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Exciton transport in molecular aggregates probed by time
and frequency gated optical spectroscopy
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~Received 22 September 1999; accepted 15 February 2000!

The signatures of exciton relaxation in time-resolved fluorescence spectroscopy of molecular
aggregates excited by a short pulse are expressed as an overlap of a Doorway wavepacket
representing the exciton density matrix with a Window wavepacket which describes the time and
frequency resolved detection. Transport and relaxation of the excitons are accounted for using the
Redfield equations for the density matrix, and the complete temporal and spectral profiles of the
excitation pulse and detection gate are incorporated using Wigner spectrograms. The spread in the
off diagonal elements of the density matrix in the chromophore~real space! representation provides
a natural measure of the relevant exciton coherence size. ©2000 American Institute of Physics.
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I. INTRODUCTION

Exciton transport plays an important role in the photo
duced dynamics of molecular aggregates,1 crystals2,3 and
superlattices.4 Extensive recent activity had focused onJ ag-
gregates of cyanine dyes,1,5–11 photosynthetic antenn
complexes,12–22 and conjugated systems with localized op
cal excitations, e.g., phenylacetylene dendrimers.23,24Despite
the relatively simple structure of electronic excitation
photoinduced dynamics in molecular aggregates show
complex interplay of strong vibronic coupling, the broad d
tribution of time scales of nuclear motions, and static dis
der.

Computing the coupled exciton–phonon dynamics
the microscopic level constitutes a formidable task sinc
involves solving dynamical equations for wavepackets t
are matrices in the exciton space and depend on a large n
ber of intramolecular and solvent vibrational coordinates25

The relevant variable phase space can be, however, sub
tially reduced when separation of time scales exists betw
different types of motions. Faster degrees of freedom can
eliminated and incorporated through relaxation kernels
the slow variables that should be treated explicitly. A the
retical description of aggregate photodynamics starts, th
fore, by determining the relevant set of slow variables.

When nuclear relaxation is much faster than exci
transport, it is possible to follow the dynamics of the excit
density matrixNab(t) ~see Sec. IV! where all vibrational
degrees of freedom are traced out. This level of reduc
will be used in this paper. When nuclear dynamics is not f
it is possible to identify a set of relevant collective vibr
tional variables that together with the excitonic variables
treated explicitly. A procedure for constructing the releva
slow collective variables based on the spectral densitie
the system-bath coupling is described in Ref. 25. This tre
ment, however, goes beyond the scope of the present p

Exciton transport can be probed by a variety of nonlin
spectroscopic techniques, such as pump–probe12–14,26,27and
three-pulse echo.17–19 In this article we calculate the time
7950021-9606/2000/112(18)/7953/11/$17.00
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and frequency-gated fluorescence~TFGF!28,29 ~which is a
linear incoherent technique! from molecular aggregates us
ing the Doorway–Window~DW! representation. The DW
picture in Liouville space, first developed by Yan and Muk
mel for describing the nuclear density matrix for vibratio
and the solvent,30 offers an intuitive physical picture of the
process. In this picture, the signal generation is describe
a three step process involving the preparation, propaga
and detection of a wavepacket representing the exciton d
sity matrix. First, the system interacts twice with the pum
pulse, creating the Doorway wavepacket, that subseque
in the second step evolves during the time delay between
pump and the detection. In the third step, the Window wa
packet is created by the spontaneously emitted photon
gether with the gating device, and the signal is finally co
puted as the overlap of these two wavepackets in Liouv
space. The DW representation for the pump–pro
signal31,32which is very similar to the DW representation fo
the TFGF is discussed elsewhere.33 The pump pulse and gat
ing device are described using Wigner spectrograms, ut
ing a mixed temporal and spectral representation of non
ear spectroscopy developed in Ref. 34. Wigner spectrogr
account for arbitrary pulse shapes and durations and inte
late naturally between the impulsive~time-resolved! and the
ideal frequency-resolved limits.

This paper is organized as follows. In Sec. II we intr
duce the aggregate Hamiltonian described as a Fren
exciton system coupled to a harmonic bath, and discuss
linear absorption. In Sec. III we present the DW represen
tion for the TFGF for an arbitrary Wigner spectrogram of t
excitation pulse and arbitrary gating device. Details of t
derivations based on Green function and projection oper
techniques are given in Appendix A. In Sec. IV we introdu
the Redfield equation for exciton transport.35–39 Formal ex-
pressions for the Redfield relaxation superoperator for
exciton density matrix are given in Appendix B, and explic
expressions for this superoperator calculated using
Brownian oscillator spectral density are presented in App
3 © 2000 American Institute of Physics
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dix C. Numerical simulations are presented in Sec. V.
nally, we discuss the results and the connection with
master equation approach to transport in Sec. VI.

II. THE FRENKEL-EXCITON MODEL AND LINEAR
ABSORPTION

Consider an aggregate made out ofL interacting two-
level chromophores. To describe its electronic states we
troduce the exciton creation~annihilation! operatorsB̂n

† (B̂n)
which add~eliminate! an excitation on thenth chromophore
and satisfy the commutation relations2,40

@B̂m ,B̂n
†#5dmn~122B̂n

†B̂n!. ~2.1!

Using these operators, the Frenkel Hamiltonian read

H[He1Hph1H int . ~2.2!

The first term represents the purely excitonic system:

He[(
mn

hmnB̂m
† B̂n , ~2.3!

wherehmn[Vmdmn1Jmn , Vm is the exciton energy on th
mth chromophore andJmn is the exciton transfer matrix
element.2,3 He describes a tightly bound electron-hole pair~a
Frenkel exciton! that moves coherently across the aggrega
It is a quasiparticle description that restricts the electron-h
pair to reside on the same molecule at all times and fur
prohibits two excitons from residing on the same molecu
This Hamiltonian uses the Heitler–London approximatio
i.e., terms that do not conserve the number of excitons h
been neglected. This is justified since the exciton frequen
Vm are considerably higher than the couplingsJmn . Diago-
nalization of hmn results in the one-exciton eigenstatesua&
and energies«a

ua&5(
m

wa~m!Bm
† u0&, ~2.4!

which satisfy the Schro¨dinger equation

(
n

hmnwa~n!5eawa~m!. ~2.5!

