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The nonlinear optical response of molecules is calculated using classical equations of motion for the electronic
density matrix coupled to nuclear coordinates. The equations apply to an arbitrary (gauge-invariant)
parametrization of the electronic density matrix. The electronic problem is treated at the time-dependent
Hartree-Fock level, but the extension to time-dependent density functional theory is straightforward. An
expansion in the inverse nuclear masses provides a low-cost calculation of polarizabilities at intermediate
frequencies (high compared to nuclear vibrations and low compared to electronic transitions). This regime is
particularly relevant for optical materials applications. Closed expressions are derived for the electronic and
nuclear contributions to the lowest two polarizabiliteesand 5.

I. Introduction oscillators (CEO) approachwhich computes the electronic
contributions to the dynamical response with numerical effort
Linear and nonlinear molecular polarizabilities depend on the comparable to the finite field method for the static response.
combined electronic and nuclear response to optical fields. The technique is based on closed classical equations of motion
Calculations are considerably simplified when the characteristic for the electronic density matrix(t) derived using the time-
frequencyw, of the driving fields is low compared to both  dependent Hartree~ock (TDHF) procedure and solved using
electronic Q¢) and vibrational ) frequencies:o| < Qe,Qn. the density matrix spectral moment algorithm. Assumiher
In this limit both electrons and nuclei are fast, and have enough Ne + Nj, orbitals as a single electron basis gt ¢ccupied and
time to respond to the instantaneous value of the driving field. Ne unoccupied)p hasN, = Ne'Nh independent parameters which
Static polarizabilities computed using a constant, time- may be viewed as collective electronic oscillators.
independent fieldd,. = 0) provide a good approximation in We extend the CEO in two ways. First we include classical
this case. In the static limit we simply optimize the ground- nuclear dynamics by implementing the time-dependent varia-
state geometry in the presence of the field, and the polarizabili- tional principle. This step is formally straightforward, and merely
ties are computed as partial derivatives of the molecular ground-involves adding classical equations of motion fomuclear
state energy with respect to the applied dc field. Extensive effort coordinates. Calculations of optical polarizabilities require
was devoted to computing both electronic and nuclear responsefinding the joint Ny = N, + K coupled electron nuclear
using this finite field approach.* These computations unam-  oscillators, which leads to an enormous increase of numerical
biguously establish the important role of both types of contribu- effort. Second, we recast the equations in an invariant form,
tions to the purely static polarizabilité€s’ In the opposite limit which allows for an arbitrary parametrization of single Slater
of very high frequenciesp. > Q¢Qn (which corresponds to  determinants through the electronic density matrix. This is done
X-ray rather than optical measurements), neither the electronicby adopting a system of local coordinates in phase space. We
nor the nuclear degrees of freedom have enough time to fully are thus not limited to the Thouless representafiamd can
respond, and the polarizabilities can be computed pertubativelyuse parametrizations more suitable for particular applications,
in Qdw. and Qy/w. using a short-time expansion. For e.g., computing polarizabilities. In addition, the invariant form
intermediate, resonant field frequencies, the complete dynamicalallows an arbitrary basis set to be used in the single-electron
response should be calculated. This is a much more complicatedorbital space. Basis set transformations are treated as gauge
task since it involves the excited states as well as the groundtransformations, which provides a deeper insight into the nature

state of the system. of the nonadiabatic coupling. We further address the dependence
In this paper we consider a third limiting case, namely, the of the single-electron space on molecular geometry, and
intermediate frequency regime (IFRRN < o < Qe In this distinguish between two cases: in the first the single-electron

case the driving field can be considered as static with respectspace changes with molecular geometry, whereas in the second
to electronic motions but fast with respect to the nuclear degreescase only the basis set elements depend on geometry.

of freedom. This regime is most relevant for optical materials A perturbative expansion of polarizabilities$@/w, which
applications where resonances are avoided to minimize dissi-can be conveniently formulated as an expansion of the response
pative losses. In conjugated polymers, e@e, varies in the in the inverse nuclear masd—1, is developed. This is ac-
range 2-4 eV, the highest vibrational frequencies are complished by expanding the dynamical equation$/irt to

Qn ~ 0.25 eV, and the characteristic frequency of the driving obtain a closed system of equations for the dynamical variables
field w. ~ 0.7 eV. Developing a low-cost algorithm for in each order. The explicit calculation of vibrational modes is
computing the response in this regime, which avoids dealing avoided, and only the electronic degrees of freedom are treated
with nuclear dynamics explicitly, constitutes the primary goal explicitly. Solving the resulting equations pertubatively in the
of this paper. Our scheme starts with the collective electronic driving field yields closed expressions for IFR polarizabilities.
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In section Il we introduce the Hamiltonian and derive the A transformation to a new set of orbitals
collective electronie-nuclear oscillator equations. The equations
are given in an invariant form, i.e., independent of any particular y'(r) = Zin(r) yi(r) (2.6)
parametrization of the electronic density matrix. These equations ]
are applied in section Il to construct a perturbation theory in
the inverse nuclear mads~?, which accounts for vibrational 13
contributions. In section IV we derive closed expressions for A
the first- and second-order polarizabilities obtained by expanding ey — vl 1
the solution in powers of the driving field. al M) =Y E)‘MY(r) Y A/‘(r) Yy @9

