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Time-resolved x-ray spectroscopies: Nonlinear response functions and Liouville-space pathway
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A systematic description of coherent ultrafast x-ray spectroscopies in terms of nonlinear response functions
and susceptibilities is developed. Correlation-function expressions of charge and current densities provide a
unified treatment and classification of information content of the various possible techniques and connect them
with their optical counterparts. Applications to pump-probe and four-wave mixing measurements are dis-
cussed.
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I. INTRODUCTION

With the advent of intense femtosecond coherent x-
sources it is now feasible to carry out nonlinear spec
scopic studies of atoms, molecules, and condensed-p
materials in the x-ray region@1–16#. Most common are time-
resolved x-ray diffraction~TRXD! experiments which di-
rectly probe structural changes induced by a visible or ul
violet optical light pulse @1,2,4,8–10,14,15#. The time
resolution of these techniques has evolved from msec@1# to
300 fsec@9#. Experiments have been carried out on cryst
@4,8,9,14,17#, powders@18#, proteins@10#, and liquids@8,18#.
Experiments using time-resolved small angle x-ray diffra
tion have also been performed in large molecules and
molecules@19#. X-ray absorption is another popular tec
nique that has long been used in structure determinat
Commonly used frequency domain absorption techniques
clude extended x-ray absorption fine structure~EXAFS!
@20,21# or x-ray absorption near-edge spectrosco
~XANES! @21#. These have been recently extended to tim
resolved pump-probe~XPP! spectroscopy where the absor
tion of an x-ray pulse is measured following an excitation
an optical pulse that prepares the system in a nonstatio
state@3,8,11,12,16#. Experiments have been reported in t
gas phase@12# and in liquids@8,11,16#. Frequency domain
resonant x-ray emission was carried out in solids@22–25#
and molecules@26–28#, and has been the subject of exte
sive theoretical activity@29–33#. Resonant Auger emissio
spectroscopy is also a powerful probe for investigating
relaxation dynamics of the core excited state. Recently re
nant Auger emission in the frequency domain has been
tensively studied both theoretically@34,35# and experimen-
tally @36–38#.

In this article we develop a unified correlation-functio
theory for x-ray nonlinear spectroscopies. The most comp
and general formulation of nonlinear optical spectroscop
based on nonlinear response functions~NRF’s! S(n), which
are given by combinations of multitime correlation functio
of the dipole operator@39#. Their frequency domain analog
the nonlinear susceptibilitiesx (n), are used to describe lon
pulse experiments. NRF’s provide the most natural mee
point of theory and experiment: They allow a systema
classification of the information content of various expe
1050-2947/2001/63~6!/063405~14!/$20.00 63 0634
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ments and a unified description of many techniques. T
NRF’s are expressed as sums ofLiouville-space pathways,
which provide an intuitive picture for the time evolution o
the density operator. NRF’s also disentangle the roles of
laser pulses and the molecular response, and the sign
given by their convolution. In contrast, a wave-packet d
scription based on a numerical solution of the wave funct
of the externally driven system requires a separate calc
tion for each spectroscopic technique.

This powerful nonlinear response formulation will be e
tended here to the x-ray regime. Several points of differe
from optical techniques should be addressed. The resp
functions are nonlocal in time and space. In the optical
gime the observed single-photon and multiphoton resonan
are related to thetemporalevolution and provide information
about characteristic frequencies~energy levels of the sys
tem!. The spatial dependence on the other hand, yields o
a phase matching condition, e.g., the preferred wave vec
in four-wave mixing signals, but otherwise carries no use
physical information. The problem is that optical wav
lengths are hundreds of nanometers and the atomic level
tial information is averaged out. One important differen
between x-ray and optical spectroscopy is the spatial res
tion offered by x-ray wavelengths in the 1–15 Å rang
which is comparable to a bond distance or a lattice const
Performing grating experiments with a combination of x-r
and optical beams should provide a direct and unambigu
probe of spatial coherence and motions of excitons and
laritons. This could not be achieved using optical transi
gratings, despite considerable effort@40–42#.

Another important aspect of x-ray techniques is that th
probe the dynamics of charge and current densities ra
than of the oscillator strength. Since charge distributions
directly related to chemical bonding and structure, molecu
collisions and the creation and breaking of bonds can thu
monitored with femtosecond time resolution. TRXD an
XPP spectroscopy can therefore directly probe electronic
nuclear motions and can be analyzed without resorting to
additional information. In contrast, we cannot obtain fro
optical nonlinear spectroscopy any information on the el
tronic and nuclear motions in real space without some p
knowledge and extensive simulations of potential energy s
faces and transition dipole matrix elements.
©2001 The American Physical Society05-1
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Since in the optical regime the wavelength is typica
larger than all relevant molecular coherence sizes, one
treat the coupling of an optical field with the matter using t
dipole approximation. It is then most convenient to use
multipolar Hamiltonian@39,43#. In contrast, the x-ray wave
length is shorter than the molecular coherence sizes, and
dipole approximation, which greatly simplifies the calcu
tions, no longer holds. When using the multipolar Ham
tonian, we have to take into account the higher order con
butions in the multipolar expansion, which makes t
calculation much more complicated and harder to interp
We therefore employ the minimal coupling (p•A) Hamil-
tonian whereby the NRF’s are expressed as multiple t
correlation functions of charges and currents rather than
the dipole operator. The present formulation connects
x-ray and optical terminologies, and allows a systema
classification of various techniques according to different
teria such as nonlinear order (n), resonant vs off-resonan
time vs frequency domain etc., as is commonly done in
optical regime.

This paper is organized as follows. Starting with the mi
mal coupling Hamiltonian, general formal expressions
nonlinear spectroscopy are presented in Sec. II. The pres
tion for the calculation of NRF’s to any order in the incom
ing fields and the connection with various signals and de
tion modes are given. Nonlinear spectroscopies in the pu
x-ray region, such as x-ray pump-probe spectroscopy, m
wave mixing, and time- and frequency resolved emiss
spectroscopy are fascinating subjects, which can be rea
formulated in terms of NRF’s. Application to pump-prob
spectroscopy which is a third order technique, is given
Sec. III. Our results are discussed in Sec. IV where the r
tion with previous treatments is discussed as well.

II. CORRELATION-FUNCTION EXPRESSIONS FOR
NONLINEAR RESPONSE FUNCTIONS

We shall describe the radiation-matter coupling using
minimal coupling Hamiltonian which may be partitioned in
three parts representing the matter (H0), the radiation field
(Hrad), and their interaction (Hint):

Htot5H01Hrad1Hint , ~1a!

