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The nonlinear optical response of molecules is calculated using classical equations of motion for the electronic
density matrix coupled to nuclear coordinates. The equations apply to an arbitrary (gauge-invariant)
parametrization of the electronic density matrix. The electronic problem is treated at the time-dependent
Hartree-Fock level, but the extension to time-dependent density functional theory is straightforward. An
expansion in the inverse nuclear masses provides a low-cost calculation of polarizabilities at intermediate
frequencies (high compared to nuclear vibrations and low compared to electronic transitions). This regime is
particularly relevant for optical materials applications. Closed expressions are derived for the electronic and
nuclear contributions to the lowest two polarizabilitiesR andâ.

I. Introduction

Linear and nonlinear molecular polarizabilities depend on the
combined electronic and nuclear response to optical fields.
Calculations are considerably simplified when the characteristic
frequencyωL of the driving fields is low compared to both
electronic (Ωe) and vibrational (ΩN) frequencies:ωL , Ωe,ΩN.
In this limit both electrons and nuclei are fast, and have enough
time to respond to the instantaneous value of the driving field.
Static polarizabilities computed using a constant, time-
independent field (ωL ) 0) provide a good approximation in
this case. In the static limit we simply optimize the ground-
state geometry in the presence of the field, and the polarizabili-
ties are computed as partial derivatives of the molecular ground-
state energy with respect to the applied dc field. Extensive effort
was devoted to computing both electronic and nuclear response
using this finite field approach.1-4 These computations unam-
biguously establish the important role of both types of contribu-
tions to the purely static polarizabilites.5-7 In the opposite limit
of very high frequencies,ωL . Ωe,ΩN (which corresponds to
X-ray rather than optical measurements), neither the electronic
nor the nuclear degrees of freedom have enough time to fully
respond, and the polarizabilities can be computed pertubatively
in Ωe/ωL and ΩN/ωL using a short-time expansion. For
intermediate, resonant field frequencies, the complete dynamical
response should be calculated. This is a much more complicated
task since it involves the excited states as well as the ground
state of the system.

In this paper we consider a third limiting case, namely, the
intermediate frequency regime (IFR),ΩN , ωL , Ωe. In this
case the driving field can be considered as static with respect
to electronic motions but fast with respect to the nuclear degrees
of freedom. This regime is most relevant for optical materials
applications where resonances are avoided to minimize dissi-
pative losses. In conjugated polymers, e.g.,Ωe varies in the
range 2-4 eV, the highest vibrational frequencies are
ΩN ≈ 0.25 eV, and the characteristic frequency of the driving
field ωL ≈ 0.7 eV. Developing a low-cost algorithm for
computing the response in this regime, which avoids dealing
with nuclear dynamics explicitly, constitutes the primary goal
of this paper. Our scheme starts with the collective electronic

oscillators (CEO) approach,8 which computes the electronic
contributions to the dynamical response with numerical effort
comparable to the finite field method for the static response.
The technique is based on closed classical equations of motion
for the electronic density matrixF(t) derived using the time-
dependent Hartree-Fock (TDHF) procedure and solved using
the density matrix spectral moment algorithm. AssumingN )
Ne + Nh orbitals as a single electron basis set (Nh occupied and
Ne unoccupied),F hasNF ) Ne‚Nh independent parameters which
may be viewed as collective electronic oscillators.

We extend the CEO in two ways. First we include classical
nuclear dynamics by implementing the time-dependent varia-
tional principle. This step is formally straightforward, and merely
involves adding classical equations of motion forK nuclear
coordinates. Calculations of optical polarizabilities require
finding the joint NT ) NF + K coupled electron nuclear
oscillators, which leads to an enormous increase of numerical
effort. Second, we recast the equations in an invariant form,9

which allows for an arbitrary parametrization of single Slater
determinants through the electronic density matrix. This is done
by adopting a system of local coordinates in phase space. We
are thus not limited to the Thouless representation10 and can
use parametrizations more suitable for particular applications,
e.g., computing polarizabilities. In addition, the invariant form
allows an arbitrary basis set to be used in the single-electron
orbital space. Basis set transformations are treated as gauge
transformations, which provides a deeper insight into the nature
of the nonadiabatic coupling. We further address the dependence
of the single-electron space on molecular geometry, and
distinguish between two cases: in the first the single-electron
space changes with molecular geometry, whereas in the second
case only the basis set elements depend on geometry.

A perturbative expansion of polarizabilities inΩN/ωL, which
can be conveniently formulated as an expansion of the response
in the inverse nuclear massM-1, is developed. This is ac-
complished by expanding the dynamical equations inM-1 to
obtain a closed system of equations for the dynamical variables
in each order. The explicit calculation of vibrational modes is
avoided, and only the electronic degrees of freedom are treated
explicitly. Solving the resulting equations pertubatively in the
driving field yields closed expressions for IFR polarizabilities.
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In section II we introduce the Hamiltonian and derive the
collective electronic-nuclear oscillator equations. The equations
are given in an invariant form, i.e., independent of any particular
parametrization of the electronic density matrix. These equations
are applied in section III to construct a perturbation theory in
the inverse nuclear massM-1, which accounts for vibrational
contributions. In section IV we derive closed expressions for
the first- and second-order polarizabilities obtained by expanding
the solution in powers of the driving field.

