Bm(1)B(0)), (212
Thls Hamiltonian uses the Heitler—London appro?qmatlon,wheregm(t) are interaction-picture operators:
i.e., terms that do not conserve the number of excitons have _ _
been neglected. This is justified since the exciton frequencies B (t)=et'B e ', (2.13
Q,, are considerably higher than the couplings,. Diago-
nalization ofh,,, results in the one-exciton eigenstates
and energieg,

and(- - -) denotes an equilibrium average.

When the phonon degrees of freedom are traced out, the
Green function acquires a self-eneidgyand in the frequency
domain it assumes the form

|@)=2 ¢.(m)B}/0), 2.4
1
i ; . ; Glw)=—7F——, 2.1
which satisfy the Schidinger equation (@) w—He+il (2.14
En: Non@a(N) = €,0,(M). (2.5) with matrix element(s o
PoM)@y(n
Hpn is the bath(phonon Hamiltonian, representing har- Gmn(@)= 2> PI—— (219
monic nuclear motions. ‘ ¢ “
2 2.2 and
pl/ meVqV
Ho=2 T 5 ) (2.6)
v Fo=T00=2 @a(M) (M. (216
d,, P,, m,, andw, is the coordinate, momentum, mass and mn
frequency of thevth normal mode. To lowedlinear order The frequency domain functio®(w) is related to its
in nuclear coordinatesy,, the system-bath interaction is time domain counterpart by
given by
. ms G(w)=—if dtexp(i wt)G(t). (2.17
HintEEn qVQn,ngBn"'n; qumn,vB:anr (27) 700

o o An additional factor (-i) compared to a standard Fou-

where J,,, and Q, , are the vibronic coupling constants. rier transform in the rhs of Eq2.17) uses the convention of

Equation(2.7) represents the most general linear coupling ofRef. 32.

an exciton system to a harmonic bath. A closed expression for the exciton dephasing matrix
Using the following set of collective bath coordinates: T',,, which represents the effect of coupling with phonons,
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dw )
—exg—io(r—7)]Fr(7,w), (3.6)

using the Markov approximation is given in E@®6). F(r',7")= 5

The linear absorption spectrum can be expressed in
terms of the Green function:

calculated to second order in exciton—phonon coupling and Joc

[

F(T’,f’):f do exd —io(7' =) JFul (7' +7")2,0].

. —o 21T
Sapd @) =12 prnptl G @) = Gln(@)], (2.18 37
mn .
which using the exciton representation gives The three types of spectrograms are represented by the Fou-
f? rier transforms of the gating functiof(7’',7”) with respect
2 a Fa I __ 4 1 1 ! ! = ! ! H
Sud@)= M (2.19 to (7' —7") keeping either?”, 7" or 7, =(7'+7")/2 fixed,

respectively. The Wigner spectrogram is real whereas the

_ - ) , other two are complex. Any two of the three spectrograms
where =2 ,¢(M) um is the transition dipole of the'th  ¢an pe expressed in terms of the third one, e.g.,
exciton.

a (w_ea)2+r§’

S oo d 4
FU(7 )= J_wdtJ_m% ex] —i(o' — o)t]

IIl. DOORWAY-WINDOW REPRESENTATION OF THE n_ /

FLUORESCENCE SIGNAL XFulr' —t2,0"), (38
In fluorescence spectroscopy the aggregate is subjected Fr(r, @)= Jx dtfw do ex —i(o' —w)t]

to an optical field ' e w2

Et) =& (Hexp —iwyt)+c.c., (3.2 XFw(r' +112,0"). (3.9
wherew; is a carrier frequencies arg{(t) is the pulse en- The information on the excitation pulse relevant for the
velope centered dt=0. fluorescence signal calculated within the rotating-wave ap-

The emitted light passes through two gating devi@es proximation(RWA) is contained in the correlation function
spectral and a time gate, centered around frequenand  of the field amplitudes:

time 7, respectively. The TFGF signal can be represented in L , ’
the form: (7" = 7")=(E(7T)EN (")), (3.10

o o ~ ~ Here(---) denote an ensemble average over stochastic fluc-
Si(mw)= fﬁde' fﬁmdf"I’(T,w;T',7")<P(7")P(T')>, tuations of the field. We shall represent the field in terms of
3.2 the spectrogramis (7', w), 1r(7',®), andl (7, ,w). These

