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Abstract

Infrared photon echoes are simulated for an anharmonic vibrational dimer representing a dipeptide in the amide I
spectral region by solving the nonlinear exciton equations for the vibrational-exciton model. New relaxation-induced
resonances are predicted. Variations of the cross-peak intensities during the middle time interval show signatures of
exciton population transfer and coherence dynamics. Enhanced resolution is achieved using phase sensitive detec-

tion. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Coherent multiple-pulse techniques are widely
used in NMR to probe structure and dynamics of
complex molecules [1]. Similar schemes proposed
for the study of vibrational excitations using op-
tical pulses [2-4] offer a new window into molec-
ular structure with greatly improved (~100 fs)
temporal resolution [2-4]. By controlling three
time intervals (Fig. 1(A)), a heterodyne detected
three-pulse measurement provides a three-di-
mensional (3D) projection of the system. Intervals
t; and f; involve vibrational coherences whereas
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vibrational relaxation take place during the mid-
dle delay period #,. Four distinct coherent two-
dimensional (2D) techniques are possible when
two of the pulses overlap temporally so that one of
the delay times set to zero: photon echo, reverse
photon echo, transient gratings, and reverse tran-
sient gratings [5]. The 2D vibrational response in
proteins, polypeptides, liquids, and some model
compounds have been shown to provide invalu-
able dynamical [2,6-10] and structural [11-16] in-
formation.

In this article we study the signatures of vi-
brational relaxation in 2D three-pulse IR spectra
of the localized vibrational dynamics in the amide
I spectral region. Implementation of different
2D IR vibrational PE techniques to study model
Rh(CO), compounds have been reported recently
[17,18]. Advantages of the time and frequency re-
solved four wave mixing (Wigner spectrograms)
were discussed in Refs. [19,20] and applications to
photon echoes were presented in Refs. [21,22].
Spectrally resolved vibrational echoes, have been
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Fig. 1. (A) Pulse sequence in a three-pulse heterodyne technique involving optical transitions between the ground, one- and two-
exciton manifolds shown in the insert. The PE signal is generated in the direction k; = k3 + k, — k;. (B) The three Feynman diagrams
describing all contributions to the PE signal for the three-level exciton system. (C) Liouville-space pathways associated with the various

Feynman diagrams.

measured in N; and HbCO [23]. Similar mea-
surements of coupled C-O stretches in Rh(CO),
were reported in Ref. [17], and were compared
with previous integrated IR PE studies [6]. Het-
erodyne detected time-resolved, Fourier trans-
formed 2D PE spectra of the same system were
presented in Ref. [18]. Vibrational anharmonicities
and mode anharmonic coupling parameters were

extracted from the 2D spectra. The absolute value,
phase as well as the real and imaginary parts of the
2D vibrational photon echo signal for model gly-
cine dipeptide and pentapeptide were computed
[24,25]. Features of 2D PE spectra, recently mea-
sured using heterodyne detection technique from
N-methyl-acetamide and acyl-proline-NH, [26] are
in good agreement with the simulations. The 2D
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PE signal during fast unfolding events in B-peptide
following the T-jump were simulated in Refs.
[14,15]. Most of these 2D studies, set ©, = 0 and
focused therefore on dephasing processes rather
than vibrational-exciton relaxation. ¢, resolved
spectra were reported in Ref. [23]. These mea-
surements show spectral diffusion but not vibra-
tional transfer since they were conducted on a
single anharmonic vibrational mode of N5 and the
CO stretch of HbCO.

In the present work we simulate the variation
of the signal with #, for a vibrational dimer in
the amide I spectral region. The dimer serves as
a model system that shows all coherence and
relaxation phenomena characteristics of larger
peptides. The possible cross-peaks which carry in-
formation about vibrational couplings and their
origin are introduced in Section 2. Section 3 pre-
sents simulations of the variation of the signal
with #,. Discussion and conclusions are given in
Section 4.