The relative magnitude of electronic and vibrational contribu-
tions to the off-resonant optical response is of special interest
for conjugated molecules whereπ-electron delocalization
strongly enhances the former, and the latter is strong due to the
their nonrigid geometry.1,2,11 For a simple model of a push-
pull polyene, which includes two electronic states (neutral and
zwitteronic) and a single vibrational mode (the C-C stretch),
the two contributions to the static polarizabilities turn out to be
exactly the same.12 In section V we apply our expansion to this
model and estimate the relative magnitude of both contributions
in the IFR. Our results are finally summarized and discussed in
section VI. For clarity, details of the derivations are given in
the Appendices.

II. Gauge-Invariant Oscillator Representation of Coupled
Electronic and Nuclear Dynamics

The quantum molecular Hamiltonian, for the coupled elec-
tronic and nuclear dynamics, is

Here

is the nuclear Hamiltonian withPµ(rµ) being the nuclear
momentum (coordinate) operators. The electronic Hamiltonian
is

wherecj (cj
+) are the electron annihilation (creation) operators

and |Vj(r )〉 represent a basis set in the single-electron space,
which depends on the nuclear configurationr . Ĥint describes
the interaction with an external electric fieldE(τ)

The coupling of electronic and nuclear motions enters through
the r dependence of the transfert(r ) and dipoleµ(r ) single-
electron operators, and the Coulomb two-electron operatorV(r ).
The parametricr dependence of the orbitals gives rise to an
additional source of coupling: the nonadiabatic coupling which
can be described in terms of the matrix vector fieldAij ,µ(r )
defined by

We recall that the electronic basis set size isN and the number
of nuclear coordinates isK. A is a real antisymmetricN × N
matrix in electronic space where thei and j indices denote the
basis orbitals. Each element ofA is a K-component vector in
theK-dimensional nuclear space, andµ denotes its components.

A transformation to a new set of orbitals

generates the following gauge transformation of the vector field
Aµ

13

The nonadiabatic coupling, therefore, may be incorporated
formally through a gauge field or a nonabelian vector field. In
the following we further make use of the intensity tensor
corresponding toAµ(r ), which is defined as13

F is transformed under gauge transformations in the following
way:

One should distinguish between two cases. In the first, the
single-electron space does not depend on molecular geometry,
even though the basis set itself, namely, the orbitalsVj(r ), are
r -dependent. This is, e.g., the case when the electronic basis is
complete. The vector potential is then represented by a pure
gauge:

and the intensity tensor vanishes,Fµν(r ) ) 0. The fieldAµ can
now be eliminated by a gauge transformation,Y(r ). This
corresponds to the crude-adiabatic basis set14 where the orbitals
become independent ofr , and ther dependence oft, V, and
µ constitutes the only source of electron-nuclear coupling. In
the second case, the single-electron space itself varies withr ,
and it is no longer possible to chooser -independent orbitals.
The vector potential may not be represented in the form of
eq 2.10 andFµν(r ) * 0. It should be emphasized that only if
Fµν(r ) ) 0 can the nonadiabatic coupling be eliminated by a
proper choice of a basis set.

In the following we assume that the electronic state is
represented by a single Slater determinant at all times, and treat
nuclear motions classically. Applying the time-dependent
variational approach to the quantum Hamiltonian (eqs 2.1-2.3)
leads to the closed system of equations for the electronic-
nuclear oscillators.9

Here F stands for the single-electron density matrix, with
elementsFij ≡ 〈ci

+cj〉, which parametrizes the electron state
represented by a single Slater determinant.PR(rR) represent the
nuclear momenta (coordinates) whereasA is the matrix vector
field defined in eq 3.4.µN(r) is the dipole moment corresponding
to the nuclear charges.

Ĥ ) Ĥ0 + Ĥ1 + Ĥint (2.1)

Ĥ0 ≡ ∑
µ

Pµ
2

2Mµ

+ u(r ) (2.2)

Ĥ1 ≡ ∑
ij

tij(r )ci
+cj + 1/2∑

ijrs

Vij ,rs(r )ci
+cj

+crcs (2.3)

Ĥint ) -∑
ij

µij(r )ci
+cjE(τ) (2.4)

Aij ,µ(r ) ≡ -〈Vi(r )|∂µVj(r )〉 (2.5)

Vj′(r ) ) ∑
j

Yji(r ) Vj(r ) (2.6)

Aµ′(r ) ) Y-1(r ) ∂µY(r ) + Y-1(r ) Aµ(r ) Y(r ) (2.7)

Fµν(r ) ) ∂µAν(r ) - ∂νAµ(r ) - [Aµ(r ), Aν(r )] (2.8)

Fµν′(r ) ) Y-1(r ) Fµν(r ) Y(r ) (2.9)

Aµ(r ) ) Y-1(r ) ∂µY(r ) (2.10)

dF

dτ
) ∑

ν

[Aν, F] r̆ν - i[t(r ) + 2V(r )F, F] + iE(τ)[µ(r ), F]