The relative magnitude of electronic and vibrational contribu- tha nonadiabatic coupling, therefore, may be incorporated
tions to the off-resonant optical response is of special |nterestf0rma"y through a gauge field or a nonabelian vector field. In

for conjugated molecules wherﬂ-electron_ delocalization o following we further make use of the intensity tensor
strongly enhances the former, and the latter is strong due to thecorresponding ta\,(r), which is defined &3

their nonrigid geometry:?1! For a simple model of a push
puI_I polye_ne, which |_ncIude_s tw_o electronic states (neutral and F,w(r) = 3ﬂAV(r) — 3VA#(r) — [Aﬂ(f)a A®M)] (2.8)
zwitteronic) and a single vibrational mode (the-C stretch),

the two contributions to the static polarizabilities turn out to be F is transformed under gauge transformations in the following
exactly the samé In section V we apply our expansion to this  way:

model and estimate the relative magnitude of both contributions

generates the following gauge transformation of the vector field

in the IFR. Our results are finally summarized and discussed in F. ()= Yi(r) F.(r) Y(r) (2.9)

section VI. For clarity, details of the derivations are given in

the Appendices. One should distinguish between two cases. In the first, the
single-electron space does not depend on molecular geometry,

Il. Gauge-Invariant Oscillator Representation of Coupled even though the basis set itself, namely, the orbitgly, are

Electronic and Nuclear Dynamics r-dependent. This is, e.g., the case when the electronic basis is
complete. The vector potential is then represented by a pure

The guantum molecular Hamiltonian, for the coupled elec-

tronic and nuclear dynamics, is gauge:
A=A+ A, + A, 2.1) ALr) =Y '(r) 3,Y(r) (2.10)
Here and the intensity tensor vanishés,(r) = 0. The fieldA, can
now be eliminated by a gauge transformatior{r). This
p 2 corresponds to the crude-adiabatic basis*setere the orbitals
A = z_“ + u(r) (2.2) become independent of and ther dependence of, V, and
0 T2M,, u constitutes the only source of electranuclear coupling. In

the second case, the single-electron space itself variesrwith
is the nuclear Hamiltonian wittP,(r,) being the nuclear  and it is no longer possible to chooséndependent orbitals.
momentum (coordinate) operators. The electronic Hamiltonian The vector potential may not be represented in the form of
is eq 2.10 andF,,(r) = 0. It should be emphasized that only if
A F.(r) = 0 can the nonadiabatic coupling be eliminated by a
Hl = ztii(r)CiJer + 1/22\/ij,rs(r)ci+cj+crcs (2'3) proper choice O_f a basis set. . .
] Irs In the following we assume that the electronic state is
o ] represented by a single Slater determinant at all times, and treat
whereg; (¢*) are the electrqn ann|_h|Iat|on _(creatlon) operators nuclear motions classically. Applying the time-dependent
and |y(r)Urepresent a basis set in the single-electron space,ariational approach to the quantum Hamiltonian (eqs-2.3)
which depends on the nuclear configuratiorHiy describes  |gads to the closed system of equations for the electronic

the interaction with an external electric fiel(r) nuclear oscillator8.
i = = u(1)e " GE@) (2.4) do . .
) Z e & = YA A L) + 2V, ] HIE@L() o]

The coupling of electronic and nuclear motions enters through (2.11)
ther dependence of the transfdgr) and dipoleu(r) single- dr, .
electron operators, and the Coulomb two-electron opeX4tgr T Mo Pu (2.12)
The parametriac dependence of the orbitals gives rise to an
additional source of coupling: the nonadiabatic coupling which dP, .
can be described in terms of the matrix vector figlg,(r) —= _ZMV P, Tr{pF,(r)} — 8,u(r) — Tr{ V,t(r)p} —
defined by dr v

TH PV MNP} + i (r) E@) + TH{pVou(r)} E(D) (2.13)

A1) = —B(0)]3,(1)0 (2.5)
Here p stands for the single-electron density matrix, with
We recall that the electronic basis set siz&liand the number elementsp; = [@"cL] which parametrizes the electron state
of nuclear coordinates K. A is a real antisymmetrit\ x N represented by a single Slater determin&gn(r,) represent the
matrix in electronic space where thandj indices denote the  nuclear momenta (coordinates) wherdas the matrix vector
basis orbitals. Each element Afis a K-component vector in  field defined in eq 3.4un(r) is the dipole moment corresponding
theK-dimensional nuclear space, andenotes its components.  to the nuclear charges.
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In eq 2.13 we have used long derivativ@s of operators time expansion). Fourier transform of the series yields the high-
[such ag(r) andu(r)] acting in the single-electron space. These frequency expansion of the optical susceptibilities (in powers
are defined by of 1/w.). The IFR is more delicate and requires a new type of

expansion, which will be developed in the next section.
Vol(r) = 9,t(r) — [Ay(r), t(r)] (2.14)
[ll. Optical Response in the Intermediate-Frequency
For superoperator¥(r) the operation of long derivatives is  Regime

defined similarly:
y In the static limit the optical frequency is low compared to