2. Liouville-space pathways and cross-peaks for
vibrational echoes

The eigenstates of coupled localized vibrations
may be grouped into distinct manifolds according
to the number of excitations. Starting with N
three-level vibrational monomers, a three-pulse
experiment only involves the ground state, a
manifold of single excitations |e,) with energies ¢,,
o=1,...,N, and double excitations |f,) with en-
ergies &, v=1,...,N(N +1)/2 (insert Fig. 1). We
consider a vibrational three-pulse photon echo
(3PE) experiment in which the vibrational-exciton
system is excited by short infrared pulses separated
by # and #, delay times (Fig. 1(A)) with wave
vectors ki, k, and k3. Heterodyne detection of the
induced polarization also controls the delay time #;
after the third pulse. The 3PE signal [24,25] gen-
erated along the direction k; =k;+k;, —k;
[5,27,28] is

S(.Q3,Q|;Iz) :/ dl‘]/ dsny exp(intl +iQ3l3)
0 0

XR(3>(f3,t27f1) (21)

Here R®)(t3,6,4) is the third-order nonlinear
response function which for the vibrational Fren-
kel exciton model [29,30] depends on the one- and
two-exciton manifolds [7,24,25]. It can be ex-
pressed in terms of one-exciton Green function,
exciton scattering matrix and the exciton popula-
tion Green functions [27]. Assuming linear cou-
pling between the excitons and harmonic bath
degrees of freedom, these quantities may be ob-
tained by solving a closed set of equations for the
one-exciton coherence, one-two-exciton coherence
and exciton density matrix, respectively, derived in
Ref. [28] and referred as the nonlinear exciton
equations (NEE). The calculations presented in
this article employ closed expressions for the third
order response function R(z#,%,t) (Egs. (2.8),
(A6) and (A10) of Ref. [5]) derived by solving the
NEE equations. This approach offers tremendous
numerical advantages over the more conventional
sum over states expressions and its favorable size
scaling makes it most suitable for large peptides
[2,5,24,25,27,28].

The various contributions to the signal may be
classified and visualized using the double-sided
Feynman diagrams shown in Fig. 1(B). There are
three diagrams (I), (II), and (III) each representing
a distinct Liouville-space pathway [32] as shown in
Fig. 1(C). Generally, the first pulse creates a one-
exciton coherence (p,,) which evolves during .
The #; period has one-exciton (p,,) or two-exciton
(py.) type coherences. The dynamics of the exciton
density matrix which involves vibrational relax-
ation takes place during the #, interval are de-
scribed by the Green function %,y (f,) which is
represented by shaded boxes in diagrams (II) and
(IIT). These diagrams show the interplay of trans-
port and correlations between the ¢ and #; coher-
ence periods in the signal.

The calculations presented below assume two
coupled three-level anharmonic vibrations with
Qo =1677 cm™! 0-1 transition energies, anhar-
monicity 4 = —16 cm~! and 1-2 to 01 transition
dipole ratios k = /2. The dipole—dipole coupling
isJ = 10 cm~! (We are using the notation of Refs.
[5,24,25]). This model represents typical amide I
vibrations, such as the glycine dipeptide [24,25].
Using these parameters, the exciton manifold
[24,25] (Fig. 1 insert) consists of two one-exciton
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Table 1

All possible 2D PE resonances of the vibrational dimer (see Fig. 2) associated with the Liouville-space pathways shown in Fig. 1(B)—(C)
Reso- Path- (21,9;) cm™! Reso- Path- (Q1,2;) cm™!
nance ways nance ways
1 L1 (—e1,81) (—1687,1687) I I, II (—&2, ) (—1667,1667)
2 I 11 (—e1,8) (—1687,1667) 2 I, II (=&, 1) (—1667,1687)
3 il (=1, 8 — &) (—1687,1681) 3 111 (—&2,8 — &) (—1667,1701)
4 111 (—&1,8 —&1) (—1687,1638) 4 111 (—&,8 — &) (—1667,1658)
5 il (—&1,8 — &) (—1687,1651) 5 111 (—&2,8 — &) (—1667,1671)
6 111 (—&1,& — &) (—1687,1701) 6 111 (—&2,8 —&1) (—1667,1681)
7 il (—&1,8 — &) (—1687,1658) 7 11T (—&2,80 — &1) (—1667,1638)
8 111 (—&1,8 — &) (—1687,1671) 8 111 (—&2,8 —&1) (—1667,1651)

