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ABSTRACT: Closed expressions for nonadiabatic couplings are derived using the
collective electronic oscillators (CEO) algorithm based on the time-dependent
Hartree–Fock equations. Analytic derivatives allow the calculation of transition
density matrices and potential surfaces at arbitrary nuclear geometries using
a molecular dynamics trajectory that only requires a CEO calculation at a single
configuration. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 00: 1–14, 2001
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Introduction

T he simulation of photoinduced processes in
molecules requires the computation of elec-

tronic potential surfaces and nonadiabatic cou-
plings between them [1, 2]. The collective electronic
oscillators approach (CEO) provides an inexpensive
algorithm for computing adiabatic potential sur-
faces [3, 4]. This constitutes a major computational
saving since a quantity which carries much less in-
formation than the many electron wavefunction of
the excited states, namely the transition density ma-
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trix between ground and excited states, is computed
instead [5]. These matrices further represent col-
lective oscillators or electronic normal modes that
describe the time evolution of the density matrix of
the system under the effects of an external perturba-
tion. The CEO eigenvalue equation can be written as

Lξk = �kξk. (1)

L is the effective TDHF Liouville operator for the
molecule, whose spectrum describes the electronic
excitations of the system. The atomic orbital rep-
resentation of the oscillators ξk provides a clear
characterization of molecular excitations in real
space [6]. The eigenvectors ξk are normalized ac-
cording to:1 (ξk, ξk) = Tr(ρ̄[ξ†

k , ξk]) = 1, where ρ̄ is

1The scalar product introduced here to normalize the eigen-
vectors ξk is discussed in Appendix A.
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the Hartree–Fock ground state density matrix. The
sum of the excitation energy �k(R) and the ground
state energy ε0(R) at different nuclear configura-
tions R gives the excited state adiabatic potential
surface εk(R). These quantities are sufficient to de-
scribe the nuclear dynamics of a molecule in regions
of the nuclear space far away from avoided cross-
ings or conical intersections. However, many in-
teresting photoinduced processes involve the tran-
sition between different potential surfaces in the
vicinity of an avoided crossing or conical intersec-
tion [7]. An example of such a process is the cis to
trans photoisomerization of rhodopsin which is the
elementary process in vision [8 – 10]. Under these
circumstances it is crucial to include the nonadia-
batic couplings between different potential surfaces
in order to properly describe the joint electronic and
nuclear dynamics, and to predict the branching ra-
tios among different reaction pathways.

The aim of this work is to derive closed ex-
pressions for the nonadiabatic couplings (NAC)
between any pair of electronic states in the CEO
framework. The close connection between the NAC
and the derivatives of the density matrices further
provides the formal solution of the equations pro-
posed in [3] in terms of CEO eigenvectors and NAC.

The first-order nonadiabatic couplings are con-
veniently defined in terms of a vector potential in
nuclear space [11]

Ax
ik ≡ −

〈
i
∣∣∣∣ ∂

∂x

∣∣∣∣k
〉

(2)

where 〈i| and 〈k| are two adiabatic electronic states
and x is a generic nuclear coordinate. In Appendix B
we use perturbation theory to express the NAC in
the form

Ax
ik = 〈i|ĥx|k〉

εi − εk
; i 	= k (3)

where ĥx is the derivative of the molecular Hamil-
tonian Ĥ with respect to a nuclear coordinate x.2

This expression is convenient for numerical compu-
tations. Introducing a basis set, with the correspond-
ing fermionic creation and annihilation operators c†

n
and cn, we have

Ax
ik = Tr(ρikhx)

�i − �k
; i 	= k. (4)

(ρik)nm = 〈i|c†
ncm|k〉 denotes the one-electron tran-

sition density matrix and the excited state energy

2Throughout this work we use the short-hand notation and
denote the derivative with respect to a nuclear coordinate x by x
superscript.

has been rewritten in terms of the ground state plus
the excitation energy εk = ε0 + �k. The matrix hx

represents the operator ĥx in the chosen basis set
ĥx = �nmhx

nmc†
ncm. The expression for NAC involving

the ground state is even simpler and only requires
the knowledge of (ρi0)nm = 〈i|c†

ncm|0〉 ≡ (ξi)nm and
(ρ0i)nm = 〈0|c†

ncm|i〉 ≡ (ξ†
i )nm

Ax
i0 = Tr(ξihx)

