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Exciton Coherence and Electron Energy Loss Spectroscopy of Conjugated Molecules
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Signatures of the exciton coherence size, which controls the nonlinear optical response and lumines-
cence of conjugated systems, in the electronic dynamic structure factor S(q, @) are calculated. We find
that for small molecules the momentum dependence of the lowest exciton resonance is purely geometric,
reflecting the molecular size rather than a universal exciton size, as suggested recently. For long chains the
q dependence is determined by the interplay of the exciton size and the bond-alternation length scales.
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The magnitude of the optical response of conjugated
molecules and nanostructures and its scaling and satura-
tion with molecule size depend primarily on the corre-
lation among the optically generated electron-hole pairs
which form excitons [1]. The exciton size has drawn con-
siderable attention [2] since it directly controls the mag-
nitude of optical nonlinearities, the radiative lifetime, and
fluorescence [1,3]. It is further the key for understand-
ing the transport and electroluminescence properties of
conjugated polymers [1,3]. Determination of the exciton
coherence size is thus of fundamental interest with impor-
tant implications on the design of optical materials and
devices [4—6]. Establishing relations between the exciton
size and ground state properties, e.g., the bond- and length-
alteration parameters, allows one to connect the optical
properties of conjugated molecules to their chemical struc-
ture [7,8]. Exciton coherence also plays an important role
in controlling the optical properties of donor/acceptor sub-
stituted molecules [8].

Electron energy loss spectroscopy (EELS) constitutes
a powerful tool for the study of optically inaccessible
high-wave-vector electronic excitations in the condensed
phase. The basic quantity derived from EELS is the
electronic dynamic structure factor S(q, ). When the
incoming electron energy £ ~ 300 keV is high compared
to the () ~ 2-10 eV energies of the tested transitions
(which allows one to use the first Born approximation) and
the effects of transverse photon exchange can be neglected
since the energies () are nonrelativistic, the EELS signal
is given by I(q, @) ~ ¢ *S(q, ), q being the momentum
difference of the incident and scattered electrons, and w is
its energy loss. Theoretical analysis of recent experiments
carried out on several conjugated molecules [9,10] fo-
cused on extracting the exciton coherence size in different
materials. This was done by examining the momentum
dependence of the frequency-integrated signal intensity of
the lowest peak in the spectrum Iy(q). Using a qualitative
analogy with the static atomic structure factor, the charac-
teristic size go of ¢°Io(q) has been attributed to the size
of the lowest exciton l,: go ~ I, !. The experiments were
then suggested to imply the existence of a ~10 A univer-
sal exciton size in the molecules studied {e.g., sexithio-

0031-9007/01/86(6)/995(4)$15.00

PACS numbers: 34.80.Gs, 31.15.Ct, 82.80.Pv

phene, TPD [N,N’-diphenyl-N,N’-bis(3-methyl-phenyl)-
1,1’-biphenyl-4,4’-diamine]} [10].

In this Letter we compute the structure factor of con-
jugated molecules using a Bloch representation of the
reduced electronic density matrix and analyze the micro-
scopic interpretation of EELS signals. Using elongated
carotenoids with N = 10, 20, 40 double bonds (Fig. 1)
as a representative example (for S-carotene N = 9 and it
has additional methyl groups), we show that the previous
interpretation is incorrect, since the momentum of the dy-
namic structure factor is related to the exciton center of
mass rather than to the relative electron-hole motion.

