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Density-matrix representation of nonadiabatic couplings in time-dependent
density functional „TDDFT… theories

Vladimir Chernyak and Shaul Mukamel
Department of Chemistry, University of Rochester, P. O. Box 270216, Rochester, New York 14627-0216
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Closed expressions for nonadiabatic coupling between the ground and an excited electronic state of
a molecule are derived by representing the time-dependent density functional~TDDFT! equations in
a form of classical dynamics for the Kohn-Sham~KS! single-electron density matrix. Applicability
of Krylov-space-type fast algorithms to nonadiabatic TDDFT as well as the representivity of the
time-dependent charge density of a driven system are discussed. ©2000 American Institute of
Physics.@S0021-9606~00!01608-1#
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I. INTRODUCTION

Photoisomerization processes that play an important
in photoinduced dynamics of various chemical and biolo
cal systems1 usually involve four steps.~i! A molecule ini-
tially in its ground state is excited by interaction with a las
field. If the excitation pulse is short compared to the mole
lar dynamics time scale, the molecular geometry remains
same and a nuclear wave packet is formed on an excited
adiabatic surface.~ii ! The wave packet evolves on the e
cited state adiabatic surface.~iii ! When the nuclear configu
ration approaches a region where the ground-state
excited-state adiabatic surfaces come close or even inter
the wave packet transfers from the excited state to
ground-state adiabatic surface.~iv! The last step involves
nuclear relaxation on the ground-state adiabatic surface
ward a stable or a metastable state different from the gro
state. Computation of molecular dynamics during stages~i!,
~ii ! and ~iv! requires the adiabatic surfaces as an inp
whereas molecular dynamics at stage~iii ! involves the nona-
diabatic coupling terms as well.

For a given molecular geometryR, the nonadiabatic
coupling matrix element is a single number. However,
calculation using standard expressions requires the e
many-body wave functions of the ground and excited sta
Obviously much of the information contained in these wa
functions is redundant.

In this paper we derive closed expressions for the no
diabatic coupling matrix elements based on computing
electronic response of the system to an external field.
present direct computation totally avoids the expensive
unnecessary calculation of the many-electron wave funct
and opens up an attractive new computational scheme
photochemical processes. Time-dependent density functi
theory ~TDDFT!2–4 that extends the stationary density fun
tional theory~DFT!5–8 constitutes a powerful tool for study
ing the dynamics of many-electron systems. Its capability
calculate the dynamical linear9–11 as well as nonlinear dy
namical response12 has been demonstrated by numero
studies. By applying the TDDFT to the linear optical r
sponse we derive closed expressions of the nonadiabatic
3570021-9606/2000/112(8)/3572/8/$17.00
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pling between the ground and excited states in terms of
exchange-correlation functional.

We start in Sec. II by formulating the DFT in the Kohn
Sham~KS! form using the KS single-electron density matr
r rather than the KS single-electron orbitals. This allows
to formulate the TDDFT in a way that closely resembl
time-dependent Hartree-Fock~TDHF! equations. We can
then use our earlier results for the optical response, an
particular, the Lanczos-type density-matrix spectral mome
algorithm~DSMA!, originally developed for the TDHF,13 to
the TDDFT calculations. The DSMA offers an extreme
efficient algorithm with minimal memory and computation
time requirements. We further formulate the stationary D
using the KS density matrix and extend it to the adiaba
TDDFT. In Sec. III we formulate the procedure for obtainin
the nonadiabatic coupling by computing the linear respo
using the adiabatic TDDFT and obtain closed expressions
the coupling in terms of the stationary exchange-correlat
functional. The nonadiabatic TDDFT~which uses a
frequency-dependent exchange-correlation functional! is for-
mulated in terms of the KS density matrix in Appendices
and B. In Appendix C we obtain closed expressions
nonadiabatic coupling using the nonadiabatic TDDFT.
nally, in Sec. IV we discuss our results and compare with
TDHF approach.

II. DENSITY MATRIX FORMULATION OF TDDFT

In this section we introduce the basic notation and f
mulate DFT using the single-electron density matrix. W
start with the Hamiltonian of a many-electron system,

Ĥ5Ĥ01V̂, ~2.1!

whereĤ0 is the single-particle part that includes the electr
kinetic energy and the external potential, whileV̂ represents
the Coulomb interaction among electrons. When it does
cause confusion, we shall also denote byĤ0 the Hamiltonian
of the single-electron space, as opposed to Eq.~2.1!, where
Ĥ0 acts in the many-electron space.

