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density functional (TDDFT) theories
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Closed expressions for nonadiabatic coupling between the ground and an excited electronic state of
a molecule are derived by representing the time-dependent density fun¢lieiFT) equations in

a form of classical dynamics for the Kohn-Shéi{B) single-electron density matrix. Applicability

of Krylov-space-type fast algorithms to nonadiabatic TDDFT as well as the representivity of the
time-dependent charge density of a driven system are discusse@00@ American Institute of
Physics[S0021-9606800)01608-1

I. INTRODUCTION pling between the ground and excited states in terms of the
exchange-correlation functional.

Photoisomerization processes that play an important role  We start in Sec. Il by formulating the DFT in the Kohn-
in photoinduced dynamics of various chemical and biologi-Sham(KS) form using the KS single-electron density matrix
cal systemsusually involve four stepsii) A molecule ini-  p rather than the KS single-electron orbitals. This allows us
tially in its ground state is excited by interaction with a laserto formulate the TDDFT in a way that closely resembles
field. If the excitation pulse is short compared to the molecutime-dependent Hartree-FoddDHF) equations. We can
lar dynamics time scale, the molecular geometry remains ththen use our earlier results for the optical response, and in
same and a nuclear wave packet is formed on an excited stgparticular, the Lanczos-type density-matrix spectral moments
adiabatic surface(ii) The wave packet evolves on the ex- algorithm(DSMA), originally developed for the TDHE to
cited state adiabatic surfacgii) When the nuclear configu- the TDDFT calculations. The DSMA offers an extremely
ration approaches a region where the ground-state arﬁfﬁCient algorithm with minimal memory and Computational
excited-state adiabatic surfaces come close or even interseiine requirements. We further formulate the stationary DFT
the wave packet transfers from the excited state to th&Sing the KS density matrix and extend it to the adiabatic
ground-state adiabatic surfacév) The last step involves TDDFT. In Sec. Il we formulate the procedure for obtaining
nuclear relaxation on the ground-state adiabatic surface tdh€ nonadiabatic coupling by computing the linear response
ward a stable or a metastable state different from the groungiSing the adiabatic TDDFT and obtain closed expressions for
state. Computation of molecular dynamics during sta@ges the cpupllng in terms of .the ;tatlonary exchgnge-correlatlon
(i) and (iv) requires the adiabatic surfaces as an inputiunctional. The nonadiabatic TDDFT(which uses a
whereas molecular dynamics at stdgie involves the nona- frequenc_y-dependent exchange-gorrelatl_on_ funct)oadpr-
diabatic coupling terms as well. mulated in terms of the KS denS|_ty matrix in Appenfjlces A

For a given molecular geometr®, the nonadiabatic and B.‘ In Append{x c we obtain C'Os?d EXpressions fqr
coupling matrix element is a single number. However, itsnonaqlabatlc couplm_g using the nonadiabatic TDDF.T' Fi-
calculation using standard expressions requires the enti ally, in Sec. IV we discuss our results and compare with the

many-body wave functions of the ground and excited states.DHF approach.

Obviously much of the information contained in these wave

functions is redundant. Il. DENSITY MATRIX FORMULATION OF TDDFT
. n .thls baper we dgrlve closed expressions for th? nona-—, this section we introduce the basic notation and for-

diabatic coupling matrix elements based on computing the : . . :

electronic response of the system to an external field TthIate. DFT using the_ single-electron density matrix. We

. . . L §tart with the Hamiltonian of a many-electron system,

present direct computation totally avoids the expensive an

unnecessary calculation of the many-electron wave functions H=H,+V, (2.1

and opens up an attractive new computational scheme for . ) ) )

photochemical processes. Time-dependent density functiondin€réHo is the single-particle part that includes the electron

theory (TDDFT)?~* that extends the stationary density func- kinetic energy and the external potential, whileepresents

tional theory(DFT)®~® constitutes a powerful tool for study- the Coulomb interaction among electrf)ns. When it does not

ing the dynamics of many-electron systems. Its capability ta&wause confusion, we shall also denoteHhythe Hamiltonian

calculate the dynamical lineatt! as well as nonlinear dy- of the single-electron space, as opposed to(Ed), where

namical responsé has been demonstrated by numerousf, acts in the many-electron space.