�i
; Ax

0i = Tr(ξ†
i hx)

�i
. (5)

The matrices {ξi} are obtained from the collective
electronic oscillators algorithm [6, 12]. The transi-
tion density matrices between excited states, ρik, can
be also expressed in terms of the CEO [13]. To use
Eqs. (4) and (5) we need to express the operator ĥx

in terms of the derivative of the matrix elements
of the molecular Hamiltonian. In Appendix C we
show that the matrix elements of the operator ĥx

can be expressed in an atomic orbital representa-
tion as

hx = tx + Vxρ̄ (6)

where tx is the derivative of the matrix elements
for the one-electron part of the Hamiltonian and Vx

is the derivative of the electron–electron interaction
operator. The operator ĥx represents the vibronic
coupling of the molecular Hamiltonian and it is the
source of the nonadiabatic coupling. These results
will be discussed in the coming sections. The sec-
ond section presents the derivatives of the ground
state density matrix and of the CEO transition den-
sity matrices. In the third section we present the
equations for classical molecular dynamics on ex-
cited state hypersurfaces using the CEO/TDHF ap-
proach. An analytic expression for the derivatives
of the density matrices is also derived. In the fourth
section we discuss some general properties of nona-
diabatic couplings resulting from the translational
symmetry of the electronic Hamiltonian when ex-
pressed using atomic orbitals centered on the nuclei.
Similar properties are derived also for the density
matrices. In the fifth section we discuss the role
of nonadiabatic couplings in determining a contri-
bution to vibrational infrared absorption intensi-
ties. Finally, the Appendixes present details of the
derivations and the CEO algorithm.

Analytic Derivatives

By solving the Hartree–Fock equation for the
density matrix at various nuclear configurations
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and the CEO eigenvalue problem [Eq. (1)] it is possi-
ble to construct the entire adiabatic potential energy
surfaces. The nonadiabatic couplings at each nu-
clear configuration can then be computed from the
knowledge of the CEO transition matrices and the
transition energies, using Eqs. (4) and (5). A differ-
ent strategy for achieving the same goal is to use
the analytic derivatives of all quantities with re-
spect to the nuclear coordinates. It is then possible
in principle to carry out the full Hartree–Fock/CEO
calculation only once, at some chosen initial config-
uration. The analytic derivatives then allow us to
compute the quantities of interest at all configura-
tions by running a trajectory; we can thus generate
the density matrices on the fly while avoiding a new
Hartree–Fock SCF or a new CEO computation in
the displaced nuclear configuration. Such strategy
is reminiscent of Car–Parrinello simulations [14]. In
this section we provide closed expressions for these
derivatives. Numerical considerations should deter-
mine which strategy is to be preferred: repeating the
CEO or using the derivatives. Making use of these
results for the NAC it is possible to compute the
derivative of the ground state density matrix and
the derivative of the CEO eigenvectors.

A general relationship exists between the deriv-
ative of the density matrices and the NAC (see Ap-
pendix D)

ρx
ij =

∑
k 	= i

Ax
ikρkj −

∑
k 	= j

ρikAx
kj. (7)

In particular we have for the ground state density
matrix

ρ̄x =
∑
j>0

Ax
0jξj − Ax

j0ξ
†
j . (8)

Equation (8) shows that the derivative of the ground
state density matrix is given by a weighted sum
over the CEO modes, where the coefficients are
given by the nonadiabatic couplings between the
ground and the various excited states. These nona-
diabatic couplings can be computed analytically
using Eq. (5) once the CEO eigenvectors are known
by solving Eq. (1). A closed expression may also be
derived for the derivative of the transition density
matrix ξi (see the third section)

ξx
i =

∑
k>0; k<0; k 	= i

ξk(ξk, Dx
i )

�k − �i
+ (1 − 2ρ̄)

[
ξi, ρ̄x]

+;

Dx
i = [[

Cx
i , ρ̄

]
, ρ̄

]
;

Cx
i = −[

hx, ξi
] − [

Vxξi, ρ̄
] − [

Vρ̄x, ξi
]

(9)

− [
Vξi, ρ̄x] + �x

i ξi;

�x
i = (

ξi, Lxξi
)
;

Lxζ = [
F(ρ̄)x, ζ

] + [
Vxζ , ρ̄

] + [
Vζ , ρ̄x].