Let r(r ,r 8) be the single-electron density matrix repr
sented by an operator in the single-electron space. The e
2 © 2000 American Institute of Physics
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tron density will be denotedn(r )[r(r ,r ). We start with the
ground-state DFT. Using the elegant formulations of Le
and Lieb for the Hohenberg-Kohn DFT,6,14,15we have for the
Hohenberg-Kohn density functional~DF!,

E@n#[minCPV[n]^CuĤuC&, ~2.2!

where V@n# denotes the subspace of many-body statesC
subjected to the constraint that the expectation value of
electronic density at pointr is given byn(r ). The ground-
state energyE0 is given by

E05minn E@n#. ~2.3!

To introduce the Kohn-Sham exchange-correlation fu
tional Exc@n#, we define the DFE0@n# of a system of non-
interacting electrons,

E0@n#5minrPM [n] Tr~Ĥ0r!, ~2.4!

whereM @n#,M is the subspace of the spaceM of the single
Slater determinants represented by the single-electron
sity matrices with r25r, which satisfy the constrain
r(r ,r )5n(r ). Stated differently,E0@n# is the minimal en-
ergy of the many-body HamiltonianĤ0 computed using
single Slater determinants with the constraint that they rep
duce the charge distributionn(r ). According to the represen
tivity theorem,M @n#Þø for any n(r ).

The exchange-correlation functional is defined as

Exc@n#[E@n#2E0@n#2
1

2E drdr 8
n~r !n~r 8!

ur2r 8u
. ~2.5!

We now introduce the functionalE@r# on M by

E@r#[Tr~Ĥ0r!1
1

2E drdr 8
n~r ,@r#!n~r 8,@r#!

ur2r 8u

1Exc@n,@r##, ~2.6!

with n(r ,@r#)[r(r ,r ). Applying the operation minrPM [n] to
Eq. ~2.6!, making use of the fact that the last two terms in t
right-hand side~rhs! of Eq. ~2.6! are constants onM @n#, and
using the definitions ofExc@n# and E0@n# @Eqs. ~2.5! and
~2.4!#, we obtain

E@n#5minrPM [n]E@r#. ~2.7!

Combining Eqs.~2.7! and ~2.3! immediately yields

E05minrPME@r#, n0~r !5r0~r ,r !, ~2.8!

wherer0 is the density matrix which minimizesE@r#, and
n0(r ) is the ground-state electron charge distribution. Eq
tions ~2.6! and ~2.8! constitute a density-matrix formulatio
of the KS DFT, whererPM is a single-electron densit
matrix representing the Slater determinant constructed u
the KS orbitals, hereafter referred to as the KS density m
trix.

Next we turn to TDDFT. The density-matrix formulatio
of the ordinary TDDFT is presented in Appendix A. In th
section we consider the adiabatic TDDFT that can be form
lated as classical dynamics in the phase spaceM of single
Slater determinants parametrized through their density m
ces.
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This is based on the fact that the dynamical adiaba
TDDFT equations can be formally derived by applying t
dynamical variational principle~DVP!, where the many-
body wave function is restricted to be a single Slater de
minant representing the occupied KS orbitals. The expe
tion value of the energy on a single Slater determin
entering the action that needs to be minimized should be
to E@r# given by Eq.~2.6!, wherer is the single-electron
density matrix corresponding to the single Slater deter
nant. Since the DVP is based on the minimal action pr
ciple, the resulting equations represent a classical Lagran
dynamics. The corresponding classical Hamiltonian form
the dynamics is derived starting with the Lagrange formu
tion in a standard way.16 The Poisson bracket for the resul
ing Hamiltonian dynamics which constitutes an equivale
representation of the DVP equations can be expresse
terms of the scalar products of the trial wave functions~in
our case, Slater determinants!. The procedure is briefly out
lined in Sec. III of Ref. 17. Since Slater determinants may
viewed as generalized coherent states,18 the Poisson bracke
can be represented in an algebraic rather than a differe
form. This is known as the Kirillov form.19 The algebraic
formulation of the Poisson bracket in the space of Sla
determinants is given in Ref. 20 for a discrete basis set in
single-electron orbital space. For a continuous represe
tion, this immediately yields

$r~r1 ,r18!,r~r2 ,r28!%[ id~r182r2!r~r1 ,r28!

2 id~r282r1!r~r2 ,r18!. ~2.9!

The adiabatic TDDFT equations of motion thus may be r
resented in the Hamilton-Liouville form,

dr

dt
5$H,r%, ~2.10!

with

H~r![E@r#, ~2.11!

andE@r# in Eq. ~2.11! is given by Eq.~2.6!.
Finally we note that we have adopted a nonstand

definition of the exchange-correlation functional. In a sta
dard formulation,E0@n# is defined as

E0@n#5minCPV[n]^CuĤ0uC&. ~2.12!

