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ABSTRACT: Equations of coupled electron–nuclear dynamics (CEND) that describe
molecular dynamics within a fully classical approach have been derived. Utilization of the
language of fiber bundles and connections (gauge fields) allows one to represent the
resulting classical Hamilton equations in an invariant (coordinate-covariant) form.
Applications of the CEND equations to calculations of off-resonant nonlinear molecular
polarizabilities are outlined. The CEND equations are shown to resemble the END
equations derived earlier once the Thouless representation of single Slater determinants
is adopted. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem 0: 1–13, 2002
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I. Introduction

B uilding effective numerical approaches for
molecular dynamics simulations of large

molecules constitutes one of the most challenging
problems of theoretical and computational chem-
istry. The problem is of extreme complexity since
it involves quantum dynamics of the vibrational
and electronic degrees of freedom. The electronic
problem alone is difficult since it involves many-
body techniques for interacting electrons and con-
stitutes an important area of quantum chemistry.
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On the other hand applying classical or semiclas-
sical approximations (when possible) substantially
reduces the numerical effort and makes it possible
to perform numerical simulations in cases where
the full quantum description has no chance of being
handled. For example, the time-dependent Hartree–
Fock (TDHF) approach [1] that can be considered as
a classical counterpart of the full quantum many-
electron dynamics [2] combined with some pow-
erful numerical diagonalization techniques [3] has
demonstrated its capacity in modeling the resonant
optical properties of large organic molecules [4].
However, even after adopting a classical approxi-
mation for the electronic degrees of freedom, fol-
lowing the nuclear dynamics on the quantum level
is not practical except for very small molecules. On
the other hand in certain cases, e.g., when we are

International Journal of Quantum Chemistry, Vol. 0, 1–13 (2002)
© 2002 Wiley Periodicals, Inc.



CHERNYAK AND MUKAMEL

interested in off-resonant optical properties of mole-
cules, a fully classical approach captures all essential
features of coupled electron–nuclear dynamics.

Such an approach where the vibrational degrees
of freedom are treated fully classically and the elec-
tronic motions are accounted for within the TDHF
scheme which makes the approach fully classi-
cal has been introduced [5] and bears the name
electron–nuclear dynamics (END) approach. In this
article we concentrate on geometrical issues of the
END equations. By utilizing a variational princi-
ple in its invariant (i.e., coordinate-free) formulation
we derive a set of classical dynamical equations
hereafter referred to as coupled electron and nu-
clear dynamics (CEND) equations and demonstrate
that they reduce to the END equations for a spe-
cial parametrization of a Grassmanian manifold that
represents the space of single Slater determinants,
the key object of the TDHF scheme. This immedi-
ately implies that the CEND equations are equiva-
lent to those of END. However, the invariant form
allows for different parametrizations that might be
more useful for certain applications. Another ad-
vantage of the invariant approach originates from
the fact that the finite-dimensional space of the sin-
gle electron states used in numerical calculations is
generally speaking different for different molecular
geometries. This implies that a natural language for
describing the coupled dynamics in invariant terms
is the language of vector fiber bundles and connec-
tions in them (or, using a more physical term, gauge
fields). Transformations to different basis sets in the
spaces of single-electron states that are molecular-
geometry dependent can be considered gauge trans-
formations.

The article is organized as follows. In Section II
we present a brief overview of the Hamiltonian
approach to the variational dynamics and connect
the Poisson bracket to the corresponding symplectic
structure. In Section III we present an approach to
the classical coupled dynamics base on vector bun-
dles and connections and introduce some canonical
connections that are used in the approach. In Sec-
tion IV we describe the basic dynamical structures,
namely the Poisson bracket and the Hamiltonian,
expressing them using connections in the relevant
vector bundles. In Section V we derive the CEND
equations based on the dynamical structures pre-
sented in Section IV. Finally, in Section VI we derive
the dynamical equations for the so-called inter-
mediate frequency limit that corresponds to the
case of off-resonant molecular optical polarizabili-
ties. These equations have been utilized to derive

closed expressions for the vibrational contributions
to off-resonant optical polarizabilities [6]. The basic
concepts of fiber bundles and connections relevant
for our approach are presented in the Appendices.

II. Hamiltonian Formulation of the
Time-Dependent Variational Principle

Our analysis is based on an invariant represen-
tation for the CEND. As stated in the Introduction,
the CEND equations are equivalent to those of the
END [5] and can be viewed as the END equa-
tions represented in an invariant form, rather than
using a specific choice of coordinates in the cou-
pled electron–nuclear phase space. The invariant
representation of the coupled dynamics has sev-
eral advantages. The equations adopt a simple form
and have a clear interpretation in terms of differen-
tial geometry. Closed dynamical equations for the
parameters can be easily derived for arbitrary para-
metrization of the phase space. We are not restricted
to the Thouless representation [1] and can use other
representations which are more suitable for calcula-
tions of optical response functions.

Our approach is based on the Hamiltonian
form of the time-dependent variational principle
(TDVP) which can be formulated as follows. Let
Ĥ be a quantum Hamiltonian which acts in the L-
dimensional complex Hilbert space of states CL. The
space of normalized wavefunctions (where wave-
functions which differ by a phase factor are iden-
tical) is represented by the complex projective space
CP

L−1. Let M ⊂ CP
L−1 be the space of trial normal-

ized wavefunctions, defined up to a phase factor.
Since the TDVP is based on the minimal-action
principle, it yields classical Lagrangian dynamics
on M. The action used in the TVDP only contains
first order time derivatives and the conjugated mo-
menta therefore become functions of coordinates;
this can be considered as the appearance of the con-
straints that appear in the way of obtaining the
Hamiltonian classical dynamics starting with its La-
grangian counterpart. As a result, the phase space of
the corresponding Hamiltonian dynamics coincides
with coordinate space of the Lagrangian dynamics
and is represented by M. The Hamiltonian dynam-
ics is determined by two structures: the classical
Hamiltonian H which is a function on M and a bi-
nary operation that associates with two functions
f , g on M, the function { f , g} called their Poisson
bracket. The Poisson bracket satisfies the following
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properties [7, 8]:

{ f , g} = −{g, f } (2.1)
{ f , gh} = { f , g}h + g{ f , h} (2.2){

f , {g, h} + {
g, {h, f } + {

h, { f , g}}}} = 0. (2.3)

Equation (2.2) is known as the differential property
whereas Eq. (2.3) is the Jacobi identity Eqs. (2.1) and
(2.2) imply that the Poisson bracket is determined
by an antisymmetric bivector field ω̂. For some local
coordinates xk on M, ω̂ can be represented in a form

ω̂ =
∑

ik

ω̂ik(x)
∂

∂xi
⊗ ∂

∂xk
(2.4)

with a ω̂ik = −ω̂ki, and the Poisson bracket adopts
the form

{ f , g} =
∑

ik

ω̂ik(x)
∂ f
∂xi

∂g
∂xk

. (2.5)

Note that even though Eq. (2.5) represents the
Poisson bracket using a system of local coordinates,
the operation itself is independent of the choice of
coordinate system since it is defined by the action
of an invariant object, i.e., a bivector field on a pair
of functions; the action itself is invariant as well. If
the Poisson bracket is nondegenerate it describes a
symplectic structure on M [8, 9], which is a 2-form ω

on M,

ω =
∑

ik

ωik(x) dxi ∧ dxk (2.6)

with ωik(x) ≡ [ω̂(x)]−1
ik ; i.e.,

∑
k ωik(x)ω̂kj(x) = δi

j .
Although Eq. (2.6) describes ω using a system of lo-
cal coordinates, the form ω as well as the Poisson
bracket ω̂ is an invariant object.