studies. By applying the TDDFT to the linear optical re- Let p(r,r') be the single-electron density matrix repre-

sponse we derive closed expressions of the nonadiabatic cosented by an operator in the single-electron space. The elec-
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tron density will be denoted(r)=p(r,r). We start with the This is ba;ed on the fact that the_ dynamical agiabatic
ground-state DFT. Using the elegant formulations of LevyTDDFT equations can be formally derived by applying the
and Lieb for the Hohenberg-Kohn DFE*15we have for the ~dynamical variational principlgDVP), where the many-

Hohenberg-Kohn density functionéDF), body wave function is restricted to be a single Slater deter-
_ . minant representing the occupied KS orbitals. The expecta-
E[n]=miny ¢y (V[H|V), (2.2 tion value of the energy on a single Slater determinant

where V[n] denotes the subspace of many-body stakes entering the action that needs to be minimized should be set
subjected to the constraint that the expectation value of th ELp] given by Eq.(2.6), wherep is the single-electron
electronic density at point is given byn(r). The ground- density matrix corresponding to the single Slater determi-

state energy, is given by n_ant. Since th(=T DVP is_based on the minimql action prir_l—
. ciple, the resulting equations represent a classical Lagrangian
Eo=min, E[n]. (2.3 dynamics. The corresponding classical Hamiltonian form of

To introduce the Kohn-Sham exchange-correlation functhe dynamics is derived starting with the Lagrange formula-
tional E, [ n], we define the DFE,[n] of a system of non- tion in a standard wa}f The Poisson bracket for the result-

interacting electrons ing Hamiltonian dynamics which constitutes an equivalent
. representation of the DVP equations can be expressed in
Eoln]=min,cyn Tr(Hop), (2.4  terms of the scalar products of the trial wave functigims

. I . our case, Slater determinant3he procedure is briefly out-
whereM[n]CM is the subspace of the sp fthe single lined in Sec. Il of Ref. 17. Since Slater determinants may be

Slater determinants represented by the single-electron den- . .
sity matrices with p>=p, which satisfy the constraint viewed as generalized coherent stafethe Poisson bracket

p(r,r)=n(r). Stated differentlyEo[n] is the minimal en can be represented in an algebraic rather than a differential
’ - . —0 -

SR i form. This is known as the Kirillov form}® The algebraic
ergy of the many-body Hamiltoniati, computed using ¢, jation of the Poisson bracket in the space of Slater

single Slater determinants with the constraint that they reéprogeterminants is given in Ref. 20 for a discrete basis set in the
duce the charge distributian(r). According to the represen-  qjnqje electron orbital space. For a continuous representa-
tivity theorem,M[n]# @ for anyn(r). tion, this immediately yields

The exchange-correlation functional is defined as

n(r)n(r’)

r=r|

{p(r,r1),p(ra,ra)=id(ri—ry)p(ry,ry)
(2.9 —i8(r,—ry)p(ry,r}). (2.9

The adiabatic TDDFT equations of motion thus may be rep-
resented in the Hamilton-Liouville form,

1
ExJ[Nn]=E[n]—Eq[n]— EJ drdr’

We now introduce the function&[p] on M by

. 1 n(rLeDn(r’,[p]) d
E[p]=Tr(Hop)+§f drdr ] d—f_Z{H,p}, (2.10
+Exdn.[p]l, (2.6  with
with n(r,[p])=p(r,r). Applying the operation MLy to H(p)=Elp]. (2.1

Eq.(2.6), making use of the fact that the last two terms in they 4 E[p] in Eq. (2.11 is given by Eq.(2.6).
right-hand siddrhs) of Eq. (2.6) are constants oW [n], and
using the definitions of,[n] and Eg[n] [Egs. (2.5 and
(2.4)], we obtain

Finally we note that we have adopted a nonstandard
definition of the exchange-correlation functional. In a stan-
dard formulationEg[n] is defined as

ELnl=miny cumELP]. @D Egln]=ming ey (V] Ao¥). (212

Combining Egs(2.7) and(2.3) immediately yields Applying the Lagrange procedure for finding the condi-

Eo=min,cmE[p], no(r)=po(r.r), (2.8 tional minimum in Eq.(2.12) gives the minimum achieved
on the ground state of sofheystem of noninteracting elec-
trons. If the ground state of this syst®im nondegenerate, it
is necessarily given by a single Slater determinant, and both

. ) — definitions coincide. In case of degeneracy, the minimum can
of the KS DFT, wherepe M is a single-electron density 9 y

. . ) . be obtained for any linear combination of Slater determi-
matrix representing the Slater determinant constructed using. +s and the two definitions may be different. In this case
the KS orbitals, hereafter referred to as the KS density m '

trix 3. (2.4) should be used to recover the KS theory.