5 are related to the correlation functio(r’,7”) through Egs.
where P(7) denotes the polarization operatér in the (3.5), (3.6), and(3.7) with F replaced byl and satisfy the
Heisenberg picture for the system driven by an optical fieldrelations Egs.(3.8) and (3.9). In terms of the correlation
(see Appendix A for detai)s The function®(r,w;7',7")  function, the spectrograms are given by
describes the combined effect of the time and frequency gat-

ing devices and connects the correlation functionl R(T'w):J'm dtexgion! (r.7+1) 3.1
(P(«")P(7')) to the TFGF signal. It satisfies ’ e e
O(7,0;7,7")=0*(1,0;7",7"). (3.3

| "w)= dt i)l (7' —t,7"), 3.1
We adopt the following model for the gating device L(0) ffoo expliot)l (7 ™) 312
which corresponds to one of the examples considered in

Ref. 34: (7 ;w):J dtexpliot) (7, —t/i2,7, +1/2).  (3.13
O(r,0;7",7")=F(r— 1", 7= exdio(r —7")], (3.9 -
whereF (', ") satisfies the relatiofEq. (3.3] and is finite Hereafter we assume that the pump and the gate are

only for |7'|,|7'|<Ar. The gating functiond [Eq. (3.4] temporally well separated compared to the exciton dephasing
represents the combined effect of a time gate with witith ~ time scalel' "*. We can then neglect the direct scattering
centered at 7 and a spectral gate with width (Raman contribution to the signaf’“*In Appendix A we
Aw~27(A7)" ! centered atv. derive a closed Green function expression for the signal.
The functionF (7’,7") that describes the gating through Substituting Eg. (A5) and a similar expression for
Egs.(3.2 and(3.4) (hereafter referred to as the gating func- S(7—t3,7) into Eq.(3.2) we obtain the Doorway—Window
tion) can be conveniently expressed in terms of its left(DW) representation for the TFGF signal
F (7", ), right Fg(7',w) or Wigner Fy (7, ,w) spectro-

grams: S”(T,w):r%:kl f:dr’ J':dtzwnm(r— 7, w)
* dw H ! '’ i J—
Flr' )= _.2m e il =) R (@), @9 XGm,m(tz)Dkl(T'_tzawl)- (3.14
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The Doorway functionDk|(r’—t2,51) is the one- 0 _E
exciton wavepacket created by the laser pulse. It is a Hermit- Dy (t)= > PspGip(ta),

ian matrix represented in the form (3.24
Du(7' = ty,01) =Dy (7' —ty,01) + D (7' —t5,@1), Dialty) E alal p'(tl)
(3.15
where the leftD,, | and rightDy, r components satisfy the WrOnnL(ts)ZE Gpn(ts) mpim,
relation ' P
_ _ (3.25
DL(T,_tZawl):[DR(T’_t21w1)]Ta (3.16 Mn,R(t3)=—§p: GTmp(ts)Mp,U«n-
which guarantees the Hermiticity of the Doorway wave- ) . .
packet. Equation (3.14) represents the signal in terms of the

preparation, propagation and detection of the exciton wave-
packet. The snapshot limiftcan be obtained by formally

G (1) =0(1,)(B(0)B/(t) Bn(t2)BL(0)), (3.1 setting

The Green function

describes the propagation of the Doorway wavepacket during  !a(7' —ty, 01— )= 8(7' —tp) (w1~ wy), (3.26

the delay period,. This results in a wavepackBst,,,(7') at E (et or )= S(r— 7' _ >

time 7' that has the form o777 05 = @)= 317 Swg— @). (3.27
Four out of the six time integrations involved in calculating
Eq. (3.14 can then be carried out immediately and the signal

Nmn(7")= f dtz G (t2) Du(7' ~tz,01). (3.18 becomes

The Window described by a matri®),,(7— 7', w) converts (N)
the wavepackeN,,,(7') to the signalS; (7, w): Sh(,w1)= ReE Winn(@)Gindi(7)Dia(w1),
(3.28

SfI(va):f dr’ TIW (r=7,)N(7)]. (319  whereD?(w;) andW?, (w) are the Fourier transforms of
Dy(ty) and Wy, (1):
The matrix)V is not necessarily Hermitian, however, it . B
follows from Eg. (3.19 that due to the Hermiticity of the pgl(gl)zf dt, eiwltlpgl(tl), (3.29
exciton wavepackel, the anti-Hermitian component o/ -
does not contribute to the signal. This implies thtcan be "
always taken to be Hermitian. In Appendix A we obtain ng(w)zf dee“w? (1). (3.30