Hph is the bath~phonon! Hamiltonian, representing har
monic nuclear motions.

Hph[(
n

S pn
2

2mn
1

mnvn
2qn

2

2 D . ~2.6!

qn , pn , mn , andvn is the coordinate, momentum, mass a
frequency of thenth normal mode. To lowest~linear! order
in nuclear coordinatesqn , the system-bath interaction i
given by

H int[(
n,n

qnV̄n,nB̂n
†B̂n1 (

mn,n

mÞn

qnJ̄mn,nB̂m
† B̂n , ~2.7!

where J̄nm,n and V̄n,n are the vibronic coupling constant
Equation~2.7! represents the most general linear coupling
an exciton system to a harmonic bath.

Using the following set of collective bath coordinates
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mnvn
2~dmnV̄n,n1 J̄mn,n!qn , ~2.8!

we introduce the matrix of spectral densities defined as
Fourier transform of the linear response functions of the c
lective coordinates,41,25

Cmn,kl~v!5
i

2E2`

`

dt exp~ ivt !^@ q̄mn~ t !,q̄kl~0!#&. ~2.9!

This matrix represents the frequency-dependent distribu
of coupling constants for the bath oscillators, and contains
relevant information about the bath influence on the el
tronic system. Its frequency profile characterizes the diss
tion.

The total Hamiltonian representing the system coup
to the optical fieldE(t) is

HT~ t ![H2E~ t !P, ~2.10!

whereP is the polarization operator

P5(
n

mn~B̂n
†1B̂n!, ~2.11!

and mn is the transition dipole moment of thenth chro-
mophore.

To compute the optical response, we first define the
citon Green function

Gmn~ t ![u~ t !^B̂m~ t !B̂n
†~0!&, ~2.12!

whereB̂m(t) are interaction-picture operators:

B̂m~ t ![eiHtB̂me2 iHt , ~2.13!

and ^•••& denotes an equilibrium average.
When the phonon degrees of freedom are traced out,

Green function acquires a self-energyG and in the frequency
domain it assumes the form

G~v!5
1

v2He1 iG
, ~2.14!

with matrix elements

Gmn~v!5(
a

wa~m!wa~n!

v2ea1 iGa
~2.15!

and

Ga[Gaa5(
mn

wa~m!wa~n!Gmn . ~2.16!

The frequency domain functionG(v) is related to its
time domain counterpart by

G~v!52 i E
2`

`

dt exp~ ivt !G~ t !. ~2.17!

An additional factor (2 i ) compared to a standard Fou
rier transform in the rhs of Eq.~2.17! uses the convention o
Ref. 32.

A closed expression for the exciton dephasing ma
Gmn which represents the effect of coupling with phonon
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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calculated to second order in exciton–phonon coupling
using the Markov approximation is given in Eq.~B6!.

The linear absorption spectrum can be expressed
terms of the Green function:

Sabs~v!5 i(
mn

mmmn@Gmn~v!2Gnm
† ~v!#, ~2.18!

which using the exciton representation gives

Sabs~v!5(
a

2umau2Ga

~v2ea!21Ga
2

, ~2.19!

wherema[(awa(m)mm is the transition dipole of thea’th
exciton.

III. DOORWAY–WINDOW REPRESENTATION OF THE
FLUORESCENCE SIGNAL

In fluorescence spectroscopy the aggregate is subje
to an optical field

E~ t !5E1~ t !exp~2 i v̄1t !1c.c., ~3.1!

wherev̄1 is a carrier frequencies andE1(t) is the pulse en-
velope centered att50.

The emitted light passes through two gating devices~a
spectral and a time gate, centered around frequencyv and
time t, respectively!. The TFGF signal can be represented
the form:

Sf l~t;v!5E
2`

`

dt8E
2`

`

dt9 F~t,v;t8,t9!^P̃~t9!P̃~t8!&,

~3.2!

where P̃(t) denotes the polarization operatorP in the
Heisenberg picture for the system driven by an optical fi
~see Appendix A for details!. The functionF(t,v;t8,t9)
describes the combined effect of the time and frequency
ing devices and connects the correlation funct

^P̃(t9) P̃(t8)& to the TFGF signal. It satisfies

F~t,v;t9,t8!5F* ~t,v;t8,t9!. ~3.3!

We adopt the following model for the gating devic
which corresponds to one of the examples considered
Ref. 34:

F~t,v;t8,t9!5F~t2t8,t2t9!exp@ iv~t82t9!#, ~3.4!

whereF(t8,t9) satisfies the relation@Eq. ~3.3!# and is finite
only for ut8u,ut9u,nt. The gating functionF @Eq. ~3.4!#
represents the combined effect of a time gate with widthnt
centered at t and a spectral gate with widt
nv;2p(nt)21 centered atv.

The functionF(t8,t9) that describes the gating throug
Eqs.~3.2! and~3.4! ~hereafter referred to as the gating fun
tion! can be conveniently expressed in terms of its l
FL(t9,v), right FR(t8,v) or Wigner FW(t1 ,v) spectro-
grams:

F~t8,t9!5E
2`

` dv

2p
exp@2 iv~t82t9!#FL~t9,v!, ~3.5!
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F~t8,t9!5E
2`

` dv

2p
exp@2 iv~t82t9!#FR~t8,v!, ~3.6!

F~t8,t9!5E
2`

` dv

2p
exp@2 iv~t82t9!#FW@~t81t9!/2,v#.

~3.7!

The three types of spectrograms are represented by the
rier transforms of the gating functionF(t8,t9) with respect
to (t82t9) keeping eithert9,t8 or t1[(t81t9)/2 fixed,
respectively. The Wigner spectrogram is real whereas
other two are complex. Any two of the three spectrogra
can be expressed in terms of the third one, e.g.,

FL~t9,v!5E
2`

`

dtE
2`

` dv8

2p
exp@2 i ~v82v!t#

3FW~t92t/2,v8!, ~3.8!