Next we turn to TDDFT. The density-matrix formulation . NONADIABATIC COUPLING TERMS EROM THE
of the ordinary TDDFT is presented in Appendix A. In this ADIABATIC TDDET

section we consider the adiabatic TDDFT that can be formu-

wherepg is the density matrix which minimizeS[p], and
no(r) is the ground-state electron charge distribution. Equa
tions (2.6) and (2.8) constitute a density-matrix formulation

lated as classical dynamics in the phase spdcef single In this section we outline the procedure for computing
Slater determinants parametrized through their density matrthe nonadiabatic coupling terms between the ground and an
ces. excited state using the adiabatic TDDFT. Generalization to
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the nonadiabatic TDDFT is given in Appendix C and a simi- dp

lar procedure based on the TDHF is described in Sec. IV. g~ ={Hr.p}, (3.9
We denote byH(R) the many-body electronic Hamil-

tonian that depends parametrically on the set of nuclear cdVith the classical Hamiltoniati+ of the externally driven

ordinatesR. Its eigenstates are denoteg(R),v,(R), ... system,

with energiesso(R),e1(R), . . .,

H(R)|7j(R))=¢;(R)|7;(R)). (3.2)

&j(R) for j=0,1, ... thus represent the adiabatic surfaces.The Poisson bracket was defined in E29), H(p) is given
The nonadiabatic coupling terms may be represented by a sy Eq.(2.11), and

of matricesA;; ,(R) defined by
Aij u(R)==(»(R)[d,7(R)), (3.2 hﬂ(R,p)Ef drh,,(r,R)p(r,r). (3.11)
whered,=d/JR, . Each matrix is a vector fieldvith com-

ponentsw) in nuclear configuration space. Sinceﬁﬂ is linear in the charge densif§qg. (3.95)], the

When time-reversal symmetry is satisfied, the stated PDFT may be used for computing the linear response. In
vj(R) can be taken to be real, and the matrié%sM(R) are the case of adiabatic TDDFT, as stated in Sec. Il, it follows

real and antisymmetric, i.e4;; ,(R)=—A (R).’Standard the TDHF procedure of solving E@3.9) with Hy given by

HT<R;p,r>=H<R,p>—§ EJR,DNL(R,p).  (3.10

i

quantum mechanical perturbation theory gives Egs.(3.10 and(3.11, H(p) is given by Eq(2.11) andE[ p]
A is determined by Eq(2.6). In what follows we treat the
B (vj(R)|d,H(R)|¥(R)) density matricep(r,r’) as operators acting in the space of
3M|Vi(R)>_; |vj(R)) &, (R)—&(R) (3.3 functions o(r),
Substituting Eq(3.3) into Eq. (3.2 immediately yields pqo(r)=f dr'p(r.r)e(r’), (3.12

(v(R[hLR)m(R) . .
Ajj u(R)=— s (R—e(R) (34  and treat adiabatic TDDFT in the same way as the TDHF,
j i ; i
. . making use of their close formal analogy. We can, therefore,
with h,(R)=4,H(R). Since a change in molecular geom- use the expressions for the linear susceptibilities derived us-
etry affects the electrons only by changing the external poing the TDHF approacH’

tential, the operatorh «(R) can always be represented in a We denote b);(R) the ground-state density matrix for

form the configuration R) that minimizes the classical Hamil-
tonianH(R,p). L(R) is the superoperator of the linearized
ﬁM(R)zf drh,(r,R)p(r,r), (3.5  dynamical equation that acts in the space of the particle-hole
density matriceg, i.e., the ones that satisfy the constraint
where p(r,r’) denotes an operator representing the single-  — —
electron density matrix. [p(R).[p(R).£]]=¢. (3.13
To compute the nonadiabatic coupling terms(R) For the adiabatic TDDFTL.(R) has the form
within the adiabatic TDDFT, we introduce an external driv- o
ing field £,(R,7) and consider the following total Hamil- L(R)é=[t(R)+V(p(R))—PO(R),¢]