Wil 7= 7, 0) = Wann (1777, 0) F Winn (777 ’(2)20) We note the following limiting cases. Integrating Eq.
' (3.28 over w, we obtain the time resolved snapshot fluores-
with cence signal

W=7 @) =[Wk(7=7",)]". (3.23

The left and the right components of the Doorway and
Window functions can be expressed in terms of their snapwhereas integration over gives the frequency-resolved sig-
shot limit counterpartsDl,, ,(t)) and WY, .(ts) and the nal
spectrograms=, and |, with «=L,R. The expressions

have a similar form P (w,07)= RGZ dTng(w)G% (MDY (wy).
mnkl| '
(3.32

Equation (3.14) is written in the local(chromophorg
representation. For numerical applications it is preferable to

Si(ro)=ReX ununGita(Dig(wr), (33D

’ N * Ocdwl 0 ’ -
D, (7' —ty,wy)=| diy Z_Da(tl)la(T —1, 01— wq)
0 — o0 £&TT

Xexplisaoity), (322 recast it using the excitop) representation. We then have
Wo(T— T',a))=f dt3f —3W2(t3)Fa(T— 7,03~ W) Si(r,w)= E f dT’f dty Wep(7— 7", 0)
0 — 27T aBys Jo 0
X explisqwsts) (3.23 X GO (1) Dys( 7' —tg, 1), (3.33
with =L,R ands = —sg=1. where

The left and right components of the snapshot Doorway

{ahnedf\é\:lrgdow functions that enter Eq8.22 and(3.23 have Dya(T’—tz,;l)E% Dk|(T'—t2,$1)<Py(k)%(|), (3.34
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Waﬁw—r',w)E% Wi 7= 7', 0) @ (M) @g(n),  (3.39

and

G&“ﬁ),ya(tﬂfgk, G (1) (M @a(n) @, (K)@s(l).
(3.36

This representation will be used in the following sections.

IV. REDFIELD EQUATIONS FOR EXCITON
RELAXATION

Exciton transport in aggregates 7957

Cmn,kl(w)zémn5klgmkc(w)- 4.7

We further use the Brownian oscillator spectral density
for the phonon batf?

C(w)=2\ 4.9

A2+ w?
Here A1 is the nuclear relaxation time scale ands the
exciton—phonon coupling strength. The complete Redfield
superoperator for this model is given by E¢S3)—(C5H). Its
population block assumes a particularly compact form and is
presented in EqSC6) and (C7). It should be noted that the
Redfield theory is based on second order perturbation with

Exciton transport enters the expressions for the fluoresrespect to the exciton—bath coupling and the Markov ap-
cence signal derived in Sec. Il through the Green functiorproximation. It only holds for fast bath relaxatiof2\kT
G} s describing the evolution of the reduced one-exciton< A kT. If this condition is not satisfied, the solution of the

density matrix

Nang @a(M)@a(N)(BL(T)By(7)). (4.0)

The equations of motion foN ,4(7) obtained by elimi-

Redfield equation becomes unphysical and may even yield
diagonal elements which are negative or larger than 1.

The Redfield relaxation superoperator simplifies consid-
erably for high temperatures and fast bath relaxation which is
the limiting case where the present theory applies. As shown

nating the nuclear variables using projection operator techin Appendix C, in this case we obtain

niques followed by the Markov approximation are known as

the Redfield equatiorig36-38:39:41:43:44

AN, () _
d—fE—lwarﬁrNa/ﬁr(t)_EB Ra’ﬂ’,aﬁNaB(t)' (42)

wherew /g =(€, — €g/). Closed expressions for the com-

plete Redfield relaxation superoperaf®rare given in Ap-
pendix B[Egs.(B2) and (B3)]. The population block oR
which connects the diagonal density matrix elemexfs,
andN,, . satisfies the detailed balance

ﬁa’a’,aa_ Wyl 4.3
Rt L KT 3
and
a#ta’
Raa,aa: - 2 a'aaar (44)