(2.11)

drR

dτ
) MR

-1PR (2.12)

dPR

dτ
) -∑

ν

Mν
-1Pν Tr{FFRν(r )} - ∂Ru(r ) - Tr{∇Rt(r )F} -

Tr{F∇RV(r )F} + ∂RµN(r ) E(τ) + Tr{F∇Rµ(r )} E(τ) (2.13)
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In eq 2.13 we have used long derivatives∇R of operators
[such ast(r ) andµ(r )] acting in the single-electron space. These
are defined by

For superoperatorsV(r ) the operation of long derivatives is
defined similarly:

The second term in eq 2.15 is a Liouville space commutator of
the superoperatorV(r ) and the superoperatorÂR(r ) defined by
its action on an arbitrary density matrixF:

These equations of the motion have a simple interpretation:
The first term on the right-hand side (rhs) of eq 2.11 describes
the electronic motion along the vector potential and determines
how the single-electron density matrixFij(r ) which acts in the
single-electron space at pointr moves to pointr + dr . The
remaining terms in this equation constitute the TDHF equations.
It is possible to use time-dependent density functional theory
(TDDFT) instead.15 The conceptual and operational similarities
of TDHF and TDDFT are made clear by formulating the latter
using the density matrix.16

The first term on the rhs of the equation for the nuclear
momenta (eq 2.13) represents the Lorentz force. This term van-
ishes for systems with time-reversal symmetry. The remaining
terms on the rhs of eq 2.13 can be viewed as the differential of
the Hartree-Fock energy, where the differentiation is performed
using the long derivatives (eqs 2.14 and 2.15) which involve
the vector potential. The operatorst(r ) and µ(r ) and the
superoperatorsV(r ) are expressed in terms of the dyadictij(r )
andµij(r) and the tetradicVij,rs(r) matrix elements, respectively.17

Equations 2.11, 2.12, and 2.13 together with the expression
for polarization

constitute a closed system of equations for the optical response.
These equations allow a complete freedom in parametrizing the
density matrix in phase space (which is not specified yet).
Adopting the language of differential geometry, the equations
are given in a gauge-invariant form.9 The END equations of
ref 18 were derived using the Thouless parametrization of Slater
determinants. In the next section we adopt a different param-
etrization which we found to be more convenient for the present
applications.

When these equations are solved to first-order in the external
field, they require anNT × NT diagonalization, which results
in NT ) NF + K joint electronic-nuclear normal modes. The
solution to higher orders in the field can be expressed using
these modes. This procedure yields the entire frequency
dependence of the polarizabilities. TheNT × NT diagonalization
can be avoided in the two limiting cases described in the
introduction: (i) In the static limit where the field is independent
of time, we can incorporate it in eq 2.11 by simply replacingt
with t + µE. Solving the stationary part of eq 2.11,dF/dτ ) 0,
will result in the ground state perturbed by the field. Analytic
or numerical derivatives then give the polarizabilities. In this
limit we only work in the electronic space and view the nuclei
as parameters, and the polarizabilities are independent of the
nuclear massM. (ii ) In the opposite, high-frequency limit, the
response can be expanded in a Taylor series in time (short-

time expansion). Fourier transform of the series yields the high-
frequency expansion of the optical susceptibilities (in powers
of 1/ωL). The IFR is more delicate and requires a new type of
expansion, which will be developed in the next section.

III. Optical Response in the Intermediate-Frequency
Regime

In the static limit the optical frequency is low compared to
both electronic and vibrational frequencies. All degrees of
freedom have enough time to respond to the external field, and
the nuclear and electronic contributions to the polarizabilities
should be treated along the same footing. In the IFR the
electronic response is very similar to the static limit since the
optical frequency is low compared to the electronic frequencies.
The situation with the vibrational degrees of freedom is very
different: Since the nuclei are driven at a higher frequency
compared to the vibrational frequency, the amplitude of the
driven oscillations is small, and the contribution of nuclear
motions to the IFR polarizabilities can be treated as a perturba-
tion to the electronic contribution.

An adequate perturbative approach for the nuclear IFR
response can be developed by expanding the dynamical variables
F, P, andr of eqs 2.11-2.13 in powers of the inverse typical
nuclear massM-1 19

Note that the superscripts denote powers ofM-1 and not of the
field. At this point we fully retain the field to all orders: An
expansion in the field will be made only in the next section.

Our goal is to solve eqs 2.11-2.13 to first order inM-1. In
zero order, eq 2.12 immediately yieldsr µ

(0)(τ) ≡ 0 (r ) 0 is the
equilibrium geometry). Settingr ) 0 in eq 2.11, the first term
on the rhs vanishes and eq 2.11 adopts the form of the TDHF
equation forF(0)(τ), which gives the electronic dynamics when
the nuclei are held fixed in their equilibrium positions:

Here we used the notationt ≡ t(0), V ≡ V(0), andµ ≡ µ(0).
The equation forPµ

(0)(τ) is obtained by omitting the first term
in eq 2.13 and settingr ) 0 in the remaining terms, which
implies replacingF with F(0). Substituting the equation forPµ

(0)

into eq 2.12 yields the equation forr R
(1)(τ):

where we have used the notationtµ ≡ ∇µt|r)0, Vµ ≡ ∇µV|r)0,
etc.