tonian A+ of the driven electronic system, _ ) _
+[V(£),p(R)]-[6P,¢(R.6).p], (3.14

where the matrix elements ofare defined by EqB6), V is
_ _ o given by Eq.(B8), the matrix elements on(%) are given by
Equation(3.6) describes a set of purely electronic time- Eq. (B7), with v&%) defined by Eq(B3). The matrix elements

dependent Hamiltonians parametrizedRy PA(R,£r,r')  of the density-matrix-type operator
We next introduce the time-domain linear response func-pieé)(R,g) have the form

tion R;;,(t,R) with respect to the driving field,

AR, N=A(R)— 2 £,(R,nN,(R). (3.6
M

. PRRENT)
<ﬁM(R,T)>=fide'§v‘, RO(R, 7= 7)E(R,7), (3.7

svO(r,[n])
:6(r—r’)fdr”—xc [n] &(r",r").
and the corresponding frequency-domain linear polarizabil- on(r") n(r)=p(r.r.R)
1y, (3.15
aW(R,w)Efwdtexp(iwt)RLly)(R,t)_ (3.9  We denote the eigenmodes of the superopera(®) by
0 §(R), with the eigenfrequencieQ;(R). j=*1,+2,...,
This polarizability can be obtained using the TDDFT L(IRVE(R) =0 (R)E(R 31
approach by solving the classical Liouville equation for the (R&RI=LiR)EGR). (3.19
single-electron density matrix, As demonstrated in Ref. zqﬂ:gj* A j==0;.
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The linear response,,,(R,w) can be expressed in terms V. DISCUSSION
of &(R) and Q;(R) by solving the dynamical equation )
[Eq. (3.9] to first order in the driving field, (R, 7), which I this paper we have formulated both DFT and TDDFT
yield° in terms of the KS density matri and applied these results

to obtain the closed expression for the nonadiabatic coupling
between the ground and an excited electronic state. The den-
a,,(w)= 2, Tr(& h)Tr(&'h ) , (317 sity matrix formulation establishes a close resemblance be-
) J —w’ tween the HF and the DFT theories. The HF is equivalent to
where @, ,¢;,{);, and h, depend parametrically oR. DFT in the KS formulation, provided we use the following
h,(R) is a density-matrix-type operator with matrix ele- exchange-correlation functional that depends ortrather

ments than only onn):
h,(R,r,r')=h, (R,r)8(r,r'). 3.1 1 re)p(r'r
u )=h,(R,r)é(r,r’) (3.18 ENF p]= — f drdr,p( )p(, ). .1
The eigenmodes in E¢3.17) are normalized as Ir=r’]|
Tr(;[ §j+ D=1 (3.19 The dynamical TDDFT equations are thus formulated in

a way that closely resembles the TDHF equations, i.e., in a
and are chosen to be real. This implies, in particular, thaform of classical dynamics in a Grassman manifoldf
Tr(§J+ ,) are real. single Slater determinants. This allows us to use all the prop-

The nonadiabatic coupling tern#s, ,(R) are obtained erties of the Grassman manifold dynamics established earlier
immediately by comparing Eq3.17) with the standard ex- for the TDHF equations toward the TDDEY.
pression fora,,, in terms of the many-electron eigenstates,  The nonadiabatic coupling can also be computed using
ie., the TDHF approximation in a way similar to that described

00 in Sec. lll. The only difference is th&i(p) in Eq. (3.10 is
_ IR P i given by Eq.(2.13), with E[p] given by Eq.(2.6), where
@l @)= 2 (il vo) (vl o) 2_ 2’ (3-20 EXfp] is given by Eq.(4.1). In particular this leads to the
i , linearized operatot(R) given in Ref. 20 rather than Eq.
where ();=¢gj—&,. Comparing Eq.(3.17) with (3.20 and (3.14) for the adiabatic TDDFT.
making use of Eq(3.4) yields A very important consequence of the close similarity
1 between the TDDFT and TDHF approach is that one can use

Ajou(R) ==& ® o THET (RN, (R)]. (3.21)  the fast DSMA® developed for the latter. Its extension to the

adiabatic TDDFT is straightforward. Extension to the gen-
Equation(3.21) constitutes a closed expression for the nonaeral (nonadiabatit TDDFT is somewhat less obvious. For
diabatic coupling terms between the ground and an excitethe adiabatic TDDFT or TDHF approach we have a standard
state in terms of quantities that can be calculated using theigenvalue problem
adiabatic TDDFT.