The structure factor, defined as the correlation function
of the charge density operator, may be expressed in terms
of the density-density linear response function a(w;r;r’)
(see [11] for a precise definition of «@): S(q,w)=
2Im [drdr’ a(w;r;r')expliq - (r —r’)]. This allows
one to compute S(q, w) using the same approaches de-
veloped for the optical response. Substituting the spectral
decomposition of the linear response functions [8] into
this equation, we obtain

2r
(0 — Q)2 +T2%°

S(q, @) = > T p(@él]? (1)

Here (), are the transition frequencies, I' is a dephasing
rate, and ,,,(q) is the Fourier transform of the charge
density operator, whose matrix elements are i, (r) =
@m(t)@u(r), ¢,(r) being single-electron atomic orbitals.
&, are the transition density matrices with matrix elements

FIG. 1. Molecular structure and carbon atom numbering for a
carotenoid with N repeat units.
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&, mm, Which act as operators in the single-electron space.
In this Letter they are computed as the eigenmodes of the
linearized time-dependent Hartree-Fock (TDHF) operator.
However, other levels of theory (e.g., time-dependent den-
sity functional theory [11] and Green-function techniques
[12]) may be used as well.

The transition density matrices (electronic normal
modes) of a linear conjugated oligomer (Fig. 1) can

be represented by matrix functions f,(:,Lf( j,j') where
j,j' = 1,...,N denote the elementary (identical) repeat
units whereas j, j/ = 0, N + 1 describe the first and the
last units, which may be different (e.g., donor/acceptor
substituents). m and m’ denote electronic orbitals within
the elementary units. The electronic TDHF modes of
an infinite oligomer can be recast in the Bloch rep-
resentation. In a semi-infinite system with a left end
(j,j'=0,1,2,...) a mode for j,j’ > [, can be repre-
sented in the form

EVN () = Evn (i = jvs)expliss’)
+EW (i —s)expl—isj! + iuy(s)].
@)

These modes are determined by the bands Q) (s) and the
periodic parts of the Bloch functions given by j-dependent

. v) , . . . .
matrices &,,,(j;s). s is the dimensionless momentum and
v parametrizes the various modes for a given momentum.

expli u(LV)(s)] is the exciton scattering amplitude on the left

end of the molecule, u(LV)(s) being the phase shift. A simi-
lar representation for a mode is valid for a semi-infinite
molecule with arightend (j,j’ =N + I,N,N — 1,...)
provided N — j,N — j' > [,. Exciton scattering on the
right end results in the phase shift ug)(s). The s-dependent
phase shifts uy (s) and ug (s) can be obtained from a TDHF
calculation in a semi-infinite system and are determined
by the repeat unit which defines the band structure and
by the end substituents. Both representations hold in the
middle region of a finite molecule with N >> [, provided
j,j N — j,N — j' > I,. The required compatibility of
the two representations provides the following quantization
condition for the momenta in a finite oligomer:

! (s,) — u)(s,) = 25,(N + 1) = 20, (3)

s, being the solutions of Eq. (3) for n = 0, =1, *2,...,
and Q) = Q®)(s,) are the transition frequencies. It im-
mediately follows from Eq. (3) that at the band edge the
quantization condition is defined by the derivatives Ly =
%[du(”)(s) /ds]s—o that describe the distance between one
end of the molecule and the first node of a given mode. We
found that for strong acceptors Ly can reach the value of
Ly ~ 5; for unsubstituted oligomers Ly = —2 and Eq. (3)
yields s, = wn/(N + 3).
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To obtain a simple expression for I(q) for an interme-
diate size carotenoid, we assume that only carbon 7 or-
bitals contribute to the structure factor and that we have two
atoms in a unit cell, so that m, m’ = 1,2 in Eq. (2). Taking
the lowest mode with n = 1, setting s = 0 in &p(j —
j';s), and neglecting the edge effects, i.e., assuming that
Eq. (2) holds for all j and j', we obtain for the diagonal
components &,,,(j,j) < (=1)"sin[7(j + 1)/(N + 3)].
Substitution into Eq. (1) yields

sin¢ sin’(q - a/2)cos’[(N + 3)q - b/2]
g*sin’[(q - b — ¢)/2]sin’[(q - b + ¢)/2]('4)

Io(q) =

Here ¢ = 7 /(N + 3), b is the lattice constant, and a is
the vector connecting the two carbon atoms in a unit cell.