Hrad5(
ql

\vqlbql
† bql , ~1b!

Hint52E Ĵ~r !•Â~r ,t !dr . ~1c!

Herebql
† (bql) are the photon creation~annihilation! opera-

tors with energy\vql , wave vectorq, and polarizationl .
The vector potentialÂ(r ,t) is given by

Â~r ,t !5(
ql

c
eq

vq
eql$bqlexp@ i ~q•r2vqt !#

1bql
† exp@2 i ~q•r2vqt !#%, ~2!
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whereeq5(2p\vq /V)1/2. Ĵ(r ) is the current density in the
presence of the electromagnetic field,

Ĵ~r !5 ĵ ~r !2
e2

2mc
Â~r ,t !ŝ~r !, ~3a!

ĵ ~r ![
e\

2mi
$ĉ†~r !“ĉ~r !2@“ĉ~r !†#ĉ~r !%, ~3b!

ŝ~r ![ĉ†~r !ĉ~r !, ~3c!

ĵ is the current density in the absence ofÂ(r ,t), ŝ(r ) is the
charge density, andĉ†(r ) @ĉ(r )# are the field creation~an-
nihilation! operators for the electron.

When the radiation field is treated classically, we ne
only consider the following Hamiltonian for the material sy
tem:

H5Hmat1Hint , ~4a!

Hint5H11H2 , ~4b!

H152E A~r ,t !• ĵ ~r !dr , ~4c!

H25
e2

2mcE A2~r ,t !ŝ~r !dr . ~4d!

From Eqs.~3!, the expectation value of the current dens
at time t is given by

J~r ,t !5^ ĵ ~r !& t2
e2

2mc
A~r ,t !^ŝ~r !& t , ~5a!

5Tr@ ĵ ~r !r~ t !#2
e2

2mc
A~r ,t !Tr@ŝ~r !r~ t !#, ~5b!

where r(t) is the material density matrix. To describe th
dynamics of the molecular system coupled to the radiat
field, we expandr(t) in powers ofA,

r~ t !5r (0)~ t !1r (1)~ t !1•••, ~6!

where thenth order termr (n)(t) is obtained by expanding
the Liouville equation pertubatively inHint , i.e.,

r~ t !5 (
n50

` S i

\ D nE drn•••E dr1E dtn•••

3E dt1G~ tn!Lint~rn ,t2tn!G~ tn21!•••

3•••G~ t1!Lint~r1 ,t2tn2tn21 . . .2t1!r~2`!,

~7!

whereG(t) is the Liouville-space Green function@39#,

G~ t ![u~ t !e2( i /\)L0t. ~8!
5-2
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In Eq. ~8!, u(t) is a Heaviside step function andL0 is a
Liouville operator which is defined asL0r(t)5@H0 ,r(t)#.
From Eqs.~4b!–~4d!, the Liouville operator corresponding t
Hint is

Lint~r ,t ![2J~r !•A~r ,t ! ~9a!

52J0~r !•A~r ,t !1
e2

2mc
Z~r !A2~r ,t ! ~9b!

5L1~r ,t !1L2~r ,t !, ~9c!

whereJ, J0, andZ are Liouville operators corresponding
Ĵ, ĵ , andŝ, respectively.
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Substituting Eq.~6! into Eq.~5b!, we obtain the expansion
of J(r ,t) in powers ofA:

J~r ,t !5(
n

J(n)~r ,t !, ~10!

where thenth order nonlinear current density is given by

J(n)~r ,t !5Tr@ ĵ ~r !r (n)#2
e2

2mc
A~r ,t !Tr@ŝ~r !r (n21)#.

~11!

Spectroscopic signals are given by the NRF’sS(n) which are
defined as the kernels of the time-ordered expansion
J(n)(r ,t),
Jls

(n)~r ,t !5E drnE drn21•••E dr1E dtnE dtn21•••E dt1

3 (
l1 , . . . ,ln

Sln , . . . ,l1ls

(n) ~r ;rn ,rn21 , . . . ,tn ,tn21 , . . . ,t1!Aln
~rn ,t2tn!

3Aln21
~rn21 ,t2tn2tn21!3•••3Al1

~r1 ,t2tn2tn212•••2t1!. ~12!
the
Upon substituting Eq.~7! and Eq.~9! into Eq. ~5b! and
comparing with Eq.~12!, we can calculate the NRF’s to an
desired order. Closed formal expressions for the first, sec
and third order response functions are given in Appendix
in terms of Liouville-space Green functions. In Appendix
these are recast as combinations of ordinary~Hilbert-space!
correlation functions.

The expansion of the current in powers of the vector
tential comes naturally when using the minimal coupli
Hamiltonian. The connection with experimental signals
more clearly seen if we use different dynamical variabl
Instead ofA, which depends on the gauge, we would like
use the transverse electric fieldE, which is gauge invariant
They are related by

2
dA~r ,t !

dt
5E~r ,t !. ~13!

Similarly, the polarizationP is a more suitable materia
variable than the currentJ, since it connects directly with the
signal. In the multipolar Hamiltonian we have a microscop
expression for the polarization operatorP̂(r ,t) @43#. This ex-
pression is nonlocal, depends on an arbitrary choice of or
and is not convenient to use except when the dipole appr
mation applies. The current and charge density opera
used here are the natural variables since they are well de
and local. We can nevertheless express the final result u
the polarization without defining a polarization operat
From the equation of continuity

]

]t
s~r ,t ![

]

]t
Tr@ŝ~r !r~ t !#52“•J~r ,t ! ~14!
d,

-

s
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and the definition of the polarization

P̃~ t ![E P~r ,t !dr[E rs~r ,t !dr , ~15!

we obtain the relation between the current density and
polarization,

]

]t
P̃~ t !5E r

]

]t
s~r ,t !dr52E r“•J~r ,t !dr5E J~r ,t !dr ,

~16!

or

J~r ,t !5
]P~r ,t !

]t
. ~17!

We thus have

P~r ,t !5E
2`

t

dtJ~r ,t!. ~18!

The Maxwell equations then read

“3“3E~r ,t !1
1

c2

]2

]t2
E~r ,t !52

4p

c2

]2P~r ,t !

]t2
. ~19!