The Jacobi identity [Eq. (2.3)] has a clear inter-
pretation in terms of the corresponding symplectic
structure. The form ω should be closed; i.e., its exte-
rior differential is zero [8, 9]:

dω =
∑
ikj

∂ωik(x)
∂xj

dxj ∧ dxi ∧ dxk = 0. (2.7)

We are now in a position to describe the classical
Hamiltonian dynamics on the space of trial wave-
functions M. The Hamiltonian dynamics is obtained
from the Lagrangian dynamics in a standard way
[7, 8, 10]. The latter is obtained from the minimal ac-
tion principle for the action of the TDVP. This yields
the following structures on M: The classical Hamil-
tonian H(x) has the form

H(x) ≡ 〈x|Ĥ|x〉, (2.8)

where the immersion M ⊂ CP
L−1 allows one to

treat points in M as wavefunctions. The sympletic
structure ωM is induced from the canonical symplec-
tic structure ωL on CP

L−1 by the immersion M ⊂
CP

L−1,

ωM =
∑

ik

∑
mn

ωmn
L

(
s(x)

)∂sm

∂xi

∂sn

∂xk
dxi ∧ dxk, (2.9)

where

ωL =
∑
mn

ωmn
L (s) dsm ∧ dsn (2.10)

is the canonical symplectic structure on CP
L−1

which can be described by the following properties:
it is compatible with the complex analytical struc-
ture on CP

L−1 and invariant with respect to unitary
transformations of the Hilbert space. In Eqs. (2.9)
and (2.10) sM denotes a set of local coordinates
on CP

L−1, and s(x) describes the immersion M ⊂
CP

L−1.

III. Classical Representation
of the Coupled Electronic and
Nuclear Dynamics

In this section we develop an invariant repre-
sentation for the coupled electronic and nuclear
dynamics based on the Hamiltonian formulation
of the TVDP. It has been pointed out [5] that un-
derstanding the coupled electron–nuclear dynamics
requires the implementation of some basic conse-
quences of the theories of Lie groups, generalized
coherent states, and classical dynamics [9, 11, 12].
We shall demonstrate that the most natural lan-
guage which provides insight onto the nature of
the electron–nuclear coupling and allows one to in-
terpret the dynamical equations in a simple and
unambiguous way is the language of differential
geometry including such structures as fiber bundles
and connections in them [13 – 15]. To set the stage
we start by introducing the model and the notation
for the basic structures of our approach. The def-
initions and the basic properties using the formal
language of differential geometry are summarized
in Appendix A.

Let MR be the space of nuclear coordinates, here-
after referred to as the configuration space. Since
the nuclei in a molecule may not occupy the same
position, and an exchange of identical nuclei does
not change the state of the system, MR is nontriv-
ial homotopically and homologically has been the
subject of numerous studies in algebraic topology.
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We next introduce the vector space U of single-
electron orbitals. In the ab initio approach, U is
the Hilbert space of two-component (because of the
spin) complex-valued functions of three coordinates
in real space. To avoid difficulties connected with
infinite-dimensional Hilbert spaces, we assume that
U is finite-dimensional. Its dimensionality dim(U)
can be, however, very high. The space of N-electron
states is represented by the Nth exterior power
�N(U) which is generated by single Slater determi-
nates u1 ∧u2 ∧· · ·∧uN, where uj are vectors in U. The
wavefunctions of the joint electron–nuclear system
are represented by functions on the configurational
space MR which take their values in �N(U). The
quantum Hamiltonian Ĥ of the joint system can
be represented using the electron annihilation (cre-
ation) operators cj(c+

j ) where | j〉 represents some
basis set in U,

Ĥ = Ĥ0 + Ĥ1, (3.1)

where

Ĥ0 ≡
∑

µ

P2
µ

2Mµ

+ u(r) (3.2)

is the nuclear Hamiltonian written in terms of the
nuclear momentum (coordinate) operators Pµ(rµ)
whereas the electronic Hamiltonian

Ĥ1 ≡
∑

ij

tij(r)c+
i cj + 1

2

∑
ijrs

vij,rs(r)c+
i c+

j crcs (3.3)

includes the coupling between electronic and nu-
clear motions through the r-dependence of t(r)
and v(r). For a fixed space of single-electron orbitals
this dependence constitutes the only source of cou-
pling between the electronic and nuclear motions. In
practice, however, one always deals with a subspace
V ⊂ U of U which describes the electron orbitals
included in a calculation. In many cases, to avoid
numerical divergences [5], the subspace of relevant
orbitals should depend on the nuclear configura-
tion, which yields a set of spaces V(r) ⊂ U. Using the
language of differential geometry, we have a fiber
bundle, i.e., a set of spaces V(r) (fibers) parametrized
by the configuration space MR (the base). Strictly
speaking, this parametrization should be smooth.
This can be achieved by introducing the total space
E of the bundle together with the smooth projection
map p: E → MR so that the fiber V(r) over r ∈ MR is
represented by p−1(r). As a set the total space E con-
stitutes simply a union of all fibers E = ⋃

r∈MR
V(r).

However, such a formulation provides parametriza-
tion with the smooth structure by requiring E to

be a smooth manifold whereas p is a smooth map.
In our case E can be defined as a submanifold of
MR × U represented by pairs (r, u) with u ∈ V(r).
We have defined the basic bundle in our theory. All
other bundles which appear in our theory can be ob-
tained by using a clear and general construction of
extending certain operations from spaces to bundles
by applying them to fibers. For example, the opera-
tion of the Nth exterior power produces the vector
space �N(V) out of a vector space V. Its extension to
fiber bundles works in the following way: For a bun-
dle E over MR, the bundle �N(E) over MR is defined
as a set to fibers �N(V(r)) [we reiterate that V(r) are
the fibers of E]. The smooth structure on �N(E) is
defined in a standard way [13 – 15] which will not
be discussed here.

The total space of the bundle �N(E) → MR can
be viewed as the space of the wavefunctions in the
joint system of nuclei and N electrons where only
the relevant orbitals are taken into account. An-
other important bundle is obtained from E using
the extension of the construction End which asso-
ciates with a sector space V the space End(V) of
linear transformations (endomorphisms) of V. Thus
End(E) constitutes a set of fibers End(V(r)) parame-
trized by MR.