To obtain the equation forF(1)(τ) in a gauge-invariant form,
we write

Gauge invariance of the following equations is guaranteed by
the first term on the rhs of eq 3.4. The equation for the new

F(τ) ) F(0)(τ) + F(1)(τ) + ...

Pµ(τ) ) Pµ
(0)(τ) + Pµ

(1)(τ) + ... (3.1)

rµ(τ) ) r µ
(0)(τ) + r µ

(1)(τ) + ...

dF(0)

dτ
) -i[t + 2VF(0), F(0)] + iE(τ)[µ, F(0)] (3.2)

MR

d2r R
(1)

dτ2
) -uR - Tr(tRF(0)) - Tr(F(0)VRF(0)) + µN,RE(τ) +

Tr(µRF(0)) E(τ) (3.3)

F(1) ) ∑
µ

r µ
(1)Aµ(0)F(0) + ê (3.4)

∇Rt(r ) ≡ ∂Rt(r ) - [AR(r ), t(r )] (2.14)

∇RV(r ) ≡ ∂RV(r ) - [ÂR(r ), V(r )] (2.15)

ÂR(r )F ≡ [AR(r ), F] (2.16)

P ) µN(r ) + Tr{Fµ(r )} (2.17)
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variablesê is obtained by expanding eq 2.11 to first order, which
after some straightforward transformations yields

The polarization finally assumes the form

where

and

equations 3.2, 3.3, and 3.5 together with eqs 3.6-3.8 describe
the optical response to first order inM-1. This approximate solu-
tion to eqs 2.11-2.13 is useful provided the nuclear corrections
to the electronic contributions are not large, which is the case
in the IFR. The iterative solution (eqs 3.2, 3.3, and 3.5) in the
driving field involves the electronic modes alone, which requires
considerably lower time and memory numerical effort compared
with computing the entire set ofNT coupled electronic-nuclear
modes when the full set of equations is solved.

IV. First- and Second-Order Optical Polarizabilities at
Intermediate Frequencies

Optical polarizabilities are defined through an expansion of
the induced polarizationP in powers of the driving fieldE:

HereP (ωs) andE(ω) are the Fourier transforms of the polari-
zation and driving field, respectively. The response functions
R(n) are obtained by solving eqs 3.2, 3.3, and 3.5 perturbatively
in the driving field and making use of eqs 3.6-3.8.

We now turn to the parametrization of the density matrix.
To avoid redundant electronic variables, we introduce the
relevant particle-hole componentsη andú (eqs A1 and A7).
Expanding in the eigenmodes of the linearized TDHF equation
(see eqs A10) results in a system of equations for a set of param-
eterszR, wR, and rR (eqs A11-A13). Solving these equations
pertubatively inE yields the response functions. However, the
number of terms in these expressions grows rapidly with the
order of response. The total number of contributions in the IFR
is 4 forR(1) and 20 forR(2) (compared with 1 and 3, respectively,
for the purely electronic contributions17). In the expressions
given below we combine these terms to obtain final compact
expressions resembling the purely electronic contribution.17

The linear response can be represented as a sum of two
contributions: R(1)) R1

(1) + R2
(1). The first

is reminiscent ofR(1) in the purely electronic case,17 except that

we use the renormalized Green function

and the renormalized frequency-dependent dipoles

ΩR are the frequencies that correspond to the eigenmodesêR
of the linearized TDHF equation

L being the linearized TDHF operator17 defined by eq A3. The
expressions forW in terms of the modesêR are given in
Appendix A. For any modeêR there is a modeê-R ≡ êR

+ with
the frequencyΩ-R ) -ΩR.17 To demonstrate a close resem-
blance with classical oscillators, the linear combinationsPR and
QR of the eigenmodesêR andê-R have been introduced in ref
17. These are oscillator momenta and coordinates, respectively.
Below we work with the eigenmodesêR. The first term on the
rhs of eqs 4.3-4.5 represents the electronic contribution cor-
rected by nuclear motions (the second term).R2

(1) is a new con-
tribution, induced by nuclear motions, which may not be
obtained by simply renormalizing the quantities in eq 4.2:

The second-order response can be calculated similarly. Closed
expressions forR(2) are given in Appendix C.

The optical polarizabilities are obtained from the response
functionsR( j) by performing permutations over thej incoming
frequencies. The linear polarizabilityR is given by

whereas the second-order polarizabilityâ is

V. Second-Order IFR Polarizabilities for a Two-Level
System Coupled to a Single Vibrational Mode

In this section we calculateR(ω) and â(-2ω; ω, ω) for a
two-level model coupled to a single vibrational mode introduced
in ref 12. In the staticω ) 0 limit the vibrational contribution
to â for this model has the same magnitude as the electronic
contribution.7

The Hamiltonian is introduced using a diabatic basis set which
includes a neutral valence bond|ψVB〉 and zwitterionic charge
transfer |ψCT〉 states, linearly coupled to a single harmonic
vibrational mode:

dê

dτ
) -i[t + 2VF(0), ê] - i2[Vê, F(0)] + iE(τ)[µ, ê] -

i∑
R

[tR + 2VRF(0), F(0)]r R
(1) + iE(τ)∑

R
[µR, F(0)]r R

(1) (3.5)

P ) P (0) + P (1) (3.6)

P (0) ) µN + Tr(µF(0)) (3.7)

P (1) ) ∑
R

µN,Rr R
(1) + Tr(µê) + ∑

R
Tr(µRF(0)) r R

(1) (3.8)

P (ωs) ) R(1)(ωs) E(ωs) + ∫∫-∞

∞ dω1 dω2

(2π)2
×

2πδ(ω1 + ω2 - ωs)R
(2)(-ωs; ω1, ω2) E(ω1) E(ω2) + ...