Here and in the remainder of this paper ζ denotes a
matrix representing an arbitrary single electron op-
erator: Eq. (9) shows the action of superoperators in
Liouville space. The scalar product (ζ1, ζ2) in Eq. (9)
is defined as

(ζ1, ζ2) = (ζ1|ζ2) = Tr
(
ρ̄[ζ †

1 , ζ2]
)
. (10)

With respect to this scalar product the Liouville op-
erator Lζ = [F(ρ̄), ζ ]+[Vζ , ρ̄] of Eq. (1) is Hermitian:
(Lη1, η2) = (η1, Lη2) (see Appendix A). F(ρ̄)x is the
derivative of the Fock matrix corresponding to the
ground state density matrix ρ̄ (see Appendix H).

Classical Nuclear
Dynamics Simulations

Many processes and spectroscopic properties
may be adequately simulated by running classical
trajectories on excited state surfaces. However, the
classical description breaks down at curve crossing
points where a quantum wave packet calculation is
required [7]. In [3] the Hartree–Fock equation for
the ground state and the CEO algorithm for the
TDHF were differentiated with respect to nuclear
coordinates in order to get closed equations that can
describe the molecular dynamics on excited state
hypersurfaces. We recast here the equations of [3]
using a somewhat different notation and adopting
a different point of view which underscores the
interesting role of the nonadiabatic couplings. We
consider both electronic and nuclear degrees of free-
dom and write equations of motion for the variables
of interest along the classical trajectory of the nuclei.
The state of the molecule along this trajectory at a
given time τ will be defined by the following quan-
tities: the nuclear coordinates x(τ ), the Hartree–Fock
ground state density matrix ρ̄(x(τ )), and the CEO
transition matrix ξi(x(τ )). On a given ith excited state
surface these satisfy the equations of motion:

mα ẍα = − d
dxα

[
E0(x) + �i(x)

]
,

∂ρ̄

∂τ
=

∑
α

ρ̄xα ẋα , (11)

∂ξi

∂τ
=

∑
α

ξ
xα

i ẋα .

The ground state density matrix ρ̄ satisfies for
each nuclear configuration x(τ ) the self consistent
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Hartree–Fock equation [F, ρ̄] = 0, where F is the
Fock operator which depends on ρ. In the classical
equation of motion for the nuclear coordinates [the
first of Eqs. (11)] we used the sum of the ground
state energy and the excitation energy to generate
the excited state surface

Ei(x) = E0(x)+�i(x) = 2 Tr
[
ρ̄t+ 1

2 ρ̄Vρ̄
]+�i(x). (12)

The excitation energy �i at each nuclear configura-
tion x is the eigenvalue of the CEO equation, Eq. (1).
The necessary excited state energy gradient can be
computed as

d
dxα

[
E0(x) + �i(x)

] = 2 Tr
[
ρ̄txα + 1

2 ρ̄Vxα ρ̄
]

+ (
ξi, Lxαξi

)
. (13)

Here the ground state energy gradient has been ex-
pressed using the derivatives of the one-electron
parameters txα and two-electron parameters Vxα .
The derivative of the Liouville operator with re-
spect to a nuclear coordinate Lxα can be expanded as
the last of Eqs. (9). Equations (11) together with the
analytic expressions for the derivatives of the den-
sity matrices along the nuclear coordinates, e.g., ρ̄xα

and ξ
xα

i , Eqs. (8) and (9), are closed.
These equations can be solved by computing the

CEO spectrum at a given initial point and then by
propagating the density matrices along the classical
trajectory.3 This follows the spirit of Car–Parrinello
simulations on the ground state [14].

We next show how to solve the two equations for
the derivatives of the density matrices in terms of
the CEO eigenvectors and the NAC.