We conclude our introduction to the basic con-
cepts of fiber bundles which will be used in our
theory with the construction of a connection in a
bundle. This construction naturally arises when one
makes an attempt to define calculus in a bundle.
A natural generalization of maps that is connected
with bundles is represented by “maps” on MR

whose values at any r ∈ MR belong to V(r). Strictly
speaking, these are not normal maps since their val-
ues at different points belong to different spaces.
They are called the sections of the bundle defined
as follows: a section s is a map s: MR → E so that for
any r ∈ MR, p(s(r)) = r. An attempt to differentiate
a section s(r) faces the following difficulty: s(r + δr)
and s(r) belong to different spaces V(r + δr) and
V(r) even when δr is small. To evaluate the deriva-
tive of a section one needs to establish a connection
between the spaces V(r + δr) and V(r) for an infi-
nitely small δr: s(r + δr) can then be translated to
s′(r + δr, δr) ∈ V(r) and the derivative ∇µs(r) is de-
fined as s′(r + δr, δr) − s(r) = ∑

µ ∇µs(r)δrµ. Since
there is no canonical way to do this translation,
the differentiation involves an additional structure
responsible for the translation, which is called a con-
nection. The latter can be naturally introduced in
the following way. With any point e = (r, v) ∈ E with
v ∈ V(r) we associate a vector subspace Te(∇, E) ⊂
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Te(E) of the tangent space Te(E) to E at point e with
dim Te(∇, E) = dim MR. The space Te(∇, E) deter-
mines the aforementioned translation: starting with
v ∈ V(r) and δr we find the unique vector δe ∈
T(r,v)(∇, E) with p(δe) = δr which yields e + δe =
(r + δr, v′) with v′ ∈ V(r + δr); v′ constitutes the
result of translation of v along δr. There is an equiva-
lent straightforward way to introduce a connection
as a rule of differentiation which associates with a
section s(r) its derivative ∇µs(r) with the following
property satisfied for any function f (r) on MR:

∇µ

(
f (r)s(r)

) = f (r)∇µs(r) + ∂µ f (r)s(r). (3.4)

The equivalence of the two definitions is estab-
lished by introducing a local basis set of sections
v1(r), . . . , vN0 (r) and introducing the coefficients Aik,µ

of the connection ∇ in this basis set by

∇µvi(r) = −
∑

j

Aji,µ(r)vj(r). (3.5)

Introducing the coefficients sj(r) of a section s(r),

s(r) =
∑

j

sj(r)vj(r), (3.6)

we obtain by applying Eq. (3.4) for ∇µsj(r)

∇µsj(r) = ∂µsj(r) −
∑

k

Ajk,µ(r)sk(r). (3.7)

In field theory, Eq. (3.7) is known as the definition
of the “long” derivative which includes the gauge
field Aµ.

As stated above, for a tangent to MR at point r
vector δr ∈ Tr(MR) there is one and only one vector
δe ∈ T(r,v)(∇, E) so that p(δe) = δr. This defines a set
of lifting maps L(r,v) Tr(MR) → T(r,v)(E). These maps
uniquely describe the connection as the set of sub-
spaces T(r,v)(∇, E) which are given by T(r,v)(∇, E) =
imL(r,v). Using the basis set of sections vj(r) we can
characterize points (r, v) in E by pairs (r, s) where
s is a vector set of numbers sj using the expansion
v = ∑

j sjvj(r). Defining the lifting maps by

L(r,s)(δr) = δr ⊕
∑

µ

δrµAµ(r)s (3.8)

we can interpret Eq. (3.7) as the derivative which in-
volves the translation of a section along T(r,v)(∇, E).
This establishes a connection between two equiva-
lent definitions of a connection: for a given basis set,
a matrix Aµ(r) determines the rule of differentiation
on the one hand and describes the along-the-fiber
component of the translation between two infinitely
close fibers.

These definitions make it possible to describe
the phase space of the classical coupled electron–
nuclear dynamics based on the TDVP. In the case
of a fixed space of single-electron orbitals U we
follow Ref. [5] and choose the space of trial wave-
functions to be represented by direct products of a
coherent state of the nuclei and a coherent state of
electrons, i.e., a single Slater determinant. To obtain
the same dynamics as in Ref. [5] and to avoid dif-
ficulties in future applications when restricting the
basis to relevant orbitals, we set the Planck con-
stant in the nuclear space h̄ = 0. This makes the
Gaussian wavepackets representing the nuclear co-
herent states infinitely sharp. The phase space, i.e.,
the space of trial wavefunctions, has the form of a
direct product M0×M1, of nuclear M0 and electronic
M1 components. M0 is represented by the set of nu-
clear positions and momenta and for the sake of
generality will be considered as a bundle M0

P0→ MR

over MR whose fibers are the spaces of nuclear mo-
menta. M1 is naturally given by the Grassman man-
ifold GN(U) of all N-dimensional vector subspaces
of U. According to [14] GN(U) can be considered as
a subspace GN(U) ⊂ End(U) of linear operators ρ in
U which satisfy the following restrictions: ρ2 = ρ,
ρ+ = ρ, and rank ρ = N. Using this language,
ρ has a meaning of the single-electron density ma-
trix calculated on a single Slater determinant. We
can now restrict ourselves to the relevant orbitals
by requiring that for a nuclear coherent state (P, r)
the electronic single Slater determinant should be
constructed out of the orbitals which belong to V(r).
Note that this construction is possible because of
the infinitely narrow width of the nuclear coherent
states. Otherwise the Slater determinants for differ-
ent r belonging to the region where the Gaussian
wavepacket is concentrated would be based on dif-
ferent spaces V(r). The restricted phase-space M has
a natural structure of a bundle. Since for r ∈ MR

the space of relevant single Slater determinants is
given by (GN(V(r)), the joint space of nuclear posi-
tions and electronic degrees of freedom is given by
extending the construction of forming Grassmanian
out of a vector space to the bundle p: E → MR which
yields the Grassmanian G(p): GN(E) → MR. Simi-
lar to the vector space U we have for the bundles
GN(E) ⊂ End(E). To obtain the full phase space we
need to define a bundle over MR with the fibers be-
ing the cartesian products of the spaces of momenta
and (GN(V(r)). This is achieved by extending the
construction of the cartesian products to the bun-
dles: M ≡ M0 ×MR GN(E). The points of M are
represented by the triples (r, P, ρ) with ρ being a lin-
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ear operator in V(r) with ρ2 = ρ, ρ+ = ρ, and rank
ρ = N. Note that we have two natural immersions:
M ⊂ M0 ×MR End(E) and M ⊂ M0 × M1.

Finally we note that although bundles do not
have canonical connections in them, the immersion
E ∈ MR × U of our bundle E provides a natural
connection in it. As a way of differentiation of sec-
tions it is defined as follows. A section s(r) of E can
be considered as a function s: MR → U. Its deriva-
tive ∂µs(r) is a function but not a section of E since
∂µs(r) does not, in general, belong to V(r). We define
∇µs(r) as the projection of ∂µs(r) on V(r) which yields
a connection ∇ in E. The same connection can be
defined alternatively as a set T(r,v)(∇, E) as follows.
Denoting by V(r)⊥ the orthogonal to V(r) compo-
nent in U we have the immersions T(r)(M)⊕V(r)⊥ ⊂
T(r,v)(MR × U) and T(r,v)(E) ⊂ T(r,v)(MR × U). We then
define T(r,v)(∇, E) ≡ (Tr(M) ⊕ V(r)⊥) ∪ T(r,v)(E). The
meaning of this connection is that the translation
from V(r) to V(r + δr) goes in the direction orthogo-
nal to V(r).