(4.1)

R1
(1)(ω) ) -∑

Râ

µ̂R
(s)(ω) ĜRâ(ω) µ̂â(ω) (4.2)

ĜRâ(ω) ≡
δRâ

ω - ΩR + iΓ
+

1

ω2
∑

γ

Mγ
-1WR,γWh γ,â

1

ω - ΩR + iΓ

1

ω - Ωâ + iΓ
(4.3)

µ̂R(ω) ≡ µR +
1

ω2
∑

â

Mâ
-1WR,â µâ

(N) (4.4)

µ̂R
(s)(ω) ≡ µR

(s) +
1

ω2
∑

â

Mâ
-1Wh â,R µâ

(N) (4.5)

LêR ) ΩRêR (4.6)

R2
(1)(ω) ) -

1

ω2
∑

R
MR

-1µR
(N) µR

(N) (4.7)

R(ω) ) R(1)(ω) (4.8)

â(-ωs; ω1, ω2) )

R(2)(-ωs; ω1, ω2) + R(2)(-ωs; ω2, ω1) (4.9)
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We assume that the permanent dipole in the zwitterionic state
is the only nonzero element of the dipole operator in the diabatic
basis set

The fourth term in eq 5.1 represents the kinetic energy of the
vibrational mode, with reduced massM. Equation 5.2 shows
that since the states|ψVB〉 and |ψCT〉 do not depend on the
nuclear coordinateq, the nonadiabatic coupling terms repre-
sented by the gauge fieldA vanish in this basis set:A ≡ 0.
EVB(r) andECT(r) are given by

where 2Q represents the displacement between the diabatic
surfaces.

Comparison of eqs 2.1-2.3 and 2.17 with eqs 5.1-5.3 yields
for the parameters of eqs 2.11-2.13 in the diabatic basis set

The coulomb operatorV(r) ≡ 0, which is always the case of a
two-level system, andµN(r) ≡ 0. The calculation is simplified
considerably by noting that since in the diabatic basis setµ is
independent ofr and A ≡ 0, we have∇µ ≡ 0. This implies
that only the contributionsR1

(2), R2
(2), andR3

(2) (eqs C1, C2, and
C3) are nonzero. The nuclear-induced corrections toµ̂(s), µ̂, B̂,
and Ŝ vanish; i.e., µ̂ R

(s) ) µ R
(s), µ̂R ) µR, B̂R,â ) µR,â, and

ŜR,â ) SR,â. V̂γ,Râ is given by the last two terms in eq C4.
The calculations are most conveniently performed in the

crude-adiabatic basis set whereFj is diagonal and we have

whereê(1 are the two modes with frequencies(Ω that represent
a single electronic oscillator. We further introduce the matrix
elements ofµ andhr in the crude adiabatic basis set:

Expressions for these matrix elements as well as forΩ in terms
of the parameters of the original model, and the IFR polariz-
abilities, are given in Appendix D.

For the linear response we have

where the purely electronic contributionRE is given by

R0 is the electronic contribution to the static polarizibility

and we have introduced the auxiliary quantity

The vibrationally induced contributionRV is

whereκeg ) kQ/(E2(r) + 1)1/2 andE(r) ) [ECT(r) - EVB(r)]/
2J.

The second-order polarizability is similarly given by

with the electronic contribution

and the vibrationally-induced contribution

Numerical calculations of the electronic (eq 5.12) and the
vibrational (eq 5.17) polarizabilities in the IFR regime for this
model show that in the IFR (0.2 eV< ω < 1 eV) the purely
electronic contribution dominates and vibrational corrections
only slightly reduce the total polarizability by 5-10%.20 Higher,
∼30%, vibrational contributions were reported for more realistic
models.5

VI. Discussion

In this paper we have developed a procedure for computing
the vibrational contributions to molecular polarizabilities in the
IFR that avoids the explicit calculation of vibrational modes.
The procedure is based on the time-dependent variational
principle for the dynamics of a molecule driven by an optical
field, where the many-electron state is taken to be a single Slater
determinant at all times, whereas the vibrational motions are
treated classically.9,18 The resulting dynamical equations are
represented in an invariant form (eqs 2.11-2.13) that requires
no specific set of local coordinates in the single Slater
determinants space as well as a basis set in the space of single-
electron orbitals. This is accomplished by treating the nonadia-
batic coupling terms as a gauge field and the transformations
of the basis set as gauge transformations. The equations of
motion are then naturally interpreted by implementing the
geometrical picture of the gauge field as the shift in the
electronic space induced by a shift of the nuclear positions. This
gives a complete flexibility in choosing the basis sets and local
coordinates for particular applications. Computation of the
dynamical optical response using this approach requires finding
the NT coupled electronic-vibrational eigenmodes of the