Upon the substitution of Eqs.~13! and ~18! in Eq. ~12! we
obtain a closed relation betweenP(r ,t) andE(r ,t) involving
different response functions denotedS(n):
5-3
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Pls

(n)~r ,t !5E drnE drn21•••E dr1E dtnE dtn21•••E dt1

3 (
l1 , . . . ,ln

Sln , . . . ,l1ls

(n) ~r ;rn ,rn21 , . . . ,tn ,tn21 , . . . t1!•Eln
~rn ,t2tn!•Eln21

~rn21 ,t2tn2tn21!3•••

3El1
~r1 ,t2tn2tn212•••2t1!. ~20!
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The relation betweenS (n) and S(n) is more compact in the
frequency domain, when using susceptibilities~rather than
response functions! and is presented in Appendix C. Th
relation between the two types of response function in
time domain is simplified considerably when the slow
varying amplitude approximation holds for the fields. W
shall expand the field as

E~r ,t !5(
j

Ej~ t !exp~ ik j•r2 iv j t !1c.c. ~21!

The wave vectors and frequencies for each field arek jv j .
Since the field amplitudesEj change on a slower time sca
than the optical periods 2p/v j , this is known as the slowly
varying amplitude approximation@44#, and we get

S (n)~r ;r n , . . . ,r 1 ,tn , . . . ,t1!

5
i 12n

v1v2•••vnvs
S(n)~r ;r n ,r 1 , . . . ,tn , . . . ,t1!,

~22!

wherevs56v16v26•••6vn .
It should be noted that although we treated the opt

field classically our results represent the response to the
tual Maxwell field rather than to the external field. This a
proach does not treat rigorously the radiative corrections
the response functions, but treats them at a mean field l
by including the field irradiated by the material in the actu
field. This issue is discussed in detail in@45–47#.

To calculate specific signals we expand the polarization
k space,

P(n)~r ,t !5(
s

P(n)~ks ,t !exp~ iks•r !, ~23!

whereks is any combinationks56k16k26•••6kn . Vari-
ous detection modes are possible. The homodyne dete
signal is given by

Ws5E uP(n)~ks ,t !u2dt, ~24!

whereas heterodyne detection gives

Ws5vs ImE ELs
* ~ t !P(n)~ks ,t !dt. ~25!
06340
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III. APPLICATION TO PUMP-PROBE X-RAY
SPECTROSCOPY

Pump-probe is the simplest nonlinear optical techniq
The system is subjected to two pulses: the pump pulse
cites the system into a nonstationary state which is t
monitored by the change in the absorption of a second pu
the probe, which comes at variable delayt with respect to
the pump. The pump may be either a visible pulse that p
pares the system in an electronically excited state, induc
various dynamical processes such as vibrational excitat
bond breaking, etc., or a resonant x-ray pulse that indu
inner-core excitations. In the following we assume a reson
x-ray probe. The incoming field is

E~r ,t !5E1~ t1t!ei (k1•r2v1t)1E2~ t !ei (k2•r2v2t)1c.c.,
~26!

whereE1(t1t) is the temporal envelope of the optical pum
field peaked at timet52t, while E2(t) is the x-ray probe
field peaked att50. The pump-probe signal is generated
the direction of the probe, which constitutes an intrinsic h
erodyne detectionks5k12k11k2 @39# and in the slowly
varying amplitude approximation is given by

WPP~k1vs ,k2v2 ;t!

}v2E drE dt Im@E2* ~ t !P(3)~r ,t !e2 i ~k2•r2v2t !#

5v2 ImE dtE2~ t !P(3)~ks ,t !

}2
v2

2 E drE dt Im@A2* ~ t !J(3)~r ,t !e2 i (k2•r2v2t)#.

~27!

We further assume that the time delayt is long to ensure a
sequential~pump-first! time ordering.

Since all fields are resonant, we can retain only the fi
term in the coupling Eq.~4c! and we neglect Eq.~4d!. We
note that the field-matter interaction contains both linear a
bilinear terms in the vector potential. Generally both ter
are important. The linear term is proportional to the electr
velocity and therefore dominates the interaction in the re
nance region where electron motions are fast. On the o
hand, for high frequency radiation fields the electron velo
ties are low and the interaction is dominated by the bilin
term, which does not include the electron velocity. In t
5-4
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dipole approximation utilization of a certain sum rule mak
the interaction linear in the electric field. This can
alternatively explained as follows. Performing a gau
transformation to the multipolar gauge@48#, the interaction
becomes linear in the electric field~electric terms! and linear
and bilinear in the vector potential~magnetic terms!. If the
latter can be neglected~e.g., when the dipole approximatio
holds! the interaction becomes linear. Adopting th
language the interaction becomes linear by means of
gauge transformation. These two explanations are equiva
since the aforementioned sum rule is the consequenc
gauge invariance. We emphasize that the system-field in
tri
n

06340
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action can be represented as a linear coupling with the e
tric field only if we neglect the magnetic terms in the mul
polar gauge. In general the interaction involves the vec
potential as well and includes linear and bilinear terms. W
also note that at low frequencies the response with respe
the vector potential tends to zero and the response with
spect to the electric field becomes finite, which means t
the apparent zero frequency poles in the right-hand side
Eq. ~22! must cancel once the response is prope
calculated.

Substituting Eq.~A5! into Eq.~27! and replacing the vec
tor potential with the electric field, we obtain
WPP~k1v1 ,k2v2 ;t!5
1

2

1

v1
2v2

ReE drE dr3E dr2E dr1E dtE dt3E dt2E dt1„E1* ~ t2t32t22t11t!E1~ t2t32t2

1t!E2~ t2t3!E2* ~ t !exp@2 ik1•~r12r2!1 ik2•~r32r !#exp@2 iv1t11 iv2t3#$R1~r ;r3r2r1t3t2t1!

1R3~r ;r3r2r1t3t2t1!%1E1~ t2t32t22t11t!E1* ~ t2t32t21t!E2~ t2t3!E2* ~ t !

3exp@ ik1•~r12r2!1 ik2~r32r !#exp@ iv1t11 iv2t3#•$R2~r ;r3r2r1t3t2t1!1R4~r ;r3r2r1t3t2t1!%….

~28!
n-

are

ical

ec-
can
EachRj represents a distinct Liouville-space pathway con
bution to the response, as shown in Fig. 1. The correspo
ing correlation-function expressions are

R152^ ĵ ~r1 ,0! ĵ ~r ,t11t21t3! ĵ ~r3 ,t11t2! ĵ ~r2 ,t1!&,
~29a!

R252^ ĵ ~r2 ,t1! ĵ ~r ,t11t21t3! ĵ ~r3 ,t11t2! ĵ ~r1 ,0!&,
~29b!