V V(r) = 9,V(r) — [Ay(r), V(r)] (2.15) both electronic and vibrational frequencies. All degrees of

freedom have enough time to respond to the external field, and

The second term in eq 2.15 is a Liouville space commutator of the nuclear and electronic contributions to the polarizabilities
the superoperator(r) and the superoperatdy(r) defined by should be treated along the same footing. In the IFR the

its action on an arbitrary density matrix electronic response is very similar to the static limit since the
. optical frequency is low compared to the electronic frequencies.
A (Np =[Ar), o] (2.16) The situation with the vibrational degrees of freedom is very

different: Since the nuclei are driven at a higher frequency
These equations of the motion have a simple interpretation: compared to the vibrational frequency, the amplitude of the
The first term on the right-hand side (rhs) of eq 2.11 describes driven oscillations is small, and the contribution of nuclear
the electronic motion along the vector potential and determines motions to the IFR polarizabilities can be treated as a perturba-
how the single-electron density matii(r) which acts in the tion to the electronic contribution.
single-electron space at pointmoves to pointr + dr. The An adequate perturbative approach for the nuclear IFR
remaining terms in this equation constitute the TDHF equations. response can be deve|oped by expanding the dynamica| variables

It is possible to use time-dependent density functional theory p, P, andr of eqs 2.1+2.13 in powers of the inverse typical
(TDDFT) instead-® The conceptual and operational similarities nyclear mas#i-1 19

of TDHF and TDDFT are made clear by formulating the latter

using the density matri¥ o(7) = p 1) + pO(x) + ...
The first term on the rhs of the equation for the nuclear
momenta (eq 2.13) represents the Lorentz force. This term van- Pﬂ(t) = Pff’)(r) + P;l)(t) + ... (3.1)
ishes for systems with time-reversal symmetry. The remaining 0 "
terms on the rhs of eq 2.13 can be viewed as the differential of r(o) =1 +rP@ + ...

the Hartree-Fock energy, where the differentiation is performed .
using the long derivatives (egs 2.14 and 2.15) which involve Note that the superscripts denote power#iof and not of the
the vector potential. The operatot§) and u(r) and the field. At this point we fully retain the field to all orders: An

superoperator¥(r) are expressed in terms of the dyadji) expansion i_n the field will be made on!y in the next section.
andu;(r) and the tetradi/;s(r) matrix elements, respectively. Our goal is to solve egs 2.+2.13 to first order infM~*. In
Equations 2.11, 2.12, and 2.13 together with the expressionzero order, eq 2.12 immediately yieldg)(r) =0 ( =0isthe
for polarization equilibrium geometry). Setting = 0 in eq 2.11, the first term
on the rhs vanishes and eq 2.11 adopts the form of the TDHF
P = u\(r) + Tr{pu(r)} (2.17) equation forp©(z), which gives the electronic dynamics when

the nuclei are held fixed in their equilibrium positions:
constitute a closed system of equations for the optical response.
These equations allow a complete freedom in parametrizing the dp(o) . © On L ©
density matrix in phase space (which is not specified yet). e —i[t+2Vp™, p +IE@)[w, o]  (3.2)
Adopting the language of differential geometry, the equations
are given in a gauge-invariant fofriThe END equations of ~ Here we used the notatidn= t(0), V = V(0), andu = u(0).
ref 18 were derived using the Thouless parametrization of SlaterThe equation foP%(z) is obtained by omitting the first term
determinants. In the next section we adopt a different param- jy eq 2.13 and Sgtting = 0 in the remaining terms, which

etrization which we found to be more convenient for the present implies replacing with p©. Substituting the equation f(ﬂ/(?)

applications. . ) . e
When these equations are solved to first-order in the externallm0 €q 2.12 yields the equation fOE (@):
field, they require arNt x Nr diagonalization, which results 2 (1)

in Nr = N, + K joint electronie-nuclear normal modes. The &y = ©) _ ©x/ (0
solution to higher orders in the field can be expressed using Me ar? o = Trltap™) = TH(p™Np®) + iy JE () +
these modes. This procedure yields the entire frequency Tr(u p(o)) E(r) (3.3)
dependence of the polarizabilities. TRe x Nt diagonalization @

can be avoided in the two limiting cases described in the \ynere we have used the notation= Vtlr=o, Vi = V,Vli=o,
introduction: () In the static limit where the field is independent :

