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The doorway-window representation of sequential pump-probe spectroscopy, derived by solving the nonlinear
exciton equations, is used to study exciton dynamics in molecular aggregates. Exciton relaxation is incorporated
through a multilevel Redfield relaxation superoperator calculated using the Brownian oscillator spectral density
for the collective phonon coordinates. Optical pulses are included using a mixed time and frequency domain
(Wigner spectrogram) representation. Numerical results are presented for a five-chromophore model aggregate.

I. Introduction

The Frenkel exciton model is widely used in the description
of elementary optical excitations of molecular aggregates and
macromolecules1,2 where interactions between the basic units,
the chromophores, are purely Coulombic. The exciton is a
quasiparticle consisting of an electron and a hole constrained
to reside on the same chromophore, undergoing a wavelike
motion that ideally covers the whole aggregate. The real-space
Green function representation of the optical response functions
offers a simple and intuitive physical picture of the energetics
and dynamics of exciton systems.3 A small set of exciton
variables can be defined that completely encapsulates the exciton
dynamics and naturally truncates the hierarchy generated by the
Heisenberg equation of motion for a given nonlinear spectro-
scopic method. It has been demonstrated that the time-domain
signal to third-order in the driving field can be partitioned into
a short-time (coherent) and a long-time (sequential) component.3

The former decays on the dephasing time scaleτD whereas the
latter decays on the time scale of the exciton population
(fluorescence) lifetimeτf, which is typically orders of magnitude
longer. A third important time scale is the relaxation timeτr

for the exciton population to reach the Boltzmann distribution
in the excited state. Typically we haveτD, τr , τf. The coherent
and sequential contributions are clearly distinct whenτr . τD.
Whenτr ∼ τD, exciton dephasing and population relaxation are
simultaneous and these two componenets are not clearly
separated.

The possible time-domain two-dimensional (2D) four-wave
mixing techniques in molecular aggregates have been surveyed
in ref 4. For certain techniques such as the two-pulse photon
echo, the exciton density matrix does not have a population
period and, therefore, the sequential component does not
contribute and the signal is represented solely by its coherent
component. Pump-probe spectroscopy depends on both com-
ponents. When the time delayτ between the excitation pulses
satisfies τ ∼ τD, the signal is dominated by its coherent
component. This case has been considered in our earlier work.4

For τ . τD, the signal is sequential. Ifτr , τ , τf, the exciton
populations relax to a thermal equilibrium, and the signal
saturates as a function ofτ and only depends on the probe
frequency. This case has been considered in ref 5.

In this article we build upon and expand these earlier results
to calculate the pump-probe spectra for a molecular aggregate
consisting ofN three-level chromophores. We focus on the
sequential contribution to the response function obtained with
well-separated pulses. The earlier work,5 which assumed a fully
thermalized one-exciton density matrix, is extended to include
exciton relaxation processes. Our approach makes use of the
Green function representation of the third-order optical response
derived by solving the nonlinear exciton equations (NEE),3

where exciton transport is incorporated using the Redfield
relaxation superoperator. The NEE offer significant conceptual
and numerical advantages for computing the nonlinear optical
response, compared with the more conventional sum-over-states
(SOS) approach. They limit the computational effort to the one-
exciton manifold, whose size scales as the number of molecules,
N, while the SOS requires the full set ofN2 one- and two-exciton
states. The NEE further avoids calculating dark states that do
not contribute to the optical response and results in compact
expressions that do not suffer from the almost cancellation of
large terms in the SOS approach.2 All nonlinear spectroscopic
techniques can be formulated using the Green function repre-
sentation of the exciton variables computed perturbatively order
by order in the external field.

The most widely used description of time-resolved pump-
probe spectroscopy treats the measurement as a sequence of
two separate linear experiments. First the pump-pulse perturbs
the system, preparing it in a nonstationary state that is
subsequently monitored by the probe. By varying the pump/
probe time delay, we can follow the evolution of the initially
created state. This simple picture has been put to a solid
mathematical foundation by the doorway-window representa-
tion of sequential pump-probe experiments performed with
well-separated pulses.2 This picture was first developed by Yan
and Mukamel for describing the nuclear density matrix for
vibrations and a solvent bath6 and was extended to molecular
aggregates and exciton wave packets in refs 4, 7, and 8. The
doorway-window representation offers an intuitive physical
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picture of the process and lends itself to a clear interpretation;
the system interacts twice with the pump, creating the initial
doorway wave packet (a particle in the excited state and a hole
in the ground state). This exciton wave packet then propagates
during the time delay between the pulses, whereby the exciton-
bath interaction affects the exciton density matrix. The system
then interacts twice with the probe, and the signal can be
computed as the Liouville space overlap of the propagated
doorway with the window wave packet.5

Pump-probe spectroscopy is conceptually very similar to the
time- and frequency-resolved fluorescence technique. The
pump-probe signalSpp contains the fluorescence signal as one
of the components, known as the stimulated emission contribu-
tion. The DW representation for the time- and frequency-gated
fluorescence using the same level of theory as implemented in
this paper has been developed in ref 9. In this paper we extend
these results to pump-probe spectroscopy.