Applying the Lagrange procedure for finding the cond
tional minimum in Eq.~2.12! gives the minimum achieved
on the ground state of some8 system of noninteracting elec
trons. If the ground state of this system8 is nondegenerate, i
is necessarily given by a single Slater determinant, and b
definitions coincide. In case of degeneracy, the minimum
be obtained for any linear combination of Slater determ
nants and the two definitions may be different. In this ca
Eq. ~2.4! should be used to recover the KS theory.

III. NONADIABATIC COUPLING TERMS FROM THE
ADIABATIC TDDFT

In this section we outline the procedure for computi
the nonadiabatic coupling terms between the ground and
excited state using the adiabatic TDDFT. Generalization
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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the nonadiabatic TDDFT is given in Appendix C and a sim
lar procedure based on the TDHF is described in Sec. IV

We denote byĤ(R) the many-body electronic Hamil
tonian that depends parametrically on the set of nuclear
ordinatesR. Its eigenstates are denotedn0(R),n1(R), . . .
with energies«0(R),«1(R), . . . ,

Ĥ~R!un j~R!&5« j~R!un j~R!&. ~3.1!

« j (R) for j 50,1, . . . thus represent the adiabatic surfac
The nonadiabatic coupling terms may be represented by
of matricesAi j ,m(R) defined by

Ai j ,m~R![2^n i~R!u]mn j~R!&, ~3.2!

where]m[]/]Rm . Each matrix is a vector field~with com-
ponentsm) in nuclear configuration space.

When time-reversal symmetry is satisfied, the sta
n j (R) can be taken to be real, and the matricesAi j ,m(R) are
real and antisymmetric, i.e.,Aji ,m(R)52Ai j ,m(R). Standard
quantum mechanical perturbation theory gives

]mun i~R!&5(
j Þ i

un j~R!&
^n j~R!u]mĤ~R!un i~R!&

« j~R!2« i~R!
. ~3.3!

Substituting Eq.~3.3! into Eq. ~3.2! immediately yields

Ai j ,m~R!52
^n j~R!uĥm~R!un i~R!&

« j~R!2« i~R!
, ~3.4!

with ĥm(R)5]mĤ(R). Since a change in molecular geom
etry affects the electrons only by changing the external
tential, the operatorsĥm(R) can always be represented in
form

ĥm~R!5E dr h̄m~r ,R!r̂~r ,r !, ~3.5!

where r̂(r ,r 8) denotes an operator representing the sing
electron density matrix.

To compute the nonadiabatic coupling termsAm(R)
within the adiabatic TDDFT, we introduce an external dr
ing field Em(R,t) and consider the following total Hamil
tonianĤT of the driven electronic system,

ĤT~R,t!5Ĥ~R!2(
m

Em~R,t!ĥm~R!. ~3.6!

Equation~3.6! describes a set of purely electronic tim
dependent Hamiltonians parametrized byR.

We next introduce the time-domain linear response fu
tion Rmn

(1)(t,R) with respect to the driving field,

^ĥm~R,t!&5E
2`

t

dt8(
n

Rmn
(1)~R,t2t8!En~R,t8!, ~3.7!

and the corresponding frequency-domain linear polariza
ity,

amn~R,v![E
0

`

dt exp~ ivt !Rmn
(1)~R,t !. ~3.8!

This polarizability can be obtained using the TDDF
approach by solving the classical Liouville equation for t
single-electron density matrix,
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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dr

dt
5$HT ,r%, ~3.9!

with the classical HamiltonianHT of the externally driven
system,

HT~R;r,t!5H~R,r!2(
m

Em~R,t!hm~R,r!. ~3.10!

The Poisson bracket was defined in Eq.~2.9!, H(r) is given
by Eq. ~2.11!, and

hm~R,r![E dr h̄m~r ,R!r~r ,r !. ~3.11!

Since ĥm is linear in the charge density@Eq. ~3.5!#, the
TDDFT may be used for computing the linear response
the case of adiabatic TDDFT, as stated in Sec. II, it follo
the TDHF procedure of solving Eq.~3.9! with HT given by
Eqs.~3.10! and~3.11!, H(r) is given by Eq.~2.11! andE@r#
is determined by Eq.~2.6!. In what follows we treat the
density matricesr(r ,r 8) as operators acting in the space
functionsw(r ),

rw~r !5E dr 8r~r ,r 8!w~r 8!, ~3.12!

and treat adiabatic TDDFT in the same way as the TDH
making use of their close formal analogy. We can, therefo
use the expressions for the linear susceptibilities derived
ing the TDHF approach.20

We denote byr̄(R) the ground-state density matrix fo
the configuration (R) that minimizes the classical Hamil
tonian H(R,r). L(R) is the superoperator of the linearize
dynamical equation that acts in the space of the particle-h
density matricesj, i.e., the ones that satisfy the constrain

@ r̄~R!,@ r̄~R!,j##5j. ~3.13!