FR~t8,v!5E
2`

`

dtE
2`

` dv8

2p
exp@2 i ~v82v!t#

3FW~t81t/2,v8!. ~3.9!

The information on the excitation pulse relevant for t
fluorescence signal calculated within the rotating-wave
proximation~RWA! is contained in the correlation functio
of the field amplitudes:

I ~t82t9![^E1~t8!E1* ~t9!&. ~3.10!

Here^•••& denote an ensemble average over stochastic fl
tuations of the field. We shall represent the field in terms
the spectrogramsI L(t9,v), I R(t8,v), andI W(t1 ,v). These
are related to the correlation functionI (t8,t9) through Eqs.
~3.5!, ~3.6!, and ~3.7! with F replaced byI and satisfy the
relations Eqs.~3.8! and ~3.9!. In terms of the correlation
function, the spectrograms are given by

I R~t;v!5E
2`

`

dt exp~ ivt !I ~t,t1t !, ~3.11!

I L~t8;v!5E
2`

`

dt exp~ ivt !I ~t82t,t8!, ~3.12!

I W~t1 ;v!5E
2`

`

dt exp~ ivt !I ~t12t/2,t11t/2!. ~3.13!

Hereafter we assume that the pump and the gate
temporally well separated compared to the exciton depha
time scaleG21. We can then neglect the direct scatteri
~Raman! contribution to the signal.34,42 In Appendix A we
derive a closed Green function expression for the sign
Substituting Eq. ~A5! and a similar expression fo
S(t2t3 ,t) into Eq. ~3.2! we obtain the Doorway–Window
~DW! representation for the TFGF signal

Sf l~t,v!5 (
mnkl

E
0

`

dt8E
0

`

dt2 Wnm~t2t8,v!

3Gmn,kl
(N) ~ t2!Dkl~t82t2 ,v̄1!. ~3.14!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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The Doorway functionDkl(t82t2 ,v̄1) is the one-
exciton wavepacket created by the laser pulse. It is a Her
ian matrix represented in the form

Dkl~t82t2 ,v̄1!5Dkl,L~t82t2 ,v̄1!1Dkl,R~t82t2 ,v̄1!,
~3.15!

where the leftDkl,L and rightDkl,R components satisfy the
relation

DL~t82t2 ,v̄1!5@DR~t82t2 ,v̄1!#†, ~3.16!

which guarantees the Hermiticity of the Doorway wav
packet.

The Green function

Gmn,kl
(N) ~ t2![u~ t2!^B̂l~0!B̂n

†~ t2!B̂m~ t2!B̂k
†~0!&, ~3.17!

describes the propagation of the Doorway wavepacket du
the delay periodt2 . This results in a wavepacketNmn(t8) at
time t8 that has the form

Nmn~t8!5(
kl

E
0

`

dt2 Gmn,kl
(N) ~ t2!Dkl~t82t2 ,v̄1!. ~3.18!

The Window described by a matrixWmn(t2t8,v) converts
the wavepacketNmn(t8) to the signalSf l(t,v):

Sf l~t,v!5E
2`

`

dt8 Tr@W †~t2t8,v!N~t8!#. ~3.19!

The matrixW is not necessarily Hermitian, however,
follows from Eq. ~3.19! that due to the Hermiticity of the
exciton wavepacketN, the anti-Hermitian component ofW
does not contribute to the signal. This implies thatW can be
always taken to be Hermitian. In Appendix A we obtain

Wmn~t2t8,v!5Wmn,L~t2t8,v!1Wmn,R~t2t8,v!
~3.20!

with

WL~t2t8,v!5@WR~t2t8,v!#†. ~3.21!

The left and the right components of the Doorway a
Window functions can be expressed in terms of their sn
shot limit counterpartsDmn,a

0 (t1) and Wmn,a
0 (t3) and the

spectrogramsFa and I a , with a5L,R. The expressions
have a similar form

Da~t82t2 ,v̄1!5E
0

`

dt1E
2`

` dv1

2p
D a

0~ t1!I a~t82t2 ,v̄12v1!

3exp~ isav1t1!, ~3.22!

Wa~t2t8,v!5E
0

`

dt3E
2`

` dv3

2p
W a

0~ t3!Fa~t2t8,v32v!

3exp~ isav3t3! ~3.23!

with a5L,R andsL52sR51.
The left and right components of the snapshot Doorw

and Window functions that enter Eqs.~3.22! and~3.23! have
the form
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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Dkl,L
0 ~ t1!5(

p
m lmpGkp~ t1!,

~3.24!

Dkl,R
0 ~ t1!52(

p
mkmpGpl

† ~ t1!,

Wmn,L
0 ~ t3!5(

p
Gpn~ t3!mpmm ,

~3.25!

Wmn,R
0 ~ t3!52(

p
Gmp

† ~ t3!mpmn .

Equation ~3.14! represents the signal in terms of th
preparation, propagation and detection of the exciton wa
packet. The snapshot limit34 can be obtained by formally
setting

I a~t82t2 ,v12v̄1!5d~t82t2!d~v12v̄1!, ~3.26!

Fa~t2t8,v32v!5d~t2t8!d~v32v!. ~3.27!

Four out of the six time integrations involved in calculatin
Eq. ~3.14! can then be carried out immediately and the sig
becomes

Sf l
0 ~v,t;v̄1!5Re(

mnkl
W mn

0 ~v!Gmn,kl
(N) ~t!D kl

0 ~v̄1!,

~3.28!

whereD kl
0 (v̄1) and W mn

0 (v) are the Fourier transforms o
D kl

0 (t1) andW mn
0 (t):

D kl
0 ~v̄1![E

2`

`

dt1 ei v̄1t1D kl
0 ~ t1!, ~3.29!

W mn
0 ~v![E

2`

`

dt eivtW mn
0 ~ t !. ~3.30!