In summary, we have M0 → MR which can be
considered as a cotangent bundle on MR (since the
momenta are linear functionals on tangent vectors).
We have a vector bundle E → MR with a connection
∇ in it. The phase space M of the joint dynamics is
given by

M = M0 ×MR GN(E). (3.9)

In the next section we derive the classical Hamil-
tonian and the Poisson bracket on M which will be
described in terms of the connection ∇.

IV. Coupled Electronic and Nuclear
Dynamics: Classical Hamiltonian
and Poisson Bracket

In the previous section we have identified the
phase space M of the complex classical dynamics as
a bundle over the configuration space MR. We have
also introduced the basic structures which will be
involved in the dynamics: a vector bundle E repre-
senting the single orbital spaces and a connection ∇
in it. In this section we derive the classical Hamil-
tonian and Poisson bracket in M which constitute
the basic ingredients of the dynamics and express
them in terms of the basic structures. This will be
done in the following way: We start by deriving
the Hamiltonian and the symplectic structure in the
extended phase space M0 × M1 which is based on
the full set U of electron orbitals. We then derive

the Hamiltonian and symplectic structure in M, in-
ducing them from M0 × M1 by implementing the
immersion M ⊂ M0 × M1. Finally we obtain the
Poisson bracket in M out of the symplectic structure
by implementing the standard procedure outlined
in Section II.

For our ansatz, a wavefunction is a direct product
of an electronic wavefunction and an infinitely nar-
row nuclear wavepacket. The classical Hamiltonian
H(r, P, ρ) which represents the expectation value of
the quantum Hamiltonian [Eqs. (3.1) and (3.2)] then
adopts the form

H(r, P, ρ) = H0(r, P) + H1(r, ρ) (4.1)

with the nuclear Hamiltonian

H0(r, P) =
∑

µ

P2
µ

2Mµ

+ u(r). (4.2)

H1 can be considered a purely electronic Hamil-
tonian which depends on r parametrically. Follow-
ing [6] it can be represented in the form

H1(r, ρ) = Tr
(
t(r)ρ

) + Tr
(
ρV(r)ρ

)
(4.3)

where t(r) ∈ End(U) are linear operators in U rep-
resented by the matrix elements tij(r) in Eq. (3.3).
V(r) ∈ End(End(U)) are superoperators acting in the
space End(U) of usual single-electron operators. The
expression for V in terms of the matrix elements vij,rs

of Eq. (3.3) is given in Ref. [6].
The Hamiltonian HT(τ ) of the system driven by

an optical field E(t) adopts the form

HT(τ ) = H − E(τ )P , (4.4)

with

P(r, ρ) = µN(r) + Tr
{
ρµ(r)

}
, (4.5)

where µ(r) ∈ End(U).
Since the trial wavefunctions are direct products

of nuclear and electronic components, the symplec-
tic structure ω on M0 × M1 is given by a sum of its
nuclear and electronic components:

ω = ω0 + ω1. (4.6)

The nuclear part has a standard symplectic-struc-
ture form for a set of coordinates and conjugated
momenta:

ω0 =
∑

µ

dPµ ∧ drµ. (4.7)

As stated in Section II, the component ω1 can be ob-
tained by inducing it from the standard structure
on the projective space representing all N-electron
states with respect to the canonical immersion
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GN(U) ⊂ CP
L0 of the space of single Slater de-

terminants into the space of all N-electron states.
In complex analytical geometry this immersion of
a Grassmanian is known as the canonical embed-
ding whereas the induced, symplectic structure is
called the canonical Kähler structure on the Grass-
manian [16]. Since GN(U) represents a set of co-
herent states ω1 can be represented in algebraic
terms; the corresponding Poisson bracket has been
described using the algebraic language in [6]. Let
ρ: GN(U) → End(U) be the immersion described in
Section III. We then have

ω1 = i Tr
{
ρ[dρ ∧ dρ]

}
. (4.8)

Equation (4.8) can be explained as follows: dρ is a 1-
form with the values in End(U); dρ ∧ dρ is a 2-form
valued in End(U)⊗End(U). Applying the commuta-
tor followed by multiplying with ρ we get the form
ρ[dρ∧dρ] valued in End(U). Finally, taking the trace
yields the usual 2-form. If yµ is a set of local coordi-
nates in GN(U) we can recast Eq. (4.8) in the form

ω1 = i
∑
µν

Tr
{
ρ(y)

[
∂ρ

∂yµ

,
∂ρ

∂yν

]}
dyµ ∧ dyν . (4.9)

Equations (4.1)–(4.8) fully determine classical dy-
namics in M0 × M1. We are now left with two
technical problems: to confine the classical Hamil-
tonian and symplectic structure onto M ⊂ M0 × M1
and to obtain the Poisson bracket ω̂M from the sym-
plectic structure ωM.

Confining the Hamiltonian to M ⊂ M0 × M1 is a
straightforward task which involves just projecting
the operators t(r) and µ(r) as well as the superop-
erators V(r) from U to V(r) ⊂ U at any point r.
The Hamiltonian on M preserves the form given by
Eqs. (4.1)–(4.5) with the only difference being that
t(r) and µ(r) should be considered as sections of the
bundle End(E), where is V(r) becomes a section of
the bundle End(End(E)). Confining the symplectic
structure to M ⊂ M0 × M1 becomes a simple proce-
dure once the language of bundles and connections
is implemented.

So far we have put much effort in introducing
the language of bundles and connections without
much visible gain except for some interpretation of
the phase space M as a fiber bundle. At this point we
can use this formal work to derive results virtually
without calculations and obtain simple and clear in-
terpretation.

To obtain the 2-form ωM on M we note that at any
point x = (r, P, ρ) it is given by an antisymmetric
bilinear form acting in the tangent space Tx(M) ⊂
Tx(M0 × M1) which is determined by confining the

form ω which acts in Tx(M0 × M1). Since in our case
the momenta are decoupled from coordinates (i.e.,
the tangent bundle of MR is trivial) we have a nat-
ural decomposition Tx(M) = T∗

r (MR) ⊕ T(r,ρ)(GN(E)),
where the first component is the space tangent to
the momenta which can be identified with space of
the momenta itself, the latter being the vector space
dual to the tangent space [8]. The second component
has a natural subspace Tρ(GN(V(r)), which consti-
tutes the subspace tangent to the fiber. The other
subspace which allows to one partition T(r,ρ)(GN(E))
into a direct sum is provided by the connection ∇ in
GN(E) induced by the connection ∇ in E. The con-
nection ∇ can first be extended from E to End(E)
by requiring for any sections ξ (r) and s(r) of End(E)
and E, respectively,

∇µ

(
ξ (r)s(r)

) = (∇µξ (r)
)
s(r) + ξ (r)

(∇µs(r)
)
. (4.10)