states |e) with energies ¢ = 1687 cm™! and & =

1667 cm™!, and three two-exciton states |f) with
energies & = 3368 cm™', & = 3325 cm™!, and & =
3338 cm!.

Pathway (I) represents correlation between one-
exciton coherences Paey during 1, and p, , during 73
giving rise to 2D resonances at (—e&y,¢,). These
include diagonal peaks (x= f') and cross-peak
(o # ). During t, the system is in the ground state
P, and this pathway therefore contains no signa-
tures of vibrational relaxation. Pathway (II) shows
correlations between the same coherences as path-
way (I) resulting in the same cross-peak pattern.
However, during ¢#, the system is in the one-exciton
manifold, where the one-exciton density ma-
trix evolves from p, ey 10 Peyeyr @S described by
Y,p0p (12). Both pathways (I) and (II) only depend
on the single-exciton manifold. The two-exciton
|f) states only show up in (III). This pathway
describes the correlation between one-exciton co-
herence Poey during # and one- to two-exciton
coherences p, , ’ during #;, giving rise to the cross-
peaks (—eg, & — ¢5). Like pathway (II), the system
is in the excited state during #, where the density
matrix evolves from p, ey 10 Peseyr @S represented
by G,pp(t2). It is 1mportant to note that in the
absence of vibrational relaxation during #, (i.e.
o =o and B = p), only (—eg, & — ¢;) cross-peaks
can be observed in addition to the one-exciton
resonances. The cross-peaks (—ép,&, —gp), with
B # B are particularly interesting, since they are
induced by vibrational relaxation.

The sixteen possible peaks in the 2D spectra
and the corresponding diagrams are summarized
in Table 1. Resonances 1'-8' are obtained from 1-8
by simply interchanging ¢ and &. The resonances

1, 2, 1, 2’ reflect one-exciton correlations (path-
ways (I) and (IT)) whereas 3-8 and 3-8’ show one-
two-exciton correlations (pathway (III)). The
cross-peaks 3-5 and 3’-5' exist even in the absence
of vibrational relaxation [20] whereas peaks 6-8
and 6’8’ are induced by vibrational relaxation and
vanish when the coupling to the bath is switched
off.

The left column of Fig. 2 shows the calculated
absolute value of the 2D PE signal for various
values of 7, between 0.0 and 2.0 ps. A small ho-
mogeneous dephasing rate (which determines the
width of the various resonances) was used. Most
possible resonances are clearly resolved and
marked in the t, = 0 ps and #, = 2.0 ps panels. The
1-8 resonances lie in the Q; = —¢; slice of the 2D
spectrum whereas 1'-8' show up in the Q; = —¢,
slice. These resonances are only partially resolved
in the right column which uses a larger homoge-
neous dephasing rate. Inhomogeneous broadening
which may result in additional spectral features
[24,25] was not included in these simulations. In
Section 3 we analyze the ¢, variation of the signal,
which provides a direct probe for exciton dynam-
ics.

3. Two-dimensional spectroscopic signatures of
exciton dynamics

The dynamics of the exciton density matrix
Pe,e,(t) during #, is described by the Redfield
equations

dp., .,

o' p!

