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The doorway-window representation of sequential purgrobe spectroscopy, derived by solving the nonlinear
exciton equations, is used to study exciton dynamics in molecular aggregates. Exciton relaxation is incorporated
through a multilevel Redfield relaxation superoperator calculated using the Brownian oscillator spectral density
for the collective phonon coordinates. Optical pulses are included using a mixed time and frequency domain
(Wigner spectrogram) representation. Numerical results are presented for a five-chromophore model aggregate.

I. Introduction For > 1p, the signal is sequential. tf < 7 < 71, the exciton
populations relax to a thermal equilibrium, and the signal
saturates as a function afand only depends on the probe
frequency. This case has been considered in ref 5.

In this article we build upon and expand these earlier results
to calculate the pumpprobe spectra for a molecular aggregate
consisting ofN three-level chromophores. We focus on the
sequential contribution to the response function obtained with
well-separated pulses. The earlier wéskhich assumed a fully
thermalized one-exciton density matrix, is extended to include

The Frenkel exciton model is widely used in the description
of elementary optical excitations of molecular aggregates and
macromoleculés’ where interactions between the basic units,
the chromophores, are purely Coulombic. The exciton is a
quasiparticle consisting of an electron and a hole constrained
to reside on the same chromophore, undergoing a wavelike
motion that ideally covers the whole aggregate. The real-space
Green function representation of the optical response functions

offers a simple and intuitive physical picture of the energetics . .

and dynamics of exciton systefsA small set of exciton exciton rela_xatlon processes. Our approach mak_es use of the
variables can be defined that completely encapsulates the excitonGre.en function representation of the th|rd-order optlcal response
dynamics and naturally truncates the hierarchy generated by '[heder'ved by. solving the n(.)nh.near exciton equatlons (NEE)’
Heisenberg equation of motion for a given nonlinear spectro- where exciton transport is incorporated using the Redfield

scopic method. It has been demonstrated that the time-domainrelaxat'on superoperator. The NEE offer significant conceptual

signal to third-order in the driving field can be partitioned into and numerical advznta}g]eti for computing tt_he r:onlmear opt;c?l
a short-time (coherent) and a long-time (sequential) compdnent. response, compared wi € more conventional SUm-over-states

The former decays on the dephasing time scalehereas the (SOS) approach. They limit the computational effort to the one-
latter decays on the time scale of the exciton population exciton manifold, whose size scales as the number of molecules,

(fluorescence) lifetimey, which is typically orders of magnitude N, while the SOS requires the full set ot one- and two-exciton
longer. A third important time scale is the relaxation time states. The NEE further avoids calculating dark states that do

for the exciton population to reach the Boltzmann distribution not cont_rlbute to the optical response and results in compact
in the excited state. Typically we have, 7; < . The coherent expressmns_that do not suffer from the_almost cancellatlc_)n of
and sequential contributions are clearly distinct wher 7p. large terms in the SOS approam' nonlinear spectroscopic

Whenr, ~ 7p, exciton dephasing and population relaxation are techniques can be formulated using the Green function repre-

simultaneous and these two componenets are not clearlysentat'on_Of the exciton va_mables computed perturbatively order
separated. by order in the external field.

The possible time-domain two-dimensional (2D) four-wave '€ most widely used description of time-resolved pump
mixing techniques in molecular aggregates have been surveyeoOrObe spectroscopy treats the measurement as a sequence of
in ref 4. For certain techniques such as the two-pulse photon two separate linear experiments. First the pepplse perturbs

echo, the exciton density matrix does not have a population tN€ Systém, preparing it in a nonstationary state that is
period and, therefore, the sequential component does notSUPSseguently monitored by the probe. By varying the pump/
contribute and the signal is represented solely by its coherentPToP€ time delay, we can follow the evolution of the initially

component. Pumpprobe spectroscopy depends on both com- created state. This s_,imple picture has_been put to a solid
ponents. When the time delaybetween the excitation pulses mathematical foundation by the doorwawindow representa-

satisfiest ~ 7o, the signal is dominated by its coherent tion of sequential pumpprobe experiments performed with

component. This case has been considered in our earlierwork. Well-separated pulsésThis picture was first developed by Yan
and Mukamel for describing the nuclear density matrix for