Since the connection ∇ in End(E) in the sense of
a set of lifting maps is compatible with the con-
straints ρ2 = ρ, ρ+ = ρ, and rank ρ = N it can
be confined to GN(E) which yields the set of vector
subspaces T(r,p)(∇, GN(E)) ⊂ T(r,p)(GN(E)). Identify-
ing these subspaces with Tr(MR) by means of the
projection map GN(p) we arrive at a decomposition:

Tx(M) = T
∗
r (MR) ⊕ Tr(MR) ⊕ Tρ

(
GN

(
V(r)

))
. (4.11)

The sum of the first two terms is hereafter referred
to as the nuclear component, and the last term is
the electronic component. The form ωM has an im-
portant property which considerably simplifies the
picture: ωM(u ⊗ v) �= 0 only if both u and v belong
to the nuclear or electronic component. This can
be rationalized as follows. The translation along
the connection considered in the extended space
Tx(M0 × M1) involves a shift δρ(0) which may gener-
ate a cross term between Tr(MR) and the electronic
component. However, according to the definition of
the connection ∇ in E [see end of Section III before
Eq. (3.9)] the shift of vectors goes in the directions
orthogonal to V(r). This implies that the shift δρ(0)

along the corresponding connection in End(E) in-
volves the matrix elements between V(r) and V(r)+
only. δρ(1) which is related to the electronic compo-
nent acts in V(r); the same is true for ρ as well. This
implies that Tr{ρ[δρ(1), δρ(0)]} = 0 and the statement
follows from Eq. (4.8). ωM is thus decomposed into
the nuclear and electronic part,

ωM = ω
(0)
M + ω

(1)
M (4.12)

where ω
(1)
M is obviously given by Eq. (4.8) with V(r)

substituted instead of U. The component ω
(0)
M re-
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quires a minor calculation presented in Appendix B
which yields

ω
(0)
M

(
∂

∂Pµ

⊗ ∂

∂rν

)
= δµν ,

ω
(0)
M

(
∂

∂rµ

⊗ ∂

∂rν

)
= Tr

{
ρFµν (r)

}
.

(4.13)

The section Fµν(r) of End(E) is the curvature of the
connection ∇ or in other words the intensity of the
gauge field (see Appendix B for details) defined as

[∇µ, ∇ν]s(r) = Fµν(r)s(r). (4.14)

Equations (4.12) and (4.13) determine the symplectic
structure in M.

The Poisson bracket in the differential form, i.e.,
as a bivector field ω̂M on M, is obtained by inverting
the matrix ωM [see Eq. (2.6)]. Because of the absence
of cross terms, this can be done in the nuclear and
electronic spaces alone, which yields

ω̂M = ω̂
(0)
M + ω̂

(1)
M (4.15)

where the electronic contribution ω̂
(1)
M is tangent to

the fibers and is represented by the canonical Pois-
son brackets in the fibers GN(V(r)). The nuclear
contribution has the form

ω̂
(0)
M (x) =

∑
µ

∂

∂Pµ

⊗ L(r,ρ)

(
∂

∂rµ

)

−
∑

µ

L(r,ρ)

(
∂

∂rµ

)
⊗ ∂

∂Pµ

+
∑
µν

Tr
{
ρFµν (r)

} ∂

∂Pµ

⊗ ∂

∂Pν

(4.16)

where L(r,ρ): Tr(MR) → T(r,ρ)(GN(E)) are lifting
maps.

Equations (4.15) and (4.16) together with
Eqs. (4.1) and (4.5) define the Poisson bracket and
the Hamiltonian in the phase space M and therefore
fully determine the dynamics. Equations (4.15)
and (4.16) also allow one to represent the Poisson
bracket in an algebraic form, i.e., by evaluating
it for a certain set of generating functions. It has
been demonstrated [6] that if the phase space
represents a set of generalized coherent states,
there is a finite subspace of functions on it which
generates the whole function algebra and is closed
with respect to the Poisson bracket. In our case, one
can find an infinite-dimensional subspace which
satisfies the aforementioned properties. In spite of
its infinite dimension it is suitable for all dynamical
applications. This space is parametrized by a direct
sum of spaces of functions f (r) on MR, vector fields

β(r) on MR, and sections ξ (r) of the bundle End(E).
The value of the function f ⊕ α ⊕ ξ at point (r, P, ρ)
is defined by

( f ⊕ α ⊕ ξ )(r, P, ρ) ≡ f (r) + P
(
α(r)

) + Tr
{
ρξ (r)

}
(4.17)

where we have used the fact that α(r) is a vec-
tor in MR whereas P is a linear functional on the
space of vectors at point r. The Poisson bracket of
the functions of this type is immediately evaluated
by substituting Eqs. (4.15) and (4.16) into Eq. (2.5),
which yields

{ f1 ⊕ α1 ⊕ ξ1, f2 ⊕ α2 ⊕ ξ2}
= (

α1( f2) − α2( f1)
) ⊕ [α1α2]

⊕(
i[ξ1, ξ2] + ∇ξ2(α1) − ∇ξ1(α2) + F(α1 ⊗ α2)

)
.

(4.18)

Here α( f ) is the result of the action of the vector field
α considered as a first-order differential operator on
the function f , [α1, α2] is the commutator of vector
fields, ∇ξ (α) denotes the value of the form ∇ξ ≡∑

µ ∇µξ drµ on the vector field α, whereas F(α1 ⊗α2)
stands for the value of the 2-form F ≡ ∑

µν Fµν drµ ∧
drν on α1 ⊗ α2.

Dynamical equations which use certain coordi-
nate systems in the phase space M can be obtained
by considering coordinates as functions on M. To
obtain dynamical equations in this way one needs to
derive the Poisson bracket between the coordinates
treated as a function on M. We shall now introduce
a coordinate system in M which extends the coordi-
nate system in the electronic space defined in [6] to
the case of coupled dynamics and evaluate the Pois-
son bracket of the coordinates. This system is more
convenient for calculating the optical susceptibili-
ties than the Thouless representation and is based
on the expansion which is valid in a vicinity of any
point ρ̄ in a Grassmanian [6]

ρ = ρ̄ + ξ + T(ξ ) (4.19)

where ξ involves only the particle–hole compo-
nents, i.e., [ρ̄, [ρ̄, ξ ]] = ξ , whereas T(ξ ) is represented
by intraband components, i.e., [ρ̄, T(ξ )] = 0. Differ-
ent forms for T(ξ ) are given in Refs. [4, 6, 14].

To obtain a system of local coordinates in an in-
variant form, i.e., without involving a basis set vi(r)
of sections in E, we introduce a section ρ̄(r) of the
bundle GN(E) and a set of sections ξα(r) of the bun-
dle End(E) with the following properties. ξα(r) are
particle–hole, i.e., [ρ̄(r), [ρ̄(r), ξα(r)]] = 0, ξα(r) come
in pairs, i.e., ξ−α(r) = ξ+

α (r), they constitute com-
plete basis sets in the particle–hole components of
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End(V(r)), and they are orthogonal in the following
sense:

Tr
{
ρ(r)[ξα(r), ξ+

β (r)]
} = − sgn(α)δαβ . (4.20)

It has been demonstrated [6] that all of these
properties are satisfied for the eigenmodes of the
TDHF equation. We can now parametrize the points
(r, P, ρ) ∈ M by a set of coordinates (rµ, Pµ, zµ) using
the decomposition:

ρ = ρ̄(r) +
∑

α

zαξα(r) + T
(∑

α

zαξα(r)
)

(4.21)

with zα = z∗
α .