The derivative of the ground state density matrix
satisfies the following linear equation (see Appen-
dix C, Eq. (72) and Appendix F):

Lρ̄x = [
ρ̄, hx]. (14)

Using the perturbative expression for ρ̄x, Eq. (79),
and the expressions for the NAC involving the
ground state, Eq. (5), we can express the solution of
Eq. (14) as follows:4

ρ̄x =
∑
j>0

Ax
0jξj − Ax

j0ξ
†
j . (15)

3For example, if we consider a given small displacement δ of
a given nuclear coordinate x, we can propagate the density ma-
trix ρ̄ from x to x+δ through the use of the analytic derivative ρ̄x,
e.g., ρ̄(x + δ) ≈ ρ̄(x) + ρ̄x(x)δ.

4The Hermiticity of ρ̄x is assured by the following property
of the NAC: (Ax

0j)
∗ = −Ax

j0; (Ax
j0)∗ = −Ax

0j. This property can
be directly derived from the perturbative expression of the NAC,
Eq. (3). Note that ĥx is Hermitian.

It is then possible to compute ρ̄x once the NAC in-
volving the ground state are obtained through the
knowledge of the CEO eigenmodes and the matrix
elements of ĥx [Eq. (6)]. On the other hand, using
Eq. (15) and the algebraic properties of the CEO
eigenvectors, we can express the NAC involving the
ground state as scalar products of px with the CEO
eigenvectors:

Ax
0j = (

ξj, ρ̄x
)
;

Ax
j0 = (

ξ
†
j , ρ̄x

)
.

(16)

This alternative to Eq. (5) for computing the NAC
is particularly useful when the derivative of the
density matrix is already available (e.g., ρ̄x may be
easily obtained from a finite differences Hartree–
Fock SCF computation).

We next turn to the derivative of the CEO eigen-
modes ξx

i . Applying ∂/∂x to the equation Lξi = �iξi

gives [3]

(L − �i)ξx
i = −(Lx − �x

i )ξi. (17)

The right-hand side of Eq. (17) is assumed to be
known and will be denoted Cx

i . Cx
i can be directly

computed once the equation for ρ̄x, Eq. (14), has
been solved and the derivative of the CEO eigen-
value �x

i = (ξi, Lxξi) has been evaluated. More
explicitly, expanding the derivative of the Liouville
operator5 we get

(L − �i)ξx
i = Cx

i ;
Cx

i = −[
hx, ξi

] − [
Vxξi, ρ̄

] − [
Vρ̄x, ξi

]
(18)

−[
Vξi, ρ̄x] + �x

i ξi.

In Appendix C we show that it is possible to expand
the derivative of the ground state density matrix in
the CEO eigenmodes ξi. The reason is that the deriv-
ative of the density matrix belongs to the particle–
hole space and the eigenmodes of L form a complete
basis set for that space (see Appendix E). On the
other hand ξx

i does not belong to the particle–hole
space spanned by the set of the CEO eigenvectors
{ξi}. This is because the particle–hole spaces associ-
ated with different density matrices ρ̄ are in general
different. Nevertheless, if the two density matrices
are close enough (as when evaluating the derivative
of ξi) it is possible to express the part of ξx

i lying
outside the particle–hole space associated with ρ̄, in
terms of the derivative of the density matrix ρ̄x (Ap-
pendix G). ξx

i may thus be expressed as a sum of an
interband γ x

i and an intraband ϕx
i component

ξx
i = γ x

i + ϕx
i . (19)

5See, e.g., the last of Eqs. (9) and Appendix H.

4 VOL. 00, NO. 0



NONADIABATIC COUPLINGS

These two components are evaluated in Appen-
dix G. ϕx

i is obtained by making use of Eq. (108):
ϕx

i = (1 − 2ρ̄)[ξi, ρ̄x]+. γ x
i is given by Eq. (114).