Equation (4) and the expression for s,, which are
asymptotically exact for large N, hold quite well even for
small chains. This is shown by computations of S(q, @)
[Eq. (1)] in elongated carotenoids with N = 10, 20, and
40 double bonds (Fig. 1). Starting with the INDO/S
(intermediate neglect of differential overlap/spectroscopy)
semiempirical Hamiltonian, the transition density ma-
trices £, and frequencies (), were obtained using the
TDHF algorithm described earlier [8]. Figure 2 displays
S(q, w)/q? for N = 10 and 40, q is directed along the
molecular axis, and I' — 0. The circles radii are propor-
tional to |Tr[u(q)€1]1?/4>, i.e., the form-factor oscillator
strengths divided by the square of the momentum transfer,
and the range of ¢, corresponds to the first Brillouin zone
of an infinite polymer chain. The figure shows a clear
band structure of electronic excitations for N = 40 with
the lowest band edge at w = 2.1 eV. It is remarkable
that this structure is still pronounced even for N as low
as 10. Figure 2 also shows the bottom of the second
band at about 4 eV, which overlaps with the first band,
and the third band just above 4.5-5 eV; both bands are
more distinct for N = 40. At frequencies higher than
4 eV, exciton scattering at the end units therefore involves
at least two bands, and it can be described by n X n
scattering matrices instead of scattering phases, where n
is the number of bands involved.

For frequencies of 5 eV and higher, it becomes increas-
ingly harder to identify the bands using Fig. 2. This, how-
ever, can be accomplished by examining 2D plots of the
transition density matrices describing particular modes:
the number of nodes in the off-diagonal (diagonal) direc-
tion gives the band number (the exciton number in the
band); for example, the left panel in Fig. 3 shows the tran-
sition density matrix for the fifth electronic mode in the
third band. Strongly hybridized modes resulting from mix-
ing of modes of different bands do not show a clear node
pattern. The mode shown in the right panel of Fig. 3 is
a hybrid of the twentieth mode in the first band and the
second mode in the fourth band.
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FIG. 2. Calculated normalized EELS signals S(q,)/q?,
given as the circles radii, vs g, (z is directed along the molecu-
lar axis) at values of w corresponding to the frequencies of
the 26 lowest electronic modes for a carotenoid with N = 10
repeat units (top panel) and the 50 lowest electronic modes for
a carotenoid with N = 40 repeat units (bottom panel).

Figure 4 compares ¢”Ip(q) computed for N = 10,
20, and 40 using Eq. (4) (dash-dotted lines) with the
full INDO/S calculation (solid lines). The good agree-
ment demonstrates the validity of the present Bloch
representation for the EELS structure factor (band theory
combined with exciton scattering on the ends) even for
relatively short (e.g., N = 10) molecules. This means
that when the lowest exciton peak is well resolved (which
is the case for short chains), the q dependence of ¢2Io(q)
solely reflects the physical size of the molecule, scales as
go « N~!, and the exciton size [, affects only the absolute
value of the signal. Our conclusions are at variance with
Ref. [13] which argued that this scaling implies that the
exciton size exceeds the molecular size.

Qq0=4.87 eV

Q37=4.84 eV

0 271029 98 97 96 p=5 74 93 p2 p1

FIG. 3. Normalized modes 55:,31/ of a carotenoid with N = 40
plotted for » = 40 and 37 on a logarithmic scale. The axes are
labeled by the carbon atoms to which the mth or m'th atomic
orbitals belong. Averaging is performed over all pairs of mth
and m'th atomic orbitals corresponding to each particular pair of
atoms [8]. The carbon atoms are numbered according to Fig. 1.