(3.1)
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Fig. 2. Computed 2D PE signal for two sets of homogeneous dephasing rates which determine width of the (Q;, 2;)-resonances. The
population decay rate y = 0.2 cm~'. Left column: small homogeneous dephasing rate of the first excited state with respect to the
ground state of a monomeric unit I'= 0.2 cm~!, and doubly excited state with respect to the ground state y® = 0.4 cm~'. Right
column: Large homogeneous dephasing rates I' = 5 cm™! and y® = 10 cm™! [7,11].

where R, p is the Redfield relaxation superoper-
ator w,; = &, — &3+ 2iy, and y is the one-exciton
population decay rate. The Redfield tensor was
calculated at room temperature (kg7 = 200 cm™').
We used the overdamped Brownian oscillator
spectral density to model the coupling with the

bath, assuming that each peptide group is cou-
pled to its own uncorrelated bath [32] setting the
exciton-bath coupling energy to 2 =1 cm™! and
the bath relaxation width to A =100 cm™'. Ex-
pressions for the Redfield tensor in terms of
the bath spectral density and one-exciton Green
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functions are given in Egs. (C14)-(Cl15) of
Ref. [31]. The solution to Eq. (3.1) can be repre-
sented in terms of the Green function p,, . (¢) =
>y Gapap ()Pe, ” (0) * which controls the 2D PE
signal during #, [5,28]. This Green function was
computed by expanding it in the eigenvectors of
the Redfield superoperator and transforming back
to the exciton basis set [31,33]. The exciton scat-
tering matrix was calculated using Egs. (A3)—(A5)
of Ref. [5], followed by calculation of the exciton
Green function and the numerical integration of
Egs. (A6) and (A10) of Ref. [3].

In the present model, the 4 x 4 Redfield super-
operator (and the Green function) acting on the
single-exciton manifold are partitioned into a
population block (connecting 11 and 22 density
matrix elements) and a coherence block (connect-
ing the 12 and 21 elements). Cross-elements be-
tween these blocks vanish due to dimer symmetry.

The population eigenvalues are 4, = —0.2 cm™!
representing population decay rate, 4, = —7.9
cm~' population relaxation rate within the one-

exciton manifold. The Redfield Green function has
the elements: % ,,(2) and %y »(f), describing
biexponential population decrease with 7; and
population decay time 1 = —2n/A; = 27 ps, as well
as Y11xn(t) and % 1i(f) describing population
transfer between the exciton states (77) and pop-
ulation decay (7). The eigenvalues of the coherent
block are /34 = —4.0 & 20.4i cm™'. The imaginary
part is the one-exciton energy splitting renormal-
ized by the coupling to the bath, and the real part
is the dephasing rate. These represent the elements
G1212(t2), G2121(t2), G2112(t2), and G122 (f2), which
describe the dynamics of coherences between the
one-exciton states which oscillate with period
T =—-2n/Im(A34) = 1.6 ps, dephasing (7>) and
decay (r). We define the population relaxation
time 7} = —1/4, = 0.7 ps and the dephasing time
T, = —1/Re(434) = 1.4 ps. They satisfy 27} = T,
indicating the absence of pure dephasing in the
present simulations.

The evolution of the signal during #,, is shown
in Fig. 2. The increase of the intensities of 7, §, ¢,

*In Refs. [5,28] Pe,e;(t) and F,5..5(t) were denoted by

N,p(t) and G(;;;L, ﬁ,(t), respectively.

8 peaks with #, reflects exciton population relax-
ation. This is more clearly seen in Fig. 3 which
displays the Q; = —¢; (upper panel) and Q, = —¢,
(lower panel) slices of Fig. 2 at different values of
t,. For t, = 0 ps the former (Q; = —¢;) is domi-
nated by 1-3, 5, 6 resonances and the latter
(Q = —g)by 1,2, 5, 6. The weak cross-peaks 4,
6 and 3', 7" are not resolved. Population dynamics
induces intensity redistribution between the cross-
peaks and at #, = 2.0 ps both slices are very simi-
lar.

