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Consistent-histories and dipolar-basis representation of nonlinear response functions
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By expanding optical response functions in the eigenstates of the dipole operator~rather than of the Hamil-
tonian!, we obtain a path-integral representation that lends itself more readily to classical simulations. Con-
nection is made to stochastic~consistent-histories! theories of quantum dynamics of single quantum systems by
computing the entire probability distribution of the observed polarization~rather than merely its expectation
value!. The weight of each Liouville space path contributing to the optical response is complex, and cannot be
recast using the joint probabilities used in the consistent-histories approach.

PACS number~s!: 42.50.Ct, 42.50.Lc
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I. INTRODUCTION

The key quantity in nonlinear spectroscopy is the non
ear response functionR(n) that carries all the relevant mo
lecular information for the interpretation of the signals@1–3#.
R(n) is defined by

P(n)~tn!5E
2`

tn
dtn21 . . . E

2`

t1
dt0

3R(n)~tn . . . t0!E~tn21! . . . E~t0!, ~1!

whereE(t) is the external field andP(n)(tn) is thenth-order
polarization at timetn .

Denoting the coupling of the system to the radiation fie
by 2V̂E(t), V̂ being the dipole operator, we have

R(n)~tn . . . t0!

5S i

\ D n

^V̂~tn!@V̂~tn21!, . . . ,†V̂~t1!,@V̂~t0!,req#‡ . . . #&,

(2)

where req is the equilibrium density matrix.R(n) is thus
expressed as a combination of 2n correlation functions
~Liouville space pathways!, each representing a sequence
couplings. For a multilevel systemR(n) is usually expanded
in the eigenstates of the free HamiltonianH. Each path then
consists ofn periods of free evolution separated byn11
couplings V̂, which change the state of the system. Su
expressions for the lowest three-order response functions
given, e.g., in Eqs.~6.17!–~6.19! of Ref. @2#
-
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In this Rapid Communication we explore an alternati
physical picture obtained by expandingR(n) in a different
basis: the eigenstates ofV̂. We show that it is then possibl
to recast it in a path-integral form in Hilbert space, and d
cuss the connection with the consistent-history interpreta
of quantum dynamics@4–7#.

II. DIPOLAR-EIGENSTATE REPRESENTATION
OF OPTICAL RESPONSE

Introducing the eigenstatesua j& and eigenvaluesVa j
of

the dipole operator, we obtain

V̂5(
a j

ua j&Va j^a j u. ~3!

By expandingV̂(tn) in Eq. ~2! using Eq.~3!, we obtain

P(n)~tn!5(
an

Van
ranan

(n) ~tn!, n51,2, . . . , ~4!

where

ranan

(n) ~tn!5 (
a0 , . . . ,an21

Va0
•••Van21

3E
2`

tn
dtn21E

2`

tn21
dtn22•••E

2`

t1
dt0

3K (n)~tn . . . t0 ;an . . . a0!

3E~tn21!•••E~t0!, ~5!

with
K (n)~tn . . . t0 ,an . . . a0!5S i

\ D n

^an~tn!u@V̂an21
~tn21!, . . . †V̂a1

~t1!,@V̂a0
~t0!,req#‡ . . . #uan~tn!&] ~6!
ce
ion
Here V̂a j
[ua j&^a j u, V̂a j

(t)5exp(iH t)V̂a j
exp(2 iH t)

and an(tn)5exp(2 iH tn)uan(0)&. ranan

(n) (tn) is the prob-

ability of observing the valuean of the polarization when
measured at timetn . Note that the equilibrium density ma
trix is normalized to have a unit trace(an
ranan

eq 51, whereas

r (n) has a zero trace(an
ranan

(n) 50, n51,2, . . . .

K (n) has 2n independent terms known as Liouville-spa
pathways. Bulk measurements only yield the expectat
©2000 The American Physical Society04-1
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value of the polarizationP(n), and are adequately describe
by the ordinary response functionR(n) . However, measure
ments conducted on a single molecule~or a few molecules!
may yield the entire probability distributionranan

of observ-

ing the valuean , which is a more detailed quantity@8#.
Equation~5! assumes the form of a classical average o

all possible realizationsVan
of the dipole operator. For the

linear response (n51) we have

K (1)~t1t0 ;a1a0!5
i

\
^V̂a1

~t1!V̂a0
~t0!&1c.c., ~7!

This can be recast in the form

K (1)~t1t0 ;a1a0!5
i

\ (
a2

Ga1a0
~t10!Ga0a2

† ~t10!ra2a1

eq 1c.c.,

~8!

where we have definedt jk[t j2tk , and the Green function
is given by

Ga jak
~t![^a j uexp~2 iH t!uak&. ~9!

Equations~4!, ~5!, and~8!show thatP(1) involves a triple
sum overa0 , a1, anda2 . Each choice ofa0 , a1, anda2
represents a path in the dipole-eigenstate space and the
mations can viewed as a path integral.Ga jak

represents a

conditional amplitude of going fromak to a j . Even though
it is not a probability, the statistical weight of a given path
given by a product of two Green functions andreq .