The DW picture of pump-probe spectroscopy divides the
generation of the signal into three steps: (i) the formation of
the exciton DM representing the exciton populations and
coherences (this process is described by the doorway wave
packet, (ii) propagation of the exciton DM during the pump/
probe delay period, and (iii) formation of the signal as a result
of scattering of an exciton created by the probe field with
excitons created by the pump. This process is described by
projecting the window function onto the exciton density matrix
obtained at the end of step ii. The propagation operator for the
reduced density matrix (step ii) contains the exciton-bath
interaction modeled by the multilevel Redfield theory.10-15 This
theory assumes a vibrational bath coupled linearly to the exciton
system. The Redfield superoperator contains population relax-
ation (T1), coherence relaxation (T2), and mixed terms. The
operator was computed using the Brownian oscillator model
for the collective bath coordinates16 under the rotating wave
approximation. It conserves the number of excitons and satisfies
detailed balance, leading to a thermally equilibrated exciton
distribution at long times. The window wave packet depends
on the one-exciton Green function, as well as the exciton-
exciton scattering matrix, derived from the two-exciton vari-
able2 using the Bethe-Salpeter equation.17 This matrix com-
pletely avoids the computationally expensive calculation of
the two-exciton manifold. It carries all information about the
two-exciton manifold, its energy levels, and anharmonicities
relevant for optical nonlinearities. It is straightforward to ver-
ify from the structure of this matrix that the scattering con-
tributions and the entire nonlinear response vanish for a system
of three-level chromophores that have a harmonic ladder
structure.

The excitation pulses are incorporated through their Wigner
spectrograms,18-21 a mixed time and frequency representation,
which interpolate naturally between the pure time and frequency
domain descriptions and can account for arbitrary pulse shapes
and durations. In an ideal pump-probe measurement, the pulses
are short compared to the exciton dynamics time scale and long
compared to the inverse line width. In this case, known as the
snapshot limit, the signal,Spp

0 , does not depend on the pulse
envelopes. More generally, the spectra are obtained by convo-
luting the snapshot signal with the pump and the probe
spectrograms, making it possible to dress the wave packets with
pulses of arbitrary shapes and durations once the snapshot
spectrum has been calculated.2

The paper is organized as follows: the formal expressions
for the pump-probe signal are summarized in section II, and
numerical applications to a model linear pentamer (J-aggregate)

in the snapshot limit are presented and discussed in section III.
For clarity, all the derivations are given in the appendices. The
pump-probe signal is derived in Appendix D using the optical
response function of Appendix A. The exciton-exciton scat-
tering matrix is defined in Appendix B, and the Redfield
superoperator is derived in Appendix C. The Wigner spectro-
grams are given in Appendix E, and the snapshot limit spectrum
is presented in Appendix F.

II. Doorway -Window Representation of Pump-Probe
Spectroscopy

We consider a molecular aggregate made out ofN interacting
three-level chromophores (Figure 1).Ωn

(1) is the first excited
state for thenth molecule, andΩn

(2) is the doubly excited
electronic state.κn ≡ µ′n/µn is the ratio of the transition dipole
strengths of the|1〉 f |2〉 (µ′n) and |0〉 f |1〉(µn) transitions of
the chromophore.22 The anharmonicity parameter,∆n ≡ Ωn

(2) -
2Ωn

(1), represents the level structure deviation from a harmonic
ladder.

This aggregate can be represented by the Frenkel exiton
Hamiltonian:

He describes the electronic system

where hmn ) Ωm
(1)δmn + Jmn, and Jmn is the intermolecular

dipole-dipole interaction in the Heitler-London approximation.
The parameter

contains all information about the two-exciton manifold. The
exciton creation (annihilation) operatorsB̂m

† (B̂m) add (remove)
an excitation on themth chromophore and satisfy the Pauli
commutator relations

In the case of two-level chromophoresκn ) 0, and eq 2.2
prohibits two excitons from occupying the same chromophore
site at any given time.

Figure 1. Three-level molecular structure for thenth chromophore
and parameters. The first excited-state|1〉 has the energyΩn

(1) and the
second excited-state|2〉 with Ωn

(2) ) 2Ωn
(1) + ∆n. The anharmonicity

parameter,∆n, represents the deviation from a harmonic ladder. The
transition dipole for the|0〉 f |1〉 transition is denotedµn and for the
|1〉 f |2〉 transitionµ′n ) κnµn.