. B - vibrations and a solvent b&tland was extended to molecular
T Part of the special issue “Harvey Scher Festschrift”. . .
* University of Rochester. aggregates_and exciton wave packets in re_fs 4,17, and 8. The
8 Lund University. doorway-window representation offers an intuitive physical
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picture of the process and lends itself to a clear interpretation; The Molecular Level Structure
the system interacts twice with the pump, creating the initial

doorway wave packet (a particle in the excited state and a hole QP 2)
in the ground state). This exciton wave packet then propagates @~ = = ceccccccccdecaacaa =A,
during the time delay between the pulses, whereby the exeiton
bath interaction affects the exciton density matrix. The system Kokl
then interacts twice with the probe, and the signal can be
computed as the Liouville space overlap of the propagated Q) 1)
doorway with the window wave packet.

Pump-probe spectroscopy is conceptually very similar to the M,
time- and frequency-resolved fluorescence technique. The lo)
pump—probe signak,, contains the fluorescence signal as one
of the components, known as the stimulated emission contribu- rigyre 1. Three-level molecular structure for tmgh chromophore
tion. The DW representation for the time- and frequency-gated ang parameters. The first excited-stitehas the energ2(®) and the
fluorescence using the same level of theory as implemented iNsecond excited-stat@Owith Q2 = 2Q® + A,. The anharmonicity
this paper has been developed in ref 9. In this paper we extendparameterA,, represents the deviation from a harmonic ladder. The
these results to pumfprobe spectroscopy. transition dipole for theO— |1[transition is denoteg, and for the

The DW picture of pumpprobe spectroscopy divides the 110 [20transition, = kiin.

generation of the signal into three steps: (i) the formation of j, yhe snapshot limit are presented and discussed in section |II.

the exciton DM representing the exciton populations and pq ciarity, all the derivations are given in the appendices. The

coherenc"es (this process is described by thg doorway WaVe€sump—probe signal is derived in Appendix D using the optical
packet, (ii) propagation of the exciton DM during the pump/

8 X ) response function of Appendix A. The exciteaxciton scat-
probe deI:_;ty period, and_(m) formation of the signal a;are;ult tering matrix is defined in Appendix B, and the Redfield
of scattering of an exciton created by the probe field with superoperator is derived in Appendix C. The Wigner spectro-

excitons created by the pump. This process is described bygrams are given in Appendix E, and the snapshot limit spectrum
projecting the window function onto the exciton density matrix g presented in Appendix F.

obtained at the end of step ii. The propagation operator for the

reduced density matrix (step i) contains the excitdath | poorway —Window Representation of Pump-Probe
interaction modeled by the multilevel Redfield thed?y!> This Spectroscopy

theory assumes a vibrational bath coupled linearly to the exciton } ) .
system. The Redfield superoperator contains population relax- e consider a molecular aggregate made ol oiteracting
ation (T1), coherence relaxationiT§), and mixed terms. The three-level chromophores (Figure B is the first excited
operator was computed using the Brownian oscillator model state for thenth molecule, andef) is the doubly excited
for the collective bath coordinat®sunder the rotating wave  electronic statex, = u,/u,, is the ratio of the transition dipole
approximation. It conserves the number of excitons and satisfiesstrengths of th¢10— |20(x;) and|00— |1[{u,) transitions of
detailed balance, leading to a thermally equilibrated exciton the chromophoré? The anharmonicity parametek, = Q —

distribution at long times. The window wave packet depends 20, represents the level structure deviation from a harmonic
on the one-exciton Green function, as well as the exeiton |gdder.

exciton scattering matrix, derived from the two-exciton vari-  This aggregate can be represented by the Frenkel exiton
able? using the Bethe Salpeter equatiot. This matrix com- Hamiltonian:

pletely avoids the computationally expensive calculation of R

the two-exciton manifold. It carries all information about the H=H,+ Hp, + Hj, — E(OP (2.1)

two-exciton manifold, its energy levels, and anharmonicities
relevant for optical nonlinearities. It is straightforward to ver- He describes the electronic system
ify from the structure of this matrix that the scattering con-

tributions and the entire nonlinear response vanish for a system _ At I o
of three-level chromophores that have a harmonic ladder He=> huBrBy + zE(Bn) CW (2.2)
structure. mn "