) : o ; etc.
of time, we can incorporate it in eq 2.11 by simply replacing To obtain the equation fgs)(z) in a gauge-invariant form,
with t + uE. Solving the stationary part of eq 2.1dg/dr = 0, we write

will result in the ground state perturbed by the field. Analytic

?r numerlcal derlvfatwes then give the polarlzabllltles. In th|§ P(l) — zr,il)A‘u(o)P(o) + £ (3.4)

imit we only work in the electronic space and view the nuclei &

as parameters, and the polarizabilities are independent of the

nuclear mas$/. (ii) In the opposite, high-frequency limit, the  Gauge invariance of the following equations is guaranteed by
response can be expanded in a Taylor series in time (short-the first term on the rhs of eq 3.4. The equation for the new
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variabless is obtained by expanding eq 2.11 to first order, which we use the renormalized Green function
after some straightforward transformations yields

Oup
& _ . . Gopl) = ————+
E=—M+EMQQ—QW§WTHﬂﬂMS— () w—Q,+il
. . 1 _ 1 1
iy [ty + 2o, oY +E@ Y [, oI (3.5) =MW W, : — (4.3)
@ @ 025 w—Q,+ilw—Q+il

The polarization finally assumes the form . .
P y and the renormalized frequency-dependent dipoles

P=pP0+p® (3.6) 1
where /A‘a(w) =u, + -, ;Mﬂ_lwa,ﬁﬂg\‘) (4.4)

w

P @ = py + Tr(up®) (3.7) 1 _

i) =nd+— ;Mﬁ‘lwﬁ,aué“) (4.5)

and w

pW= z/xN'&r ff) + Tr(ué) + ZTr(ﬂaP(O)) rfll) (3.8) Q, are the frequencies that correspond to the eigenmégdes
o o of the linearized TDHF equation

ti 3.2, 3.3, and 3.5 togeth ith 3.8 describ -

equations an ogether with eqs- escribe LE, = Q.E, (4.6)

the optical response to first orderlfi 1. This approximate solu-
tion to egs 2.1%+2.13 is useful provided the nuclear corrections
to the electronic contributions are not large, which is the case
in the IFR. The iterative solution (egs 3.2, 3.3, and 3.5) in the
driving field involves the electronic modes alone, which requires
considerably lower time and memory numerical effort compared
with computing the entire set & coupled electronie nuclear
modes when the full set of equations is solved.

L being the linearized TDHF operatddefined by eq A3. The
expressions folW in terms of the modes, are given in
Appendix A. For any modé, there is a modé_, = &," with

the frequencyQ_, = —Q,.1” To demonstrate a close resem-
blance with classical oscillators, the linear combinatiBpand

Q.. of the eigenmode§, and&_, have been introduced in ref
17. These are oscillator momenta and coordinates, respectively.
Below we work with the eigenmodés,. The first term on the
rhs of eqs 4.3-4.5 represents the electronic contribution cor-
) o ] ) rected by nuclear motions (the second terﬁﬁ? is a new con-
Optical polarizabilities are defined through an expansion of tribution, induced by nuclear motions, which may not be
the induced polarizatio® in powers of the driving fieldE: obtained by simply renormalizing the quantities in eq 4.2:

IV. First- and Second-Order Optical Polarizabilities at
Intermediate Frequencies

» dw, d
P () = RYw) E(wy) + I (z)zlﬂ)czuz x RO(w) = — 1 ZM 1,00, 0V @.7)
2 o 03 o
w’ @

270(w, + w, — 0JRP(—0g w1, w,) E(w;) E(w)) + ...

(4.2) The second-order response can be calculated similarly. Closed

. _ expressions foR® are given in Appendix C.
HereP (o) andE(w) are the Fourier transforms of the polari- 1 ghtical polarizabilities are obtained from the response

zation and driving field, respectively. The response functions ¢, ionsRr() by performing permutations over thiéncoming

RM are obtained by solving egs 3.2, 3.3, and 3.5 perturbatively frequencies. The linear polarizability is given b
in the driving field and making use of egs 3:8.8. quencies. ! polarizabilityis giv y

We now turn to the parametrization of the density matrix.
To avoid redundant electronic variables, we introduce the
relevant particle-hole componentg andZ (eqs Al and A7).
Expanding in the eigenmodes of the linearized TDHF equation
(see egs A10) results in a system of equations for a set of param- . _
etersz,, Wy, andry (eqs A1+A13). Solving these equations P(-og 0y, 0) =
pertubatively inE yields the response functions. However, the RA(—wg wy, w,) + R(—wg 0, ) (4.9)
number of terms in these expressions grows rapidly with the
order of response. The total number of contributions in the IFR /. second-Order IER Polarizabilities for a Two-Level
is 4 for R and 20 forR® (compared with 1 and 3, respectively, System Coupled to a Single Vibrational Mode
for the purely electronic contributioRd. In the expressions . )
given below we combine these terms to obtain final compact !N this section we calculate(w) and f(—20; o, w) for a