These are necessary and sufficient conditions that ensure th
conservation probability and that the excitons attain thermay"

equilibrium at long times?“* The Green functior6{) 5 is

defined by the solutioiN,4(t) to the Redfield equations

Na;;(t):;ﬁ G 5N, 50). (4.5

It may be transformed from the exciton to the molecular

basis

G&?&,kmt)i;w eo(Mes(M e, (KNG 5(1). (4.6

In the following calculations we adopt a more specific

Rar g ap=20°AN " 84100515~V a1 prap), 4.9
with A2=2)\kT and
Vo= 2 €alM@s(M)g,(M)g(m). (4.10

Equation(4.9) was first derived using a simple stochastic
model proposed by Haken and Strébf* 461t assumes that
the site energies are given by uncorrelated Gaussian random
variables with variance\? and fast correlation time\ 2.
Alternatively, using the exciton basis, the Haken-Strobl
model implies that the excitons encounter a succession of
strong collisions whereby after each collision all exciton
states are equally populatedrrespective of the initial
state.>® This shows that the Haken—Strobl model is an
infinite-temperature approximation. The model applies, e.qg.,
for triplet excitons which have a very weak couplifigarrow
bandwidth of a few cm * so that the infinite temperature
g>(bandwidth is easily met. The Haken—Strobl model
as recently applied for antenna comple%e¥ Note how-
ever that the~600 cm ! bandwidth in typical aggregates is
higher thankT (~200 cm ! for room temperatupeso that
the infinite temperature approximation does not hold and the
general expressiongEgs. (B2) and (B3)] that hold for all
temperatures should be used instead of Bc).

The issue of the exciton coherence size has drawn a
considerable attention. We have shown that a precise and
unambiguous definition may be given in terms of the inverse
participation ratio of the exciton density matfxThe den-
sity matrix for the propagated exciton wavepacket is

model for the spectral density. We assume that the coupling Kl

with phonons is diagonal, i.eamnqﬁo for m=n only, that

each molecule has its own bath, and the baths coupled to
different molecules are uncorrelated and statistically identi-

cal. These yieltP

N 1= [t 60t Do), @1
and its inverse participation ratio is defined®by
-1 2
P(n=|L2 INnn(DP?| || 2 |Nmn<r)|) (4.12
mn mn
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T T T T T
L ,'/ 1us
o ; 100ns |
1 { fions | 1 PR A
N 1 /:)L JL\ N \\\ 1 L b
8066 9679 11292 12906 14519 16132 b
®(em’) - i
& | |
e solid li . ) »
FIG. 1. The solid line shows the linear absorption spectfbm (2.19] for ~=
the following model of pentamer aggregat®,=9679, (,=10 486, 0 b
03=11292, 0,=12099, Q=12 906, J;,=403, J;=484, J3,=323, i
Jus=242. Other parameters are given in text. Power spectra of the pulse r 1 l 1 j
fields, w; =12 978(dashed linpand w;= 11 413(dotted lingd. All frequen- Sns
cies are in cmt. [
[ 1 1 x2
whereL is the number of chromophores. The density matrix 3ns L 1 l

provides the proper averaged size relevant for optical signals
such as fluorescence and superradiance.

V. NUMERICAL SIMULATIONS

ins o wa

] x10
1

8066 12098 16132

We have calculated the TFGF signals and the exciton
wavepacket dynamics for a linear aggregate consisting of
five two-level chromophores. All chromophores have paral-
lel transition dipoles and the same,. Calculations were 4
performed at room temperatufe= 300 K, exciton-bath cou- ®(cm )
pling A\=0.1 cm %, and the inverse nuclear relaxation time,
A =50 cm L. The linear absorption spectrum for this model
is displayed in Fig. 1.

We assume the snapshot linjiEq. (3.27)] for the gate

FIG. 2. Time and frequency resolved fluorescence signals for the model of

Fig. 1. The pump carrier frequencyﬁzlz 978 cm®.

and a Gaussian envelope of the pump 7=100 ns, the system has reached thermal equilibrium. This
{2 is verified in Fig. 3 where we show the absolute values of the
& (1) =exp( - —> , (5.2 propagated density matrix exciton wavepacket,
2
with o =15 fs. Its Wigner spectrogram is IN(D[=|2 | dt G0 (1) D, s(T— 1, w1)|. (5.4
g p g < o By
Y
t2 . ~
lw(t, )| = VAmolexp — — —o2w?|. 5.2 Coherences vanish at=1 ns and s.L!bs.equentIy the
[Tw(t,0) ™ p( o? T ) 52 populations evolve towards thermal equilibrium. We have