H ≡ He + Hph + Hint - E(t)P̂ (2.1)

He ) ∑
mn

hmnB̂m
† B̂n + ∑

n

gn

2
(B̂n

†)2(B̂n)
2 (2.2)

gn ≡ 2p(κn
-2Ωn

(2) - Ωn
(1))

[B̂n,B̂m
† ] ) δmn[1 - (2 - κn

2)B̂n
†B̂n] (2.3)
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The exciton states are defined by the eigenvalues (εR) and
eigenvectors (æR) of the Hamiltonian

æR(m) represent the transformation between the real-space
(chromophore) representation to the delocalized exciton-space
representation.

The harmonic phonon bath Hamiltonian is

and the system-bath interaction is taken to be

whereqν, pν, mν, andων are the coordinate, momentum, mass,
and frequency, of theνth bath oscillator, respectively.

Using projection operator techniques, we can trace out the
bath coordinates from the full density matrix.3,15 Hph andHint

then generate the relaxation superoperator (see Appendix C)
for the reduced excitonic density matrix. The last term in
eq 2.1 describes the coupling between the system and the ex-
ternal electromagnetic field, where the polarization operator is
given by

The sequential pump-probe signal is derived in Appendices
A-E and is given by

Here ωj 1 (ωj 2) are the pump (probe) carrier frequencies and
τ is the pump/probe delay period.Dkl is the doorway wave
packet, representing the exciton density matrix prepared by
the pump.Wmn is the window wave packet created from the
ground, the one-, and the two-exciton states, by two interac-
tions with the probe.G(N) represents the propagation of the
doorway wave packet during the delay period between pump
and probe.

This representation provides an intuitive physical description
that separates the process into a preparation, propagation, and
detection of the excitonic wave packet. The doorway wave
packet is the reduced one-exciton density matrix containing the
initially prepared exciton populations and coherences. The signal
is given by the Liouville space overlap of this wave packet,
propagated for the delay period, with the window. The bleach
signal comes from the hole-hole overlap in the ground state,
and stimulated emission and excited-state absorption come from
particle-particle overlap in the excited state.

The derivation of eq 2.8 starts with the basic expression for
the nonlinear response function presented in Appendix A. It is
given in terms of the one-exciton Green function,G(ω), the
exciton-exciton scattering matrix,Γh(ω), and the density matrix
propagator,G(N)(t). Γh is given in Appendix B. Closed expres-
sions forG(N) are derived in Appendix C using the Redfield
superoperator in Liouville space. The doorway-window form
eq 2.8 is then derived in Appendix D, and the pump and the

probe pulses are expressed in terms of their Wigner spectro-
grams in Appendix E.

The calculations are simplified considerably in the snapshot
limit where the laser pulses are short compared with the exciton
dynamics time scale and long compared with the electronic
dephasing time scale.2,6,17In this limit we can assume the pulses
to be both monochromatic and very short in the time domain,
and the doorway and the window become simpler, since the
time integrations in eq 2.8 can be carried out. The pump-probe
signal then assumes the form

where all snapshot quantities, labeled by a 0 superscript, are
defined in Appendix F. The numerical calculation presented
below are made in the snapshot limit.

III. Numerical Results and Discussion

We have computed the pump-probe spectrum of a linear
model aggregate made of five identical chromophores with first
excited state energyΩn

(1) ) 1.5 eV and all transition dipoles in
a head-to-tail arrangement along the aggregate axis. We assumed
∆n ) 0.1 eV,µn ) 1, andκn ) 0.7 for all five molecules22 (see
Figure 1).

The overdamped Brownian oscillator model for the bath was
used for computing the Redfield matrix, with the following
approximations: We assume that the various chromophores are
coupled to identical and uncorrelated baths and that each
chromophore is only coupled to a single collective bath
coordinate. The resulting Redfield relaxation superoperator is
given in Appendix C. This model contains two parameters: the
nuclear relaxation time scale,Λ-1, and the exciton-phonon
coupling strength,λ. Their ratio,Λ/λ, has to be greater than 1
in order for the Redfield theory to apply. Room temperature,
T ) 300 K, is assumed in all calculations.

This model has a one-exciton manifold with three allowed
states separated by two forbidden states. The one-exciton
energies (in eV) are 1.413, 1.450, 1.500, 1.550, and 1.587. The
linear absorption spectrum is shown in Figure 2. The lowest

∑
n

hmnæR(n) ) εRæR(m) (2.4)

Hph ) ∑
ν

( pν
2

2mν

+
mνων

2qν
2

2 ) (2.5)

Hint ) ∑
ν,n

qνΩh n,νBhn
†Bhn (2.6)

P̂ ) ∑
n

µn(B̂n
† + B̂n) (2.7)

Spp(τ, ωj 2) ) ∑
mnkl

∫0

∞
dτ′ ∫0

∞
dt2 Wmn(τ - τ′, ωj 2)

Gmn,kl
(N) (t2) Dkl(τ′ - t2, ωj 1) (2.8)

Figure 2. Linear absorption spectra for the model pentamer. The five
chromophores are identical with single excited molecular energy 1.5
eV and∆n ) 0.1 eV. The transition dipoles are set in a head-to-tail
arrangement with dipole moments 1.0. The dipole coupling between
neighboring chromophores were all set toJ ) -0.05 eV, and all
other couplings were set to zero. The exciton dephasing rate,Γ, in
eqs A6-A7, is set to 81 cm-1.