The excitation pulses are incorporated through their Wigner \yhere hy,, = Q®8,, + Jnn and Jnn is the intermolecular

spectrogram& -2 a mixed time and frequency representation, ginole—dipole interaction in the HeitlerLondon approximation.
which interpolate naturally between the pure time and frequency Tpe parameter

domain descriptions and can account for arbitrary pulse shapes

and durations. In an ideal pumprobe measurement, the pulses g, = Zh(K_ZQ(Z) _ Q(l))
. . . n — n n n

are short compared to the exciton dynamics time scale and long

compared to the inverse line width. In this case, known as the contains all information about the two-exciton manifold. The
snapshot limit, the signaky, does not depend on the pulse  exciton creation (annihilation) operatds$, (B, add (remove)

envelopes. More generally, the spectra are obtained by convo-z5, excitation on thenth chromophore and satisfy the Pauli
luting the snapshot signal with the pump and the probe ;ommutator relations

spectrograms, making it possible to dress the wave packets with
pulses of arbitrary shapes and durations once the snapshot B BM =0,J1—(@2- ,{2)[:,*{3“] (2.3)
spectrum has been calculated. " " v

The paper is organized as follows: the formal expressions In the case of two-level chromophores = 0, and eq 2.2
for the pump-probe signal are summarized in section Il, and prohibits two excitons from occupying the same chromophore
numerical applications to a model linear pentamer (J-aggregate)site at any given time.
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The exciton states are defined by the eigenvalags dnd Linear absorption Spectra
eigenvectors of the Hamiltonian Ene !
g o) 10486 ‘ . 11r?3’scm . _ 12906
Y Nefal) = €M) 24 4ol i
n
@o(m) represent the transformation between the real-space
(chromophore) representation to the delocalized exciton-space~
representation. 2
The harmonic phonon bath Hamiltonian is 50'5_ i
=
2 2.2 o
pv rnvquv w
Hon= z + (2.5) ]
7~ \2m, 2
and the systembath interaction is taken to be 0.0 - : ] :
o 1.3 14 Energy (eV) 15 1.6
Hint = zqun,anBn (26) . . . .
o Figure 2. Linear absorption spectra for the model pentamer. The five

chromophores are identical with single excited molecular energy 1.5
whereq,, p,, m,, andw, are the coordinate, momentum, mass, €V andA,= 0.1 eV. The transition dipoles are set in a head-to-tail
and frequency, of theth bath oscillator, respectively. arrangement with dipole moments 1.0. The dipole coupling between

Using projection operator techniques, we can trace out the Qfgg?t;‘gt’;%nzhsriv";‘r’g hsoerf fovlirri,aT"hze;igiTon_ gﬁp?haegﬁganﬁ?t;”
bath coordinates from the full density matfi%® Hp, and Hint eqs A6-A7, is set to 81 cmi.
then generate the relaxation superoperator (see Appendix C)
for the reduced excitonic density matrix. The last term in probe pulses are expressed in terms of their Wigner spectro-
eq 2.1 describes the coupling between the system and the eXgrams in Appendix E.
ternal electromagnetic field, where the polarization operator is = The calculations are simplified considerably in the snapshot
given by limit where the laser pulses are short compared with the exciton
N PO dynamics time scale and long compared with the electronic
P= z #n(By + By) 2.7) dephasing time scafé:7In this limit we can assume the pulses
n to be both monochromatic and very short in the time domain,
and the doorway and the window become simpler, since the
time integrations in eq 2.8 can be carried out. The pumpbe
signal then assumes the form

The sequential pumpprobe signal is derived in Appendices
A—E and is given by

ST, @) = mZ rf"m dr' [ dt, W, T — 7', @,)

ﬁp(a)z’ T 0y = Z( w ?nn(a)z) Gg:zm(f) D(k)|(67)1) (2.9)
G L) Dy — t,, @) (2.8) Nk

where all snapshot quantities, labeleg @ 0 superscript, are
defined in Appendix F. The numerical calculation presented
below are made in the snapshot limit.