a(w) = RYw) (4.8)

whereas the second-order polarizabifitys

expressions resembling the purely electronic contribdfion. ~ tWo-level model coupled to a single vibrational mode introduced
The linear response can be represented as a sum of twd" ref 12. In the statiev = O limit the vibrational contribution
contributions: RY= RY + R®. The first to S for this model has the same magnitude as the electronic
' ! 2 contribution?
RV = =N 1%0) & (o) itlw 4.2 _ The Hamiltonian is introduced using ad|apat|c_ba_3|s set which
1 (@) #a() Go@) f5() (4.2) includes a neutral valence bopgysOand zwitterionic charge

transfer |ycrOstates, linearly coupled to a single harmonic
is reminiscent oR( in the purely electronic casé except that vibrational mode:
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H= Eve(NlvyvgPygl + Ecr(Dly Ol +
p2
Iy Mol + 1Yerdygl) + oM EMP (5.1)

We assume that the permanent dipole in the zwitterionic state
is the only nonzero element of the dipole operator in the diabatic

basis set

P = uctlcriPcql (5.2)
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and we have introduced the auxiliary quantity

QZ
The vibrationally induced contributioay is
() , (@) lg(®) (5.11)
ay(w) = 2———ox(w) ly(w .
v Mw’Q . 0

The fourth term in eq 5.1 represents the kinetic energy of the wherekeg = KQI(EXr) + 1)Y2 andE(r) = [Ect(r) — Evs(r))/

vibrational mode, with reduced mad4 Equation 5.2 shows
that since the stategpvgUand |ycrJdo not depend on the
nuclear coordinate], the nonadiabatic coupling terms repre-
sented by the gauge field vanish in this basis setA = 0.
Evs(r) andEct(r) are given by

Eyg(r) = 1/2k(r + Q)2

Ecr(r) =1k — Q)+ E (5.3)

where D) represents the displacement between the diabatic

surfaces.
Comparison of egs 2-12.3 and 2.17 with eqgs 5-15.3 yields
for the parameters of eqs 2:122.13 in the diabatic basis set

_[Bw® 3 [0 o0
t(r)_(J ECT(r)), M(r)_(o /’tCT) -4

The coulomb operatov(r) = 0, which is always the case of a
two-level system, angn(r) = 0. The calculation is simplified
considerably by noting that since in the diabatic basisisst
independent of andA = 0, we haveVu = 0. This implies
that only the contribution®?, RY, andR¥’ (egs C1, C2, and
C3) are nonzero. The nuclear-induced correction®9oz, B,
and S vanish; i.e.,i® = u®, fix = ua, Bup = uap and
Sup = Sup Vyap IS given by the last two terms in eq C4.

The calculations are most conveniently performed in the
crude-adiabatic basis set wherés diagonal and we have

__[oo0 [0 1 [0 0
’O_(O 1)' 51_(0 0)’ 51_(1 0) (5.5)

where&; are the two modes with frequenci¢s2 that represent
a single electronic oscillator. We further introduce the matrix
elements ofx andh, in the crude adiabatic basis set:

_ Ue Hge _ Ke Kge
u= ’ hr -
Auge Aug ng Kg
Expressions for these matrix elements as well asXan terms
of the parameters of the original model, and the IFR polariz-

abilities, are given in Appendix D.
For the linear response we have

(5.6)

o(w) = og(w) + ay(w) (5.7)
where the purely electronic contributier: is given by
og(w) = aglo(w) (5.8)

oy is the electronic contribution to the static polarizibility
(teg)”

oy =2 o

(5.9)

2J.
The second-order polarizability is similarly given by

B(—2w; v, w) = f(—2w; v, ) + By (—2w; v, w) (5.12)

with the electronic contribution

pel—200,0) = Lo) T @) 6.1
2 _
= plied e =119 (gez g (5.14)
2
(o) = 92?—4602 Q“f’w (5.15)

and the vibrationally-induced contribution
By(—2w; w, w) =
(keg) .
— ———Pe(—20; 0, )[4l () + T,1,(2w)] (5.16)
M Q
Numerical calculations of the electronic (eq 5.12) and the
vibrational (eq 5.17) polarizabilities in the IFR regime for this
model show that in the IFR (0.2 e¥ o < 1 eV) the purely
electronic contribution dominates and vibrational corrections
only slightly reduce the total polarizability by-8.0%2° Higher,
~30%, vibrational contributions were reported for more realistic
models?