Thus we finally obtain the analytic expression of the
derivative of the CEO transition density matrix (the
prime denotes that the ith mode is excluded from
the sum)

ξx
i =

∑
k>0; k<0

ξk(ξk, Dx
i )

�k − �i
+ (1 − 2ρ̄)

[
ξi, ρ̄x]

+, (20)

where

Dx
i = [[

Cx
i , ρ̄

]
, ρ̄

]
. (21)

Sum Rules For Nonadiabatic Couplings
and Transition Density Matrices

We first consider a sum rule for Hellman–
Feynman forces. The invariance of the electronic
energy εk(R) with respect to a rigid translation T
of nuclear coordinates {R}, results in the following
sum rule: ∑

λ

〈
k(R)

∣∣ĥxλ(R)
∣∣k(R)

〉 = 0, (22)

where we have defined ĥxλ(R) ≡ ∂Ĥ(R)/∂xλ.
This simply implies that the sum of the Hellman–
Feynman forces acting on the nuclei is zero, both for
the ground or for an excited state. The sum is ex-
tended over all N atoms, and the same equation can
be written for the y and the z derivatives. A rigid
translation T acting on the nuclear space cannot
change the electronic energy, i.e., εk(R + T) = εk(R).
In particular for an infinitesimal translation � along
the x axis, we have

εk(R + �) = εk(R) (23)

expanding εk(R + �) to first order in �, results in

εk(R) +
∑

λ

�
∂εk

∂xλ

(R) = εk(R) (24)

which immediately gives
∑

λ

∂εk

∂xλ

(R) = 0. (25)

Making use of the Hellmann–Feynman theorem
[see Appendix B, Eq. (66)], we obtain

∑
λ

∂εk

∂xλ

(R) =
∑

λ

〈
k(R)

∣∣ĥxλ(R)
∣∣k(R)

〉 = 0. (26)

Sum rules for nonadiabatic couplings and den-
sity matrix derivatives can be derived in a similar

way. The integrals over atomic basis functions that
enter the definition of the Hamiltonian in the atomic
orbital basis set must depend only on the relative
positions of the atoms, thus tij and (ij|kl) are in-
variant to an overall translation of the molecule.
Through the same reasoning used for εk we imme-
diately get∑

λ

txλ

ij = 0;
∑

λ

(ij|kl)xλ = 0. (27)

This yields the following sum rules for the deriv-
atives of the Coulomb and exchange operator, the
Fock matrix6 and hx∑

λ

Jxλρ̄ =
∑

λ

Kxλρ̄ = 0;
∑

λ

Vxλρ̄ = 0;

∑
λ

Fxλ = 0;
∑

λ

hxλ = 0.
(28)

In the atomic orbital representation the NAC Eq. (4)
assumes the form

Ax
ik =

∑
nm(ρik)nm(hx)nm

�i − �k
: i 	= k. (29)

If we express the sum rule for hx in the atomic
orbital representation, Eq. (28), we obtain the fol-
lowing sum rule for the NAC:∑

λ

Axλ
ik =

∑
λ

Ayλ

ik =
∑

λ

Azλ
ik = 0. (30)

This relationship can be used as a consistency check
for the computation of NAC.

Let us turn now to the derivative of the one-
particle transition density matrix connecting two
electronic levels |i〉 and |j〉 in the atomic orbital rep-
resentation (ρx

ij)nm ≡ (∂/∂x)〈i|c†
ncm|j〉. Combining the

above sum rule for the NAC with Eq. (7) we imme-
diately get the following sum rule for the transition
density matrices:

N∑
λ = 1

ρxλ
ij =

N∑
λ = 1

ρ
yλ

ij =
N∑

λ = 1

ρzλ
ij = 0. (31)

As special cases of Eq. (31) we have for the deriva-
tives of the ground state density matrix and the CEO
eigenvectors {ξi}

N∑
λ = 1

ρ̄xλ =
N∑

λ = 1

ρ̄yλ =
N∑

λ = 1

ρ̄zλ = 0;

N∑
λ = 1

ξxλ
i =

N∑
λ = 1

ξ
yλ

i =
N∑

λ = 1

ξ zλ
i = 0.