) ) — . repeated these calculations foy=11, 413 cm-1 (resonant
_In the first calculation we tunedy; =12978 cm ™ t0  yith the middle excitoh The pump power spectrum is also
coincide with the highest exciton. The power spectrum of thepown in Fig. 1. The fluorescence spectra are shown in
pulse envelope Fig. 4 and the absolute values of the propagated wavepackets
are given in Fig. 5. In this case the emission from the ini-
|5(w)|25f dt ly(t,0)=270" exp — o%w?), (5.3 tially pumped state is largest at=0. The emission from
higher exciton states decaysamcreases, whereas the peak

is shown by the dashed line in Fig. 1. The dispersed fluoresyom jowest state grows. The exciton system reaches thermal
cence signal§Eqg. (3.33] at various delay times are dis- equilibrium at7=100 ns, as in Fig. 2.
played in Fig 2. Atr=0, the peak intensity from the highest

exciton state is largest. At=5 ns, all peak intensities be-
come comparable and at=7 ns, the lowest exciton peak
starts to grow. In the long time limit, the propagated wave-  We have derived a closed expression for the TFGF in the
packet relaxes towards the thermalized Boltzmann distribuboorway—Window representation, which provides an intui-
tion of populations in the one-exciton manifold. At tive three-step picture: generation of the Doorway wave-

VI. SUMMARY
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us )
£100ns |
F10ns JL
p—
8
e |7ns A
~%
[75)
 5ns A 1 A
o | |
F 1ns , 1 J N x20
F os l l lxzo
8066 12099 16132

-1
o (cm’)
FIG. 3. Absolute values of propagated exciton wavepacket in the exciton
basis[Eq. (5.4)] corresponding to Fig. 2. FIG. 4. Time and frequency fluorescence signals for the model of Fig. 1.

The pump carrier frequency El= 11413 cm't.

packet by the pump, relaxation of the wavepacket towards

thermal equilibrium and detection of the signal by the over-pared to the intermolecular coupling. Strong exciton—phonon
lap of the propagated wavepacket and the Window waveeoupling causes dynamical localization of the excitations on
packet. Wigner spectrograms for the excitation pulse and ththe chromophores, and the coherences between different
gate account for arbitrary pulse shapes and durations anthromophores can be neglected. The rate in the correspond-
interpolate naturally between the time resolved and the freing master equation can be computed using the Forster—
quency resolved limits. Relaxation of excitons is incorpo-Dexter theory?

rated through the Green functi@) calculated by solving When intermolecular coupling is strong compared to
the Redfield equations which describe the time evolution oexciton—phonon coupling, we need to first diagonalize the
the exciton density matriil. Frenkel—exciton Hamiltonian and obtain the one-exciton

A simpler commonly used reduction scheme which onlyeigenstates Eq2.5). The master equation for exciton popu-
retains the populations, i.e., the diagonal element®daé  lationsN,, may be used when the system is small enough so
known as the master equatitit®*°A notable advantage of that the distance between consecutive exciton levels is large
the Redfield equation is that it can be easily transformeadompared to the phonon-induced exciton dephasing. Closed
between basis sets, and the resulting exciton density matriexpressions for the master equations rate constants for the
is invariant to such transformations; the choice of a basis sé&rownian oscillator spectral density are given in E(S6)
is immaterial. In contrast, since the term “population” is and (C7). Master equations do not usually apply for large
basis dependent, master equations derived for differerdaggregates: since the dephasing between the exciton states
choices of a basis set describe a different physical reality. Iwith close energies is weak, the coherences between such
practice, two basis sets are often used, either the chrastates may not be neglected, and the description in terms of
mophore(moleculaj or the exciton eigenstates. The masterexciton populations alone is not possible. One should rather
equation for chromophore populatioNs,, may be adequate retain explicitly all components of the density matrix and
when the diagonal exciton—phonon coupling is strong comsolve the Redfield equation. However, in some cases master
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whereP stands for the Heisenberg picture operator. Expand-
ing Eg. (A1) to first non-vanishindi.e., secongorder in the
driving field, and retaining only those terms that survive the
RWA yields®®:°2

SCROED umunukmj dt'J dt'1(s' —t', 7" 1)
mnkl 0 0

xexp[—iwy (7' —t' — 7' +1")]
X(Bir(7" —t")BlR(7)Bmi(7)BL(7 — 1)),
(A2)
where in the rhs of Eq{A2) we have a four-point Liouville
space correlation function of the free systéwithout the

driving field). For an operatoﬁ\ we define the right and left
superoperators as

AL(p)=Ap, Ar(p)=pA. (A3)

In deriving Eq.(A2) we also made use of E(R.11). The
Liouville space correlation function can be evaluated using
the projection operator technique developed in Ref. 51. To
that end, we introduce the following projection operagor

Pp=po Tro(p), (A4)

where Ty stands for the trace over vibrational degrees of

freedom,p being the equilibrium vibrational density matrix

in the ground electronic state, whergass a density matrix

in the complete space.