Here @1 (w2) are the pump (probe) carrier frequencies and
7 is the pump/probe delay perio®y; is the doorway wave
packet, representing the exciton density matrix prepared by
the pump.Wnn is the window wave packet created from the
ground, the one-, and the two-exciton states, by two interac-
tions with the probeG™ represents the propagation of the ~ We have computed the pumprobe spectrum of a linear
doorway wave packet during the delay period between pump model aggregate made of five identical chromophores with first
and probe. excited state energgéﬁll) = 1.5 eV and all transition dipoles in
This representation provides an intuitive physical description a head-to-tail arrangement along the aggregate axis. We assumed
that separates the process into a preparation, propagation, and, = 0.1 eV,un = 1, andk«, = 0.7 for all five molecule® (see
detection of the excitonic wave packet. The doorway wave Figure 1).
packet is the reduced one-exciton density matrix containing the The overdamped Brownian oscillator model for the bath was
initially prepared exciton populations and coherences. The signalused for computing the Redfield matrix, with the following
is given by the Liouville space overlap of this wave packet, approximations: We assume that the various chromophores are
propagated for the delay period, with the window. The bleach coupled to identical and uncorrelated baths and that each
signal comes from the hotéhole overlap in the ground state, chromophore is only coupled to a single collective bath
and stimulated emission and excited-state absorption come fromcoordinate. The resulting Redfield relaxation superoperator is
particle-particle overlap in the excited state. given in Appendix C. This model contains two parameters: the
The derivation of eq 2.8 starts with the basic expression for nuclear relaxation time scaléy™%, and the excitorphonon
the nonlinear response function presented in Appendix A. It is coupling strength{. Their ratio,A/A, has to be greater than 1

I1l. Numerical Results and Discussion

given in terms of the one-exciton Green functid(w), the in order for the Redfield theory to apply. Room temperature,
exciton—exciton scattering matrid;(w), and the density matrix T = 300 K, is assumed in all calculations.
propagatorGM(t). T is given in Appendix B. Closed expres- This model has a one-exciton manifold with three allowed

sions forG™) are derived in Appendix C using the Redfield states separated by two forbidden states. The one-exciton
superoperator in Liouville space. The doorwayindow form energies (in eV) are 1.413, 1.450, 1.500, 1.550, and 1.587. The
eq 2.8 is then derived in Appendix D, and the pump and the linear absorption spectrum is shown in Figure 2. The lowest
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Transient absorption spectra Density Matrix in the Exciton Representation
Energy (cm™)
11696 . 12906

10486
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Figure 3. Transient absorption (pumprobe) spectra for the aggregate
using six time delays, as indicated. The inverse nuclear relaxation time
A =50 cnT?, and the excitorrphonon coupling. = 0.1 cnT?. Other
parameters are given in the Figure 2 caption and in the text. Excitation
is resonant with the highest one-exciton state. The temperatere
300 K.

1.3 1.6

one-exciton state carries most of the transition dipole strength.
The lowest, third, and fifth exciton states carry approximately
92.4%, 7.0%, and 0.5%, respectively, of the oscillator strength.
The second and fourth states are dark.

The transient pumpprobe absorption spectra consist of
photobleaching (PB), stimulated emission (SE), and excited-
state absorption (ESA). The PB and SE arise from the depletion
of the ground state and populating the one-exciton states,Figure 4. Propagated doorway wave packets displayed in the exciton-
whereas the ESA comes from the transition from the one-exciton space representation for the spectra shown in Figure 3. Panefis A
to the two-exciton manifold. These two contributions are close correspond to the six time delays of Figure 3.
in frequency owing to the nearly harmonic chromophore level o ) ]
structure. In the SOS calculations these contributions are SPectra shown in Figure 3. The exciton wave packet contains
calculated separately. In the present formulation, they are lumpedPoPulations of all allowed states and strong coherences (i.e.,
together and computational cost is greatly reduced since weOff-diagonal DM elements) between these states. Panel A in

avoid the explicit calculation of the two-exciton eigenstates and the top left corner displays the exciton wave packet at short
their transition dipole elements. time delay (1 ps). At longer times (panels-B), we see how