For the adiabatic TDDFT,L(R) has the form

L~R!j5@ t~R!1V~ r̄~R!!2P xc
(0)~R!,j#

1@V~j!,r̄~R!#2@dP xc
(a)~R,j!,r̄ #, ~3.14!

where the matrix elements oft are defined by Eq.~B6!, V is
given by Eq.~B8!, the matrix elements ofP xc

(0) are given by
Eq. ~B7!, with vxc

(0) defined by Eq.~B3!. The matrix elements
P xc

(a)(R,j,r ,r 8) of the density-matrix-type operato
P xc

(a)(R,j) have the form

P xc
(a)~R,j,r ,r 8!

5d~r2r 8!E dr 9
dvxc

(0)~r ,@n# !

dn~r 9!
U

n(r )5 r̄(r ,r ,R)

j~r 9,r 9!.

~3.15!

We denote the eigenmodes of the superoperatorL(R) by
j j (R), with the eigenfrequenciesV j (R). j 561,62,...,

L~R!j j~R!5V j~R!j j~R!. ~3.16!

As demonstrated in Ref. 20,j2 j5j j
1 ,V2 j52V j .
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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The linear responseamn(R,v) can be expressed in term
of j j (R) and V j (R) by solving the dynamical equatio
@Eq. ~3.9!# to first order in the driving fieldEm(R,t), which
yields20

amn~v!5(
j .0

Tr~j j
1hm!Tr~j j

1hn!
2V j

V j
22v2

, ~3.17!

where amn ,j j ,V j , and hm depend parametrically onR.
hm(R) is a density-matrix-type operator with matrix el
ments

hm~R,r ,r 8!5h̄m~R,r !d~r ,r 8!. ~3.18!

The eigenmodes in Eq.~3.17! are normalized as

Tr~ r̄@j j
1 ,j j # !51, ~3.19!

and are chosen to be real. This implies, in particular, t
Tr(j j

1hn) are real.
The nonadiabatic coupling termsAj 0,m(R) are obtained

immediately by comparing Eq.~3.17! with the standard ex-
pression foramn in terms of the many-electron eigenstate
i.e.,

amn~v!5(
j

^n j uĥmun0&^n j uĥnun0&
2V j

V j
22v2

, ~3.20!

where V j5« j2«0. Comparing Eq.~3.17! with ~3.20! and
making use of Eq.~3.4! yields

Aj 0,m~R!52
1

V j~R!
Tr@j j

1~R!hm~R!#. ~3.21!

Equation~3.21! constitutes a closed expression for the no
diabatic coupling terms between the ground and an exc
state in terms of quantities that can be calculated using
adiabatic TDDFT.

Equation ~3.21! involves the transition frequencie
V j (R) and the derivativeshm(R) of the electronic Hamil-
tonian with respect to the nuclear configuration. This eq
tion can be recast in an alternative form that only involv
the modesj j (R) and the derivatives]mr̄(R) of the ground-
state density matrix. To that end, we note that an infinite
mal shift can be evaluated as a linear response to a static
Em(R). This yields

]mr̄~R!5(
j .0

@Tr~j j
1hm!j j2Tr~j jhm!j j

1#
1

V j
. ~3.22!

Making use of the orthogonality of the eigenmodes,20 we
obtain

Tr~j j
1hm!5V j Tr~ r̄@j j

1 ,]mr̄#. ~3.23!

Substituting Eq.~3.23! into Eq. ~3.21! we finally obtain

Aj 0,m~R!52Tr$r̄~R!@j j
1~R!,]mr̄~R!#. ~3.24!

The nonadiabatic coupling terms can therefore be ca
lated in the framework of the adiabatic TDDFT using Eq
~3.21! or ~3.24!. In Appendix C we derive an analog of Eq
~3.21! for the nonadiabatic TDDFT. A nonadiabatic TDDF
analog of Eq.~3.24! does not exist.
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IV. DISCUSSION

In this paper we have formulated both DFT and TDDF
in terms of the KS density matrixr and applied these result
to obtain the closed expression for the nonadiabatic coup
between the ground and an excited electronic state. The
sity matrix formulation establishes a close resemblance
tween the HF and the DFT theories. The HF is equivalen
DFT in the KS formulation, provided we use the followin
exchange-correlation functional that depends onr ~rather
than only onn):

Exc
HF@r#52

1

2E drdr 8
r~r ,r 8!r~r 8,r !

ur2r 8u
. ~4.1!