FIG. 5. Absolute values of propagated exciton wavepacket in the exciton ~ We assume that the excitation pulse and the gating are
basis[Eq. (5.4)], corresponding to Fig. 4. temporarily well separated, i.e., their delay is large compared
to the gating time window, the pulse duration, and the

equations may still be used even for large aggregates Fdrephasing timel"™. This implies that in Eq.(A2)
q y ge aggreg ’ ’19‘” t"—t’|<t’. We then have four possible relative

7,17_ T/
strong disorder the exciton states are localized and accordi . . . . o
e orderings in the four-point correlation function in the

50 ; ; i
to Mott,” states W'th close energies do not communicate anrhs of Eq.(A2), defined by the signs of the time differences
therefore do not interact by means of phonon exchange. Th|(gs7,,_ ) and (7 —t"— 7' +1')

|mp_I|es that there is an energy 9ap between commur_ucatm Introducing the consecutive time intervals,t,,t;=0

excitons, and the master equation can be used provided the .
. o . - with t,>1,,t; we can recast EqA2) in a form

exciton localization length is sufficiently short for the gap to

exceed the dephasing rafe’?

S(, T—ts):gkl MmManMJO dtzfo dt,{Tr{ B G(ts)
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X exp( —iwqty)+ T By G(ts) Bl G(t

APPENDIX A: DOORWAY WINDOW M=t gty TH B, G(t)Bnrdiltz)
REPRESENTATION FOR THE FLUORESCENCE XBI G(t)Birpll (7—ts—tp, 7— ts— ta—t;)
SIGNAL o

According to Egs(3.2) and(3.4), the TFGF signal can Xexp(iwity)}, (AS)

be expressed in terms of the gating functlerand the cor- B . ) L
relation functionS(+',7") of the polarization operator of the Whereg(t)=exp(-iLt) with the Liouville operator’.

driven system One can obtain a similar expression 8fr—ts, 7). It
B 5 has been demonstrafédhat if the bath relaxation time is
S(7', 7" =(P(")P(7")), (A1) fast compared to the exciton relaxation time scale, the Liou-
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ville space evolution operator in EGA5) can be replaced by

PG (t)P with the projection operatdP defined by Eq(A4).
This yields

Tr B G(t3)BlrG(t2) BirG(11) B p]

=§ Ginp(13) G i(t2) Gk(t), (A6)
Tr B G(t3) BIrG(t2) BY G(t1)Birp]
=—§ Gmp(t3) Goiq(t2) Gl (te). (A7)

Substituting Eqs(A6) and(A7) in Eqg. (A5), followed by
substituting Eq(A5) and a similar expression f&(7—t3,7)
into Eq. (3.2 and making use of EqAl) and Eq.(3.4)
immediately yields the DW representation for the sidiai.
(3.14]%

APPENDIX B: THE REDFIELD RELAXATION
SUPEROPERATOR

In this appendix we derive the Green functiG™) that

Exciton transport in aggregates 7961

Ca&yﬁ(w)Em;kl eo(Mes(N) e, (K)@s(1)Crn(w), (BS)

andCpn () is given by Eq.(2.9).
Finally, the exciton dephasing matrix is given*by

Toi=—i 2 | dtGoy s (OMpmnr(DGE(L),  (B6)
m'n'k /0
with
0 _ ’ —i ’
G (D=0(t)(m’|e"HelIn’). (B7)

APPENDIX C: REDFIELD RELAXATION
SUPEROPERATOR FOR THE BROWNIAN
OSCILLATOR SPECTRAL DENSITY

Substituting the spectral density of a single strongly

overdamped Brownian oscillator E@.8) into Eq. (B4) we
obtairr*

propagates the Doorway wavepacket from its initial prepara-

tion stage to the final detection of a photon, during the time
delayt,. When the exciton—bath coupling is neglected, the

density matrix satisfies the Liouville equation,

d _
GiNma(®= =12 [HmnmNava() =Ny (OHmal. - (BD)