We note the following limiting cases. Integrating E
~3.28! overv, we obtain the time resolved snapshot fluore
cence signal

Sf l
0 ~t,v̄1!5Re(

mnkl
mmmnGmn,kl

(N) ~t!D kl
0 ~v̄1!, ~3.31!

whereas integration overt gives the frequency-resolved sig
nal

Sf l
0 ~v,v̄1!5Re(

mnkl
E

2`

`

dtW mn
0 ~v!Gmn,kl

(N) ~t!D kl
0 ~v̄1!.

~3.32!

Equation ~3.14! is written in the local~chromophore!
representation. For numerical applications it is preferable
recast it using the excitonua& representation. We then hav

Sf l~t,v!5 (
abgd

E
0

`

dt8E
0

`

dt2 Wab~t2t8,v!

3Gab,gd
(N) ~ t2!Dgd~t82t2 ,v̄1!, ~3.33!

where

Dgd~t82t2 ,v̄1![(
kl

Dkl~t82t2 ,v̄1!wg~k!wd~ l !, ~3.34!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Wab~t2t8,v![(
mn

Wmn~t2t8,v!wa~m!wb~n!, ~3.35!

and

Gab,gd
(N) ~ t2![ (

mnkl
Gmn,kl

(N) ~ t2!wa~m!wb~n!wg~k!wd~ l !.

~3.36!

This representation will be used in the following sections

IV. REDFIELD EQUATIONS FOR EXCITON
RELAXATION

Exciton transport enters the expressions for the fluo
cence signal derived in Sec. III through the Green funct
Gab,gd

(N) describing the evolution of the reduced one-excit
density matrix

Nab~t![(
mn

wa~m!wb~n!^Bm
† ~t!Bn~t!&. ~4.1!

The equations of motion forNab(t) obtained by elimi-
nating the nuclear variables using projection operator te
niques followed by the Markov approximation are known
the Redfield equations35,36,38,39,41,43,44

dNa8b8~ t !

dt
[2 iva8b8Na8b8~ t !2(

ab
R̄a8b8,abNab~ t !, ~4.2!

whereva8b8[(ea82eb8). Closed expressions for the com
plete Redfield relaxation superoperatorR̄ are given in Ap-
pendix B @Eqs. ~B2! and ~B3!#. The population block ofR̄
which connects the diagonal density matrix elementsNaa

andNa8a8 satisfies the detailed balance

R̄a8a8,aa

R̄aa,a8a8

5expS 2
va8a

kT D ~4.3!

and

R̄aa,aa52 (
a8

aÞa8

R̄a8a8,aa . ~4.4!

These are necessary and sufficient conditions that ensur
conservation probability and that the excitons attain ther
equilibrium at long times.32,45 The Green functionGab,gd

(N) is
defined by the solutionNab(t) to the Redfield equations

Nab~ t !5(
gd

Gab,gd
(N) ~ t !Ngd~0!. ~4.5!

It may be transformed from the exciton to the molecu
basis

Gmn,kl
(N) ~ t ![ (

ab,gd
wa~m!wb~n!wg~k!wd~ l !Gab,gd

(N) ~ t !. ~4.6!

In the following calculations we adopt a more speci
model for the spectral density. We assume that the coup
with phonons is diagonal, i.e.,q̄mnÞ0 for m5n only, that
each molecule has its own bath, and the baths couple
different molecules are uncorrelated and statistically ide
cal. These yield25
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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Cmn,kl~v!5dmndkldmkC~v!. ~4.7!

We further use the Brownian oscillator spectral dens
for the phonon bath:32

C~v!52l
Lv

L21v2
. ~4.8!

Here L21 is the nuclear relaxation time scale andl is the
exciton–phonon coupling strength. The complete Redfi
superoperator for this model is given by Eqs.~C3!–~C5!. Its
population block assumes a particularly compact form an
presented in Eqs.~C6! and ~C7!. It should be noted that the
Redfield theory is based on second order perturbation w
respect to the exciton–bath coupling and the Markov
proximation. It only holds for fast bath relaxationA2lkT
!L,kT. If this condition is not satisfied, the solution of th
Redfield equation becomes unphysical and may even y
diagonal elements which are negative or larger than 1.

The Redfield relaxation superoperator simplifies cons
erably for high temperatures and fast bath relaxation whic
the limiting case where the present theory applies. As sho
in Appendix C, in this case we obtain

R̄a8b8,ab52D2L21~da8adb8b2Ca8b8ab!, ~4.9!

with D2[2lkT and

Cabgd[(
m

wa~m!wb~m!wg~m!wd~m!. ~4.10!

Equation~4.9! was first derived using a simple stochas
model proposed by Haken and Strobl.38,39,46It assumes that
the site energies are given by uncorrelated Gaussian ran
variables with varianceD2 and fast correlation timeL21.
Alternatively, using the exciton basis, the Haken–Stro
model implies that the excitons encounter a succession
strong collisions whereby after each collision all excit
states are equally populated~irrespective of the initial
state!.39 This shows that the Haken–Strobl model is
infinite-temperature approximation. The model applies, e
for triplet excitons which have a very weak coupling~narrow
bandwidth! of a few cm21 so that the infinite temperatur
kT@~bandwidth! is easily met. The Haken–Strobl mod
was recently applied for antenna complexes.47,48 Note how-
ever that the;600 cm21 bandwidth in typical aggregates i
higher thankT (;200 cm21 for room temperature! so that
the infinite temperature approximation does not hold and
general expressions@Eqs. ~B2! and ~B3!# that hold for all
temperatures should be used instead of Eq.~4.9!.

The issue of the exciton coherence size has draw
considerable attention. We have shown that a precise
unambiguous definition may be given in terms of the inve
participation ratio of the exciton density matrix.31 The den-
sity matrix for the propagated exciton wavepacket is

Nmn~t![(
kl

E
0

`

dt2 Gmn,kl
(N) ~ t2!Dkl~t2t2 ,v̄1!, ~4.11!

and its inverse participation ratio is defined by36

P~t!5FL(
mn

uNmn~t!u2G21F S (
mn

uNmn~t!u D 2G ~4.12!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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whereL is the number of chromophores. The density mat
provides the proper averaged size relevant for optical sig
such as fluorescence and superradiance.