(32)

6The sum rule for the Fock matrix holds provided that a simi-
lar sum rule exist for the density matrix. This is introduced later.
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Discussion

Infrared intensities may be related to the electron
mobility within molecules. They also enter the ex-
pressions for vibrational hyperpolarizabilities [16].
The contribution of the electronic charge to the
molecular dipole moment can be written in terms
of the ground state density matrix ρ̄ and the dipole
operator µs (the superscript s denotes the sth Carte-
sian component)

Ms = Tr
(
µsρ̄

)
. (33)

The infrared intensity is quadratic in the derivatives
of the dipole moment with respect to nuclear coor-
dinates [17]. The derivative of Ms with respect to a
generic nuclear coordinate x is

∂M
∂x

= Tr
(

∂µs

∂x
ρ̄

)
+ Tr

(
µs ∂ρ̄

∂x

)
. (34)

The first term is known as the charge contribution
to the infrared intensity. It represents the contribu-
tion to the change in the dipole moment arising
from the displacement along the vibrational coordi-
nate x of fixed charges associated with the atomic
orbital basis set. The second term, known as the flux
contribution, reflects the redistribution of electronic
charges upon nuclear motion. This term can be di-
rectly related to the nonadiabatic coupling vector
potential between the ground and excited states Ax

0j.
To show this we recall the expansion of the density
matrix derivative in the CEO eigenmodes, Eq. (15),
i.e., ρ̄x = ∑

j>0 Ax
0jξj − Ax

j0ξ
†
j . Substitution of Eq. (15)

in Eq. (34) gives

∂Ms

∂x
= Tr

(
∂µs

∂x
ρ̄

)
+

∑
j>0

Ax
0j Tr

(
µsξj

) − Ax
j0 Tr

(
µsξ

†
j

)
.

(35)
The infrared flux is thus given by a sum of the
transition dipoles between the ground state and the
manifold of excited states weighted by the nonadia-
batic couplings between ground and excited states.
For conjugated molecules, such as Carotenoids, in
which the ECC infrared bands are dominated by
contributions only from few excited states, the ex-
perimentally accessible infrared intensities [18, 19]
could be used to estimate the magnitude of the
nonadiabatic couplings. Making use of the NAC
sum rule it is possible to show that the sum of the
infrared fluxes with respect to the Cartesian coor-
dinate xλ, yλ, or zλ must vanish. This is consistent
with the charge conservation principle from which
the sum rule on infrared fluxes is usually derived.

We further note that the first-order nonadiabatic
couplings may be used to compute also the second-
order nonadiabatic couplings. This can be done as
follows:

Axy
ij ≡

〈
i
∣∣∣∣ ∂2

∂x∂y

∣∣∣∣j
〉

=
〈
i
∣∣∣∣ ∂

∂x
1̂

∂

∂y

∣∣∣∣j
〉
. (36)

By considering the resolution of the identity 1̂ =∑
k |k〉〈k|, we have

Axy
ij =

∑
k

〈
i
∣∣∣∣ ∂

∂x

∣∣∣∣k
〉〈

k
∣∣∣∣ ∂

∂y

∣∣∣∣j
〉
. (37)

This gives

Axy
ij =

∑
k

Ax
ikAy

kj. (38)

Appendix A: The CEO Algorithm

We introduce here the basic quantities required
for the CEO algorithm. The molecular Hamiltonian
can be written using second quantization as follows
[20, 21]:

Ĥ =
∑

ij

tijc
†
i cj + 1

2

∑
ijkl

〈ij|kl〉c†
i c†

j clck

−
∑

s = x,y,z

E s(t)
∑

ij

µs
ijc

†
i cj (39)

c†
i and ci are the creation and annihilation oper-

ators associated with the atomic spin orbital χi.
These orbitals are assumed to be orthonormal,7 i.e.,
〈χi|χj〉 = δij. These operators satisfy the Fermi anti-
commutation relationships[

c†
i , cj

]
+ = δij;

[
c†

i , c†
j

]
+ = 0;

[
ci, cj

]
+ = 0.