R35^ ĵ ~r1 ,0! ĵ ~r2 ,t1! ĵ ~r ,t11t2! ĵ ~r3 ,t11t21t3!&,
~29c!
-
d-

R45^ ĵ ~r ,t11t21t3! ĵ ~r3 ,t11t2! ĵ ~r2 ,t1! ĵ ~r1 ,0!&.
~29d!

In the above expressions,ĵ (r ,t) are the Heisenberg represe
tation. @See Eq.~B4!#.

Alternative expressions for these correlation functions
given in Appendix D.

Let us consider an experiment conducted with an opt
pump and x-ray probe.g (g8), e (e8), and f stand for the
vibronic eigenstates of the ground, excited, and final el
tronic states, respectively. These correlation functions
also be recast in the form of sums over eigenstates:
R152 (
gee8 f

P~g! j e8 f~r ! j f e~r3! j eg~r2! j e8g
* ~r1!I f e8~ t3!I ee8~ t2!I ge8~ t1!, ~30a!

R252 (
gee8 f

P~g! j e8 f~r ! j f e~r3! j e8g
* ~r2! j eg~r1!I f e8~ t3!I ee8~ t2!I eg~ t1!, ~30b!

R35 (
gg8e f

P~g! j g8 f~r ! j f g~r3! j g8e
* ~r2! j eg* ~r1!I f g8~ t3!I gg8~ t2!I ge~ t1!, ~30c!

R45 (
gg8e f

P~g! j g f~r ! j f g8~r3! j g8e~r2! j eg~r1!I f g~ t3!I g8g~ t2!I eg~ t1!. ~30d!
5-5
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I nn8(t) is an auxiliary function denoting matrix elements
the Green functionG(t) @Eq. ~8!#, i.e.,

I nn8~ t ![u~ t !exp@2 ivnn8t2Gnn8t#, ~31!

where\vnn8[en2en8 is the transition frequency, andGnn8
is the dephasing rate of thenn8 transition. As is clearly seen
from Fig. 1, there are contributions from the ground st
population (R3 andR4) as well as from the optically excite
state population (R1 andR2).

Since we assume that the pump and the probe are tem
rally well separated, we can split Eqs.~28! into two parts
representing the actions of the pump and the probe. Th
known as the doorway window picture@39#. The signal may
then be expressed as the current density correlation func
with respect to the nonequilibrium density operatorr̃ (2)(t):

WPP5
1

2

1

v1
2v2

ReE drE dr3E dtE dt3

3E2* ~ t !E2~ t2t3!exp@ ik2•~r32r !1 iv2t3#

3Tr@ ĵ ~r ,t ! ĵ ~r3 ,t2t3!r̃ (2)~ t2t3!#. ~32!

All the information about the excitation is now carried b
r̃ (2)(t2t3), which is given by

r̃ (2)~t2t3!52
1

\2E dr2E dr1E dt2E dt1

3† ĵ ~r2,t2t22t3!,@ ĵ ~r1,t2t12t22t3!,r~2`!#‡

3E1~r1 ,t2t12t22t3!E1~r2 ,t2t22t3!. ~33!

This density operator represents the molecular state at
t2t3 following the pump excitation. The ordinary~station-
ary! x-ray absorption spectrum is obtained by simply repl
ing r̃ (2)(t) with the ground state density matrixr(2`) in
Eq. ~32!.

To examine the role of spatial coherence in pump-pro
spectroscopy, we shall expand Eq.~32! in a localized basis
set. The field operatorsĉ(r ) and ĉ†(r ) in Eqs.~3! can then
be represented by

ĉ~r !5(
a,l

wa~r2Rl !aa~ l !, ĉ†~r !5(
a,l

wa* ~r2Rl !aa
†~ l !,

~34!

where aa( l ) @aa
†( l )# are annihilation~creation! operators

for the electron in the atomic statea and at a sitel, and
wa(r2Rl) is the corresponding atomic wave function. Su
stituting these into Eq.~3b!, we obtain
06340
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E dr ĵ ~r !exp@2 iR•r #

5
e

m (
l ,l 8

(
aa8

exp@2 ik•Rl #
1

2

3E dr H aa
†~ l !aa8~ l 8!wa* ~r2Rl !S \

i
“wa8~r2Rl 8! D

1aa8
†

~ l 8!aa~ l !S 2
\

i
¹wa8

* ~r2Rl 8! Dwa~r2Rl !J .

~35!

Without loss of generality, we can assume that each ato
site has a single core state denotedc. Invoking the rotating-
wave approximation~RWA! we can then takea8 as a core
state denotedc. Taking into account the strong localizatio
of the core wave functionwc(r2Rl) around the sitel, we
obtain

FIG. 1. Pictorial representation of the Liouville-space pathwa
contributing to the TRXA. Each pathway corresponds to the N
of Rj ( j 51 –4) in Eqs.~32!. g ~or g8), e ~or e8), and f stand for
vibronic eigenstates belonging to the ground, the excited, and
final electronic states, respectively. For optical pump/x-ray probe
~or e8) stand for vibronic eigenstates of the optically excited st
andf for those of a core excited state. For x-ray pump/x-ray pro
e ~or e8) represent vibronic eigenstates of the core excited state,
f represents those of either a doubly core excited state or the gr
state.
5-6
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E dr ĵ ~r !exp~2 ik•r !

5(
l

(
a

exp~2 ik•Rl ! j ac$aa
†~ l !ac~ l !1H.c.%,

~36!

where j ac is the atomic current density matrix element b
tween the core statec and the high energy statea:

j ac5
e

m
ReE drwa* ~r !S \

i
“wc~r ! D . ~37!

Substituting Eq.~36! into Eq. ~32!, we can write

E drE dr3eik2(r32r )Tr@ ĵ ~r ,t ! ĵ ~r3 ,t2t3!r̃ (2)~ t2t3!#

5(
l l 8

(
aa8

j acj a8ce
ik2•(Rl2Rl 8)

3Tr@e( i /\)H0tac
†~ l !aa~ l !e2( i /\)H0t3aa8

†
~ l 8!ac~ l 8!

3e2( i /\)H0(t2t3)r̃ (2)~ t2t3!#. ~38!

The charge transfer of the core states between the diffe
atomic sites is usually neglected. Under this condition,
retain only thel 5 l 8 terms in Eq.~37!, so that the pump-
probe signal can be represented as the sum of the absor
spectrum for each atomic site:

WPP5(
l

WPP
l , ~39!

whereWPP
l stands for the atomic absorption spectrum

the l th site:

WPP
l 5

1

2

1

v1
2v2

ReE dtE dt3E2* ~ t !E2~ t2t3!exp@ iv2t3#

3Tr@ ĵ l
†~ t ! ĵ l~ t2t3!r̃ (2)~ t2t3!#. ~40!