Ĥ ) EVB(r)|ψVB〉 〈ψVB| + ECT(r)|ψCT〉 〈ψCT| +

J(|ψVB〉 〈ψCT| + |ψCT〉 〈ψVB|) + P̂2

2M
- E(t)P (5.1)

P ) µCT|ψCT〉 〈ψCT| (5.2)

EVB(r) ) 1/2k(r + Q)2

ECT(r) ) 1/2k(r - Q)2 + E0 (5.3)

t(r) ) (EVB(r) J

J ECT(r) ), µ(r) ) (0 0

0 µCT
) (5.4)

Fj ) (0 0
0 1), ê1 ) (0 1

0 0), ê-1 ) (0 0

1 0) (5.5)

µ ) ( µe µge

µge µg
), hr ) (κe κge

κge κg
) (5.6)

R(ω) ) RE(ω) + RV(ω) (5.7)

RE(ω) ) R0I0(ω) (5.8)

R0 ) 2
(µeg)

2

Ω
(5.9)

I0(ω) ≡ Ω2

Ω2 - ω2
(5.10)

RV(ω) ) 2
(κeg)

2

Mω2Ω
RE(ω) I0(ω) (5.11)

â(-2ω; ω, ω) ) âE(-2ω; ω, ω) + âV(-2ω; ω, ω) (5.12)

âE(-2ω; ω, ω) )
â0

3
[I0(ω) + I1(ω)] (5.13)

â0 ) 6
(µeg)

2(µe - µg)

Ω2
(5.14)

I1(ω) ≡ Ω2

Ω2 - 4ω2

4ω
Ω - ω

(5.15)

âV(-2ω; ω, ω) )

-
(κeg)

2

Mω2Ω
âE(-2ω; ω, ω)[4I0(ω) + 1/2I0(2ω)] (5.16)
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corresponding linearized equation. Using the oscillator language,
this means that the electronic and vibrational motions are
coupled even on the level of the linear response, and each of
the oscillators that diagonalize the linearized problem has
both electronic and vibrational components. Computing the
joint NT modes (oscillators) can be avoided in the IFR
(ΩN , ωL , Ωe) by making use of the different roles played
by the vibrationalΩN and electronicΩe frequencies. In the
present paper this is achieved by deriving closed equations of
motion for the electronic density matrixF(0) of a driven system
with fixed nuclear positions, the nuclear coordinatesr(1), and
the deviationF(1) of the electronic density matrix fromF(0)

induced by nuclear motions. The perturbative expansion in the
inverse nuclear massM-1 is also given in a gauge-invariant
form (eqs 3.2-3.5), which allows use of the freedom in the
choice of the basis sets and local coordinates when the IFR
equations are solved. In particular it results in compact expres-
sions for the vibrational contributions to optical polarizabilities
in terms of the TDHF modes. This approach, which is justified
in the IFR, requires finding explicitly only the electronic modes,
considerably reducing the numerical effort.

The picture that emerges from this study shows that the IFR
is very different from the static limit.7 The two-level model
coupled to a vibrational mode provides a qualitatively transpar-
ent picture of the underlying physics. In the static limit both
electronic and vibrational contributions are positive and have
comparable magnitudes, which enhances the total polarizibility.
In the IFR the purely electronic contributionâE(ω) dominates
the second-order response and is larger thanâE(0) since the
IFR frequency is closer to those of the electronic resonances.
On the other hand, the vibrational contributionâV(ω) becomes
negative and is smaller thanâE(ω), so that it reduces the total
polarizability.

The different roles of the vibrational contribution to the optical
polarizabilities in the static limit versus IFR originate from the
relative positions of the driving frequencyωL and the vibrational
frequencyΩN. In the IFR the driving frequency becomes higher
than the vibrational frequency, and therefore the corresponding
contribution changes sign with respect to the static case. Since
the sign of the electronic contribution remains unchanged, the
two contributions have opposite signs in the IFR.

The IFR expansion can be alternatively obtained in the
following way. Since the variational principle recasts the
dynamics in a classical form, one can obtain a classical
Hamiltonian and expand it in the vicinity of the stationary point
in powers ofz, r, andP, whereP are the nuclear momenta and
r are the deviations of nuclear positions from the equilibrium
geometry. Thez variables characterize the deviation of the
electronic density matrix fromFj. They can be defined as the
expansion coefficients of the particle-hole component of
F - Fj in the eigenmodes of the linearized TDHF equation, as
is done here, orz can represent the Thouless parameters as is
done in ref 18. We can then partition the classical Hamiltonian
H ) H0 + Hint, whereH0 contains bilinear terms in the variables
z, r, andP but excludes any coupling between electronic and
vibrational variables.H1 contains the anharmonic terms and the
bilinear terms that couple the electronic and vibrational variables
(i.e., zr and z* r). Following ref 17, we can obtain closed
expressions for the optical polarizabilities in terms of the
parameters ofH1 and the Green functionsGe(ω) andGN(ω) of
the uncoupled linearized electronic and nuclear motions de-
scribed by the HamiltonianH0. The electronic Green function
is expressed in terms of the eigenmodesêR of the linearized
TDHF equation,17 and does not require the vibrational eigen-

modes. The latter are in principle needed to computeGN(ω).
However, in the IFR whereω . ΩN, GN(ω) can be evaluated
using an expansion in powers ofω-2. The expansion coefficients
can be obtained using the sum rules for the vibrational motions,
which do not require finding the vibrational eigenmodes.
SubstitutingGN(ω) expanded to orderω-2 into the general
expression polarizabilities described above yields expressions
for the IFR polarizabilities which are identical to those presented
in section IV and Appendix C.
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Appendix A: Nuclear Contributions to Optical
Polarizabilities

In section III we have derived a system of coupled equations
(eqs 3.2, 3.3, and 3.5), which describes the correction to the
optical response induced by the nuclear motions in the IFR. In
this Appendix we obtain closed expressions for optical polar-
izabilities by solving these equations iteratively in the driving
field.