Spp
0 (ωj 2, τ; ωj 1) ) ∑

mnkl

W mn
0 (ωj 2) Gmn,kl

(N) (τ) Dkl
0 (ωj 1) (2.9)
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one-exciton state carries most of the transition dipole strength.
The lowest, third, and fifth exciton states carry approximately
92.4%, 7.0%, and 0.5%, respectively, of the oscillator strength.
The second and fourth states are dark.

The transient pump-probe absorption spectra consist of
photobleaching (PB), stimulated emission (SE), and excited-
state absorption (ESA). The PB and SE arise from the depletion
of the ground state and populating the one-exciton states,
whereas the ESA comes from the transition from the one-exciton
to the two-exciton manifold. These two contributions are close
in frequency owing to the nearly harmonic chromophore level
structure. In the SOS calculations these contributions are
calculated separately. In the present formulation, they are lumped
together and computational cost is greatly reduced since we
avoid the explicit calculation of the two-exciton eigenstates and
their transition dipole elements.

The pump-probe spectra for six time delays when the pump
is tuned to the highest one-exciton state are shown in Figure 3.
We see PB from the two lowest allowed one-exciton states;
the third is too weak to be clearly visible on this scale. The
positive ESA contribution to the signal originates from the
different one-exciton states. Initially we excite the highest one-
exciton level, and the exciton wave packet is nonthermal. The
higher exciton levels have a large population, as is clearly visible
in the ESA. As the time delay increases, the ESA decays owing
to population relaxation toward thermal equilibrium, and the
coherences dephase. The ground-state PB does not change with
time, since molecules have been excited from the common
ground state to the one-exciton manifold. The apparent differ-
ence in PB signal in the vicinity of the second lowest level
(∼1.5 eV) reflects the decay of ESA owing to the thermalization
of the exciton-state population. Finally, the long-time spectra
represent the thermalized DM.

We have further calculated the propagated doorway wave
packet in the exciton basis

In Figure 4 we display the absolute values ofNRâ(τ) as a
function of time delay, corresponding to the pump-probe

spectra shown in Figure 3. The exciton wave packet contains
populations of all allowed states and strong coherences (i.e.,
off-diagonal DM elements) between these states. Panel A in
the top left corner displays the exciton wave packet at short
time delay (1 ps). At longer times (panels B-E), we see how
the coherences dephase and vanish, while the populations relax
toward the lowest one-exciton state. The coherences dephase
on a faster time scale compared to population relaxation, and
exciton-phonon coupling further populates the optically forbid-
den states. The last two panels show that at long times the
propagated density matrix (panel E) reaches thermal equilibrium
(panel F). Initially the pump pulse creates a nonequilibrium
doorway wave packet that is propagated using the Redfield
relaxation operator leading eventually to a diagonal density
matrix with Boltzmann distributed populations. The time
evolution of the absolute magnitude of the various matrix
elements of the doorway wave packet of Figure 4 normalized
to a unit trace is displayed in Figure 5. The off-diagonal and
diagonal elements are shown in panels A and B, respectively.
We note thatN13 andN35 dephase much faster thanN15.

In summary, the sequential pump-probe signal of the
molecular aggregate was expressed in the doorway-window
representation. Linear absorption, pump-probe transient absorp-
tion spectra, and the time-dependent density matrix were
presented and analyzed for a model system.

Acknowledgment. The support of the National Science
Foundation is gratefully acknowledged. M.D would thanks the
Royal Physiografic Society in Lund, Sweden, and the Sweden-
America Foundation for his fellowship.

Figure 3. Transient absorption (pump-probe) spectra for the aggregate
using six time delays, as indicated. The inverse nuclear relaxation time
Λ ) 50 cm-1, and the exciton-phonon couplingλ ) 0.1 cm-1. Other
parameters are given in the Figure 2 caption and in the text. Excitation
is resonant with the highest one-exciton state. The temperatureT )
300 K.

NRâ(τ) ≡ ∑
γδ

GRâ,γδ
(N) (t2) Dγδ

0 (τ - t2, ωj 1) (3.1)

Figure 4. Propagated doorway wave packets displayed in the exciton-
space representation for the spectra shown in Figure 3. Panels A-F
correspond to the six time delays of Figure 3.
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Appendix A. Green Function Expression for the
Pump-Probe Signal

In the pump-probe technique the electric field is given by

with the pump-pulse envelopeE1(t) centered aroundt ) 0,
and the probe-pulse envelopeE2(t - τ) centered around
t ) τ. The corresponding carrier frequencies areωj 1 and ωj 2,
respectively.