In Eq. ~39!, ĵ l(t) is the atomic current density operator in th
Heisenberg representation ,

ĵ l[(
a

j acaa
†~ l !ac~ l !. ~41!

As a result of neglecting charge transfer of the core sta
between different sites there is no spatial correlation in
~40!, and the signal is simply expressed as a sum of ato
absorption spectra. Therefore the x-ray pump-probe sp
trum does not produce information on the spatial cohere
of core hole states and the signal has been traditionally
terpreted using a single site model.

Equation~28! describes both time-resolved EXAFS an
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XANES techniques. In EXAFS the core electron is excit
to the high energy continuum and the photoelectron is s
tered by the surrounding atoms. EXAFS is attributed to
interference of the outgoing and backscattering waves of
photoelectron from a core excited atom and it has been
terpreted in terms of the multiple scattering of the photoel
tron from the surrounding atoms@20#. The Fourier transform
of the signal as a function of the wave number of the pho
electron directly gives us the radial distribution functio
around the core excited atom. It can therefore probe the lo
structure around the selected core excited atom@20,21#. Thus
time-resolved EXAFS has become a powerful tool for inve
tigating optically-induced local structural changes of mate
als such as molecules in liquids, amorphous compounds,
crystals@8,11,12#.

On the other hand, in XANES the core electron is excit
to a bound state just below the ionization threshold. XAN
spectra typically consist of several well-resolved lines cor
sponding to core electron transitions to unoccupied mole
lar orbitals or to core exciton states in the condensed ph
@21,49–52#. While EXAFS can be interpreted by the solutio
of a single body problem, in order to interpret the origin
these spectral features it is necessary to take into accoun
many-body effects of electrons due to the attractive core h
potential, which causes the charge redistribution of the e
trons in the core excited state@49–52#. These distinct reso-
nance states of the core excited state lead to the chracte
resonant enhancement in nonlinear spectroscopy in the x
region, such as resonant x-ray emission and x-ray pump
x-ray probe spectroscopy, which is essential for investigat
the relaxation dynamics of the core excited states. This
be studied in a forthcoming paper.

IV. DISCUSSION

In this paper we have developed a unified formalism t
establishes the formal connection between various nonlin
spectroscopies in the x-ray region. Starting with the minim
coupling Hamiltonian, we expanded the density operato
powers of the electric fields, and obtained formal expressi
for the various signals in terms of the NRF’s. These in tu
are represented as combinations of multiple-time correla
functions of the current and the charge density operat
Since the NRF carries all the relevant material information
can be applied to a broad range of nonlinear spectroscop
which differ in the temporal sequences of pulses as well a
their frequencies and wave vectors.

Time-resolved x-ray diffraction is formulated in a simila
way in Appendix E. The TRXD signal can be recast in t
form

WTRXD522
1

v i
2
ReE drE dr3E dtE dt3Ei* ~ t !Ei~ t2t3!

3exp@ iDk•~r2r3!2 iDvt3#

3Tr@ŝ~r ,t !ŝ~r3 ,t2t3!r̃ (2)~ t2t3!#, ~42!

which is formally very similar to Eq.~40!. In Eq. ~42!, Dk
[ks2k i is the x-ray scattering wave vector andDv[vs
5-7
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2vi is the energy loss. Equation~42! represents an ordinar

x-ray scattering intensity provided we replacer̃ (2)(t2t3)
with the ground state density operatorr(2`). When Dv
50 it represents ordinary x-ray diffraction, but forDvÞ0 it
gives inelastic scattering processes. Equation~42! shows that
TRXD is obtained as the convolution of the Fourier tran
form of the optically induced dynamical strucure factor w
the x-ray probe pulse. The optically induced dynami
structure factor can also be measured by time-resolved e
tron energy loss spectroscopy@53,54#.

There have been a large number of theoretical and exp
mental studies of resonant frequency domain x-ray scatte
in the condensed phase and on single molecules@26,27,29–
32,55–63#. Except for a few studies@30,55,64,65#, almost all
of these theories are based on the Kramers-Heisenberg
pression. The x-ray scattering intensity is proportional to
incident x-ray intensity and technically the process belo
to the domain of linear spectroscopy. However from a th
retical viewpoint this process may be described using th
order NRF’s, and it is therefore closely related tox (3) and
can be thought of as a nonlinear spectroscopy@39#. In order
to clarify the role of temporal and spatial coherence in re
nant x-ray scattering processes, it is highly desirable to
mulate them using NRF’s which can be interpreted us
Liouville-space pathways. The contributions from the flu
rescence and coherent Raman components can be cl
separated using this approach.

Phenomenological theories of TRXD and XPP were
veloped in analogous ways to those for stationary x-ray
fraction and x-ray absorption processes@2,3,5#. The signals
are simply given by correlation functions of the charge d
sity and the current density, respectively, where the expe
tion value is taken with respect to the time-evolved st
after the optical pump pulse excitation rather than for
ground state. The approach is based on a wave-function
scription where transition amplitudes are calculated first
the products of such amplitudes are subsequently summe
obtain the signal. Liouville space has many advantages o
wave-function-based descriptions. Wave functions do
have a classical counterpart, making it hard to develo
simple physical interpretation for the signal@39#. In the per-
turbative expansion of the wave function time variables
not fully ordered and have a much less clear physical me
ing, and it is difficult to assess the relationships among
ferent nonlinear spectroscopies. In addition, dephasing
cesses cannot be introduced unless the wave func
describes the entire system, which is impractical for la
systems.

Even though the intensity of the TRXD signal is propo
tional to the incident x-ray beam, it is represented in
same way as in pump-probe spectroscopy, which is rega
as an optical pump and x-ray probe nonlinear spectrosc
The similarity of the two becomes particularly clear wh
the NRF’s are depicted in Liouville space.

Despite the similarity of the Liouville-space pathways f
TRXD and XPP, spectroscopies there is an important dif
ence between these two spectroscopies with regard to sp
coherence. In TRXD, spatial coherence is detected thro
the optically induced dynamical structure factor. On t
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other hand, due to the strongly localized nature of the c
states, spatial coherence is not important in the pump-pr
technique.