The dynamical TDDFT equations are thus formulated
a way that closely resembles the TDHF equations, i.e., i
form of classical dynamics in a Grassman manifold18 of
single Slater determinants. This allows us to use all the pr
erties of the Grassman manifold dynamics established ea
for the TDHF equations toward the TDDFT.20

The nonadiabatic coupling can also be computed us
the TDHF approximation in a way similar to that describ
in Sec. III. The only difference is thatH(r) in Eq. ~3.10! is
given by Eq.~2.11!, with E@r# given by Eq.~2.6!, where
Exc

HF@r# is given by Eq.~4.1!. In particular this leads to the
linearized operatorL(R) given in Ref. 20 rather than Eq
~3.14! for the adiabatic TDDFT.

A very important consequence of the close similar
between the TDDFT and TDHF approach is that one can
the fast DSMA13 developed for the latter. Its extension to th
adiabatic TDDFT is straightforward. Extension to the ge
eral ~nonadiabatic! TDDFT is somewhat less obvious. Fo
the adiabatic TDDFT or TDHF approach we have a stand
eigenvalue problem

Lj5Vj, ~4.2!

whereas in the nonadiabatic TDDFT we encounter a m
general spectral problem,

L~V!j5Vj. ~4.3!

The iterative DSMA13 can treat both spectral problem
The output of thenth iteration in the iterative DSMA is an
approximationj (n) for the eigenmode andV (n) for its fre-
quency.j (n) is then used as an input for the next iteratio
The nth iteration usesj (n21) and the operatorL as an input.
The iterative DSMA can be reformulated for the spect
problem of Eq.~4.3! in the following way. We start by set
ting L5L(V0) for some reasonableV0. For thenth iteration
we usej (n21) as an input and setL5L(V (n21)). Provided
the procedure converges it yields the solution of the spec
problem of Eq.~4.3!. This method may be used for solvin
the nonadiabatic TDDFT equations using the frequen
dependent functional proposed by Gross and Kohn.21

We have demonstrated how the nonadiabatic coup
between the ground and excited electronic states can be
tained by computing the linear response. Computing the c
pling between excited states requires the second-order
linear response. A procedure for computing the mat
elements of relevant operators between two excited st
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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using the TDHF approach has been outlined in Ref. 22
similar procedure can be developed for the TDDFT.

Finally, we note that the adiabatic TDDFT not only co
stitutes a fair, although uncontrolled, approximation, bu
becomes asymptotically exact as the transition frequenc
decreased. It therefore constitutes an excellent approxima
for curve crossing and conical intersection events.1
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APPENDIX A: TDDFT THEORY USING THE KS
DENSITY MATRIX

In this Appendix we formulate the TDDFT using the K
single-electron density matrixr introduced in Sec. II.

The TDDFT is based on the invertibility properties fir
demonstrated by Runge and Gross.2 The invertibility
theorems2 were proved by expanding the time-depend
quantities in the Taylor series in the vicinity of som
t5t0. The proof of Ref. 2 has been criticized by Xu an
Rajagopal,3 who found counterexamples for which the i
vertibility theorems do not hold. It was later demonstrated
Dhara and Ghosh4 that the results of Ref. 2 are valid pro
vided the relevant distributions decay sufficiently fast
large values ofr .

It is easy to show that the proof of Ref. 2 actually re
on a physically reasonable assumption about the differen
operatorD(n) that depends parametrically on the char
density distributionn(r ),

D~n!5(
m

]

]r m
Fn~r !

]

]r m
G . ~A1!

The assumption is thatD(n) does not have zero-eigenvalu
modes@except forw0(r )5const] for relevant charge densit
distributionsn(r ). It is important to realize that the results o
Refs. 2–4 are related to the uniqueness of the represent
of the time-dependent densityn(r ,t) by a time-dependen
driving field ~potential! E(r ,t), i.e., if E1(r ,t) and E2(r ,t)
represent the samen(r ,t), thenE1(r ,t)2E2(r ,t) is a func-
tion of time only. However, to prove the invertibility of th
mapE(r ,t)→n(r ,t) introduced in Ref. 2 one needs to fu
ther demonstrate the representability of any relevantn(r ,t)
with E(r ,t).