Equation (3.21) involves the transition frequencies Le=Qg, (4.2
Q;(R) and the derivative$ ,(R) of the electronic Hamil-  whereas in the nonadiabatic TDDFT we encounter a more
tonian with respect to the nuclear configuration. This equageneral spectral problem,
tion can be recast in an alternative form that only involves
the modest; (R) and the derivativeg F(R) of the ground- L)e=0¢. 4.3

J "
state density matrix. To that end, we note that an infinitesi- ~ The iterative DSMA? can treat both spectral problems.
mal shift can be evaluated as a linear response to a static fiefthe output of thenth iteration in the iterative DSMA is an
&£,(R). This yields approximationé(™ for the eigenmode an@(" for its fre-
1 quency.£™ is then used as an input for the next iteration.
3,p(R)=>, [Tf(ffh#)fj—Tr(fjhﬂ)fﬂﬁ- (322  Thenth iteration useg(™ % and the operatot as an input.
>0 j The iterative DSMA can be reformulated for the spectral
problem of Eqg.(4.3) in the following way. We start by set-
ting L=L(Q) for some reasonabl@,. For thenth iteration
we use£(" V) as an input and sdt=L(Q(" V). Provided
Tr(gjfr h,)=Q, Tr(;[fr "%FJ- (3.23 the procedure converges it yields the solution of the spectral
o ) ) ) problem of Eq.(4.3). This method may be used for solving
Substituting Eq/(3.23 into Eq. (3.21) we finally obtain the nonadiabatic TDDFT equations using the?dfrequency—
dependent functional proposed by Gross and Kohn.
Ajou(R)= Tr{p(R)[§, (R),3,p(R)]. (324 We have demonstrated how the nonadiabatic coupling

The nonadiabatic coupling terms can therefore be calcubetween the ground and excited electronic states can be ob-
lated in the framework of the adiabatic TDDFT using Egs.tained by computing the linear response. Computing the cou-
(3.21) or (3.29. In Appendix C we derive an analog of Eq. pling between excited states requires the second-order non-
(3.21) for the nonadiabatic TDDFT. A nonadiabatic TDDFT linear response. A procedure for computing the matrix
analog of Eq(3.24) does not exist. elements of relevant operators between two excited states

Making use of the orthogonality of the eigenmod@sye
obtain
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using the TDHF approach has been outlined in Ref. 22. Aonstration,” rather than the “proof,” for the following rea-
similar procedure can be developed for the TDDFT. sons. To convert the following into a proof of a theorem one
Finally, we note that the adiabatic TDDFT not only con- needs to implement delicate techniques of functional
stitutes a fair, although uncontrolled, approximation, but itanalysis>* such as defining the convergence and topology in
becomes asymptotically exact as the transition frequency imfinite-dimensional Hilbert spaces, defining the regions of
decreased. It therefore constitutes an excellent approximatiahe Hilbert space where differential operators, eby.n) are

for curve crossing and conical intersection evénts. defined, and introducing the proper Hermitian extensions of
symmetric operators. This goes beyond the scope of this pa-
ACKNOWLEDGMENT per. On the other hand, in quantum chemistry calculations

h fth . | Sci dation i the space of the single-electron states is in practice chosen to
The support of the National Science Foundation is gratepe finite_dimensional. In this case all dynamical spaces con-

fully acknowledged. sidered below are not only finite-dimensional but compact as
well, and the following arguments can be converted into a

APPENDIX A: TDDFT THEORY USING THE KS proof of a theorem in a straightforward way.