By representing both TRXD and XPP techniques us
NRF’s in Liouville space, it becomes clear that we have
take into account contributions from excited state (R1 and
R2) as well as ground state (R3 and R4) populations. The
latter contribution was neglected in earlier studies which
sumed a strong field molecularp-pulse excitation@2,3#.
Strong field optical experiments are harder to interpret du
complex photochemistry and the involvement of a lar
number of high excited electronic states. Ground and exc
state contributions can be separated using the coherent
man scattering technique in the purely x-ray region, which
a nonlinear four-wave mixing x-ray spectroscopy. Nonline
spectroscopies in the x-ray region should provide powe
probes for investigating electronic states, relaxation p
cesses, and energy transfer mechanisms with high sp
resolution. The temporal and spatial coherence in the m
lecular excited states could be directly probed as well. F
mal expressions for these techniques will be presented
forthcoming paper.

The absence of spatial coherence in the pump-probe s
trum is attributed to the fact that the x-ray absorption is re
resented by two-point correlation functions. As a result
neglecting the transfer of core states between different s
the two site indices for the core state must be the same.
the other hand, since the time- and frequency-resolved x
emission spectroscopy and x-ray pump x-ray probe spect
opy are represented by four-point correlation functions th
contain direct signatures of spatial coherence of the core
states. In these spectroscopies, the single site model i
longer applicable@26,56#. The theory of these interestin
purely x-ray nonlinear spectroscopies will be presented i
forthcoming paper.
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APPENDIX A: LIOUVILLE-SPACE EXPRESSIONS
FOR THE NRF

In this appendix we present expressions for the first, s
ond, and third order nonlinear current density. These are
tained by substituting the perturbative expansion of the d
sity matrix @Eq. ~7!# into Eq. ~11!.

The first order current density is given by

Jls

(1)~r ,t !5(
l1

E dr1E
0

`

dt1Sl1ls

(1) ~r ;r1t1!Al1
~r1 ,t2t1!,

~A1!

where the linear response function is written as
5-8
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Sl1ls

(1) ~r ;r1t1!5
i

\
^^ ĵ ls

~r !uG~ t1!J0l1
~r1!ur~2`!&&2

e2

2mc
^^ŝ~r !ur~2`!&&

3d~r2r1!d~ t1!dlsl1
. ~A2!

The second order nonlinear current density is given by

Jls

(2)~r ,t !5 (
l1l2

E dr2E dr1E dt2E dt1Sl2l1ls

(2) ~r ;r2r1t2t1!Al2
~r2 ,t2t2!Al1

~r1 ,t2t22t1!, ~A3!

where the second order NRF is

Sl2l1ls

(2) ~r ;r2r1t2t1!5S i

\ D 2

^^ ĵ ls
~r !uG~ t2!J0l2

~r2!G~ t1!J0l1
~r1!ur~2`!&&1

e2

2mcS 2
i

\ D $^^ ĵ ls
~r !uG~ t1!Z~r1!ur~2`!&&

3dl2l1
d~r22r1!d~ t1!1^^ŝ~r !uG~ t1!J0l1

~r1!ur~2`!&&dl2ls
d~r2r2!d~ t2!%. ~A4!

The third order nonlinear current density is given by

Jls

(3)~r ,t !5 (
l3l2l1

E dr3E dr2E dr1E dt3E dt2E dt1Sl3l2l1ls

(3) ~r ;r3r2r1t3t2t1!

3Al3
~r3 ,t2t3!Al2

~r2 ,t2t32t2!Al1
~r1 ,t2t32t22t1!, ~A5!

where the third order NRF is written as

Sl3l2l1ls

(3) ~r ;r3r2r1t3t2t1!5~2 !S 2
i

\ D 3

^^ ĵ ls
~r !uG~ t3!J0l3

~r3!G~ t2!J0l2
~r2!G~ t1!T0l1

~r1!ur~2`!&&

1S 2
e2

2mcD S 2
i

\ D 2

$^^ ĵ ls
~r !uG~ t3!Z~r3!G~ t1!J0l1

~r1!ur~2`!&&dl2l3
d~r22r3!d~ t2!

1^^ ĵ ls
~r !uG~ t3!J0l3

~r3!G~ t2!Z~r2!ur~2`!&&dl2l1
d~r22r1!d~ t1!

1^^ŝ~r !uG~ t2!J0l2
~r2!G~ t1!J0l1

~r1!ur~2`!&&dl3ls
d~r2r3!d~ t3!%2S e2

2mcD
2S 2

i

\ D
3^^ŝ~r !uG~ t2!Z~r2!ur~2`!&&dl3ls

dl2l1
d~r2r3!d~r22r1!d~ t3!d~ t1!. ~A6!
d
na
APPENDIX B: CORRELATION-FUNCTION EXPRESSIONS
FOR THE RESPONSE FUNCTIONS

Below we give explicit expressions for the first, secon
and third order nonlinear response functions with combi
tions of ordinary~Hilbert space! correlation functions.

The linear response function@Eq. ~A2!# may be written as

Sl1ls
~r ;r1t1!5SI

(1)1SII
(2) ,

SI
(1)5

i

\
^ ĵ ls

~r ,t1!@ ĵ l1
~r1 ,0!,r~2`!#&, ~B1!

SII
(2)52

e2

2mc
^ŝ~r ,0!r~2`!&d~r ,r1!d~ t1!dlsl1

.

The second order NRF@Eq. ~A4!# is given by
06340
,
-

Sl2l1ls

(2) ~r ;r2r1t2t1!5SI
(2)1SII

(2) , ~B2!

SI
(2)52

1

\2
^ ĵ ls

~r ,t21t1!† ĵ l2
~r2 ,t1!,@ ĵ l1

~r1,0!,r~2`!#‡&,

SII
(2)52

i

\ S e2

2mcD $^ ĵ ls
~r ,t1!@ŝ~r1,0!,r~2`!#&dl2l1

3d~r22r1!d~ t1!

1^ŝ~r ,t1!@ ĵ l1
~r1 ,0!,r~2`!#&dl2ls

3d~r2r2!d~ t2!%.

The third order NRF@Eq. ~A6!# is given by

Sl3l2l1ls

(3) ~r ;r3r2r1t3t2t1!5SI
(3)1SII

(3)1SIII
(3) , ~B3a!
5-9
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SI
(3)52

i

\3
^ ĵ ls

~r ,t31t21t1!@ ĵ l3
~r3 ,t2

1t1!,† ĵ l2
~r2 ,t1!,@ ĵ l1

~r1,0!,r~2`!#‡#&,

~B3b!

SII
(3)5

1

\2 S e2

2mcD $^ ĵ ls
~r ,t31t1!†ŝ~r3 ,t1!