We start with demonstrating both the representabi
and uniquenessn(r ,t). Our arguments use the general id
of Ref. 2, but as opposed to Ref. 2 they are based on
existence and uniqueness of the solutions of differen
equations23 rather than expanding the time-dependent qu
tities in a Taylor series.

We first note that the problem of surface terms outlin
in Ref. 3 can be eliminated by compactification of theR3

space, e.g., by considering the system on a sphereS3 of a
large radius, so that one can neglect its curvature in the
gion where the charge is concentrated. This is equivalen
imposing the conditions of fast decay of the charge dens
and potentials at larger , as was done in Ref. 4. Second, w
emphasize that we call what follows ‘‘arguments’’ or ‘‘dem
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onstration,’’ rather than the ‘‘proof,’’ for the following rea
sons. To convert the following into a proof of a theorem o
needs to implement delicate techniques of functio
analysis,24 such as defining the convergence and topology
infinite-dimensional Hilbert spaces, defining the regions
the Hilbert space where differential operators, e.g.,D(n) are
defined, and introducing the proper Hermitian extensions
symmetric operators. This goes beyond the scope of this
per. On the other hand, in quantum chemistry calculati
the space of the single-electron states is in practice chose
be finite-dimensional. In this case all dynamical spaces c
sidered below are not only finite-dimensional but compac
well, and the following arguments can be converted into
proof of a theorem in a straightforward way.

To demonstrate the one-to-one corresponde
E(r ,t)→n(r ,t), we considern(r ,t) with n(r ,t)5n0(r ) for
t<t0 , wheren0(r ) is the ground-state charge-density dist
bution of the nondriven system. We assume that the oper
D(n0) does not have zero-eigenvalue modes except fo
constant function. This implies that this property holds f
D(n) for all nPWn0

, whereWn0
is some neighborhood o

the ground-state distributionn0(r ). We further assume tha
n(t)PWn0

at all timest. For the sake of computing optica
response functions, these assumptions are always just
since we can take the driving field to be infinitesimally wea

The HamiltonianĤT(t) of the driven system has th
form

ĤT~t!5Ĥ2E drE~r ,t!n̂~r !. ~A2!

We further introduce the following notation:

ṅ~r ,t!5
]

]t
n~r ,t!, n̈~r ,t![

]2n~r ,t!

]t2
, ~A3!

and

n~r ,V![^Vun̂~r !uV&, j ~r ,V![^Vu ĵ ~r !uV&, ~A4!

where uV& is a many-body wave function andĵ (r ) is the
current density operator.

Let V(t) be the solution of the dynamical Schroding
equation,

i
]

]t
uV~t!&5ĤT~t!uV~t!&, ~A5!

with uV(t)&5uV0& for t<t0, where uV0&, represents the
ground state. It follows from the continuity equation that

]

]t (
m

]m j m~r ,V~t!!52n̈~r ,t!. ~A6!

On the other hand, the Heisenberg equation for the cur
density operator yields

]

]t
j m~r ,V~t!!52 i ^V~t!@ ĵ m~r !,Ĥ#uV~t!&

2n~r ,V~t!!]mE~r ,t!. ~A7!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Substituting Eq.~A7! into Eq. ~A6!, and making use of Eq
~A1!, yields

D~n~V~t!!!E~r ,t!

5n̈~r ,t!2 i(
m

^V~t!u@]m ĵ m~r !,Ĥ#uV~t!&. ~A8!

We next introduceĒ(r ,t,V),

Ē~r ,t,V![D21~n~V!!H n̈~r ,t!

2 i(
m

]m^Vu@ ĵ m~r !,Ĥ#uV&J . ~A9!

The field Ē(r ,t,V) is correctly defined by Eq.~A9! for all
uV& that satisfy the conditionn(V)PWn0

, since the integral
over r of the expression in the curly brackets in Eq.~A9!
vanishes, which implies that this expression is orthogona
the only zero mode of the operatorD(n(V)). Ē(r ,t,V) is
thus correctly defined and

E dr Ē~r ,t,V!50. ~A10!

Let uV̄(t)& be the solution of the differential equation,

i
d

dt
uV̄~t!&5ĤuV̄~t!&2E dr Ē~r ,t,V̄~t!!n̂~r !uV̄~t!&.

~A11!