The pump-probe signalSpp can be written in terms of the
probe fieldE2(t) and the third-order polarizationP(3)(t) (ref 2)

Using the response function (eqs 4.17 and 4.18 of ref 3),
P(3)(t) can be written for well-separated pulses

whereRi(t3, t2, t1) ) R1
i (t3, t2, t1) + R2

i (t3, t2, t1), with (ref 3)

The two contributions (Eqs A4 and A5) correspond to the left
and right Feynman diagrams given in Figure 6, respectively.

The one-exciton Green function representing the propagator
of the exciton variables〈B̂〉 is defined as

or equivalently in the frequency domain (after a Fourier
transform)

whereΓ is the exciton dephasing rate.
The auxiliary T function related to the exciton-exciton

scattering matrix is calculated in Appendix B.

Appendix B. The Exciton-Exciton Scattering Matrix

In this Appendix we present expressions for the exciton
scattering matrixΓh and the auxiliary functionT.

For the present model (eqs 2.1-2.3) the exciton scattering
matrix Γh jj ′,pp′ has the form23

with

where

and the unperturbed two-exciton Green function

The T function in eq A4 is defined as

whereΓh(τ′′ - τ′) is the exciton-exciton scattering matrix and
G*(τ′′ - τ′) the complex conjugated one-exciton Green function.
Owing to the localized form of the commutation relations for
the exciton creation (annihilation) operators, eq 2.3, the scat-

Figure 5. Evolution of the various matrix elements of the doorway
wave packet shown in Figure 4.

E(t) ) E1(t) exp(-iωj 1t) + E2(t - τ) exp(-iωj 2t) + c.c.
(A1)

Spp(τ, ωj 2) ) Re∫-∞

∞
dt E2

/ (t - τ) P(3)(t) exp(iωj 2t) (A2)

P(3)(t) ) ∫0

∞
dt3 ∫0

∞
dt2 ∫0

∞
dt1 Ri(t3, t2, t1) E(t - t3)

E(t - t3 - t2) E(t - t3 - t2 - t1) (A3)

R1
i (t3, t2, t1) ) 2∑µqµpµkµr ∫0

t3 dτ′′ ∫0

τ′′
dτ′ Gqs(τ′)

Tjs,i′r′,jj ′(τ′′ - τ′) Gr′r(t3 - τ′′) Gh i′j′,kl(t3 + t2 - τ′′) Glp
/ (t1) +

c.c. (A4)

R2
i (t3, t2, t1) ) 2∑µqµlµpµr ∫0

t3 dτ′′ ∫0

τ′′
dτ′ Gqs(τ′)

Tjs,i′r′,jj ′(τ′′ - τ′) Gr′r(t3 - τ′′) Gh i′j′,kl(t3 + t2 - τ′′) Gkp(t1) +
c.c. (A5)

Figure 6. Feynman diagrams representing the sequential pump-probe
spectrum with well-separated pulses: left diagram eq A4; right diagram,
eq A5. See ref 3 for notation.

Gmn(t) ) iθ(t) 〈m|e-iHet-Γt|n〉 (A6)

Gmn(ω) ) - ∑
R

æR(m) æR(n)

ω - εR + iΓ
(A7)

Γh jj ′,pp′(ω2 + ε̃γ) ) δjj ′δpp′Γh jp
(0)(ω2 + ε̃γ) (B1)

Γh jp
(0)(ω2 + ε̃γ) ) [F(ω2 + ε̃γ)] jp

-1[(p(ω2 + ε̃γ) + gp)κ
2 -

2p(ω2 + ε̃γ)] (B2)

Fjp(ω2 + ε̃γ) ) δjpκ
2 - [(p(ω2 + ε̃γ) + gj - 2iΓ)κ2 -

2p(ω2 + ε̃γ)]Gjp
(2)(ω2 + ε̃γ) (B3)

Gjp
(2)(ω2 + ε̃γ) )

1

p
∑
Râ

æR(j) æâ(j) æR(p) æâ(p)

ω2 + εγ - εR - εâ + 3iΓ
(B4)

Tjs,i′r′,jj ′(τ′′ - τ′) ≡ Γ̃js,i′r′(τ′′ - τ′) Gjj ′
/ (τ′′ - τ′) (B5)
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tering matrix,Γh, can be expressed as anN × N matrix instead
of as a tetradicN2 × N2

where we have introduced the following compact notation

The scattering matrix enters the window wave packet through
the auxiliary function,T(ω), defined as the product of the
scattering matrix,Γh, and the one-exciton Green,G

This can be written in frequency domain as a convolution5

All the poles of the scattering matrix are in the lower half of
the complex plane, while the complex conjugated one-exciton
Green function has its poles in the upper half. Using the theorem
of residues and closing the contour in the upper half-plane, we
obtain

whereε̃γ ) εγ + iΓ) are the poles of the Green function.
Equation B10 is the final expression for the auxiliary function,

used in computing the window wave packet, eqs D13 and D14.