Using the eigenstatesuk& of the Hamiltonian we have

Ga jak
~t!5(

k
^a j uk&^kuak&exp~2 i«kt!. ~10!
02180
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The higher-order response functions depend on the sam
gredients. For the second-order response, we have

K (2)~t2 ,t1t0 ;a2a1a0!5S i

\ D 2

@^V̂a2
~t2!V̂a1

~t1!V̂a_0~t0!&

2^V̂a1
~t1!V̂a2

~t2!V̂a0
~t0!&#

1c.c. ~11!

Using the Green functions, this assumes the form

K (2)~t2 ,t1t0 ;a2a1a0!

5S i

\ D 2

(
a3

@Ga2a1
~t21!Ga1a0

~t20!Ga0a3

† ~t20!ra3a2

eq

2Ga1a2

† ~t21!Ga2a0
~t10!Ga0a3

† ~t10!ra3a1

eq #1c.c. ~12!

For the third-order response, which represents four-wa
mixing processes, we get

K (3)~t3t2 ,t1t0 ;a3a2a1a0!

5S i

\ D 3

@^V̂a1
~t1!V̂a2

~t2!V̂a3~t3!V̂a0
~t0!&

1^V̂a0
~t0!V̂a2

~t2!V̂a3
~t3!V̂a1

~t1!&

1^V̂a0
~t0!V̂a1

~t1!V̂a3
~t3!V̂a2

~t2!&

1^V̂a3
~t3!V̂a2

~t2!V̂a1
~t1!V̂a0

~t0!&] 1c.c.,~13!

which gives
K (3)~t3t2 ,t1t0 ;a3a2a1a0!5S i

\ D 3

(
a4

@Ga1a2

† ~t21!Ga2a3

† ~t32!Ga3a0
~t30!Ga0a4

† ~t10!ra4a1

eq

1Ga0a2

† ~t20!Ga2a3

† ~t32!Ga3a1
~t31!Ga1a4

† ~t10!ra4a0

eq

1Ga0a1

† ~t10!Ga1a3

† ~t31!Ga3a2
~t32!Ga2a4

† ~t20!ra4a0

eq

1Ga3a2

† ~t32!Ga2a1

† ~t21!Ga1a0
~t10!Ga0a4

† ~t30!ra4a3

eq #1c.c. ~14!

Generally the products in Eqs.~8!, ~12!, and~14! should be averaged over all other~e.g., nuclear! degrees of freedom to which
the system may be coupled.

III. DISCUSSION

To discuss the physical significance of the dipolar representation of the response function, we recast it in the form

P(n)~tn!5 (
a0•••an

Va0
Va1

•••Van

3E
2`

tn
dtn21E

2`

tn21
dtn22•••E

2`

t1
dt0K (n)~tn . . . t0 ;an . . . a0!E~tn21!•••E~t0!. ~15!
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This has the appearance of a classical stochastic average
n11 measurements of a random variableV. However, this
impression is misleading. To see that, let us consider a
quence ofn11 measurements of the dipole, carried out
times t0 . . . tn and resulting in the valuesa0 , . . . ,an , re-
spectively. The probability for this sequence~‘‘history’’ ! is
@4–7#

W(n11)~a0 . . . an ;t0 . . . tn!

5uGanan21
~tn2tn21!u2 . . . uGa2a1

~t22t1!u2

3uGa1a0
~t12t0!u2ra0a0

eq . ~16!

We shall now compareW(n11) with K (n). W(n11) has all
the properties of a classical joint probability distribution. It
the basic quantity in the consistent history description
quantum dynamics. At each timet j the system is in the stat
ua j& and its density matrix isua j&^a j u j 50, . . . ,n. In con-
trast, inK (n) we measure the dipole only at the last timetn
and find the valuean . At the earlier timest j ( j 50, . . . ,n
21) we only pass througha j at time t j , but the density
matrix could be eitherua j&^aku or uak&^a j u with kÞ j . K (n)

is thus a pseudo-joint-probability. Other notable differenc
are that W depends only on diagonal elementsra0a0

eq ,

whereasK only depends on off-diagonal elementsra1a2

eq ~di-
y

.
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agonal elements do not contribute!. In addition,W only de-
pends onuGu2 ~which is real!, whereasK depends on G
itself, which is a complex quantity.

Both W andK are real but have different normalization
For a fixed choice oft0 . . . tn , W(n11) is normalized as
( (a0 . . . an)W

(n11)(a0 . . . an ;t0 . . . tn)51, whereasK rep-

resents the deviation of the density matrix from equilibriu
and has a zero trace( (a0 . . . an)K

(n)(tn . . . t0 ;an . . . a0)

50.
The dipole-eigenstates representation ofK (n) provides a

path-integral picture that could be used in semiclassical
merical simulations@9#. It is interesting to note that, eve
though the response functions~and K (n)) are experimental
observables that may be obtained by using carefully tim
and tuned pulses, they may not be represented by the
probability W(n11) used to describe conventional measu
ments in the consistent-histories approach.W(n11) does not
carry enough information for representing this type of o
servables.
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