Setting

E~r ,t![ Ē~r ,t,V~t!!, ~A12!

we see by combining Eqs.~A9! and ~A11! that E(r ,t) de-
fined by Eq.~A12! satisfies Eq.~A8!, and therefore repre
sentsn(r ,t). It is also obvious from our construction tha
E(r ,t) defined by Eq.~A12! is the only driving field that
representsn(r ,t) and satisfies the condition Eq.~A10!. We
have thus established a one-to-one correspondence bet
E(r ,t) and n(r ,t), providedn(t)PWn0

for all t, which is
always the case when looking for the response functions

We are now in a position to formulate the TDDFT usin
the KS density matrix. The equation for the KS orbitals2 can
be recast as an equation for the KS density matrixr intro-
duced in Sec. II, in the following way. The KS density m
trix r satisfies Eq.~3.9! with HT given by

HT~r,t!5H0~r!1
1

2E drdr 8
r~r ,r !r~r 8,r 8!

ur2r 8u

2E drE~r ,t!r~r ,r !2E drvxc~r ,t!r~r ,r !,

~A13!

whereH0 is the classical counterpart of the single-partic
Hamiltonian Ĥ0 in Eq. ~2.1!, and the exchange-correlatio
potential vxc(r ,t) depends on the charge densityn(r 8,t8)
for t8,t.

The exchange-correlation potentialvxc(r ,t) can be
found using the following procedure: Givenn(r ,t) we first
find E(r ,t) as described above.vxc(r ,t) can be obtained in a
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject 
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similar way we foundE(r ,t), with the only difference that
the dynamics is described by Eqs.~3.9! and ~A13! and the
wave functionuV̄(t)& is assumed to be a single Slater det
minant at all times, described by a KS density matrixr(t).

APPENDIX B: RESPONSE THEORY USING TDDFT IN
TERMS OF THE KS DENSITY MATRIX

Following Ref. 20 we represent the KS density matrixr
as

r5 r̄1j1T~j!, ~B1!

where r̄ is the ground-state KS density matrix,j and T(j)
are the particle-hole and intraband component of (r2 r̄),
respectively. We also represent the exchange-correlation
tential in a form

vxc~r ,t!5vxc
(0)~r !1dvxc~r ,t!, ~B2!

where

vxc
(0)~r ![

dExc@n#

dn~r !
U

n(r8)5 r̄(r8,r8)

, ~B3!

is its ground-state form.
Substituting Eq.~B2! into Eq. ~A13! and subsequently

Eq. ~A13! into Eq. ~3.9!, and making use of Eqs.~B1! and
~2.9!, yields after some straightforward transformations,

i
dj

dt
5@ t1V~ r̄ !2P xc

(0) ,j#1@V~j!,r̄ #

2@dPxc ,r̄ #2@P,r̄ #1 j̇ (2)1 j̇ (3), ~B4!

with

j̇ (2)[@r̄,@ r̄,@V~j!,j###1@V~T~j!!,r̄ #

2@ r̄,@ r̄,@P xc
(0) ,T~j!###2@ r̄,@ r̄,@dPxc ,j###

2@ r̄,@ r̄,@P,j###, ~B5!

and j̇ (3) denotes terms that do not contribute to the opti
response to second order in the driving field. In Eqs.~B4!
and ~B5! we have used the following notation
j,r̄,t,P xc

(0) ,dPxc , and P are single-electron density opera
tors determined by their matrix elements, e.g.,j(r ,r 8) etc. t
represents the single-particle partĤ0 of the many-body
Hamiltonian@see Eq.~2.1!#,

Ĥ05E drdr 8t~r ,r 8!ĉ1~r !ĉ~r 8!. ~B6!

We further have

P xc
(0)~r ,r 8!5vxc

(0)~r !d~r2r 8!,

dPxc~r ,r 8,t!5dvxc~r ,t!d~r2r 8!, ~B7!

P~r ,r 8,t!5E~r !d~r2r 8!.

V is a linear superoperator acting in the space of sing
electron density operators, defined by

V~r ,r 8,r!5d~r2r 8!E dr 9
r~r 9,r 9!

ur2r 9u
. ~B8!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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To close the system of equations for the optical respo
we expanddvxc in the deviationdn(r ,t) of the charge-
density from its ground-state value,

dvxc~r ,t!5E
2`

t

dt8E dr 8 f (1)~r2r 8;t2t8!dn~r ,8t8!

1E
2`

t

dt8E
2`

t

dt9E dr 8dr 9

3 f (2)~r2r 8,r2r 9;t2t8,t2t9!

3dn~r 8,t8!dn~r 9,t9!1 . . . . ~B9!

Equation~B4!, together with Eq.~B9!, constitutes a closed
system of equations for the optical response. The respo
functions and optical susceptibilities are obtained by solv
these equations order-by-order in the driving field.