DENSITY MATRIX To demonstrate the one-to-one correspondence
In this Appendix we formulate the TDDFT using the KS &(r,7)—n(r,7), we considen(r,7) with n(r,7) =ng(r) for

single-electron density matrix introduced in Sec. II. T< Ty, Whereny(r) is the ground-state charge-density distri-

The TDDFT is based on the invertibility properties first bution of the nondriven system. We assume that the operator
demonstrated by Runge and GrdssThe invertibility —D(ng) does not have zero-eigenvalue modes except for a
theorem% were proved by expanding the time_dependentconstant function. This lmplles that this property holds for
quantities in the Taylor series in the vicinity of some D(n) for all ne W, , whereW, is some neighborhood of
7=19. The proof of Ref. 2 has been criticized by Xu and the ground-state distributiong(r). We further assume that
RajagopaP who found counterexamples for which the in- n(7) €W, atall timesr. For the sake of computing optical
vertibility theorems do not hold. It was later demonstrated byresponse functions, these assumptions are always justified,
Dhara and Ghoghthat the results of Ref. 2 are valid pro- since we can take the driving field to be infinitesimally weak.

vided the relevant distributions decay sufficiently fast at e HamiltonianH(7) of the driven system has the
large values of. form

It is easy to show that the proof of Ref. 2 actually rests
on a physically reasonable assumption about the differential A -
operatorD(n) that depends parametrically on the charge HT(7)=H— | dré&(r, m)n(r). (A2)

density distributiom(r),
We further introduce the following notation:

J
nr)—
()5

J
D(n)=2 (77 . (Al)
M Iz

a°n(r,r)

h(r,T)=ain(r,T), n(r,m=——s—, (A3)

The assumption is thd(n) does not have zero-eigenvalue T aT
modes|except forey(r) =const] for relevant charge density

distributionsn(r). It is important to realize that the results of

Refs. 2—4 are related to the uniqueness of the representation n(r,Q)=(QAN[Q), j(r.Q)=(Q[j(N]Q), (A
of the time-dependent density(r,7) by a time-dependent

driving field (potentia} &(r,7), i.e., if £,(r,7) and&y(r,7)  where|Q) is a many-body wave function andr) is the
represent the sam&r, r), then&(r,7)—&,(r,7) is afunc-  current density operator.

tion of time only. However, to prove the invertibility of the Let Q(7) be the solution of the dynamical Schrodinger
map &(r,7)—n(r,7) introduced in Ref. 2 one needs to fur- equation,

ther demonstrate the representability of any relevgni7)
with &(r, 7).

We start with demonstrating both the representability
and uniqueness(r, 7). Our arguments use the general idea
of Ref. 2, but as opposed to Ref. 2 they are based on th#ith [Q(7))=[Qg) for 7<7,, where|Q,), represents the
existence and uniqueness of the solutions of differentiaground state. It follows from the continuity equation that
equation$® rather than expanding the time-dependent quan- J
tities in a Taylor series. _ - z 9,0 (1, Q(7))= —n(r,7). (AB)

We first note that the problem of surface terms outlined T
in Ref. 3 can be ellr_nlngted by compactification of e On the other hand, the Heisenberg equation for the current
space, e.g., by considering the system on a spBéref a densi .

. . . ensity operator yields
large radius, so that one can neglect its curvature in the re-
gion where the charge is concentrated. This is equivalentto
imposing the conditions of fast decay of the charge densities o
and potentials at large, as was done in Ref. 4. Second, we
emphasize that we call what follows “arguments” or “dem- —n(r,Q(7))d,&r,7). (A7)

J ~
= l0(n)=Ar(n]|Q(m), (AS)

i (1, Q1) =—i{QD[] ,(r), A7)
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Substituting Eq(A7) into Eq. (A6), and making use of Eq.
(A1), yields

D(n(Q(7))&(r,7)

=n(r,7)—i 2 (Q(D[d,].(r),A1Q(7). (A8)
M
We next introduce(r, ,Q)),
?(r,T,Q)EDl(n(Q))(H(I’,T)
—i> aﬂ<ﬂl[i#<r>.ﬂ]m>]- (A9)
Y23

The field?(r,r,ﬂ) is correctly defined by EqA9) for all
|Q) that satisfy the condition(Q) e Wh, since the integral

overr of the expression in the curly brackets in EA9)

Nonadiabatic couplings in TDDFT 3577
similar way we found&(r,7), with the only difference that
the dynamics is described by Ed8.9 and (A13) and the
wave functionQ (7)) is assumed to be a single Slater deter-
minant at all times, described by a KS density magr{x).