Appendix C. The Redfield Relaxation Superoperator

The Green functionG(N) is obtained by solving the Redfield
equation. This Green function propagates the doorway wave
packet from the initial preparation, through the time delayt2,
to the instant when the system interacts with the probe pulse.

The exciton-phonon interaction is taken into account, to
second order using a projection operator technique and tracing
over the bath coordinates.3 This results in a set of equations for
the coupled variables whose formal solution yields the relaxation
superoperators for the corresponding exciton variables (for a
detailed derivation see ref 3). The reduced equation of motion
for the density matrix, in the one-exciton basis

where ωR′â′ ) (εR′ - εâ′), has the formal solution11

N(t) ≡ G(N)(t) N(0).
We next transform the Green function for the exciton

variables,N, from the exciton to the molecular basis

In our earlier work,3,6 we have represented the Green function
G(N) in terms of its irreducible partGh mn,kl(t)

However, in the sequential contribution considered here the
pulse separation is larger than the dephasing time, the first term
in the right-hand side of eq C3 vanishes, and we can replaceGh
by G(N).

Introducing the set of collective bath coordinates

the spectral density is defined as the Fourier transform of the
correlation function of collective coordinates16

We adopt the following simple model for the relaxation. Each
chromophore has its own heat bath with one collective bath
coordinate, and the various collective coordinates are completely
uncorrelated. We further assume that these baths have iden-
tical spectral densities, implying a single exciton-phonon
coupling constantλ, instead of a set ofλR,ij. We then have for
the spectral densityCmn,kl(ω) ) δmnδklδmkCm(ω), where
Cm(ω) ) Cmm,mm(ω). The phonon Green function3 can be written
in the exciton basis

where

We next assume the spectral density of a single strongly
overdamped Brownian oscillator2,4

whereΛ-1 is the nuclear relaxation time.
The phonon Green function can then be expressed as2

and

whereνn ≡ 2πnkT are the Matsubara frequencies.
For this model, the Redfield tensor is given by

whereωRâ ≡ εR - εâ, and

Tjs,i′r′,jj ′(τ′′ - τ′) ) δjsδi′r′Tji ′j′(τ′′ - τ′) (B6)

Tji ′j′(τ′′ - τ′) ) Γh ji ′
(0)(τ′′ - τ′) Gjj ′

/ (τ′′ - τ′) (B7)

Tjpj′(τ′′ - τ′) ≡ Γh jp(τ′′ - τ′) Gjj ′
/ (τ′′ - τ′) (B8)

Tjpj′(ω2) ) ∫-∞

∞ dε

2πi
Γh jp(ω2 + ε) Gjj ′

/ (ε) (B9)

Tjpj′(ω2) ) ∑
γ

æγ(j) æγ(j′) Γh jp(ω2 + ε̃γ) (B10)

dNR′â′(t)

dt
) -iωR′â′NR′â′(t) - ∑

Râ

RhR′â′,RâNRâ(t) (C1)

Gmn,kl
(N)(t) ≡ ∑

Râ,γδ

æR(m) æâ(n) æγ(k) æδ(l) GRâ,γδ
(N) (t) (C2)

Gmn,kl
(N) (t) ≡ Gmk(t) Gnl

† (t) + Gh mn,kl(t) (C3)

qjmn ) ∑
ν

mνων
2(δmnΩh n,ν + Jmn,ν)qν (C4)

Cmn,kl(ω) ) ∫-∞

∞
dt exp(iωt) 〈[qjmn(t), qjkl(0)]〉 (C5)

MRâ,γδ(t) ) 1
2∫-∞

∞ dω
2π

CRâ,γδ(ω) [coth(ω/2kT) cos(ωt) -

i sin(ωt)] (C6)

CRâ,γδ(ω) ≡ ∑
mn,kl

æR(m) æâ(n) æγ(k) æδ(l) Cmn,kl(ω) (C7)

Cm(ω) ) 2λ Λω
Λ2 + ω2

(C8)

MRâ,γδ(t) ) ΨRâγδM(t) (C9)

ΨRâγδ ≡ ∑
m

æR(m) æâ(m) æγ(m) æδ(m) (C10)

M(t) ) λΛ[cot( Λ

2kT) exp(-Λt) + 4kT∑
n)1

∞ νn exp(-νnt)

νn
2 - Λ2

-

i exp(-Λt)] (C11)

RhR′â′,Râ ) ∫0

∞
RR′â′,Râ(t) exp(iωRât) dt (C12)