The pump-probe spectra for six time delays when the pump the coherences dephase and vanish, while the populations relax
is tuned to the highest one-exciton state are shown in Figure 3.toward the lowest one-exciton state. The coherences dephase
We see PB from the two lowest allowed one-exciton states: On @ faster time scale compared to population relaxation, and
the third is too weak to be clearly visible on this scale. The €xciton—phonon coupling further populates the optically forbid-
positive ESA contribution to the signal originates from the den states. The last two panels show that at long times the
different one-exciton states. Initially we excite the highest one- Propagated density matrix (panel E) reaches thermal equilibrium
exciton level, and the exciton wave packet is nonthermal. The (Panel F). Initially the pump pulse creates a nonequilibrium
higher exciton levels have a large population, as is clearly visible doorway wave packet that is propagated using the Redfield
in the ESA. As the time delay increases, the ESA decays owing relaxation operator leading eventually to a diagonal density
to population relaxation toward thermal equilibrium, and the matrix with Boltzmann distributed populations. The time
coherences dephase. The ground-state PB does not change witvolution of the absolute magnitude of the various matrix
time, since molecules have been excited from the common €lements of the doorway wave packet of Figure 4 normalized
ground state to the one-exciton manifold. The apparent differ- to a unit trace is displayed in Figure 5. The off-diagonal and
ence in PB signal in the vicinity of the second lowest level diagonal elements are shown in panels A and B, respectively.
(~1.5 eV) reflects the decay of ESA owing to the thermalization We note thalNi3 andNss dephase much faster thafs.
of the exciton-state population. Finally, the long-time spectra In summary, the sequential pumprobe signal of the

represent the thermalized DM. molecular aggregate was expressed in the doorwagdow
We have further calculated the propagated doorway wave representation. Linear absorption, puagsobe transient absorp-
packet in the exciton basis tion spectra, and the time-dependent density matrix were

presented and analyzed for a model system.
Nys(7) = Z G, o(ty) DSy — ty, @) (3.1) _ _
v Acknowledgment. The support of the National Science
Foundation is gratefully acknowledged. M.D would thanks the
In Figure 4 we display the absolute valuesNfs(z) as a Royal Physiografic Society in Lund, Sweden, and the Sweden
function of time delay, corresponding to the punpgrobe America Foundation for his fellowship.
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Figure 5. Evolution of the various matrix elements of the doorway
wave packet shown in Figure 4.

Appendix A. Green Function Expression for the
Pump—Probe Signal

In the pump-probe technique the electric field is given by
E(t) = E (1) exp(io,t) + Ex(t — 7) exp(—iw,t) + c.c.
(A1)

with the pump-pulse envelopés;(t) centered around = O,
and the probepulse envelopeEs(t — 7) centered around
t = 7. The corresponding carrier frequencies areand @,
respectively.

The pump-probe signalS,, can be written in terms of the
probe fieldE,(t) and the third-order polarizatioR®)(t) (ref 2)

ST, @) =Re [ dtEj (t — 7) PO(t) expi@y)  (A2)

Using the response function (eqs 4.17 and 4.18 of ref 3),

P@E)(t) can be written for well-separated pulses

PO = [ty [ dt, [ dty Rty t,, ty) E(t — t,)
E(t—t;—t) E(t—t; —t, — t,) (A3)

whereRi(ts, t, t1) = Ri(ts, to, t1) + Ry(ts, t2, t1), with (ref 3)

Rulty, o t) = 23 pgtgingt, [ [ o Godr)

(7" = 7) Gty — 7") éi'j’,kl(ta +t,— ") G(ty) +
c.c. (A4)

i i3 " 7" ] ’
Rolts to t) = 23y uguutgu, f" e [ de' Go@)
(T = 7) Gty = 7") Gyt + 1, — 77) Gty +
c.c. (A5)
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Figure 6. Feynman diagrams representing the sequential ptpngbe
spectrum with well-separated pulses: left diagram eq A4; right diagram,
eqg A5. See ref 3 for notation.