APPENDIX B: RESPONSE THEORY USING TDDFT IN
TERMS OF THE KS DENSITY MATRIX

Following Ref. 20 we represent the KS density majrix
as

p=p+E+T(8), (B1)

wherep is the ground-state KS density matrig,and T(§)

are the particle-hole and intraband component @fp),
respectively. We also represent the exchange-correlation po-
tential in a form

vanishes, which implies that this expression is orthogonal tQuhere

the only zero mode of the operatbr(n(()). g(r,r,Q) is
thus correctly defined and

f dr&(r,7,Q)=0. (A10)

Let |§(7-)> be the solution of the differential equation,

d — . — S —
id—TIQ(T)>=HIQ(T)>—f dré(r, 7,Q(7)n(r)|Q (7).
(A11)
Setting

Er,1)=&(r,1,Q(7), (A12)

we see by combining Eq$A9) and (All) that &(r,7) de-
fined by Eq.(Al12) satisfies Eq(A8), and therefore repre-
sentsn(r, 7). It is also obvious from our construction that
&(r,7) defined by Eq.(A12) is the only driving field that
represents(r,7) and satisfies the condition EGA10). We

Ve 1, 1) =VEO(r) + Svyo(r,7), (B2)
SEx [ N]

O)ry=

x (= 3n(0) , (B3)

n(r)=p(r',r")
is its ground-state form.
Substituting Eq.(B2) into Eqg. (A13) and subsequently
Eqg. (A13) into Eq.(3.9), and making use of Eq$B1) and
(2.9), yields after some straightforward transformations,

d — _
id—f=[t+V<p>—7>§%),5]+[V<§>,p]

—[6Pyc.p]—[P.p]+ ED+ED), (B4)
with
ED=[p,[p.[V(&),E111+[V(T(£)),p]
~[p.Lp [P T(OI~p.Lp.[ 6P, £]]]
~[p.Lp.[P.E111, (B5)

have thus established a one-to-one correspondence between

&(r,7) andn(r,7), providedn(r) e Wh, for all =, which is
always the case when looking for the response functions.

and &3 denotes terms that do not contribute to the optical
response to second order in the driving field. In E@?)

We are now in a position to formulate the TDDFT using@nd (B5) we have used the following notation.

the KS density matrix. The equation for the KS orbitalan
be recast as an equation for the KS density mairixitro-

duced in Sec. Il, in the following way. The KS density ma-

trix p satisfies Eq(3.9) with Hy given by

p(r,r)p(r',r')

1
H:(p,7)=Hqy(p)+ —f drdr’

—f dré’(r,r)p(r,r)—f drv,(r,7)p(r,r),
(A13)

whereH, is the classical counterpart of the single-particle

Hamiltonian I:IO in Eq. (2.1), and the exchange-correlation
potential v,.(r,7) depends on the charge densiifr’, ")
for 7' <.

The exchange-correlation potential,.(r,7) can be
found using the following procedure: Giver(r,7) we first
find &(r,7) as described above,(r,7) can be obtained in a

£p.t, PO 5P,., and P are single-electron density opera-
tors determined by their matrix elements, e4fr,r’) etc.t
represents the single-particle pa-Fto of the many-body
Hamiltonian[see Eq.(2.1)],

Hozf drdr’t(r,r" ) gt (r)g(r’). (B6)
We further have

PO r)=vQ(r)s(r—r"),

OPyo(r 1", 7)= 6V (r,7)8(r—r"), (B7)

Plrr’,7)=&Er)S(r—r").

V is a linear superoperator acting in the space of single-
electron density operators, defined by

p(r”,r”)

: (B8)
[r=r"|

V(r,r’,p)=5(r—r’)f dr”
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To close the system of equations for the optical responsewveen the ground and an excited states. Comparison of the

we expanddv,. in the deviationdn(r,7) of the charge-
density from its ground-state value,

5ch(r,7')=j dr’f dr' fO(r—r";7—7")én(r," ")

+fT dT’J’T dr”J’ dr'dr”

Xt —r"r—r"7—7" ,7—1")
xon(r',7yon(r", 7"+ . ... (B9)
Equation(B4), together with Eq(B9), constitutes a closed

] . w—
system of equations for the optical response. The response
functions and optical susceptibilities are obtained by solving

these equations order-by-order in the driving field.