VI. Discussion

In this paper we have developed a procedure for computing
the vibrational contributions to molecular polarizabilities in the
IFR that avoids the explicit calculation of vibrational modes.
The procedure is based on the time-dependent variational
principle for the dynamics of a molecule driven by an optical
field, where the many-electron state is taken to be a single Slater
determinant at all times, whereas the vibrational motions are
treated classicall§!® The resulting dynamical equations are
represented in an invariant form (eqs 2-2113) that requires
no specific set of local coordinates in the single Slater
determinants space as well as a basis set in the space of single-
electron orbitals. This is accomplished by treating the nonadia-
batic coupling terms as a gauge field and the transformations
of the basis set as gauge transformations. The equations of
motion are then naturally interpreted by implementing the
geometrical picture of the gauge field as the shift in the
electronic space induced by a shift of the nuclear positions. This
gives a complete flexibility in choosing the basis sets and local
coordinates for particular applications. Computation of the
dynamical optical response using this approach requires finding
the Nt coupled electronievibrational eigenmodes of the
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corresponding linearized equation. Using the oscillator language,modes. The latter are in principle needed to comBéw).

this means that the electronic and vibrational motions are However, in the IFR where > Qy, Gy(w) can be evaluated
coupled even on the level of the linear response, and each ofusing an expansion in powers®f?2. The expansion coefficients
the oscillators that diagonalize the linearized problem has can be obtained using the sum rules for the vibrational motions,
both electronic and vibrational components. Computing the which do not require finding the vibrational eigenmodes.
joint Nt modes (oscillators) can be avoided in the IFR SubstitutingGn(w) expanded to ordew 2 into the general
(Qn < o < Q) by making use of the different roles played expression polarizabilities described above yields expressions
by the vibrationalQy and electronicQ, frequencies. In the  for the IFR polarizabilities which are identical to those presented
present paper this is achieved by deriving closed equations ofin section IV and Appendix C.

motion for the electronic density matrp® of a driven system
with fixed nuclear positions, the nuclear coordinatés and

the deviationp® of the electronic density matrix fronp©
induced by nuclear motions. The perturbative expansion in the
inverse nuclear massl~! is also given in a gauge-invariant
form (egs 3.2-3.5), which allows use of the freedom in the Appendix A: Nuclear Contributions to Optical

choice of the basis sets and local coordinates when the IFRPolarizabilities

equations are solved. In particular it results in compact expres-

sions for the vibrational contributions to optical polarizabilites [N section Il we have derived a system of coupled equations
in terms of the TDHF modes. This approach, which is justified (€ds 3.2, 3.3, and 3.5), which describes the correction to the

in the IFR, requires finding explicitly only the electronic modes, ©OPptical response induced by the nuclear motions in the IFR. In
considerably reducing the numerical effort. this Appendix we obtain closed expressions for optical polar-

The picture that emerges from this study shows that the IFR i_zabilities by solving these equations iteratively in the driving
is very different from the static limit. The two-level model f|e:5d. ion 3.2 . he TDHF ion for the el .
coupled to a vibrational mode provides a qualitatively transpar- q quatu;nf : dconstlfutes tBe eql:gtlonh orJ ee ectro?l_c
ent picture of the underlying physics. In the static limit both g)g;re?ho free om alone. By representing the density matrix
electronic and vibrational contributions are positive and have in the form
comparable magnitudes, which enhances the total polarizibility.

In the IFR the purely electronic contributigii(w) dominates
the second-order response and is larger {B&0) since the  \heres is the solution of the HF equation ands the particle-

IFR frequency is closer to those of the electronic resonances.p,qje component of the deviation ¢f from 5. The TDHF
On the other hand, the vibrational contributipn(w) becomes equation (3.2) read®

negative and is smaller thadi(w), so that it reduces the total
polarizability. _dp - )

The different roles of the vibrational contribution to the optical 1 g; — L(7) = E@I, p + 2[V7(n + T(n)), 7] +
polarizabilities in the static limit versus IFR originate from the
relative positions of the driving frequeney and the vibrational 2IVOTW)), Bl + 2V + Tm)), T0)] —
frequencyQy. In the IFR the driving frequency becomes higher E@[®, 7] — E@Q®, T(7)] (A2)
than the vibrational frequency, and therefore the corresponding
contribution changes sign with respect to the static case. SinceHerelL is the linearized TDHF equation operator
the sign of the electronic contribution remains unchanged, the
two contributions have opposite signs in the IFR. L(n) = [t + 2V(p), ] — 2[p, V(n)] (A3)

The IFR expansion can be alternatively obtained in the \ynarev() andu for j = 0 and 1 stand for the intraband and

following way. Since the variational principle recasts the haricle-hole components, respectively. Using the notation of
dynamics in a classical form, one can obtain a classical eq Al, the equation for, (3.3) adopts the form