3@ ĵ l1
~r1,0!,r~2`!#‡&dl2l3

d~r22r3!d~ t2!

1^ ĵ ls
~r ,t31t2!† ĵ l3

~r3 ,t2!@ŝ~r2,0!,r~2`!#‡&

3dl2l1
d~r22r1!d~ t1!1^ŝ~r ,t21t1!† ĵ l2

~r3 ,t1!

3@ ĵ l1
~r1,0!,r~2`!#‡&dl2l1

dl3ls
d~r2r3!d~ t3!%,

~B3c!

SIII
(3)5

i

\ S e2

2mcD
2

^ŝ~r ,t2!@ŝ~r2,0!,r~2`!#&dl3ls
dl2l1

3d~r2r3!d~r22r1!d~ t3!d~ t1!. ~B3d!
to

06340
In the above equations,ĵ l(r ,t) and ŝ(r ,t) are the current
and charge density operators respectively, in the Heisen
representation, i.e.,

ĵ l~r ,t ![expF i

\
H0t G ĵ lexpF2

i

\
H0t G ~B4!

and similarly forŝ(r ,t).
S(3) has three contributions: four time correlation fun

tions of current density@Eq. ~B3a!#, three time correlation
functions of current density and charge density@Eq. ~B3c!#,
and the two time correlation functions of the charge dens
@Eq. ~B3d!#.

APPENDIX C: NONLINEAR SUSCEPTIBILITIES
IN THE FREQUENCY DOMAIN

Exact compact formal relations betweenS (n) andS(n) can
be derived in the frequency domain. From Eq.~17!, the re-
lation of the Fourier components for the polarization and
current density is written as

P~r ,v!5
i

v
J~r ,v!. ~C1!

Here the nonlinear response functions are replaced by
susceptibilitiesS̃(n) defined as
P(n)~r ,v!5
1

~2p!nE dv1•••E dvnE dr1•••E drnS̃(n)~rv;rn , . . . ,r1 ,vn , . . . ,v1!Ẽ1~r1v1!3•••3Ẽn~rnvn!.

~C2!
’s
These are connected toS (n) via the Fourier transform

S̃(n)~rv;rn , . . . ,r1 ,vn , . . . ,v1!

5E dv1 , . . . ,E dvnS (n)r ;~rn , . . . ,r1 ,tn . . . t1!

3exp@ iv1t11 i ~v11v2!t21•••

1 i ~v11v21•••1vn!tn#. ~C3!

A similar definition can be introduced for the current/vec
potential response functions@Eq. ~12!#. Comparing with Eq.
~C2! we get

S̃(n)~rv;rn , . . . ,r1 ,vn , . . . ,v1!

5
i 12n

v1v2•••vnv
S̃(n)~rv;rn , . . . ,r1 ,vn , . . . ,v1!.

~C4!
r

APPENDIX D: NRF’S FOR TRXD AND PUMP-PROBE
TECHNIQUES

Below we present the explicit expressions for the NRF
for the TRXA @Eq. ~29!# and the TRXD@Eq. ~E8!# technqi-
ues.

Equations~29! are recast in the forms

R152Tr@ ĵ ~r1!e( i /\)H0(t11t21t3) ĵ ~r !e2( i /\)H0t3 ĵ ~r3!

3e2( i /\)H0t2 ĵ ~r2!e2( i /\)H0t1r~2`!#, ~D1a!

R252Tr@e( i /\)H0t1 ĵ ~r2!e( i /\)H0(t21t3) ĵ ~r !e2( i /\)H0t3 ĵ ~r3!

3e2( i /\)H0(t21t1) ĵ ~r1!r~2`!#, ~D1b!

R35Tr@ ĵ ~r1!e( i /\)H0t1 ĵ ~r2!e( i /\)H0(t21t3) ĵ ~r !e2(i/\)H0t3 ĵ ~r3!

3e2( i /\)H0(t21t1)r~2`!#, ~D1c!

R45Tr@e( i /\)H0(t11t21t3) ĵ ~r !e2( i /\)H0t3 ĵ ~r3!

3e2( i /\)H0t2 ĵ ~r2!e2( i /\)H0t1 ĵ ~r1!r~2`!#.

~D1d!
5-10
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Equations~E8! are rewritten as follows:

R1
XD5Tr@e( i /\)H0t1 ĵ ~r2!e( i /\)H0t2ŝ~r3!e( i /\)H0t3ŝ~r !

3e2( i /\)H0(t31t21t1) ĵ ~r1!r~2`!#, ~D2a!

R2
XD5Tr@ ĵ ~r1!e( i /\)H0(t11t2)ŝ~r3!e( i /\)H0t3ŝ~r !

3e2( i /\)H0(t31t2) ĵ ~r2!e2( i /\)H0t1r~2`!#,

~D2b!

R3
XD52Tr@ ĵ ~r1!e( i /\)H0t1 ĵ ~r2!e( i /\)H0t2ŝ~r3!

3e( i /\)H0t3ŝ~r !e2( i /\)H0(t31t21t1)r~2`!#,

~D2c!

R4
XD52Tr@e( i /\)H0(t11t2)ŝ~r3!e( i /\)H0t3ŝ~r !

3e2( i /\)H0(t31t2) ĵ ~r2!e2( i /\)H0t1 ĵ ~r1!r~2`!#.

~D2d!

APPENDIX E: TIME-RESOLVED X-RAY DIFFRACTION

In TRXD experiments the system is irradiated by the o
tical pump pulse, and then the x-ray probe pulse is scatte
after a time delayt. We assume that the frequency of th
x-ray probe pulse is detuned far off resonance from any
citation of the material.

In this appendix we derive an expression for the TRX
signal in terms of the NRF’s. As indicated in Sec. I, ev
though x-ray scattering intensity is proportional to the in
dent x-ray intensity, the process can be formulated as a n
linear response. The apparent contradiction comes from
fact that the x-ray scattering process involves one strong
coming x-ray field and the scattered x-ray mode which
no photons initially. X-ray scattering can be viewed as
consequence of vacuum fluctuations of the x-ray radia
field. This mode, therefore, should be treated quantum
chanically, and unlike a classical field it does not show up
the signal through its amplitude@39#.

We expand the vector potential as

A~r ,t !5A1~ t1t!exp@ i ~k1•r2v1t !#1Ai~ t !

3exp@ i ~k i•r2v i t !#1As~ t !exp@ i ~ks•r2vst !#

1c.c., ~E1!

whereA1 , Ai , andAs denote the optical pump, x-ray prob
pulse, and scattered x-ray field, respectively.A1 andA2 are
classical functions and only the scattered field is trea
quantum mechanically, i.e.,

As5cS eqs

vs
D bs , As* 5cS eqs

vs
D bs

† . ~E2!