V. NUMERICAL SIMULATIONS

We have calculated the TFGF signals and the exc
wavepacket dynamics for a linear aggregate consisting
five two-level chromophores. All chromophores have par
lel transition dipoles and the samemn . Calculations were
performed at room temperatureT5300 K, exciton-bath cou-
pling l50.1 cm21, and the inverse nuclear relaxation tim
L550 cm21. The linear absorption spectrum for this mod
is displayed in Fig. 1.

We assume the snapshot limit@Eq. ~3.27!# for the gate
and a Gaussian envelope of the pump

E1~ t !5expS 2
t2

2s2D , ~5.1!

with s515 fs. Its Wigner spectrogram is

uI W~ t,v!u5A4ps2 expS 2
t2

s2
2s2v2D . ~5.2!

In the first calculation we tuned,v̄1512 978 cm21 to
coincide with the highest exciton. The power spectrum of
pulse envelope

uE~v!u2[E dt IW~ t,v!52ps2 exp~2s2v2!, ~5.3!

is shown by the dashed line in Fig. 1. The dispersed fluo
cence signals@Eq. ~3.33!# at various delay times are dis
played in Fig 2. Att50, the peak intensity from the highe
exciton state is largest. Att55 ns, all peak intensities be
come comparable and att57 ns, the lowest exciton pea
starts to grow. In the long time limit, the propagated wav
packet relaxes towards the thermalized Boltzmann distr
tion of populations in the one-exciton manifold. A

FIG. 1. The solid line shows the linear absorption spectrum@Eq. ~2.19!# for
the following model of pentamer aggregate.V159679, V2510 486,
V3511 292, V4512 099, V5512 906, J125403, J235484, J345323,
J455242. Other parameters are given in text. Power spectra of the p

fields, v̄1512 978~dashed line! andv̄1511 413~dotted line!. All frequen-
cies are in cm21.
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t5100 ns, the system has reached thermal equilibrium. T
is verified in Fig. 3 where we show the absolute values of
propagated density matrix exciton wavepacket,

uNab~t!u[U(
gd

E
0

`

dt2 Gab,gd
(N) ~ t2!Dgd~t2t2 ,v̄1!U. ~5.4!

Coherences vanish att>1 ns and subsequently th
populations evolve towards thermal equilibrium. We ha
repeated these calculations forv̄1511, 413 cm21 ~resonant
with the middle exciton!. The pump power spectrum is als
shown in Fig. 1. The fluorescence spectra are shown
Fig. 4 and the absolute values of the propagated wavepac
are given in Fig. 5. In this case the emission from the i
tially pumped state is largest att50. The emission from
higher exciton states decays ast increases, whereas the pea
from lowest state grows. The exciton system reaches ther
equilibrium att5100 ns, as in Fig. 2.

VI. SUMMARY

We have derived a closed expression for the TFGF in
Doorway–Window representation, which provides an int
tive three-step picture: generation of the Doorway wa

se

FIG. 2. Time and frequency resolved fluorescence signals for the mod

Fig. 1. The pump carrier frequency isv̄1512 978 cm21.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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packet by the pump, relaxation of the wavepacket towa
thermal equilibrium and detection of the signal by the ov
lap of the propagated wavepacket and the Window wa
packet. Wigner spectrograms for the excitation pulse and
gate account for arbitrary pulse shapes and durations
interpolate naturally between the time resolved and the
quency resolved limits. Relaxation of excitons is incorp
rated through the Green functionG(N) calculated by solving
the Redfield equations which describe the time evolution
the exciton density matrixN.

A simpler commonly used reduction scheme which o
retains the populations, i.e., the diagonal elements ofN is
known as the master equation.45,38,49A notable advantage o
the Redfield equation is that it can be easily transform
between basis sets, and the resulting exciton density m
is invariant to such transformations; the choice of a basis
is immaterial. In contrast, since the term ‘‘population’’
basis dependent, master equations derived for diffe
choices of a basis set describe a different physical reality
practice, two basis sets are often used, either the c
mophore~molecular! or the exciton eigenstates. The mas
equation for chromophore populationsNnn may be adequate
when the diagonal exciton–phonon coupling is strong co

FIG. 3. Absolute values of propagated exciton wavepacket in the exc
basis@Eq. ~5.4!# corresponding to Fig. 2.
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pared to the intermolecular coupling. Strong exciton–phon
coupling causes dynamical localization of the excitations
the chromophores, and the coherences between diffe
chromophores can be neglected. The rate in the corresp
ing master equation can be computed using the Fors
Dexter theory.2,3

When intermolecular coupling is strong compared
exciton–phonon coupling, we need to first diagonalize
Frenkel–exciton Hamiltonian and obtain the one-excit
eigenstates Eq.~2.5!. The master equation for exciton popu
lationsNaa may be used when the system is small enough
that the distance between consecutive exciton levels is la
compared to the phonon-induced exciton dephasing. Clo
expressions for the master equations rate constants for
Brownian oscillator spectral density are given in Eqs.~C6!
and ~C7!. Master equations do not usually apply for larg
aggregates: since the dephasing between the exciton s
with close energies is weak, the coherences between
states may not be neglected, and the description in term
exciton populations alone is not possible. One should ra
retain explicitly all components of the density matrix an
solve the Redfield equation. However, in some cases ma

n
FIG. 4. Time and frequency fluorescence signals for the model of Fig

The pump carrier frequency isv̄1511 413 cm21.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



F
di
an
Th
tin

to

m
nc

e

nd-

he

t

ing
To

of
x

are
red
he

e
e
s

ou-

ito

7960 J. Chem. Phys., Vol. 112, No. 18, 8 May 2000 Chernyak, Minami, and Mukamel
equations may still be used even for large aggregates.
strong disorder the exciton states are localized and accor
to Mott,50 states with close energies do not communicate
therefore do not interact by means of phonon exchange.
implies that there is an energy gap between communica
excitons, and the master equation can be used provided
exciton localization length is sufficiently short for the gap
exceed the dephasing rate.51,52
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APPENDIX A: DOORWAY WINDOW
REPRESENTATION FOR THE FLUORESCENCE
SIGNAL

According to Eqs.~3.2! and ~3.4!, the TFGF signal can
be expressed in terms of the gating functionF and the cor-
relation functionS(t8,t9) of the polarization operator of th
driven system

S~t8,t9![^P̃~t9!P̃~t8!&, ~A1!