Hamiltonian and expand it in the vicinity of the stationary point

in powers ofz, r, andP, whereP are the nuclear momenta and dr

r are the deviations of nuclear positions from the equilibrium M —; = —=Tr{h,(n + T} —

geometry. Thez variables characterize the deviation of the dr

electronic density matrix frond. They can be defined as the Tr{(n + TV, (n + T())} + 1y E@) +
expansion coefficients of the partielbole component of T u, (o + 1 + T(n))} E(x) (Ad)
p — p in the eigenmodes of the linearized TDHF equation, as *

is done here, oz can represent the Thouless parameters as is\here

done in ref 18. We can then partition the classical Hamiltonian

H = Ho + Hi, whereH, contains bilinear terms in the variables h,=t,+ 2V, (p) (A5)
z r, andP but excludes any coupling between electronic and

vibrational variablesH; contains the anharmonic terms and the & must satisfy the constraint

bilinear terms that couple the electronic and vibrational variables

(i.e., zr and Z*r). Following ref 17, we can obtain closed [, [0, €]l =& (AB)
expressions for the optical polarizabilities in terms of the
parameters ofl; and the Green functiorSe(w) andGy(w) of

the uncoupled linearized electronic and nuclear motions de- E=C+ T(’% £) (A7)
scribed by the Hamiltoniahlo. The electronic Green function

is expressed in terms of the eigenmodgsof the linearized where( is the particle-hole component §fwith respect td.
TDHF equationt’ and does not require the vibrational eigen- (Note that eq A6 implies that has only particle-hole
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P =p+n+ T (A1)

To avoid redundant variables, we represent it in the form
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components with respect o) T(», &) is linear inZ and can be
found by combining eqs A6 and Al, which yields

.0 = BT;”); (A8)

Substitution of eq A7 into eq 3.5 gives the equation of motion

for &:
. dg _ )
[ L) + 2[VT(n + T(n), ] +

2V + T()), TGy, )] + 2IVOE + T(, £)), 7] +
2VE + T, 0, TN + Y e Alrg + Y [N, lr, +

> & T)Ir + 25 [Valr + T0n). plr, +
2 Vol + T0n), mlre + 23 IV + T), T)r, —
E@ Y o PIre = E@U®, & — E@L™, T, 9] —

E(r)ZLu“’) mra —Emzw Tnlr, (A9)

Expandingy and¢ in the eigenmodes of the linearized TDHF

equation

N= %8s = Y Wb, (A10)
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We also have

PO=%ulz,+ Zsaﬁzuzﬂ (A14)
08 oy

PO=Sudw, + 5 ullr, + %éaﬁzurﬂ +
Zsuﬁ(zuwﬁ +zw,) (A15)

The optical response functions are derived by substituting eqgs
Al and A7 into egs 3.7 and 3.8 and making use of eq A10.

The parameters of eqs A14 and A15 are also given in Appendix
B. z,, Wy, anduv, are obtained by solving eqs AT+A13 order

by order in the driving fieldE(z).

Appendix B: Parameters of Equations A1+A15

The parameters of the equations of motion for the oscillators
Zy, Wo, andry presented in Appendix A can be obtained by
projecting eqs A2 and A9 onto the modg&sof the linearized
TDHF equation, and using eq A4 followed by substitution of
the expansions of eq A10 into these equations. This yields eq
A1l with

to = Tr([p, &_o]lu, 1)
top = Tr([p, E-oJles &)
Uo gy = Tr([B &) [, 1Al P), E,1D
Vg, = 2Tr([0, E_oJ[V(Ep), E,]) +
Tr([p, & JIVILEg. 21, &,1. b))
Vegps = THIDE-JIVIIEs p), £, &) +
Tr([p, §-JIV(Ep), [[&p. 21, £,11) (B1)

and neglecting the terms leading to higher than the third-order The parameters of eq A12 are listed below:

contributions in the driving field, we obtain the following closed

system of equations fat,, Wy, andrg:

3Zu
=Rzt ;Vaﬁyzﬁzy + ;} wpyoZstZs — E(Mty —

3
E(7) Hopls — E(r) o py? (A11)
; Iz ;y Bros%y

ow,,
i—=Qw,+ ;Uaﬂywﬁzy + guaﬂyéwﬂgzé

ot
Z\Naﬂrﬁ + ; wp % T IZ’Waﬁyarﬂzyza
v
B Augty = EO o W2, = E(r);ﬂ%/rﬂzy -
E(r);ﬂ&”ﬁrﬂ (A12)

dr,
— (N)

/ZWQ pyoZiZ 25+ E(r)ZMN)zﬁ + E(t); ul) 2z, (A13)

The parameters/ and u which enter eq All and the
parameters), W, W, z, andu®™ which enter eqs A12 and A13
are given in Appendix B.