APPENDIX C: TDDFT LINEAR RESPONSE AND THE
NONADIABATIC COUPLING TERMS

In this Appendix we formulate the KS scheme for t
TDDFT linear response using the density matrix and co
pute the nonadiabatic coupling terms.

To compute the linear response we consider the follo
ing equation:

i
dj~t!

dt
2L0j~t!2E

2`

t

dt8L1~t2t8!j~t8!52@P,r̄ #,

~C1!

where the superoperatorsL0 andL1(t) are defined by

L0j[@ t1V~ r̄ !2P xc
(0) ,j#1@V~j!,r̄ #, ~C2!

and

L1~r ,r 8;t !j[2 r̄~r ,r 8!E dr 9@ f (1)~r2r 9,t !

2 f (1)~r 82r 9;t !#j~r 9,r 9!. ~C3!

The linear response function is defined by

dn~r ,t!5E
2`

t

dt8E dr 8R(1)~r ,r 8;t2t8!E~r 8,t8!.

~C4!

The linear susceptibilitya(r ,r 8;v) which is related toR(1)

through Eq.~3.8!, can be obtained by solving Eq.~C1!, re-
sulting in

a~r ,r 8;v!52Tr$m~r !@v2L~v!#21@m~r 8!,r̄ #%, ~C5!

wherem(r ) is a single-electron density operator that depe
parametrically onr and has the matrix elementsm(r 9,r 8;r )
5d(r 92r 8)d(r 82r ). The frequency-dependent superope
tor L(v) is defined by

L~v![L01E
0

`

dtL1~ t ! exp~ ivt !. ~C6!

To derive an analog of Eq.~3.21! we first demonstrate
how to use Eq.~C5! to compute the matrix element

^n j ur̂(r ,r )un0& of the charge-density operatorr̂(r ,r ) be-
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tween the ground and an excited states. Comparison of
sum-over-states expression for the linear susceptibility,

a~r ,r 8;v!5(
j

^n j ur̂~r ,r !un0&

3^n j ur̂~r 8,r 8!un0&
2V j

V j
22v2

, ~C7!

where V j5« j2«0 with Eq. ~C5!, shows that the operato
B(v)[v2L(v) has a zero-eigenvalue mode atv5V j ,
hereafter referred to asj j . We now consider Eq.~C5! at
v→V j and neglect that the terms have a finite limit wh
v→V j ,

a~r ,r 8;v!'2
1

v2V j

Tr@m~r !j j #^j j u@m~r 8!,r̄ #&

^j j uB8~V j !j j&
, ~C8!

whereB8(V j )[@dB/dv#v5V j
, and^j j u denotes the projec

tion onto the modej j when expanding the vector in th
eigenmodes of an operatorB(V j ). Comparison of Eqs.~C7!
and ~C8! immediately yields

^j j uz&5c Tr$r̄@j j
1 ,z#%, ~C9!

for any z that has the form

z5E drz~r !@m~r !,r̄ #, ~C10!

with z(r ) being an arbitrary function. In Eq.~C9!, c is a
constant that does not depend onz. Since @m(r 8),r̄ # and
B8(V j )z5@12L8(v)#z for any vectorz can be represente
in the form of Eq.~C10!, we can recast Eq.~C8! in the form

a~r ,r 8;v!'2
1

v2V j

Tr@m~r !j j #Tr@m~r 8!j j #

12Tr$r̄@j j
1 ,L8~V j !j j #%

,

~C11!

and the constantc is canceled out. A comparison o
Eq. ~C11! and Eq.~C7! finally gives

^n j ur̂~r ,r !un0&5
Tr@m~r !j j #

~12Tr$r̄@j j
1 ,L8~V j !j j #%!1/2

. ~C12!

Making use of Eq.~C3!, we can recast Eq.~C12! in the form

^n j ur̂~r ,r !un0&

5
j j~r ,r !

H 12E drdr 8
d

dv
@ f (1)~r2r 8,v!#j j~r ,r !j j~r 8,r 8!J 1/2.

~C13!

Combining Eqs.~C12!, ~3.11!, and~3.4! finally yields

Aj 0,m~R!

52
1

V j~R!

Tr@j j
1~R!hm~R!#

~12Tr$r̄~R!@j j
1~R!,L8~V j ,R!j j~R!#%!1/2.

~C14!
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Equation~C14! constitutes our final expression for th
nonadiabatic coupling terms between the ground and exc
states in terms of quantities that can be calculated using
general ~as opposed to adiabatic! TDDFT. The adiabatic
limit @Eq. ~3.21!# can be obtained from Eq.~C14! by setting
L8(V j ;R)50, sinceL does not depend on the frequency
the adiabatic case.
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