FIG. 5. Absolute values of propagated exciton wavepacket in the exc
basis@Eq. ~5.4!#, corresponding to Fig. 4.
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whereP̃ stands for the Heisenberg picture operator. Expa
ing Eq. ~A1! to first non-vanishing~i.e., second! order in the
driving field, and retaining only those terms that survive t
RWA yields36,52

S~t8,t9!5 (
mnkl

mmmnmkm lE
0

`

dt8E
0

`

dt9 I ~t82t8,t92t9!

3exp[2 i v̄1(t82t82t91t9)]

3^B̂lR~t92t9!B̂nR
† ~t9!B̂mL~t8!B̂kL

† ~t82t8!&,

~A2!

where in the rhs of Eq.~A2! we have a four-point Liouville
space correlation function of the free system~without the
driving field!. For an operatorÂ we define the right and lef
superoperators as

ÂL~ r̂ ![Âr̂, ÂR~ r̂ ![r̂Â. ~A3!

In deriving Eq.~A2! we also made use of Eq.~2.11!. The
Liouville space correlation function can be evaluated us
the projection operator technique developed in Ref. 51.
that end, we introduce the following projection operatorP

Pr[r̄0 Trq~r!, ~A4!

where Trq stands for the trace over vibrational degrees
freedom,r̄0 being the equilibrium vibrational density matri
in the ground electronic state, whereasr is a density matrix
in the complete space.

We assume that the excitation pulse and the gating
temporarily well separated, i.e., their delay is large compa
to the gating time window, the pulse duration, and t
dephasing timeG21. This implies that in Eq. ~A2!
ut92t8u,ut92t8u!t8. We then have four possible relativ
time orderings in the four-point correlation function in th
rhs of Eq.~A2!, defined by the signs of the time difference
(t92t8) and (t92t92t81t8).

Introducing the consecutive time intervalst1 ,t2 ,t3>0
with t2@t1 ,t3 we can recast Eq.~A2! in a form

S~t,t2t3!5 (
mnkl

mmmnmkm lE
0

`

dt2E
0

`

dt1$Tr@B̂mLG~ t3!

3B̂nR
† G~ t2!B̂lRG~ t1!B̂kL

† r̄ #

3I ~t2t32t22t1 ,t2t32t2!

3exp~2 i v̄1t1!1Tr@B̂mLG~ t3!B̂nR
† G~ t2!

3B̂kL
† G~ t1!B̂lRr̄ #I ~t2t32t2 ,t2t32t22t1!

3exp~ i v̄1t1!%, ~A5!

whereG(t)[exp(2iLt) with the Liouville operatorL.
One can obtain a similar expression forS(t2t3 ,t). It

has been demonstrated51 that if the bath relaxation time is
fast compared to the exciton relaxation time scale, the Li

n

to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



ra
m

pe
,
ng
on
n

e

ly

7961J. Chem. Phys., Vol. 112, No. 18, 8 May 2000 Exciton transport in aggregates
ville space evolution operator in Eq.~A5! can be replaced by
P G (t)P with the projection operatorP defined by Eq.~A4!.
This yields

Tr@B̂mLG~ t3!B̂nR
† G~ t2!B̂lRG~ t1!B̂kL

† r̄ #

5(
pq

Gmp~ t3!Gpn,ql
(N) ~ t2!Gqk~ t1!, ~A6!

Tr@B̂mLG~ t3!B̂nR
† G~ t2!B̂kL

† G~ t1!B̂lRr̄ #

52(
pq

Gmp~ t3!Gpn,kq
(N) ~ t2!Glq

† ~ t1!. ~A7!

Substituting Eqs.~A6! and~A7! in Eq. ~A5!, followed by
substituting Eq.~A5! and a similar expression forS(t2t3 ,t)
into Eq. ~3.2! and making use of Eq.~A1! and Eq. ~3.4!
immediately yields the DW representation for the signal@Eq.
~3.14!#.53

APPENDIX B: THE REDFIELD RELAXATION
SUPEROPERATOR

In this appendix we derive the Green functionG(N) that
propagates the Doorway wavepacket from its initial prepa
tion stage to the final detection of a photon, during the ti
delayt2 . When the exciton–bath coupling is neglected, the
density matrix satisfies the Liouville equation,

d

dt
Nmn~ t !52 i(

m8
@Hmm8Nm8n~ t !2Nmm8~ t !Hm8n#. ~B1!

Using projection operator techniques and second order
turbation theory with respect to the exciton–bath coupling
we can take into account the effect of exciton–bath coupli
on the time evolution of the density matrix in the one-excit
manifold.41,36 The Redfield tensor for our model is the
given by41,36

R̄a8b8,ab5E
0

`

Ra8b8,ab~ t !exp~ ivabt !dt, ~B2!

wherevab[«a2«b and

Ra8b8,ab~ t !52(
g

exp~ ivbgt !Mag,ga8~ t !dbb8

1exp~ ivba8t !Maa8,bb8~ t !

2(
g

exp~ ivgat !Mbg,gb8
* ~ t !daa8

1exp~ ivb8at !Mbb8,aa8
* ~ t !. ~B3!

Using Eq.~2.9!, we can write the spectral density in th
time domain,41

Mab,gd~ t !5
1

2E2`

` dv

2p
Cab,gd~v!

3@coth~v/2kT!cos~vt !2 i sin~vt !#, ~B4!

where
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Cab,gd~v![ (
mn,kl

wa~m!wb~n!wg~k!wd~ l !Cmn,kl~v!, ~B5!

andCmn,kl(v) is given by Eq.~2.9!.
Finally, the exciton dephasing matrix is given by41

Gmn[2 i (
m8n8k

E
0

`

dt Gm8n8
0

~ t !Mmm8;n8k~ t !Gkn
0†~ t !, ~B6!

with

Gm8n8
0

~ t ![u~ t !^m8ue2 iH etun8&. ~B7!