RR′â′,Râ(t) ) - ∑
γ

exp(iωâγt) MRγ,γR′(t)δââ′ +

exp(iωâR′t) MRR′,ââ′(t) - ∑
γ

exp(iωγRt) Mâγ,γâ′
/ (t)δRR′ +

exp(iωâ′Rt) Mââ′,RR′
/ (t) (C13)
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The Redfield tensor is finally given byRhR′â′,Râ ) RR′â′,Râ
+ +

RhR′â′,Râ
+ + RR′â′,Râ

- + RhR′â′,Râ
- where

Here we have introduced the auxiliary function

It is straightforward to verify that the population part satisfies
the necessary physical requirements:2 the conservation of
probability

and the detailed balance,RhRR,ââ/Rââ,RR ) exp[(-εR - εâ)/kT].
The Green function for the exciton density matrix,G(N)(t2) in
eq 2.8, was calculated by solving eq C1 using eq C14 together
with eq C3.

Appendix D. The Doorway-Window Representation

In this Appendix we derive the DW representation for the
pump-probe signal. Equation (A2) may be recast in the
doorway window representation, similar to the time- and
frequency-gated fluorescence.9 To that end we first shift the
time origin from the generation of the signal field at the end of
the third time interval to the first interaction with the probe
field, at the end of the second time interval3 (see Feynman
diagrams in Figure 5). This amounts to changingτ′ to (t3 - τ′′)
andτ′′ to (t3 - τ′), and we obtain:

Using the exact relation

we can separate the signal into a doorway (D), a propagation
part, and a window (W)

The doorway wave packet reads

where the leftDkl,L and right Dkl,R components satisfy the
relation

which guarantees the hermiticity of the doorway wave packet.
The window wave packet is given by

with

The left and the right components of the doorway and window
functions can be expressed in terms of their snapshot limit
counterpartsDmn,R

0 andW mn,R
0 and the spectrogramsFR andIR,

with R ) L, R. These expressions have a similar form

with R ) L, R andsL ) -sR ) 1.
The doorway and the window are written in terms ofG, G(N),

andT

and

RR′â′,Râ
+ ) -λΛ ∑

γ

ΨγRγR′[(cot( Λ

2kT) - i) ΥRγ(Λ) +

4kT∑
n)1

∞ νn

νn
2 - Λ2

ΥRγ(νn)]δââ′

RhR′â′,Râ
+ ) λΛΨRâR′â′[(cot( Λ

2kT) - i) ΥRR′(Λ) +

4kT∑
n)1

∞ νn

νn
2 - Λ2

ΥRR′(νn)]
RhR′â′,Râ

- ) λΛΨRâR′â′[(cot( Λ

2kT) + i) Υâ′â(Λ) +

4kT∑
n)1

∞ νn

νn
2 - Λ2

Υâ′â(νn)]
RR′â′,Râ

- ) -λΛ ∑
γ

Ψγâγâ′[(cot( Λ

2kT) + i) Υγâ(Λ) +

4kT∑
n)1

∞ νn

νn
2 - Λ2

Υγ̆â(νn)]δRR′ (C14)

ΥRâ(Q) ≡ 1
Q - iωRâ

(C15)

RhRR,RR ) -∑
â

â*R

Rhââ,RR (C16)

R1
i (t3, t2, t1) ) 2∑µqµpµkµr ∫0

t3 dτ′′ ∫0

τ′′
dτ′ Gqs(t3 - τ′′)

Tjs,i′r′,jj ′(τ′′ - τ′) Gr′r(τ′) Gh i′j′,kl(t2 + τ′) Glp
/ (t1) (D1)

R2
i (t3, t2, t1) ) 2∑µqµlµpµr ∫0

t3 dτ′′ ∫0

τ′′
dτ′ Gqs(t3 - τ′′)

Tjs,i′r′,jj ′(τ′′ - τ′) Gr′r(τ′) Gh i′j′,kl(t2 + τ′) Gkp(t1) (D2)

Gi′j′,kl
(N) (t2 + τ′) ) ∑

mn

Gi′j′,mn
(N) (τ′)Gmn,kl

(N) (t2) (D3)

Spp(τ, ωj 2) ) ∑
mnkl

∫-∞

∞
dt4 ∫0

∞
dt2 Wmn(t4 - τ, ωj 2)

Gmn,kl
(N) (t2) Dkl(t4 - t2, ωj 1) (D4)

Dkl(t4 - t2, ωj 1) ) Dkl,L(t4 - t2, ωj 1) + Dkl,R(t4 - t2, ωj 1)
(D5)

DL(t4 - t2, ωj 1) ) [DR(t4 - t2, ωj 1)]
† (D6)

Wmn(t4 - τ, ωj 2) ) Wmn,L(t4 - τ, ωj 2) + Wmn,R(t4 - τ, ωj 2)
(D7)