The one-exciton Green function representing the propagator
of the exciton variable&Blis defined as

Grnrl®)

or equivalently in the frequency domain (after a Fourier
transform)

=i6(t) Enje " nO (A6)

(M) @, ()

— (A7)
T w— ¢, +il

Gmn(w) ==

whereT is the exciton dephasing rate.
The auxiliary T function related to the exciterexciton
scattering matrix is calculated in Appendix B.

Appendix B. The Exciton—Exciton Scattering Matrix

In this Appendix we present expressions for the exciton
scattering matriX" and the auxiliary functior.

For the present model (eqs 2:2.3) the exciton scattering
matrix Ty py has the forr?

L pp(@, + &) = 0,0, T\, + ) (B1)
with
T, + &) = [F(w, + &)], [(-(w, + &) + gk’ —
2hi(w, + &) (B2)
where
Fip(w, €)= /< — [(A(w, +€) +g — 20K —
2w, + &G, + &) (B3)
and the unperturbed two-exciton Green function
®o() @50) @a(P) @4(P)

— €, — €5+ 30

GCw, + &) = h;

w, T e,
The T function in eq A4 is defined as

Tir (@' —7) = fjs,i‘r’(T" —7)Gy(r" —7) (B5)

wherel'(z" — 7') is the exciton-exciton scattering matrix and
G*(7" — ') the complex conjugated one-exciton Green function.

The two contributions (Eqs A4 and A5) correspond to the left Owing to the localized form of the commutation relations for
and right Feynman diagrams given in Figure 6, respectively. the exciton creation (annihilation) operators, eq 2.3, the scat-
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tering matrix,I’, can be expressed as Bnx N matrix instead Introducing the set of collective bath coordinates
of as a tetradid\? x N?

T'si’r',jj’(t” —7)= 6 6|r jij’ (T —7) (B6)

=5 Moy Omn, + Jnn,)0, (C4)
IS v

where we have introduced the following compact notation the spectral density is defined as the Fourier transform of the

—0) . correlation function of collective coordinatés
Tip(@" =) =0T —7) Gj(z" — 1) (B7)

The scattering matrix enters the window wave packet through Cona(@) = f—w dt exp{wt) [am(0), a(0)]0 (C5)

the auxiliary function,T(w), defined as the product of the

scattering matrixI, and the one-exciton Gree6, We adopt the following simple model for the relaxation. Each
chromophore has its own heat bath with one collective bath
T(@ —7) = p(, —7) G —7) (B8) coordinate, and the various collective coordinates are completely

uncorrelated. We further assume that these baths have iden-

This can be written in frequency domain as a convoldtion tical spectral densities, implying a single excitgrhonon
coupling constant, instead of a set of, ;. We then have for
= * the spectral densityCmnk(w) = OmOkOmCm(®w), where
) + n ! .
Tipy(@2) = f Jp(wz €) Gy (<) (B9) Cn(®) = Cymmn(@). The phonon Green functiean be written

. . . in the exciton basis
All the poles of the scattering matrix are in the lower half of

the complex plane, while the complex conjugated one-exciton _
Green function has its poles in the upper half. Using the theorem Mag o) = zf Caﬁ yo(@) [coth(@/2KT) cost) —
82::isr1|dues and closing the contour in the upper half-plane, we i sin(t)] (C6)

) o where
Tipy (@) = Z #,() ¢,(") Tjplw, +€,)  (B10)
Copyol@) = Zk ®a(M) @) @,(K) @5(1) Cra(@)  (C7)
where¢, = ¢, + iI') are the poles of the Green function. mnid
Equation B10 is the final expression for the auxiliary function,

used in computing the window wave packet, eqs D13 and D14. We next assume the spectral density of a single strongly

overdamped Brownian oscillafet
Appendix C. The Redfield Relaxation Superoperator Aw

The Green functios™ is obtained by solving the Redfield Ca() = 22 A2+ (C8)

equation. This Green function propagates the doorway wave
packet from the initial preparation, through the time detay where A1 is the nuclear relaxation time.