APPENDIX C: TDDFT LINEAR RESPONSE AND THE
NONADIABATIC COUPLING TERMS

V. Chernyak and S. Mukamel

sum-over-states expression for the linear susceptibility,
a(r,r’;0)=2 (vlp(r,n)|vo)
J

20

2_ . 2°

X(wilp(r',r")|wo) (o)
where Q;=¢;—&o with Eq. (C5), shows that the operator
B(w)=w—-L(w) has a zero-eigenvalue mode at={};,
hereafter referred to ag. We now consider Eq(C5) at
o—{); and neglect that the terms have a finite limit when
Q;,
1 THam§NEIu).p))
o= (g]B'(Q)E)
whereB’(Qj)E[dB/dw]wzgj, and<§j| denotes the projec-
tion onto the modes; when expanding the vector in the
eigenmodes of an operatB({2;). Comparison of EqQYC7)

a(r,r';w)~—

: (C8)

In this Appendix we formulate the KS scheme for the and(C8) immediately yields

TDDFT linear response using the density matrix and com-

pute the nonadiabatic coupling terms. (&lO=cTrpl& .1, (C9
To compute the linear response we consider the foIIowTOr any ¢ that has the form

ing equation:
dé(7) - - _ f "
"dr —Loar)—f, dr'Ly(7—7)é(r') =~ [P.p], £= ) dremutr)el, (€10

(Cy
where the superoperatoks andL(t) are defined by

Lot=[t+V(p) =P, £1+[V(£),p], (C2)
and
Ly(r,r';t)é= —;(r,r’)f dr'[f@(r—r" t)
—fO(r =r" 1" "), (C3)

The linear response function is defined by

5n(fa7)=f_:cdr’f dr'RO(r r";7— 7)) Er', 7).
(CH

The linear susceptibilityr(r,r’; ») which is related taR™)
through EQq.(3.8), can be obtained by solving E¢C1), re-
sulting in

a(r,r’;o)=—Tr{u([o—-L(w)] {ur'),pl}, (C5H

whereu(r) is a single-electron density operator that depends

parametrically orr and has the matrix elementgr”,r’;r)

=45(r"—r")8(r" —r). The frequency-dependent superopera-

tor L(w) is defined by
L(w)=Lo+ fwdtLl(t)exp(iwt). (c6)
0

To derive an analog of Eq3.21) we first demonstrate

how to use EQ.(C5 to compute the matrix elements

(vjlp(r,r)|vo) of the charge-density operatq(r,r) be-

with £(r) being an arbitrary function. In EqC9), c is a
constant that does not depend én Since[ u(r'),p] and
B'(Q;){=[1-L"(w)]{ for any vector{ can be represented
in the form of Eq.(C10), we can recast ECS8) in the form

1 Tu)EITu(r)E]
©=Qj 1-Tr{p[& L' (Q)g]}

a(r,r';w)~—
(C1)

and the constantt is canceled out. A comparison of
Eqg. (C11) and Eq.(C7) finally gives

_Tr[u(r)f,-]
(1-Tr{pl & L' (Q)&INY
Making use of Eq(C3), we can recast EqC12) in the form

(vilp(r,n)|ve)= (C12

(ilp(r.1)]vo)
gj(rvr)
d
[1—f drdr’%[f(l)(r—r’,w)]gj(r,r)gj(r’,r’)
(C13
Combining Eqs(C12), (3.11), and(3.4) finally yields

172+

AJ 0,/1,( R)

! ¢/ (RIN(R)]

R 1-Trp(RILE (R),L'(Q) RIERTHY?
(C19
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Equation(C14) constitutes our final expression for the 'T. K. Ng, Phys. Rev. Lett62, 2417(1989.
nonadiabatic coupling terms between the ground and exciteltjG- Senatore and K. R. Subbaswamy, Phys. Re@5A2440(1987.

states in terms of quantities that can be calculated using the

general (as opposed to adiabati@DDFT. The adiabatic
limit [Eq. (3.21)] can be obtained from EqC14) by setting
L'(Q;
the adiabatic case.
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