WL(t4 - τ, ωj 2) ) [WR(t4 - τ, ωj 2)]
† (D8)

DR(t4 - t2, ωj 1) ) ∫0

∞
dt1 ∫-∞

∞ dω1

2π
DR

0(t1)

IR(t4 - t2, ωj 1 - ω1) exp(isRω1t1) (D9)

WR(t4 - τ, ωj 2) ) ∫0

∞
dt3 ∫-∞

∞ dω3

2π
W R

0(t3)

FR(t4 - τ, ω3 - ωj 2) exp(isRω3t3) (D10)

Dkl,L
0 (t1) ) ∑

p

µlµpGkp(t1) (D11)

Dkl,R
0 (t1) ) ∑

p

µpµkGlp
/ (t1) (D12)

W mn,L
0 (t3) ) ∑µqµr ∫0

t3 dτ′′ ∫0

τ′′
dτ′ Gqs(t3 - τ′′)

Tjs,i′r′,jj ′(τ′′ - τ′) Gr′r(τ′) Gi′j′,mn
(N) (τ′) (D13)
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We can further neglectG(N)(t) in the window since exciton
relaxation is typically slow compared with the dephasing time
scale, Gi′j′,mn

(N) (t) ) δi′mδj′n. Equations D13 and D14 can be
recast as

Appendix E. Wigner Spectrograms for the Laser Fields

In this Appendix we introduce the Wigner spectrograms for
the pump and the probe fields.9 We start with the correlation
function of the pump field amplitudes

Using this correlation function, we can represent the pump in
terms of the following right, left, and Wigner spectrograms:

Similarly, we introduce a correlation function of the probe
field

and the corresponding spectrograms

These definitions are used in eqs D9 and D10.

Appendix F. The Snapshot Limit for the Pump-Probe
Signal

In this Appendix we present the expressions for the doorway
and window functions in the snapshot limit,18 obtained by setting

Equation 2.8 then assumes the form of eq 2.9, where
Dkl

0 (ωj 1) andW mn
0 (ωj 2) are the Fourier transforms ofDkl

0 (t1) and
W mn

0 (t)

here

and

Dkl,R
0 (t) andWmn,R

0 (t) for R ) L, R are given by eqs D11- D14.
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W mn,R
0 (t3) ) ∑µqµr ∫0

t3 dτ′′ ∫0

τ′′
dτ′ Gqs

/ (t3 - τ′′)

Tjs,i′r′,jj ′
/ (τ′′ - τ′) Gr′r

/ (τ′) Gi′j′,nm
(N)* (τ′) (D14)

W mn,L
0 (t3) ) ∑

qrj

µqµr ∫0

t3 dτ′′ ∫0

τ′′
dτ′Gqj(t3 - τ′′)

Tjmn(τ′′ - τ′) Gmr(τ′) (D15)

W mn,R
0 (t3) ) ∑

qrj

µqµr ∫0

t3 dτ′′ ∫0

τ′′
dτ′Gqj

/ (t3 - τ′′)

Tjnm
/ (τ′′ - τ′) Gnr

/ (τ′) (D16)

I(τ′ - τ′′) ≡ 〈E1(τ′) E1
/(τ′′)〉 (E1)

IR(τ, ω) ) ∫-∞

∞
dt exp(iωt) I(τ, τ + t) (E2)

IL(τ′, ω) ) ∫-∞

∞
dt exp(iωt) I(τ′ - t, τ′) (E3)

IW(τ+, ω) ) ∫-∞

∞
dt exp(iωt) I(τ+ - t/2, τ+ + t/2) (E4)

F(τ′, τ′′) ≡ 〈E2(τ′) E2
/(τ′′)〉 (E5)

FR(τ; ω) ) ∫-∞

∞
dt exp(iωt) F(τ, τ + t) (E6)

FL(τ′; ω) ) ∫-∞

∞
dt exp(iωt) F(τ′ - t, τ′) (E7)

FW(τ+; ω) ) ∫-∞

∞
dt exp(iωt) F(τ+ - t/2, τ+ + t/2) (E8)

IR(τ′ - t2, ω1 - ωj 1) ) δ(τ′ - t2) δ(ω1 - ωj 1) (F1)

FR(τ - τ′,ω3 - ωj 2) ) δ(τ - τ′) δ(ω3 - ωj 2) (F2)

Dkl
0 (ωj 1) ≡ ∫-∞

∞
dt1 eiωj 1t1Dkl

0 (t1) (F3)

W mn
0 (ωj 2) ≡ ∫-∞

∞
dt eiωj 2tW mn

0 (t) (F4)

Dkl
0 (t1) ) Dkl,L

0 (t1) + Dkl,R
0 (t1) (F5)

W mn
0 (t3) ) W mn,L

0 (t3) + W mn,R
0 (t3) (F6)
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