Using projection operator techniques and second order Pelihere v
turbation theory with respect to the exciton—bath coupling, "

MaB,y&(t):\PaﬁyﬁM(t) (Cl)
and
A
M(t)=AA cot(m)exp(—At)+4kT
” vpexp—vt) .
— —At) |, C2
2 iesAy (e7)

=27nkT are the Matsubara frequencies.
Substituting this in EqgB2) and(B3), the Redfield ten-

we can take into account the effect of exciton—bath couplingSor is finally given by

on the time evolution of the density matrix in the one-exciton
manifold?**® The Redfield tensor for our model is then =

given byt-36
R ap= f:Ra;ﬁ;’aB(t)eXmwaﬂt)dt, (B2)
wherew,z=¢,— &z and
Ra,ﬁ,,aﬁ(t):—%‘, eXpi w4, )M 4y 10 (1) S0
+expiowga t)Myqr gpr ()
—Ey expliw, M (1) Sgur
+exp(iwﬁ/at)M;ﬁ,’M,(t). (B3)

Using Eq.(2.9), we can write the spectral density in the

time domain’**

1> dw
M aﬁ,‘yﬁ(t): Efﬁmzcaﬁ,'yﬁ(w)

X[ coth( w/2kT)cog wt) —i sin(wt)], (B4)

where

_pt 5+ - 5o
Rap'as=RarpapTRarprapTRarprap T Rarprapr (€3
where

R" =—\AD, ¥ A Y, (A
a’ﬁ’,alB_ > yaya’ CO 2kT | a,y( )
+4kT§ ERLEEVINE)

n=1 Vﬁ‘Az kil TRt

— A
RZ,B,‘QB=)\A\I’aBa,ﬂ,[(cot(m_) —i)YW,(A)

o] Vn
+4KT 2, ———=Y o0 ,
2 Y mm]
(C4

+i

— A
Ra’B’,aﬂ:)\A\I,aBa'B'[(COt(m YBIB(A)

14

+4KTY, ——Y,, ,
nzl vﬁ A? Eﬁ(vn)]
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- A
Ra,ﬁ,’aﬁ=—)\A2y Vopye| | COl S| +1] Y p0(A)

oo

14
+4|(T2 z—nzYy,B(Vn) Suu' -
a— A

n=1p-—

Here we have introduced the auxiliary function,

Y op(Q)= (CH

Q_|0)a’8

The population block of the Redfield tenddtq. (C3)]
can be recast in a compact form

R, =—AAD V¥ 2{ A A
a'a aa™ ~ yaya' CO kT a)ay

1
X ——+4kT
A2+wiy

o0

2
2v;,

=1 (vi—A?)(Vi+ 05,)

aa’

A
+)\A\Paaa’a’ Z[A Cot(m_) _waa’]

1 - 207
X+ 4KT
A al, L (AR l,)

aq

(C6)

and

R,y 0u=—NAD, ¥ 2{ A A
aa, > yaya CO m way

1 ” 212
X————+4kT >, .

AP+l =1 (VA=A (vi+w?l)

+4KT

AV 2A A
+A aaaa K CcO m

oo

2

X — |-
=1 (- A

(C7)

At high temperatures the bath relaxation rate is deter-
mined by a typical oscillator frequendy\). The oscillators
with frequencies higher thakT are frozen and do not con-
tribute to the relaxation process. HOF<A the relaxation is
therefore dominated by the Matsubara ratekd. Our most
general expressions for the Redfield superopergiars.

(C3)—(C7)] hold when all bath timescales are fastriZT,

Chernyak, Minami, and Mukamel

place the cotf/2kT) factors by XT/A. The Haken—Strobl
limit is recovered whem\ is further large compared to the
bandwidth (). We can gefY(A)=1/A and obtain

. (kT

Ra’ﬂ’,aﬁ__)\ A —I1 5aar5,33/,

—_— 2kT

Ra’B’,aﬂ_)\\I}aﬁa’B’ T_l ,

. kT 8
Ra’ﬁ’,aﬁ_)\waﬁa’ﬁ’ T+| y

- 2kT

Ra/ﬁ/,aﬁ:_)\ T+| 5aar(sﬁﬁr.

Substituting these in EqC3) finally results in the Haken—
Strobl superoperatdieq. (4.9)].
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