Hereafter, we will eliminate the polarization direction ind
ces for simplicity.

The scattered x-ray field is initially in the vacuum sta
so that its density operator is
06340
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,

urR~2`!&&5unS50,nS50&&, ~E3!

and the total~material 1 field! initial density operator is
given by

urT~2`!&&5ur~2`!&&urR~2`!&&, ~E4!

where ur(2`)&& is the equilibrium material density opera
tor.

The operator representing the photon emission rate is

Ns[
d

dt
bs

1bs5
i

\
@Hint ,bs

1bs#. ~E5!

In TRXD the x-ray energies are far off resonance from a
material excitation energies. We can thus neglect theH1 con-
tribution to Eq.~E5!.

The time- and frequency-resolved photon emission rat
given by ^^NSur(t)&&. When rT(t) is expanded perturba
tively in Hint , we find that the lowest order contribution t
TRXD is third order inHint . From Eq.~7!, we obtain

FIG. 2. Pictorial representation of the Liouville-space pathwa
contributing to the TRXD. Each pathway corresponds to the N
of Rj

XD ( j 51 –4) in Eqs.~24!. g ~or g8) ande ~or e8) stand for the
vibronic eigenstates of the ground and of the excited electro
states, respectively. When the pump pulse is in the optical regioe
~or e8) represent vibronic eigenstates of the optically excited st
When the pump pulse is in the x-ray region,e ~or e8) represent
vibronic eigenstates of a core excited state.
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^^N sur (3)~ t !&&

5
1

\4E drE dr3E dr2E dr1E dt3E dt2E dt1

3^^bs
†bsuL2~r ,t !G~ t3!Lint~r3 ,t2t3!G~ t2!

3Lint~r2 ,t 2t32t2!G~ t1!Lint~r1 ,t2t32t22t1!

3urT~2`!&&. ~E6!

We shall now apply this formula to calculate the TRX
06340
for an optically excited two-electronic-level system. Wh
the x-ray energies are far off resonance we need not spe
the electronic levels for the x-ray excitation. Equation~E6!
has many terms when evaluated, since eachLint is a com-
mutator which can act either from the left or from the righ
and can represent coupling with either the optical or
x-ray field modes. However, under the rotating-wave a
proximation, the number of these terms can be greatly
duced. Furthermore, we assume that the time delayt of the
x-ray probe pulse is long compared with any relaxation ti
scale of the material, so that coherent components in
~E6! can be neglected. After integrating overt, the compo-
nents of Eq.~E6! that survive the RWA are
and set

nctions

ensity
nctions
WTRXD~k1v1 ,k iv i ;t!5E dt^^N sur (3)~ t !&&

}2
1

v1
2v i

2
ReE drE dr3E dr2E dr1E dtE dt3E dt2E dt1

3$E1~ t2t32t22t11t!E1* ~ t2t32t21t!Ei* ~ t2t3!Ei~ t !

3@R1
XD~r ;r3r2r1t3t2t1!1R4

XD~r ;r3r2r1t3t2t1!#exp@2 iDk•~r2r3!#exp@ iv1t11 iDvt3#%

1$E1* ~ t2t32t22t11t!E1~ t2t32t21t!Ei* ~ t2t3!Ei~ t !@R2
XD~r ;r3r2r1t3t2t1!

1R3
XD~r ;r3r2r1t3t2t1!#exp@2 iDk•~r2r3!#exp@2 iv1t11 iDvt3#%. ~E7!

The signal intensity is now represented by the electric fieldE rather than the vector potentialA. This is done using the relation

Ȧ5E and the slowly varying envelope approximation. In Eq.~E7!, Dk[ks2k i is the x-ray scattering wave vector andDv
[vs2v i is the energy loss. In the above expression we assumed the dipole approximation for the optical pump pulse
k150.

The Liouville-space pathways corresponding to these four terms are depicted in Fig. 2. The correlation fu
Rj

XD ( j 51, . . . ,4) are written as

R1
XD5^ ĵ ~r2 ,t1!ŝ~r3 ,t11t2!ŝ~r ,t11t21t3! ĵ ~r1,0!&, ~E8a!

R2
XD5^ ĵ ~r1 ,0!ŝ~r3 ,t11t2!ŝ~r ,t11t21t3! ĵ ~r2 ,t1!&, ~E8b!

R3
XD52^ ĵ ~r1,0! ĵ ~r2 ,t1!ŝ~r3 ,t11t2!ŝ~r ,t11t21t3!&, ~E8c!

R4
XD52^ŝ~r3 ,t11t2!ŝ~r ,t11t21t3! ĵ ~r2 ,t1! ĵ ~r1,0!&. ~E8d!

In the above expressions,ĵ (r1 ,t) andŝ(r ,t) are the Heisenberg representations of the current density and the charge d
operators, respectively. Explicit expressions in the correlation functions are listed in Appendix D. These correlation fu
can also be written by the sum over eigenstates representation,
5-12
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R1
XD5 (

ge9e8e

P~g!se9e8~r !se9e8
* ~r3! j e8g

* ~r2! j eg~r1!I ee9~ t3!I ee8~ t2!I eg~ t1!, ~E9a!

R2
XD5 (

ge9e8e

P~g!se9e~r !se9e8
* ~r3! j eg~r2! j e8g

* ~r1!I ee9~ t3!I ee8~ t2!I ge8~ t1!, ~E9b!

R3
XD52 (

gg9g8e

P~g!sg9g~r !sg9g8
* ~r3! j g8e

* ~r2! j eg* ~r1!I gg9~ t3!I gg8~ t2!I ge~ t1!, ~E9c!

R4
XD52 (

gg9g8e

P~g!sg9g8~r !sg9g
* ~r3! j g8e

* ~r2! j eg* ~r1!I g8g9~ t3!I g8g~ t2!I eg~ t1!, ~E9d!

whereg andg8 denote the vibronic eigenstates for the ground electronic state, ande or e8 are vibronic states belonging to th
optically excited electronic state. The population probability in the ground state is denoted byP(g). j ab and sab (a,b
5g,g8,g9,e,e8,e9) are the matrix elements of the current density and the charge density, respectively.

It should be noted that in the pathways forR1
XD andR2

XD the system is in the optically excited electronic state during tht2

period, while in theR3
XD andR4

XD pathways it is in the ground electronic state.
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