Uag, =Vag, + Vas
Uagro = Va/fyo + V woyp T Vayop
Bop=Mtap Hapy = Uapy T Hayp (B2)
W,y = Tr(B, £_Jlhy, B)
W, 5, = Tr([p, &_allhg &,1) + 2Tr([p, E_al[V4(E,), pl)

Wo g0 = 1T0([B, E_Jlhy, 1€, A1, &I +
Tr([p, E-al[V(ILE,, 21, EoD), R]) +
2Tr([p, &-aJ[V(E,), &) (BI)

a5 = Tr([p, &_ollus A
2, = Tr((p, E-olup &)
The parameters of eq A13 are given by
W = Tr(hep)
= 1,Tr([h[[&5 o1, §,1D) + Tr(EsVl(&,)

W, 5,0 = %Tr([[éﬁ, ol £V, (&) +
YTH(EN(IE, B, &) (BA)

luExN) = /’LN o + Tr(,uap)
1l =Tr(u gy
1l =",Tr(ull & Bl E,))
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Finally, the parameters of eqs A14 and A15 are

T6 )( Wg Wy, W) = —ZM _%ayug\') +
w
/‘S)_:u - SlﬂEl/ZIu—O.,ﬂ ! 1
I -1 (N), (N)
Saﬂ_uéN; (B5) 2ZM My ‘uy (C9)

Wy 7
Equations B1 and B3 are valid fer < 0. The corresponding SNy L)
expressions foe. > 0 are obtained by changing the sign of the T(—0g 05, 0) =— Z y Moy My (C10)
rhs of eqs B1 and B3. wl

Appendix D: Calculation of § for the Two-level Model.
Diabatic and Adiabatic Basis Sets

The second-order response function can be represented as a |, this Appendix we derive the expressions for the matrix

Appendix C: Second-Order Polarizability

sum of five contributions:R? = 37, RY. The first three  elements of andh, in the adiabatic basis set (eq 5.6) and sketch
have the same form as the purely electronlc contributténs, the derivation of egs 5.13 and 5.16.
renormalized by nuclear dynamics For the present model in the adiabatic bai3,is diagonal,
whereas in the crude adiabatic ba$isy) is diagonal, whereg
RA(—wg 0, 0,) = represents the equilibrium geometry. The adiabatic basis set is
> @) Gy (@) Vi, (g 01, ) x 91 E= a0 Pye T b9 er
Gyalwy) G/s 5(0,) il (@y) ig(w,) (C1) [ O= —b(n)ypygH a(r) |y 0 (D1)

2 . —
RA(—wg 0, 0,) =

© Combining egs D1 and 5.1 yields
z 3wy Géy(ws) Byﬁ( g Wy, w,) X

Gpa(@y) fig(w,) (C2) _ 1y, EM )
Ba\W1) Ue\ Wy a(r) \/2( (Ez(r) n 1)1/2
R3(2)(_w . a)l, (1)2) == L E(r) o
> Si(-0g w1, ) (@) (@) b(r) = — z(l - m) (D2)

Gpol@) Gy (@) (CI)
The Hartree-Fock energyEy(r) is given by the eigenvalue of
whereji, i), andG are given by eqs 4:34.5. The remaining  t(r), which corresponds to the ground stéaje(r)J
renormalized quantities in eqs €C3 are
EVB(r) + ECT(r) 2 1/2
1 Ey(r) = I S JE“(r) +1) (D3)
V(05 03, 05) =V, 5+ — ZM o W, W+ o o
w7 whereas the frequency of the electronic oscill&dgr) is given
1 ~ by Ee(r) — Eo(r) = Q(r) = 2J(E4(r) + 1)V2, and we have used
_ZM(S*WV sW; 5 (C4) the notationE(r) = [Ect(r) — Eve(r)}/2J. The equilibrium
2 o geometryrg is obtained by minimizindgy(r) (eq D3).
In the diabatic basis set,is given by eq 5.4. It also follows

from eqgs 5.4 and 5.3 that in this basis set
aﬂ( Wg 01, 0y) = ﬂaﬂ+ ZM ﬂff)yWy,ﬁﬁL q
8t(r) r+Q 0
1 -1 ) -1 ) h(r) = I((O r-Q (D4)

—2ZM W, 584 —l——ZM W, 5 (C5)

Switching to the adiabatic basis set using eq D1, we immediately
o obtain
Sy(—og 0, w,)=S,+—S$SM, 'S W, , (C6)
A0 0n @D = Sy wz roTe icdr) = ir) = 2[b%(r) — aX(N)IkQ

Kedr) = —2a(r) b(r)kQ

ug(r) = ugr) = [&°() = b(0)]ucr,
Hedr) = a(r) b(r)ucr (D5)

RA(~w, wy, w,) = . . . .
4 s Pp T A Equations 5.13 and 5.16 are obtained starting with the
;Tff)(—wsi Wy, 03) Gyy(y) ﬁﬁ(wz) (C7) expressions for_ the second-order polarizability_ (_eqs 4.9 and
C1-C3) and using egs 5.5, 5.6, and D5. In deriving eq 5.16,
we made use of the fact that for our model ¢ xg)keg * =

(e — Uglteg .

The remaining term&? and R? are induced by vibrational
motions and have no purely electronic counterparts:

2 . _
Rg )(—a)s, W, W,) =

1w G () Ti(—wg wy, w,) (C8)
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