to the instant when the system interacts with the probe pulse. The phonon Green function can then be expressed as
The exciton-phonon interaction is taken into account, to

second order using a projection operator technique and tracing Meg s(t) = Wog,6M(1) (C9)

over the bath coordinatésThis results in a set of equations for

the coupled variables whose formal solution yields the relaxation and

superoperators for the corresponding exciton variables (for a

detailed derivation see ref 3). The reduced equation of motion W = z Po(m) @a(m) @, (M) p,(m)  (C10)
for the density matrix, in the one-exciton basis ! m !
AN,z () . B A o y expr)
= —iwgpNyp(t) — Z RugropNos()  (C1) M(t) = AA|cotl—| exp(—At) + 4kTy — —
dt 4 2KT, = 2= A?
where wqp = (o — €p), has the formal solutidh )
N(t) = GMN(t) N(0). i exp(—At)| (C11)

We next transform the Green function for the exciton
variables N, from the exciton to the molecular basis

Go M = Y @M @) @,(K) @,(1) G40 (C2)
of,yo

wherev, = 27nkT are the Matsubara frequencies.
For this model, the Redfield tensor is given by

Repas = fo Rup o eXplog) dt  (C12)
In our earlier worlé® we have represented the Green function “ fo el
G in terms of its irreducible paGmn(t) wherewys = €q — €5, and

Gianu(® = Grilt) Gu(t) + Grya() ©3) Ry =3 explo,) My, 03y +
v

However, in the sequential contribution considered here the "

pulse separation is larger than the dephasing time, the first term explwget) Moq (1) = z explw,qt) Mg, 5 (0000 +

in the right-hand side of eq C3 vanishes, and we can rejace v .

by G, equwﬁ’at) Mﬁﬁ’,aa’(t) (C13)
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_ The Redfield tensor is finally given bRy as = Ryp op +
R:t'ﬁ',aﬁ + Rypop T Rup s Where

o A ;
Repap = ~ANA Z W, 0wl |CO %_ 1Yo, (A) +

) Vn

AKT

; 5 Yo, (Vi) [0
=1y, — A

_ A
oy = AAY (co(—) —i)Ym, A) +
Reep ap opocf T (A)

o 'Vn
4T Yoo ()

n= ‘l}n —

_ A
' 2KT,

0 vn

AT Y ()
=y, — A

. Ny W ( t(—)+')Y (A) +
g = || CO |
Raﬁ,aﬁ 4 VBB 2kT, VB

© v
4kT 2YW(vn) Oue (C14)
=1y, — A
Here we have introduced the auxiliary function
Y Q=g (C15)
BT Q -y

It is straightforward to verify that the population part satisfies
the necessary physical requiremehtthe conservation of
probability

p=a

ﬁaa,aa = ; ﬁ/}ﬂ,o.ot (C16)

and the detailed balancByq ss/Rsp.a = €XPl(—ea — €p)/KT].
The Green function for the exciton density matrGN(t,) in

eq 2.8, was calculated by solving eq C1 using eq C14 together

with eq C3.

Appendix D. The Doorway—Window Representation

In this Appendix we derive the DW representation for the
pump-probe signal. Equation (A2) may be recast in the
doorway window representation, similar to the time- and
frequency-gated fluorescengd.o that end we first shift the
time origin from the generation of the signal field at the end of
the third time interval to the first interaction with the probe
field, at the end of the second time intef/ébee Feynman
diagrams in Figure 5). This amounts to changihtp (tz — "
andz" to (t3 — 7'), and we obtain:

i t ” T” ! n
Ri(ts th, ty) = ZZuququr jz)s dr j; dr' Gft; — 7
Tjs,i'r',jj'(T” —7) G (7') éi’j’,kl(tz + 1) Gf;)(tﬁ (D1)

Dahlbom et al.