Combining Eqs. (4.20) and (4.21) (see [6] for de-
tails) yields the following representation for the
electron coordinates zα :

zα = sgn(α) Tr
{
ρ
[
ρ̄(r), ξ+

α (r)
]}

. (4.22)

Equation (4.22) implies that zα as functions on
M belong to the class described by Eq. (4.17),
namely by the third component. The section of
End(E) which represents the function zα is given
by sgn(α)[ρ̄(r), ξ+

α (r)] which is obtained by compar-
ison of Eq. (4.17) and Eq. (4.22). The coordinates
Pµ treated as functions on M belong to the class
given by Eq. (4.17) and are represented by vector
fields ∂/∂rµ. The Poisson bracket of the coordinates
is therefore obtained by applying Eq. (4.18), which
yields
{
Pµ, f (r)

} = ∂µ f (r) (4.23)

{Pµ, Pν} = Tr
{
ρ̄(r)Fµν(r)

} +
∑

α

Tr
{
ξα(r)Fµν(r)

}
zα

+ Tr
{

T
(∑

α

zαξα(r)Fµν(r)
)}

(4.24)

{Pµ, zα} = sgn(α) Tr
{
ρ̄(r)

[∇µρ̄(r), ξ+
α (r)

]}
+ sgn(α)

∑
β

zβ Tr
{
ρ̄(r)

[∇µξ+
α (r), ξβ(r)

]}

+ sgn(α) Tr
{

T
(∑

β

zβξβ(r)
)

×[∇µρ̄(r), ξ+
β (r)

]}
(4.25)

{zα, zβ} = sgn(α)δα,−β

+ sgn(α) sgn(β) Tr
{

T
(∑

ν

zνξν(r)
)

× [
ρ̄(r), ξ+

α (r)
]
,
[
ρ̄(r), ξ+

β (r)
]}

. (4.26)

V. Equations of Motion for the
Coupled Dynamics

Equations of motion for the coupled dynamics
can be obtained using the Hamiltonian given by
Eqs. (4.1) and (4.5) and the Poisson bracket ω̂M in the
differential form [Eqs. (4.15) and (4.16)]. The Hamil-
tonian equation of motion for x = (r, P, ρ) ∈ M can
be represented in the general form [8, 10]

dx
dτ

= (dH ⊗ idTx(M))ω̂M(x) (5.1)

which should be understood in the following way.
The differential dH of the Hamiltonian H, the lat-
ter being a function on M, constitutes a 1-form on
M which yields a number acting on a vector. Act-
ing with dH on the left component of the bivector
ω̂M(x) ∈ Tx(M) ⊗ Tx(M) yields a tangent vector, i.e.,
an element of Tx(M), which originates from the sec-
ond component of the tensor product. This tangent
vector in the right-hand side (r.h.s.) of Eq. (5.1) de-
termines the value of the time derivative dx/dr. For
some local system of coordinates xj the tangent vec-
tor in the r.h.s. of Eq. (5.1) adopts a form

ẋ =
∑

ik

ω̂M,ik
∂H
∂xi

∂

∂xk
(5.2)

which yields the following representation for
Eq. (5.1):

dxk

dτ
=

∑
i

ω̂M,ik(x)
∂H(x)
∂xi

. (5.3)

Equations of motion for the coupled dynamics are
obtained in a straightforward way by substituting
the Hamiltonian H [Eqs. (4.1)–(4.5)] and the Pois-
son bracket ω̂M [Eqs. (4.15) and (4.16)] into Eq. (5.1).
After some simple transformations they can be con-
veniently represented in terms of a system of cou-
pled equations for the nuclear momenta Pα and for
a point y = (r, ρ) ∈ GN(E),

dPα

dτ
= −

∑
ν

M−1
ν Pν Tr

{
ρFαν (r)

} − ∂αu(r)

− Tr
{∇αt(r)ρ

} − Tr
{
ρ∇αV(r)ρ

}
+ ∂αµN(r)E(τ ) + Tr

{
ρ∇αµ(r)

}
E(τ ) (5.4)

dr
dτ

= ṙ (5.5)

dy
dτ

= Ly(r) − i
[
t(r) + 2V(r)ρ, ρ

] + iE(τ )
[
µ(r), ρ

]
(5.6)

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 9



CHERNYAK AND MUKAMEL

where ṙ ∈ Tr(M) is a tangent vector with the com-
ponents rµ ≡ M−1µPµ. The combination of the last
two terms in the r.h.s. of Eq. (5.6) constitutes an ele-
ment of the tangent space to the fiber GN(V(r)).

Equations (5.4), (5.5), and (5.6) are represented
using the connection ∇ and have a clear geomet-
rical interpretation. First, Eq. (5.5) represents the
projection of Eq. (5.6) from GN(E) onto the con-
figuration space MR, rather than an independent
equation, and is included into the system mostly for
traditional reasons. The first term in Eq. (5.4) is in-
duced by the intensity of the gauge field Fµν(r) and
is of purely geometrical origin. The sum of the rest
terms has a natural interpretation: It represents the
derivative of the effective potential energy which
includes the electron energy with respect to the nu-
clear positions. The derivatives of t(r), µ(r), and V(r)
which constitute sections of the bundles End(E) and
End(End(E)) are naturally taken using the corre-
sponding connections induced by the connection ∇
in E. In Eq. (5.6) the first term represents a shift along
the connection which is determined by the velocity
vector ṙ in the configuration space MR. The other
two terms represent the dynamics along the fiber,
i.e., in the electronic space alone, and are given by
the r.h.s. of a purely electronic TDHF equation [6].

Introducing a local basis set vj(r) in E, i.e., a basis
set of single-electron orbitals, Eq. (5.6) can be decou-
pled into its projection onto MR [Eq. (5.5)] and an
equation for the matrix elements ρij of ρ defined by

ρvj(r) =
∑

i

ρijvj(r). (5.7)

Equation (5.6) adopts the form

dρ

dτ
=

∑
ν

[Aν , ρ]ṙν − i
[
t(r) + 2V(r)ρ, ρ

]

+ iE(τ )
[
µ(r), ρ

]
. (5.8)

The shift along the connection in Eq. (5.8) is repre-
sented by the coefficients Aν of the connection ∇ for
the chosen basis set [Eq. (3.4)] or in other words by
the gauge field. Equations of motion in some coor-
dinate representation can be alternatively derived
using the algebraic representation of the Poisson
bracket [Eqs. (4.23), (4.24), (4.25), and (4.26)]. This
will be done in the Appendix.

Summarizing, the input for the coupled electron–
nuclear dynamics consists of a fiber bundle p: E →
MR over the configuration space MR, a connection
∇ in it, the functions µ(r) and µN(r), the sections
t(r) and µ(r) of End(E), and the section V(r) of
End(End(E)). They can be expressed in terms of the
parameters of the original Hamiltonian by utilizing

the immersion E ⊂ MR × U. However, once they are
calculated any additional information on this im-
mersion is irrelevant and the dynamics is expressed
using the internal terms (i.e., the aforementioned in-
put) only.