Equation 3.2 constitutes the TDHF equation for the electronic
degree of freedom alone. By representing the density matrix
F(0) in the form

whereFj is the solution of the HF equation andη is the particle-
hole component of the deviation ofF from Fj. The TDHF
equation (3.2) reads17

HereL is the linearized TDHF equation operator

whereV( j) andµ( j) for j ) 0 and 1 stand for the intraband and
particle-hole components, respectively. Using the notation of
eq A1, the equation forrR (3.3) adopts the form

where

ê must satisfy the constraint

To avoid redundant variables, we represent it in the form

whereú is the particle-hole component ofê with respect toFj.
(Note that eq A6 implies thatê has only particle-hole

F(0) ) Fj + η + T(η) (A1)

i
dη

dτ
) L(η) - E(τ)[µ, Fj] + 2[V (0)(η + T(η)), η] +

2[V (1)(T(η)), Fj] + 2[V (1)(η + T(η)), T(η)] -
E(τ)[µ(0), η] - E(τ)[µ(1), T(η)] (A2)

L(η) ≡ [t + 2V(Fj), η] - 2[Fj, V(η)] (A3)

M
d2rR

dτ2
) -Tr{hR(η + T(η))} -

Tr{(η + T(η))VR(η + T(η))} + µN,RE(τ) +
Tr{µR(Fj + η + T(η))} E(τ) (A4)

hR ≡ tR + 2VR(Fj) (A5)

[F, [F, ê]] ) ê (A6)

ê ) ú + Th(η, ú) (A7)
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components with respect toF.) Th(η, ú) is linear inú and can be
found by combining eqs A6 and A1, which yields

Substitution of eq A7 into eq 3.5 gives the equation of motion
for ú:

Expandingη andú in the eigenmodes of the linearized TDHF
equation

and neglecting the terms leading to higher than the third-order
contributions in the driving field, we obtain the following closed
system of equations forzR, wR, andrR:

The parametersV and µ which enter eq A11 and the
parametersU, W, Wh , µj, andµ(N) which enter eqs A12 and A13
are given in Appendix B.

We also have

The optical response functions are derived by substituting eqs
A1 and A7 into eqs 3.7 and 3.8 and making use of eq A10.
The parameters of eqs A14 and A15 are also given in Appendix
B. zR, wR, andVR are obtained by solving eqs A11-A13 order
by order in the driving fieldE(τ).

Appendix B: Parameters of Equations A11-A15
The parameters of the equations of motion for the oscillators

zR, wR, and rR presented in Appendix A can be obtained by
projecting eqs A2 and A9 onto the modesêR of the linearized
TDHF equation, and using eq A4 followed by substitution of
the expansions of eq A10 into these equations. This yields eq
A11 with

The parameters of eq A12 are listed below:

The parameters of eq A13 are given by

Th(η,ú) )
∂T(η)
∂η

ú (A8)

i
dú

dτ
) L(ú) + 2[V (0)(η + T(η)), ú] +

2[V(1)(η + T(η)), Th(η, ú)] + 2[V(0)(ú + Th(η, ú)), η] +

2[V (1)(ú + Th(η, ú)), T(η)] + ∑
R

[hR, Fj]rR + ∑
R

[hR
(0), η]rR +

∑
R

[hR
(1), T(η)]rR + 2∑

R
[VR(η + T(η)), Fj]rR +

2∑
R

[VR(η + T(η)), η]rR + 2∑
R

[VR
(1)(η + T(η)), T(η)]rR -

E(τ)∑
R

[µR, Fj]rR - E(τ)[µ(0), ú] - E(τ)[µ(1), Th(η, ú)] -

E(τ)∑
R

[µR
(0), η]rR - E(τ)∑

R
[µR

(1), T(η)]rR (A9)

η ) ∑
R

zRêR; ú ) ∑
R

wRêR (A10)

i
∂zR

∂τ
) ΩRzR + ∑

âγ

VR,âγzâzγ + ∑
âγδ

VR,âγδzâzγzδ - E(τ)µR -

E(τ)∑
â

µR,âzâ - E(τ)∑
âγ

µR,âγzâzγ (A11)

i
∂wR

∂τ
) ΩRwR + ∑

âγ

UR,âγwâzγ + ∑
âγδ

UR,âγδwâzγzδ +

∑
â

WR,ârâ + ∑
âγ

WR,âγrâzγ + ∑
âγδ

WR,âγδrâzγzδ

- E(τ)∑
â

µjR,âwâ - E(τ)∑
âγ

µjR,âγwâzγ - E(τ)∑
âγ

µj R,âγ
(1) râzγ -

E(τ)∑
â

µR,â
(1) râ (A12)