) ‘ "
Ro(ty, toy ty) = zzl“qulﬂp“r ‘[(‘)3 dz” j(; dr’ Gy{t; — 7"
Tjs,i'r',jj'(f” —7) G (7') Gi’j’,kl(tz + 1) ka(tl) (D2)

Using the exact relation

N N N /oy ~(N
Gi(']'),kl(tz +7) = z Gi('j'),mn(f )GSnr)lkl(tZ)

mn

(D3)

we can separate the signal into a doorwB),(a propagation
part, and a window\W/)

ST, @) = Z SO dy [ d, Wt — 7, @)
mnKI
Gt Di(ts — t, @) (D4)
The doorway wave packet reads

Dy(ty =t @) = DkI,L(t4 —t, @) + DkI,R(t4 —t, @y)
(D5)

where the leftDy and right Diyr components satisfy the
relation

D (t, — t,, @) = [Dg(t, — t,, 6_"1)]T

which guarantees the hermiticity of the doorway wave packet.
The window wave packet is given by

(D6)

Wmn(t4 - (’_UZ) = Wmn,L(t4 -1 (’_02) + Wmn,R(tA -1 @2)
(D7)
with
W, (t, — 7, @) = [Wg(t, — 7, @)]" (D8)

The left and the right components of the doorway and window
functions can be expressed in terms of their snapshot limit

counterpart®?, , andW . and the spectrogrants, andl,

with oo = L, R. These expressions have a similar form

w0 w Oy
Doty =ty @)= [ dt, [ o DY(t,)
l,(t, — t,, @, — w,) expls,w,t;) (D9)
_ 00 00 dw3 0
Wa(t4 -1 6()2) = j; dt3 f_w Z W a(t3)
Fulty — 7, 03 — @,) expls,wst;) (D10)
with oo =L, Rands. = —sr = 1.
The doorway and the window are written in terms3)iGMN,

andT

Diu(t) =Y Gty (D11)
p

Diarlt) = > Gty (D12)
p

and

t r T” ! n
W o (ty) = > ety Sdrt [0 de Gty — 7
Tjs,i’r',jj’(T” —7) G (7) Gi(”j\!),mn(rl) (D13)
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W Dlts) = zuqur Jode [y de Gyt — v
(2" = 7) G () GVr7) (D14)

JSIrJJ

We can further negledB™(t) in the window since exciton
relaxation is typically slow compared with the dephasing time

scale, G’ () = dimOjn. Equations D13 and D14 can be
recast as

t3 " 7 ' "
W i (t) = Z Moy L/; dr fo dr'Gy(t; — 7
ar
ijn(r” -7) Gmr(r') (D15)

t 7" k n
W 0 R(ts) = Sty Jdrt [0 drGy(ty— T
qr
Trn(™" — ) Gi(r') (D16)

Appendix E. Wigner Spectrograms for the Laser Fields

In this Appendix we introduce the Wigner spectrograms for
the pump and the probe fields\e start with the correlation
function of the pump field amplitudes

(' — ") = [E,(«') E}(z'")D (E1)
Using this correlation function, we can represent the pump in
terms of the following right, left, and Wigner spectrograms:

lp(z, @) = [ dtexplot) I(z, 7+ 1) (E2)
(7, )= [ dtexp(ot) Iz —t,7) (E3)
(T @)= [* dtexplot) I(r, — 2,7, +1/2) (E4)

Similarly, we introduce a correlation function of the probe
field

F(t', 7") = [E,(7') E5(r'")0 (E5)

and the corresponding spectrograms
Fr(r 0) = [* dtexplot) F(z, 7 +1) (E6)
F(T:w)= [7 diexplot) F(T —t,7)  (E7)

Fu(ty o) = [ dtexp(ot) F(r, — 2,7, +12) (E8)
These definitions are used in eqs D9 and D10.

Appendix F. The Snapshot Limit for the Pump—Probe
Signal

J. Phys. Chem. B, Vol. 104, No. 16, 2008983

F(t—tw3— @) =0t —7)0(w;— @, (F2)
Equation 2.8 then assumes the form of eq 2.9, where
DY(@1) andW ° (@,) are the Fourier transforms &p(t1) and

W o (0

Di(@) = [, dt €"Dy(t) (F3)
W @) = [, dte™W 7 (t) (F4)

here
Dii(ty) = Dy (t) + DRialty) (F5)

and
W otd) = W 1y (t) + W D e(t) (F6)
ng(t) andMna(t) for o =L, R are given by eqs D1+ D14.
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