VI. Optical Response at Intermediate
Frequencies: Contributions from
Nuclear Motions

In this section we derive equations of motion
which provide an effective procedure for computing
the polarizabilities in the intermediate frequency
limit, i.e., when the optical frequency is higher than
the vibrational frequencies but is still low compared
to the frequencies of the electronic transitions. In
this limit the deviation of the molecular geometry
r induced by the driving field from its equilibrium
position r = 0 is small. This implies that the opti-
cal response can be considered as a perturbation to
the electronic contribution, as opposed to the purely
static case. The calculations can be carried out as
an expansion in the inverse nuclear mass M−1.
The first-order correction which is a subject of this
section can be obtained by expanding the CEND
equations [Eqs. (5.4), (5.5), (5.6)] to the first order
in M−1. This can be done as follows. In the zero or-
der Eq. (5.5) yields r ≡ 0. In Eq. (5.4) we omit the
first term in the r.h.s and set r = 0 in the remain-
ing terms. Because of r = 0 the electronic dynamics
occurs in the space GN(V(0)) and is represented by
the motion of the density operator ρ ∈ GN(V(0)).
Setting r = 0 in Eq. (5.6) the first term in the r.h.s.
vanishes and Eq. (5.6) adopts the form of the TDHF
equations which describes the electronic dynamics
for fixed nuclei. We now turn to the first order terms.
To first order the deviation γ of the actual position
of (r, ρ ′) ∈ GN(E) from its zero order position (0, ρ)
is described by a vector γ ∈ T(0,ρ)(GN(E)) which has
a meaning of an infinitesimal derivation. Using the
connection ∇ the derivation γ can be decomposed
as

γ = L(0,ρ)(r) + ξ (6.1)

where r ∈ T0(MR) is the nuclear component of the
derivation and ξ ∈ TρGN(V(0)) is the electronic com-
ponent which is tangent to the fiber. ξ is represented
by an operator ξ ∈ End(V(0)). We reiterate that
L(0,ρ)(r) ∈ T(0,ρ)(∇, GN(E)). The first order in M−1

terms in the nuclear momenta P do not contribute to
the optical response to given order (these contribu-
tions start with M−2 terms) and are not considered.
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The first order derivation is, therefore, represented
in terms of the connection ∇ which is an invari-
ant object. The equation for r(drα/dτ ) = M−1

α Pα

follows immediately from Eq. (5.5) and being com-
bined with the zero order equation for P yields the
equation for r. The equation for ξ is obtained by
expanding Eq. (5.8) to first order. Combining the
three equations we obtain a closed coupled system
of equations for ρ, r, and ξ which has the form

dP
dτ

= −i[t + 2Vρ, ρ] + iE(τ )[µ, ρ] (6.2)

Mα

d2rα

dτ 2 = −uα + Tr(tαρ) − Tr(ρVαρ)

+ µN,αE(τ ) + Tr(µαρ)E(τ ) (6.3)
dξ

dτ
= −i[t + 2Vρξ ] − i2[Vξ , ρ] + iE(τ )[µ, ξ ]

− i
∑

α

[tα + 2Vαρ, ρ]rα

+ iE(τ )
∑

α

[µα , ρ]rα. (6.4)

The polarization P keeping the terms to first order
in M−1 has the form

P = P (0) + P (1) (6.5)
P (0) = µN + Tr(µρ) (6.6)

P (1) =
∑

α

µN,αrα + Tr(µξ ) +
∑

α

Tr(µαρ)rα . (6.7)

In Eqs. (6.2)–(6.4) and (6.5), (6.7) we used the no-
tation t ≡ t(0), V ≡ V(0), etc., and tµ ≡ ∇µt|r = 0,
Vµ ≡ ∇µV|r = 0, etc.

Appendix A: Basic Structures

In the appendix we summarize the basic struc-
tures and objects involved in our formalism using
the language of differential geometry.

We denote by MR the nuclear configuration space
whose points r ∈ MR characterize the positions of
the nuclei. The nuclear phase space M0 is repre-
sented by the cotangent bundle M0 ≡ T∗(MR) with
the natural projection p0: M0 → MR. The fiber over
r ∈ MR represents the momenta P ∈ T∗

r (MR) which
can be considered as linear functionals acting on
tangent vectors which belong to the tangent space
Tr(MR) at point r. The latter are represented by the
fibers of the tangent bundle T(MR) over MR. The sec-
tions of the tangent bundle are vector fields which
are represented by first order differential operators
with a natural definition of the commutator.

U denotes the space of all single-electron or-
bitals which is assumed to be finite dimensional
dim U = N′

0 whereas N′
0 can be very large. The clas-

sical electronic phase space M1 of the extended
system is given by the Grassmanian M1 ≡ GN(U)
which represents the set of N-dimensional vector
subspace of E. It can considered as a subspace M1 ⊂
End(U):

GN(U) = {
ρ ∈ End(U)

∣∣ rank ρ = N, ρ2 = ρ,
ρ+ = ρ

}
. (A.1)

The full classical phase of the coupled extended
system of electrons and nuclei is represented by
M0 × M1

The relevant single-electron orbitals are de-
scribed by a vector bundle p: E → MR. Its fiber
V(r) ≡ p−1(r) at point r determines the relevant
electron orbitals for the molecular geometry which
corresponds to r. All fibers have the same dimension
dim V(r) = N0.

The bundle GN(p): GN(E) → MR with the fibers
GN(V(r)) represents the set of classical electronic
phase spaces parametrized by the configuration
space. Equation (A.1) applied to V(r) instead of
U yields the immersion GN(V(r)) ⊂ End(V(r))
which generates the immersion of bundles GN(E) ⊂
End(E). This allows us to consider points in GN(E)
as pairs (r, ρ) with r ∈ MR and ρ ∈ End(V(r)).

The joint relevant phase space M is given by the
product of the cotangent bundle M0 and GN(E),

M ≡ M0 ×MR GN(E), (A.2)

where the product of the bundles is defined in a
standard way [9 – 11]:

M0 ×MR GN(E) ≡ {
(x, γ ) ∈ M0 × GN(E)∣∣ p0(x) = GN(p)(γ )

}
. (A.3)

We have a natural immersion M ⊂ M0 ×MR End(E).
The immersion GN(V(r)) ⊂ GN(U) induces the im-
mersion M ⊂ M0 × M1 of the relevant phase space
into the phase space of the extended system.

Appendix B: Connections in Bundles
and Gauge Fields

In this appendix we summarize the basic defini-
tions and properties of connections in fiber bundles
involved in our formulism. Let A0(E) represent the
sections of a vector bundle E over MR and let Aj(MR)
represent the differential j-forms on MR. We then de-
note by Aj(E) ≡ A0(E) ⊗Aj(MR) the j-forms with the
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values in the bundle E. A connection ∇ is a linear
map ∇: A0(E) → A1(E) which satisfies the property

∇( fs) = f∇s + s ⊗ df (B.1)

for any section s ∈ A0(E) of E and any function f ∈
A0(MR) on MR. Representing in a system of local
coordinates on MR,

∇s =
∑

µ

(∇µs) drµ, (B.2)

we obtain a set of coefficients ∇µs ∈ A0(E) which
constitutes sections of E and represents the deriva-
tives of the section s.