The structure factor S(q, w) contains, however, more
interesting dynamical information that can be obtained,
e.g., by examining the momentum dependence of /;(q) for
higher peaks (j > 0). Alternatively, one can study some

*Io(@), ¢*linc(q)

FIG. 4. Normalized integrated intensities of the lowest-
frequency peak of the EELS signal Iy(q), multiplied by g2,
vs ¢, (the high-resolution case): solid lines, INDO/S calcu-
lation, dash-dotted lines, the approximate expression Eq. (4).
Normalized EELS signals integrated over frequencies from 0
t0 Wmax> Iinc(q), multiplied by ¢2, vs g, (the low-resolution
case): dashed line, wn,.x = 5 eV, dotted line, wy.x = 3.7 eV
(includes only the modes of the first band). The three curves in
each family correspond to carotenoids with N = 10, 20, and
40 repeat units, as indicated.
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collective momentum-dependent quantities, such as the in-
tensity Inmax (q) of the dominant peak in the EELS spectrum
or the frequency-integrated structure factor Iin¢(q). The
two coincide in the limit of long chains where several ex-
citons overlap and form a narrow collective peak. In this
case Inax(q) also coincides with Io(q), since the lowest
peak becomes collective and represents the strongest rather
than the lowest-frequency exciton. The analysis is particu-
larly clear for an infinite polymer chain when the lowest
peak in S(q, @)/q? corresponds to the exciton with the mo-
mentum s = q - b in the lowest band and represents Iy(q),
as well as I, (q) and Iy (q). To explore how the exciton
size [, affects Ip(q), we assume that only the 7 orbitals of
the carbon atoms contribute and use a Pariser-Parr-Pople
(PPP) type of Hamiltonian, with the nearest neighbor hop-
ping constants r+ = (1 = )z, assuming weak Coulomb
interaction case where I, > [~ !. The signal in this case is
Io(q) = ¢*Io(q) = (& + 57)7'g(0;5)]* [14], where s =
q - b. The first factor here shows the change of the struc-
ture factor on a typical momentum scale s ~ { related to
the bond alternation. The second factor is the square of the
eigenfunction g(m;s) of the linearized TDHF equations
representing a 1D particle on a lattice, taken for an exci-
ton at m = 0, which depends parametrically on the center-
of-mass momentum s. |g(0;s)|> changes on the scale
s ~ ¢ as well, which implies that Io(q) is substantially
nonzero at -+ b ~ ¢ and we have gg ~ {/b. However,
the deviation of Iy(q) from a simple Lorentzian form car-
ries information on the molecular-size dependence of the
exciton size, since /,(s) ~ |g(0;s)| 2. For realistic PPP
Hamiltonian parameters, /,(0) ~ /™!, and go ~ 1.

Low-resolution calculations for carotenoids with N =
10, 20, 40 double bonds are displayed in Fig. 4. The dot-
ted lines correspond to the frequency-integrated structure
factor between w = 0and 3.7 eV where only the first band
contributes, and the dashed lines represent the integrated
response between 0 and 5 eV where the second band may
come into play as well. It is clear from the figure that
the latter contribution can be safely neglected, since the
dashed and dotted lines almost coincide for g, = 0.2 A
where the largest contribution from the second band is to
be expected. The dashed lines thus represent the first band
only, or, equivalently, the lowest peak in the spectrum for
the low-resolution case, i.e., ¢°Io(q). In contrast to the
high-resolution case (solid and dash-dotted lines), the mo-
mentum scale go for low resolution (dashed and dotted
lines) is roughly the same for all three molecules.
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In summary, when the molecule is sufficiently long so
that the density of electronic states is high compared to
the energy resolution, the lowest peak in S(q, w) corre-
sponds to the lowest exciton with momentum q rather than
to the lowest-frequency exciton. The characteristic mo-
mentum g then reflects the combined effect of the bond-
alternation parameter { and [ ! and when I, > 7! we
have go ~ ¢. However, even in this case Ip(q) contains
indirect information on the momentum dependence of the
exciton size. In conjugated molecules typically ¢ ~ [,
[7], so that go ~ [ I but this is a coincidence. A careful
study of the momentum dependence of the integrated in-
tensity of the higher peaks is required in order to extract
meaningful information about excitons from EELS data in
relatively short conjugated molecules.
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