M
d2rR

dτ2
) -∑

â

Wh R,âzâ - ∑
âγ

Wh R,âγzâzγ + E(τ)µR
(N) -

∑
âγδ

Wh R,âγδzâzγzδ + E(τ)∑
â

µR,â
(N)zâ + E(τ)∑

âγ

µR,âγ
(N) zâzγ (A13)

P (0) ) ∑
R

µR
(s)zR + ∑

Râ

SRâzRzâ (A14)

P (1) ) ∑
R

µR
(s)wR + ∑

R
µR

(N)rR + ∑
Râ

ShRâzRrâ +

∑
Râ

SRâ(zRwâ + zâwR) (A15)

µR ) Tr([Fj, ê-R][µ, Fj])

µR,â ) Tr([Fj, ê-R][µ, êâ])

µR,âγ ) Tr([Fj, ê-R] [µ, 1/2[[êâ, Fj], êγ]])

VR,âγ ) 2Tr([Fj, ê-R][V(êâ), êγ]) +
Tr([Fj, ê-R][V[[êâ, Fj], êγ], Fj])

VR,âγδ ) Tr([Fj,ê-R][V[[êâ, Fj], êγ], êδ]) +
Tr([Fj, ê-R][V(êâ), [[êâ, Fj], êγ]]) (B1)

UR,âγ ) VR,âγ + VR,γâ

UR,âγδ ) VR,âγδ + VR,δγâ + VR,γδâ

µjR,â ) µR,â, µjR,âγ ) µR,âγ + µR,γâ (B2)

WR,â ) Tr([Fj, ê-R][hâ, Fj])

WR,âγ ) Tr([Fj, ê-R][hâ, êγ]) + 2Tr([Fj, ê-R][Vâ(êγ), Fj])

WR,âγδ ) 1/2Tr([Fj, ê-R][hâ, [[êγ, Fj], êδ]]) +
Tr([Fj, ê-R][Vâ([[êγ, Fj], êδ]), Fj]) +

2Tr([Fj, ê-R][Vâ(êγ), êδ]) (B3)

µj R,â
(1) ) Tr([Fj, ê-R][µâ, Fj])

µj R,âγ
(1) ) Tr([Fj, ê-R][µâ, êγ])

Wh R,â ) Tr(hRêâ)

Wh R,âγ ) 1/2Tr([hR[[êâ, Fj], êγ]]) + Tr(êâVR(êγ))

Wh R,âγδ ) 1/2Tr([[êâ, Fj], êγ]VR(êγ)) +
1/2Tr(êâVR([[êγ, Fj], êδ])) (B4)

µR
(N) ) µN,R + Tr(µRFj)

µR,â
(N) ) Tr(µRêâ)

µR,âγ
(N) ) 1/2Tr(µR[[êâ, Fj], êγ])
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Finally, the parameters of eqs A14 and A15 are

Equations B1 and B3 are valid forR < 0. The corresponding
expressions forR > 0 are obtained by changing the sign of the
rhs of eqs B1 and B3.

Appendix C: Second-Order Polarizability

The second-order response function can be represented as a
sum of five contributions:R(2) ) ∑m)1

5 Rm
(2). The first three

have the same form as the purely electronic contributions,17

renormalized by nuclear dynamics

whereµ̂, µ̂(s), andĜ are given by eqs 4.3-4.5. The remaining
renormalized quantities in eqs C1-C3 are

The remaining termsR4
(2) andR5

(2) are induced by vibrational
motions and have no purely electronic counterparts:

with

Appendix D: Calculation of â for the Two-level Model.
Diabatic and Adiabatic Basis Sets

In this Appendix we derive the expressions for the matrix
elements ofµ andhr in the adiabatic basis set (eq 5.6) and sketch
the derivation of eqs 5.13 and 5.16.

For the present model in the adiabatic basis,t(r) is diagonal,
whereas in the crude adiabatic basis,t(r0) is diagonal, wherer0

represents the equilibrium geometry. The adiabatic basis set is

Combining eqs D1 and 5.1 yields

The Hartree-Fock energyEg(r) is given by the eigenvalue of
t(r), which corresponds to the ground state|ψg(r)〉

whereas the frequency of the electronic oscillatorΩ(r) is given
by Ee(r) - Eg(r) ) Ω(r) ) 2J(E2(r) + 1)1/2, and we have used
the notationE(r) ) [ECT(r) - EVB(r)]/2J. The equilibrium
geometryr0 is obtained by minimizingEg(r) (eq D3).

In the diabatic basis set,µ is given by eq 5.4. It also follows
from eqs 5.4 and 5.3 that in this basis set

Switching to the adiabatic basis set using eq D1, we immediately
obtain

Equations 5.13 and 5.16 are obtained starting with the
expressions for the second-order polarizability (eqs 4.9 and
C1-C3) and using eqs 5.5, 5.6, and D5. In deriving eq 5.16,
we made use of the fact that for our model (κe - κg)κeg

-1 )
(µe - µg)µeg

-1.
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