APPENDIX C: REDFIELD RELAXATION
SUPEROPERATOR FOR THE BROWNIAN
OSCILLATOR SPECTRAL DENSITY

Substituting the spectral density of a single strong
overdamped Brownian oscillator Eq.~4.8! into Eq. ~B4! we
obtain54

Mab,gd~ t !5CabgdM~ t ! ~C1!

and

M~ t !5lLF cotS L

2kTDexp~2Lt !14kT

3 (
n51

`
nn exp~2nnt !

nn
22L2

2 i exp~2Lt !G , ~C2!

wherenn[2pnkT are the Matsubara frequencies.
Substituting this in Eqs.~B2! and~B3!, the Redfield ten-

sor is finally given by

R̄a8b8,ab5Ra8b8,ab
1

1R̄a8b8,ab
1

1Ra8b8,ab
2

1R̄a8b8,ab
2 , ~C3!

where

Ra8b8,ab
1

52lL(
g

Cgaga8F S cotS L

2kTD2 i DYag~L!

14kT(
n51

`
nn

nn
22L2

Yag~nn!Gdbb8 ,

R̄a8b8,ab
1

5lLCaba8b8F S cotS L

2kTD2 i DYaa8~L!

14kT(
n51

`
nn

nn
22L2

Yaa8~nn!G ,

~C4!

R̄a8b8,ab
2

5lLCaba8b8F S cotS L

2kTD1 i DYb8b~L!

14kT(
n51

`
nn

nn
22L2

Yb8b~nn!G ,
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Ra8b8,ab
2

52lL(
g

Cgbgb8F S cotS L

2kTD1 i DYgb~L!

14kT(
n51

`
nn

nn
22L2

Ygb~nn!Gdaa8 .

Here we have introduced the auxiliary function,

Yab~Q![
1

Q2 ivab
. ~C5!

The population block of the Redfield tensor@Eq. ~C3!#
can be recast in a compact form

R̄a8a8,aa52lL(
g

Cgaga8F2H L cotS L

2kTD2vagJ
3

1

L21vag
2

14kT

3 (
n51

` 2nn
2

~nn
22L2!~nn

21vag
2 !

Gdaa8

1lLCaaa8a8F2H L cotS L

2kTD2vaa8J
3

1

L21vaa8
2 14kT(

n51

` 2nn
2

~nn
22L2!~nn

21vaa8
2

!
G
~C6!

and

R̄aa,aa52lL(
g

CgagaF2H L cotS L

2kTD2vagJ
3

1

L21vag
2

14kT(
n51

` 2nn
2

~nn
22L2!~nn

21vag
2 !

G
1lLCaaaaF 2

L
L cotS L

2kTD14kT

3 (
n51

`
2

~nn
22L2!

G . ~C7!

At high temperatures the bath relaxation rate is de
mined by a typical oscillator frequency~L!. The oscillators
with frequencies higher thankT are frozen and do not con
tribute to the relaxation process. ForkT!L the relaxation is
therefore dominated by the Matsubara rate 2pkT. Our most
general expressions for the Redfield superoperator@Eqs.
~C3!–~C7!# hold when all bath timescales are fast 2pkT,
L@A2lkT. These expressions are considerably simplifi
in the high-temperature limitkT@L. In Eq. ~C4! we can
then omit the sums over the Matsubara frequencies and
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place the cot(L/2kT) factors by 2kT/L. The Haken–Strobl
limit is recovered whenL is further large compared to th
bandwidth (J). We can getY~L!51/L and obtain

Ra8b8,ab
1

52lS 2kT

L
2 i D daa8dbb8 ,

R̄a8b8,ab
1

5lCaba8b8S 2kT

L
2 i D ,

~C8!

R̄a8b8,ab
2

5lCaba8b8S 2kT

L
1 i D ,

Ra8b8,ab
2

52lS 2kT

L
1 i D daa8dbb8 .

Substituting these in Eq.~C3! finally results in the Haken–
Strobl superoperator@Eq. ~4.9!#.

1J-aggregates, edited by T. Kobayashi~World Scientific, Singapore, 1996!.
2E. A. Silinish and V. Capek,Organic Molecular Crystals~American In-
stitute of Physics, New York, 1994!.

3M. Pope and C. E. Swenberg,Electronic Processes in Organic Crystal
~Clarendon, New York, 1982!.

4S. R. Forrest, Chem. Rev.97, 1793~1997!.
5A. Aziz, K. L. Narasimhan, N. Periasamy, and N. C. Maiti, Philos. Ma
B 79, 993 ~1999!.

6E. I. Mal’tsev et al., Appl. Phys. Lett.73, 3641~1998!.
7A. Gretchikhine, G. Schweitzer, M. van der Auweraer, R. de Keyzer,
Vandenbroucke, and F. C. de Schryver, J. Appl. Phys.85, 1283~1999!.

8V. F. Kamalov, I. A. Struganova, and K. Yoshihara, Chem. Phys. L
213, 559 ~1993!.

9R. Gadonas, K.-H. Feller, and A. Pugzlys, Opt. Commun.112, 157
~1994!; E. Gaizanskas, K.-H. Feller, and R. Gadonas,ibid. 118, 360
~1995!.

10K. Misawa, S. Machida, K. Horie, and T. Kobayashi, Chem. Phys. L
240, 210~1995!; T. Kobayashi, Mol. Cryst. Liq. Cryst.283, 17 ~1996!; K.
Misawa and T. Kobayashi, Nonlinear Opt.15, 81 ~1996!.

11F. C. Spano, J. R. Kuklinski, and S. Mukamel, Phys. Rev. Lett.65, 211
~1990!; J. Chem. Phys.94, 7534~1991!.

12V. Sundstro¨m, T. Pullerits, and R. van Grondelle, J. Phys. Chem. B103,
2327 ~1999!.