The time evolution of the absolute value, the
real, and the imaginary parts of each peak is
shown in Fig. 4. We note that the real part (panels
(D) and (D')) representing correlations between
the one-exciton states is negative, whereas the real
part of the cross-peaks in panels (E), (F), (E'), and
(F') representing correlations between the single
and two-exciton states is positive. This sign dif-
ference which can be used to enhance the resolu-
tion of closely-lying resonances illustrates the
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Fig. 3. Upper panel: Q; = —¢, slice, and lower panel: Q; = —¢,
slice of the 2D PE signal of Fig. 2 (left column), calculated for
different ¢, delay times.
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Fig. 4. Time evolution of the 2D PE resonances (Table 1) in Fig. 2 (left column). Upper row — absolute value; middle row — real part;

bottom row — imaginary part of the signal.

usefulness of phase sensitive detection which
probes the real and the imaginary parts of the
signal. Since, 7} and 7, are comparable, the evo-
lution reflects both of the population and coher-
ence block of the exciton density matrix. The latter
shows up as oscillations and the former as increase
or decrease in the averaged amplitude of the sig-
nal. Coherent oscillations may also be used to
improve the resolution of congested spectra. By a
proper choice of #, the relative amplitudes of
strongly overlapping cross-peaks can be varied
and controlled. The signal oscillations are more
pronounced for the real and imaginary parts, as
can be seen in panels (H), (I), (H"), and (I'). The
cross-peak imaginary parts change their sign dur-
ing the oscillations, further enhancing the resolu-
tion.

The contributions of the coherent and inco-
herent blocks of the Green function to Fig. 4 are
plotted separately in Figs. 5 and 6. Note that the
total signal in Fig. 4(A)~(C), (A")~(C) is not sim-
ply a sum of Figs. 5 and 6 since it represents the
absolute value of the superposition of two complex
amplitudes.

The signal computed with the coherent block of
% is shown in Fig. 5. According to pathways (II)
and (IIT) (Fig. 1(B)—(C)), the diagonal 1 and cross-

peaks 6-8 (1’ and 6'-8) are proportional to
92112(t2) (%1221(12)). Variation of the cross-peaks 2
and 3-5 (2’ and 3'-5') are determined by %5, (%)
(%91212(2)). The signal oscillates with frequency
associated with the energy difference between the
one-exciton states and its multiples. For the reso-
nances 1, 5, 3, 1/, 3/, 5, the real and imaginary
parts of the signal oscillate harmonically with a
~m/2 phase-shift, corresponding to vanishing os-
cillation amplitude of the absolute value as seen in
the plot. The amplitude decays on the 7, timescale,
since T» < 7.

Fig. 6 displays the contribution of the popu-
lation block. According to pathways (II) and
(ITI) (Fig. 1(B)-(C)), the absolute values of the
resonances 1, 3-5 (1’, 3'-5) are proportional to
g]]ﬁ]l(tz) (gzz‘zz(l‘z)) and show biexponential de-
crease described by the Tj, since 77 < t. The steep
decrease of curves 1, 3-5 and 1’, 3-5 during the
first picosecond corresponds to 7j, and the slow
decay is 7. The cross-peaks 2, 6-8 (2, 6'-8') are
proportional to %12(f2) (9a.11(f2)). Their dy-
namics is determined by two competing processes,
intensity increase on the 7 timescale associated
with vibrational relaxation between one-exciton
states and decay on the 7 timescale. The latter
is dominating cross-peak 2. For cross-peak 2’
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population transfer shows up as a maximum at
~0.2 ps, and it is clearly seen for cross-peaks 6-8
and 6'-8'. On longer timescales when one-exciton
states are thermalized, the intensity ratios for the
resonances 1-8 and 1'-8', respectively, is given by
the Boltzmann factor times the ratio of the rele-
vant oscillator strengths.

In the present simulations shown in Fig. 4
populations and coherences evolve on the same
time scale. When pure dephasing is included their
time scales may be very different, and the analysis
of 2D spectra will be simplified. Fig. 5 should show
coherent #, evolution of the resonant amplitudes
dominated by the dephasing dynamics. (¢, scale
would change to subpicosecond range.) Signal
controlled by population dynamics should resem-
ble Fig. 6. Pure dephasing between the one-exciton
states should be accompanied by pure dephasing
between the one-exciton states and the ground
state, resulting in the increase in the linewidth of
the 2D resonances.

