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By expanding optical response functions in the eigenstates of the dipole opeatiter than of the Hamil-
tonian, we obtain a path-integral representation that lends itself more readily to classical simulations. Con-
nection is made to stochasticonsistent-historiggheories of quantum dynamics of single quantum systems by
computing the entire probability distribution of the observed polarizatiather than merely its expectation
value. The weight of each Liouville space path contributing to the optical response is complex, and cannot be
recast using the joint probabilities used in the consistent-histories approach.

PACS numbd(s): 42.50.Ct, 42.50.Lc

[. INTRODUCTION In this Rapid Communication we explore an alternative
physical picture obtained by expandify™ in a different

basis: the eigenstates Wf We show that it is then possible
to recast it in a path-integral form in Hilbert space, and dis-
cuss the connection with the consistent-history interpretation
of quantum dynamicf4—7].

The key quantity in nonlinear spectroscopy is the nonlin-
ear response functioR(" that carries all the relevant mo-
lecular information for the interpretation of the signgls-3].

R(M is defined by

n 71
P((7,)= f_denfl . f_xdfo Il. DIPOLAR-EIGENSTATE REPRESENTATION
OF OPTICAL RESPONSE

(n)
XRU(7, .. 70)B(7n-1) .. B(70), (D) Introducing the eigenstates;) and eigenvalue¥, of

whereE(7) is the external field anB(" () is thenth-order  the dipole operator, we obtain
polarization at timer,, . -

Denoting the coupling of the system to the radiation field VZ; | @)V ai{al. ()
by —VE(t), V being the dipole operator, we have :

") By expandingV(r,) in Eq. (2) using Eq.(3), we obtain
R™(7,...7)

i X ) PO(r)=2 V, p, (1), n=12,..., (4
=(g) V() [V(7n-1),. . . [V(70),[V(70),p%] . . . 1), “n
2) where
(n) _
where p® is the equilibrium density matrixR(" is thus panﬂln(Tn)_ao’.Z”a . Vg Va,_,
expressed as a combination of' Zorrelation functions "
(Liouville space pathwayseach representing a sequence of n q Tnfld 1 q
couplings. For a multilevel systeR(™ is usually expanded X OTn-1f  OTn2eo- | d7o
in the eigenstates of the free Hamiltonieln Each path then
consists ofn periods of free evolution separated by+1 XK (7, .. moran - . . ag)
couplingsV, which change the state of the system. Such XE(r 1) --E(7o) (5)
expressions for the lowest three-order response functions are n-1 on
given, e.g., in Eqs(6.17—(6.19 of Ref.[2] with
i\" - - N
KMW(r ... 7,0 .. .a0)=(%> (an(Tn)|[Van_1( Tn-1), - - .[Val(Tl),[VaO(TO),peq]] o an(Ta)] (6)

Here (/a_z|aj><aj|, V, (7)=exp(H )V, exp(~iH7) trix is normalized to have a unit tra@anpiﬁanz 1, whereas
] ] ]
and ay,(7,) =exp(—iH 7,)| a,(0)). pg‘n)an(rn) is the prob- p'™ has a zero tracEanpg‘r])afo, n=12,....

ability of observing the valuey,, of the polarization when KM has 2" independent terms known as Liouville-space
measured at time,,. Note that the equilibrium density ma- pathways. Bulk measurements only yield the expectation
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value of the polarizatio®("™, and are adequately described The higher-order response functions depend on the same in-
by the ordinary response functid®™ . However, measure- gredients. For the second-order response, we have

ments conducted on a single molectbe a few molecules
may yield the entire probability distributiqmanan of observ-

ing the valuea,,, which is a more detailed quantif{].
Equation(5) assumes the form of a classical average over -
all possible realization¥,, of the dipole operator. For the _<V WV, 72)Vay(70))]

linear responsen(=1) we have +c.c. (11

2
(Vo (72 Vo (7)Y o 70))

5 i
K( )(72'7'170;6“2“1%): %

K (1 )(TlTOvalao)_ - (V (7_1 V (TO)>+C'C” ) Using the Green functions, this assumes the form