13V. Nagarajan, E. T. Johnson, J. C. Williams, and W. W. Parson, J. P
Chem. B193, 2297~1999!.

14D. C. Arnett, C. C. Moser, P. L. Dutton, and N. F. Scherer, J. Phys. Ch
B 103, 2014~1999!.

15M. Rätsep, R. E. Blankenship, and G. J. Small, J. Phys. Chem. B103,
5736 ~1999!.

16J. Pieperet al., J. Phys. Chem. A103, 2412 ~1999!; M. Rätsepet al., J.
Phys. Chem. B102, 4035~1998!.

17P. Schellenberg, R. J. W. Louwe, S. Shochat, P. Gast, and T. J. Aart
J. Phys. Chem. B101, 6786~1997!.

18R. J. W. Louwe and T. J. Aartsma, J. Phys. Chem. B101, 7221~1997!.
19R. Jimenez, R. van Mourik, J. Y. Yu, and G. R. Fleming, J. Phys. Ch

B 101, 7350~1997!.
20R. van Grondelle, J. P. Dekker, T. Gillbro, and V. Sundstro¨m, Biochim.

Biophys. Acta1187, 1 ~1994!.
21V. Sundstro¨m and R. van Grondelle, inAnoxygenic Photosynthetic Bac

teria, edited by R. E. Blankenship, M. T. Madiga, and C. E. Baner~Klu-
wer Academic, Dordrecht, 1995!, p. 349.

22R. Remelli, C. Varotto, D. Sandona, R. Croce, and R. Bassi, J. B
Chem.274, 33510~1999!; R. Simonetto, M. Crimi, D. Sandona, R. Croce
G. Cinque, J. Breton, and R. Bassi, Biochemistry38, 12974~1999!.

23M. R. Shortreedet al., J. Phys. Chem. B101, 6318~1997!; C. Devadoss,
P. Bharthi, and J. S. Moore, Macromolecules31, 8091~1998!.

24E. Y. Poliakov, V. Chernyak, S. Tretiak, and S. Mukamel, J. Chem. Ph
110, 8161 ~1999!; S. Tretiak, V. Chernyak, and S. Mukamel, J. Phy
Chem. B102, 3310~1998!.

25V. Chernyak and S. Mukamel, J. Chem. Phys.105, 4565~1996!.
26T. Pullerits, M. Chachisvilis, and V. Sundstro¨m, Chem. Phys Lett.100,

10787 ~1996!; T. Pullerits, M. Chachisvilis, M. R. Jones, C. N. Hunte
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



at

re

.

um

s

ys.

try

ys.

7963J. Chem. Phys., Vol. 112, No. 18, 8 May 2000 Exciton transport in aggregates
and V. Sundstro¨m, Chem. Phys. Lett.224, 355 ~1994!.
27V. Nagarajan, R. G. Alden, J. C. Williams, and W. W. Parson, Proc. N

Acad. Sci. USA93, 13774~1994!.
28R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Natu

~London! 369, 471 ~1994!.
29H. Wang, J. Shah, T. C. Damen, and L. Pfeiffer, Phys. Rev. Lett.74, 3065

~1995!; M. Woerner and J. Shah,ibid. 81, 4208~1998!.
30Y. J. Yan and S. Mukamel, Phys. Rev. A41, 6485~1990!.
31T. Meier, V. Chernyak, and S. Mukamel, J. Phys. Chem. B101, 7332

~1997!.
32S. Mukamel,Principles of Nonlinear Optical Spectroscopy~Oxford, New

York, 1995!.
33M. Dahlbom, V. Sundstro¨m, T. Minami, V. Chernyak, and S. Mukamel, J

Phys. Chem.~in press!.
34S. Mukamel, C. Ciordas-Ciurdariu, and V. Khidekel, IEEE J. Quant

Electron.32, 1278~1996!; Adv. Chem. Phys.101, 345 ~1997!; S. Muka-
mel, J. Chem. Phys.107, 4165~1997!.

35A. G. Redfield, Adv. Magn. Reson.1, 1 ~1965!.
36W. T. Pollard, A. K. Felts, and R. A. Friesner, Adv. Chem. Phys.93, 77

~1997!; W. T. Pollard and R. A. Friesner, J. Chem. Phys.100, 5054
~1994!.

37A. Abragam, The Principles of Nuclear Magnetism~Oxford, London,
1961!.

38V. W. Kenkre,Exciton Dynamics in Molecular Crystals and Aggregate,
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
l.
Springer Tracts in Modern Physics Vol. 94~Springer, Berlin, 1982!, p. 1;
P. Reineker,ibid., p. 111.

39J. Knoester and S. Mukamel, Phys. Rep.205, 1 ~1991!.
40W. M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, J. Chem. Ph

108, 7763~1998!.
41V. Chernyak, W. M. Zhang, and S. Mukamel, J. Chem. Phys.109, 9587

~1998!.
42S. Mukamel, Adv. Chem. Phys.70, 165 ~1988!.
43J. H. Eberly and K. Wodkiewicz, J. Opt. Soc. Am.67, 1252~1977!.
44J. M. Jean, J. Phys. Chem. A102, 7549~1998!.
45N. G. van Kampen,Stochastic Processes in Physics and Chemis

~North-Holland, Amsterdam, 1981!.
46H. Haken and G. Strobl, Z. Phys.262, 135 ~1973!.
47J. A. Leegwater, J. Phys. Chem.100, 14403~1996!.
48S. I. E. Vultoet al., J. Phys. Chem. B~in press!.
49V. M. Axt, O. Kühn, and S. Mukamel, J. Lumin.72–74, 806 ~1997!.
50N. Mott, Metal–Insulator Transition~Taylor and Francis, London, 1974!.
51T. Meier, V. Chernyak, and S. Mukamel, J. Chem. Phys.107, 8759

~1997!.
52W. M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, J. Chem. Ph

108, 7763~1998!.
53V. Chernyak, N. Wang, and S. Mukamel, Phys. Rep.263, 213 ~1995!.
54Y. Zhao, V. Chernyak, and S. Mukamel, J. Phys. Chem. A102, 6614

~1998!.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html