The right panel in Fig. 2 presents calculations
with a larger homogeneous dephasing rate. The
resonances of the left column now overlap and are
only partially resolved. At ©, =0 ps we see four
resolved peaks located around (—1687,1687),
(—1687,1660), (—1667,1687), and (—1667,1687)
whose intensities vary within 0.0 <7, < 0.36 ps
time interval. Significant changes in the spectrum
occur during 0.54 < 7, < 0.90 ps due to coherence
oscillations. At #, ~ 0.60 ps additional two cross-
peaks around (—1687,1630) and (—1667,1710)
show up and later vanish. These are the (—e¢,
& —¢) and (—é&,& — &) resonances. This dem-
onstrates how coherent oscillations can be used to
resolve overlapping 2D resonances. The intensity
redistribution between the (—1687,1687), (—1687,
1660), (—1667,1687), and (—1667,1687) peaks re-
flects vibrational relaxation.

4. Discussion

Variation of the 2D 3PE signal during # pro-
vides a direct probe for the Green function com-
ponents %,y (). For instance, % (%) and
Y112(t2) select different Liouville-space pathways
and induce different resonances, namely 1 and 2/,

respectively as well as 3-5 and 6'-8', respectively.
Population relaxation parameters can thus be
measured in impulsive experiments regardless of
which exciton population is created by the pulses.
Even for equally populated one-exciton states
gll,ll(tZ) and {911,22(12) should vary in time to
compensate their contributions to p, ., (%), and the
variation should be seen as ¢, evolution of different
cross-peaks. Since the population transfer rate
determined by the Green function components
does not vanish at £, = 0, new 7-8 and 6, 8 cross-
peaks are observed in Fig. 2 at #, = 0.0 ps. The
same argument can be made regarding the coher-
ences. Anisotropy measurements may be used to
probe p,, . (#), i.e. actual changes in the exciton
level populations. In this case the 2D spectrum at
t, =0 should contain only 1-5 and 1'-5 reso-
nances and the cross-peaks 6-8 and 6'-8' should
rise with increasing #,, following changes of the
exciton population.

In previous studies of 2D 3PE [5,24,25] coherent
dynamics was assumed during #, by factorizing the
Green function 9,y () = 5a1a/5ﬁ‘ﬂrGa(t2)G}3(t2),
where G, is one-exciton Green function in the ex-
citon basis set. This factorization reduces the
number of Liouville-space pathways and the cross-
peaks (—e&,, & —¢p), « # B (1e. 6-8 and 6'-8' for
the dimer) should vanish. The coherent oscillations
of the 6-8 and 6'-8 cross-peaks observed in the
present simulations reflect the 4,5, and %, , el-
ements of the Green function, induced by the
coupling to the bath. They correspond to the vib-
rational energy redistribution in the coherence
block of the Redfield equation.

Anisotropy measurements of 2D IR PE vs. £,
should provide information on the exciton energy
spatial redistribution within certain protein sec-
ondary structure motif, such as a-helix. The cross-
peak intensities should be proportional to the
dipole moment projections of the coupled groups.
Different fragments of a protein may have different
local environments which may lead to different
population relaxation rates. In this case #, delayed
measurements should be able to probe couplings
between amide group which belong to particular
local structure. In addition coherent #, oscillations
of the signal may be employed to resolve strongly-
congested resonances.
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In summary, we have demonstrated the signa-
tures of vibrational relaxation in the 2D 3PE
technique. Simulations performed for the anhar-
monic vibrational dimer in the amide I spectral
region show new cross-peaks induced by popu-
lation transfer within the one-exciton manifold.
Population relaxation, population decay and de-
phasing timescales can be determined from the ¢,
evolution of the cross-peak amplitudes. Coherent
oscillations of the signal can be used to improve
the resolution of overlapping cross-peaks.
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