. . K(Z)(TZaTlTO;azalaO)
This can be recast in the form

eq
KW(7y70; @)= 7 2 Gy 710G, (T10 P50, T CC (ﬁ) 2 (G (720Gl 720 Gt 7200

(8) (721)Gayy( 7100 G

“1“2

X2
Cyoas( T10)Poaa,) T C-C. (12)
where we have defined,=7;— 7., and the Green function

is given by For the third-order response, which represents four-wave-

mixing processes, we get

Gy (T)=(ajlexXp( —iH 7) | aty). 9

a 3 )
! KO 7375, 7170; azaas ag)

Equations(4), (5), and(8)show thatP) involves a triple
sum overag, @4, anda,. Each choice oy, a4, anda,
represents a path in the dipole-eigenstate space and the sum-
mations can viewed as a path integr@laiak represents a

i\ 3
| ~ ~ ~
= %) [<Va1( Tl)Vaz( TZ)Va3( 7'3)\7,10(70)>

conditional amplitude of going frora, to @;. Even though F{Vag(T0)V iy (72) Vg 73) Vo, (T2))
it is not a probability, the statistical weight of a given path is R R ) R
given by a product of two Green functions aptf'. F (Voo (10)Va (T1) Ve (T3) V4 (T2))

Using the eigenstatds) of the Hamiltonian we have . . . .
+ (Vo (7)o (1) (7)Y, (70))] +C.C.13)
Guyo (1) =2 (| )| aexp(—ie,r). (10

which gives

K(g)(7'37'2 ' T1T0; A3 @) =

) 2 (Gl (120GL o (732 Gy (T30 Gl (710950,

aoaz( 7-20) G ( T32) Gasal( T31) G
+ Gloal( 7-10)ch1a:3 T31)Ga3a2( 7-32) Ga2a4( TZO)ijaO

+G! (132G, (720G 4 (710G

azap

ayag a1a4( TlO)pa4ao

ey aoa4( Tso)Pijas]-i-C.C. (14

Generally the products in Eg8), (12), and(14) should be averaged over all otHerg., nucleardegrees of freedom to which
the system may be coupled.

Ill. DISCUSSION

To discuss the physical significance of the dipolar representation of the response function, we recast it in the form

P (7,) = E VegVayVa

n

Tn—1 1
f dr,_ 1f | dTn,2-~-f7 droKMW (7, .. .70 an . .. ag)E(r_1)- - -E(7p). (15
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This has the appearance of a classical stochastic average owgonal elements do not contributén addition, W only de-
n+1 measurements of a random variaMeHowever, this pends on|G|? (which is rea), whereasK depends on G
impression is misleading. To see that, let us consider a setself, which is a complex quantity.

quence ofn+1 measurements of the dipole, carried out at Both W andK are real but have different normalizations.
times 7 . . . 7, and resulting in the valueso, ... .an, re-  For a fixed choice ofry...7,, W(""Y) is normalized as
spectively. The probability for this sequen€tistory” ) is 2 (ap.. .an)W(nH)(ao ...an Ty ..Ty)=1, whereaK rep-

[4-7] resents the deviation of the density matrix from equilibrium
WD (g it ) and has a zero trac& . ... )K" (7 ... 7oia .. . ao)
=0.
_ _ 2 _ 2
=1Gaa, (70~ Tn-2|* - [Gayey (2= 7)) The dipole-eigenstates representationké? provides a

(16) path-integral picture that could be used in semiclassical nu-
merical simulationd9]. It is interesting to note that, even
We shall now compareV™+3) with K™, W+ has gl though the response functioiand K(M) are experimental
the properties of a classical joint probability distribution. It is obzervabcljes tlhat mﬁy be obtalneg by using Caéegu”yh“m?d
the basic quantity in the consistent history description off"d tuned puises, they may not be represented by the joint

quantum dynamics. At each time the system is in the state probability W) used to describe conventional measure-
ments in the consistent-histories approadh” ") does not

2
X |Ga1a0( T1— 7-0)| pigao .

la;) and its density matrix i$a;)(a;|j=0, ... n. In con- . ; ; :

trast, inK™ we measure the dipole only at the last time carry enough information for representing this type of ob-
and find the valuex,. At the earlier timesrj(j=0, ... n servables.

—1) we only pass througly; at time 7;, but the density

matrix could be eithefa;){ay| or |a)(e;| with k#j. KM

is thus a pseudo-joint-probability. Other notable differences ACKNOWLEDGMENT
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