It follows from Eq. (B.1) that

[∇µ, ∇ν]( fs) = f [∇µ, ∇ν]s (B.3)

for any function f and section s. Equation (B.3)
implies that for any section s the 2-form

∑
µν[∇µ,

∇ν]s drµ ∧ drν can be represented in the form∑
µν

[∇µ, ∇ν]s(r) drµ ∧ drν = −
∑
µν

Fµν(r)s(r) drµ ∧ drν

= −F(r)s(r) (B.4)

where Fµν ∈ A0(End(E)) are the coefficients of the
2-form F ∈ A2(End(E)) with the values in (End(E))
known as the curvature of the connection ∇.

A connection ∇ in E induces connections in vec-
tor bundles constructed out of E; e.g., the induced
connection in the bundle End(E) is determined by
the condition

∇(ξs) = (∇ξ )s + ξ (∇s) (B.5)

for s ∈ A0(E), ξ ∈ A0(End(E)).
Using a local basis of sections vj(r) ∈ A0(E) a con-

nection is represented by a set of coefficients Aµ(r)
[Eq. (3.4)] which can be viewed as a gauge field.
First, ∇µs is given by a “long derivative” [Eq. (3.6)]
which constitutes the main concept of gauge fields.
Second, substituting Eq. (3.6) into Eq. (B.4), i.e.,
representing Eq. (B.4) using the basis set vj, we im-
mediately obtain

Fµν(r) = ∂µAν(r) − ∂νAµ(r) − [
Aµ(r), Aν(r)

]
(B.6)

which constitutes the expression for the intensity of
a gauge field. Finally, transforming to a new basis
set by v′

i = ∑
gkivk we obtain the coefficients A′

ν of
the connection ∇ in the new basis set v′

i by using
Eq. (3.4) and the property given by Eq. (3.3):

A′
µ(r) = g(r)−1∂µg(r) + g−1(r)Aµ(r)g(r). (B.7)

Equation (B.7) constitutes the expression for a gauge
transformation for a non-abelian gauge field.

An alternative definition of a connection which
can be extended to the case of nonvector bundles
(i.e., bundles whose fibers are not vector spaces), as
opposed to the definition as a rule of differentiation,
identifies a connection ∇ in E as a set of vector sub-
spaces Tx(∇, E) ⊂ Tx(E) of the tangent spaces to E
with dim Tx(∇, E) = NR [9]. We denote by NR the di-
mensionality of the configuration space. Therefore,
it can be considered as a section T(∇) of a bun-
dle GNR (T(E)), the latter E being the Grassmanian
of the tangent bundle over E [11]. This definition
can be also reformulated in terms of a set of lifting
maps L(r,γ ): Tr(MR) → T(r,γ )(E) [9] which are con-
nected with Tx(∇, E) in the following way: imL(r,γ ) =
T(r,γ )(∇, E) and pL(ξ ) = ξ for any ξ ∈ Tr(MR). The
set of lifting maps can be described by an injective
linear morphism L(∇): p∗(T(MR)) → T(E) of two
vector bundles over E.

The equivalence of the two definitions of connec-
tion in the case of vector bundles is established by
combining Eqs. (3.4), (3.6), and (3.7). The second de-
finition of connection also allows one to introduce
the curvature F(∇) of the connection. The curvature
F(∇) ∈ A0(Hom(p∗(T(MR) ⊗ T(MR)), T( f )(E))) can be
considered as a morphism,

F(∇):
(
p∗(

T(MR) ⊗ T(MR)
)) → T

( f )(E), (B.8)

of vector bundles over E [11] where T( f )(E) ⊂ T(E)
is represented by the vectors tangent to the fibers.
F(∇) is defined as follows. Starting with two vec-
tor fields ξ , γ [which are sections of T(MR)] we lift
them to the bundle by means of the lifting map L(∇)
which yields two vector fields L(ξ ) and L(γ ) in E
which lie in T(∇, E). F(ξ ⊗ γ ) is obtained by pro-
jecting the commutator [L(ξ ), L(γ )] into the tangent
spaces to the fibers,

F(ξ ⊗ γ ) ≡: P( f )[L(ξ ), L(γ )
]
, (B.9)

where P( f ) denotes the aforementioned projection.
The connection between the two definitions of

curvature [Eqs. (B.4) and (B.9)] for vector bundles
is easily established by choosing a local basis vj(r)
and using the expression of Eq. (3.5). Equation (3.7)
yields

L
(

∂

∂rµ

)
= ∂

∂rµ

+
∑

ik

Aik,µ(r)si
∂

∂sk
. (B.10)

A straightforward calculation yields, upon the
substitution of Eq. (B.10) into Eq. (B.9),

F
(

∂

∂rµ

⊗ ∂

∂rν

)
=

∑
ik

Fik,µν(r)si
∂

∂sk
. (B.11)
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Equation (B.11) implies that the tangent to the fiber
vector at point (r, s) which gives the value of F is
Fµν(r)s.

At the end of Section III we introduced a connec-
tion in E induced by the immersion E ⊂ MR × U.
It follows immediately from its definition that the
coefficients of ∇ in the basis set vj(r) are given by

Aij,µ(r) = −〈
vj(r)

∣∣∂µvj(r)
〉
. (B.12)

In Eq. (B.12) the sections vj(r) are considered as
functions on MR valued in U. This connection is ob-
viously compatible with the scalar product; i.e.,

∂µ

〈
v(r)

∣∣s(r)
〉 = 〈∇µv(r)

∣∣s(r)
〉 + 〈

v(r)
∣∣∇s(r)

〉
(B.13)

for any two sections v(r), s(r) of E. The space U has
also a real structure; i.e., one can complex conju-
gate the states. In the absence of magnetic field the
relevant orbitals can be chosen to be real which im-
plies that the connection ∇ is compatible with the
real structure. This is a signature of the time-reversal
symmetry. The connection ∇ therefore becomes an
orthogonal rather than a unitary connection.

Finally, we note that the expression for the nu-
clear part ω

(0)
M of the symplectic structure [Eq. (4.13)]

can be derived in a straightforward way by extend-
ing the basis set vj(r) in V(r) to complete basis set
in U with further use of Eqs. (4.6)–(4.8) together
with Eq. (B.12). However, the equivalence of the two
definitions of the connection [Eqs. (B.4) and (B.9)]
established by Eq. (B.11) makes even this simple cal-
culation unnecessary. The first line in Eq. (4.13) is
obvious. The second relation is established by sim-
ply comparing Eqs. (4.8) and (B.9). In both cases we
take two vector fields which belong to the spaces
Tx(∇), commute them, and take the trace of the
product of ρ with the commutator. Equation (B.11)
immediately yields Eq. (4.13).

In the case when the time-reversal symmetry is
not broken and the connection ∇ is orthogonal we
have Tr(ρFµν(r)) ≡ 0 and the first term in Eq. (5.4)
which represents the Lorentz force naturally van-
ishes.
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