(40)
Here the matrix t represents the one-particle part
of the electronic Hamiltonian, and the two-electron
integrals are denoted by 〈ij|kl〉 ≡ (ik|jl). The single-
electron matrix elements tij, the two-electron matrix
elements (ij|kl), and the dipole moment matrix ele-
ments �µij may be expressed in terms of the atomic

7Usually atomic orbitals basis sets are not orthonormal, i.e.,
Sij ≡ 〈χ̄i|χ̄j〉 	= δij. The algebra is less involved if an orthonor-
mal basis set is used, so that it is convenient to transform the
nonorthonormal basis set {χ̄i} into an orthonormal one {χi}, as
follows:

|χi〉 = |χ̄j〉S−1/2
ji ;

〈χi| = S−1/2
ij 〈χ̄j|;

〈χi|χj〉 = S−1/2
ik 〈χ̄k|χ̄l〉S−1/2

lj = (S−1/2)ikSkl(S
−1/2)lj = δij.
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orbitals χi(r) as

tij =
∫

χ∗
i (r)

[
−1

2
∇2

r + v(r)
]
χj(r) dr;

v(r) = −
∑

I

ZI

|r − RI| ;

(ij|kl) =
∫ ∫

χ∗
i (r1)χj(r1)χ∗

k (r2)χl(r2)
|r1 − r2| dr1 dr2;

�µij =
∫

χ∗
i (r)rχj(r) dr.

(41)

Invoking the Hartree–Fock approximation, the one-
electron ground state density matrix (ρ̄)nm =
〈0|c†

ncm|0〉 satisfies the equation[
F(q̄), ρ̄

] = 0, (42)

where the Fock operator F is defined as follows:

F(ρ) = t + Vρ. (43)

The action of the operator V on the density matrix
takes into account the interaction among electrons.
For a closed shell system the action of V on the
Hartree–Fock self-consistent ground state density
matrix ρ̄ is (using the atomic orbital basis set):

(Vρ̄)ij = 2( Jρ̄)ij − (Kρ̄)ij (44)

( Jρ̄)ij =
∑

kl

(ij|kl)ρ̄kl (45)

(Kρ̄)ij =
∑

kl

(ik|jl)ρ̄kl. (46)

J and K are commonly known as the Coulomb and
the exchange operators, respectively.

The CEO equations may be derived by starting
with the time-dependent Hartree–Fock equation

ρ̇(t) = −i
[
F(ρ), ρ

]
. (47)

The Fock matrix F is time-dependent through ρ(t).
Assuming a small time-dependent deviation from
the equilibrium ground state density matrix, ρ(t) =
ρ̄+δρ(t), it is possible to derive directly from Eq. (47)
the following linearized equation, where terms of
order δρ2 have been neglected, and Eq. (42) has been
considered:

δ̇ρ = −iLδρ. (48)

The operator Lζ = [F(ρ̄), ζ ] + [Vζ , ρ̄] is defined
over the space of single particle density matrices
and represents an effective Liouville operator for the
Hartree–Fock Hamiltonian. The Hermiticity of the
density matrix δρ† = δρ implies that its time deriva-
tive ρ(t) = δ̇ρ(t) must be Hermitian at all times and
that the Liouville operator must be anti-Hermitian

(δ̇ρ)† = δ̇ρ ⇒ iL†δρ = −iLδρ ⇒ L† = −L. (49)

Let us consider now the spectrum of the L opera-
tor (the frequencies �k must be real to be physically
meaningful in a system without dissipation)

Lξk = �kξk. (50)

Taking the Hermitian conjugate of this equation and
making use of the anti-Hermiticity of L we get

L†ξ
†
k = �kξ

†
k ⇒ Lξ

†
k = −�kξ

†
k . (51)

The eigenvectors then come in conjugate pairs,
ξk and ξ

†
k , with eigenvalues �k and −�k, respec-

tively. We introduce the following notation whereby
positive and negative indexes refer to the positive
and negative part of the spectrum (�k is taken to be
positive when k is positive):

ξk → �k ξ−k ≡ ξ
†
k → �−k ≡ −�k ∀k > 0.

(52)
The formal solution of Eq. (48) can be written as

δρ(t) = exp(−iLt)δρ(0). (53)

The exponential of the Liouville operator works as a
propagator of the initial perturbation on the ground
state density matrix δρ(0). Its spectral representation
is (ζ represents a generic one particle matrix)

exp(−iLt)ζ =
∑

k>0; k<0

ξke−i�kt(ξk, ζ ). (54)

Acting with this propagator on δρ(0) we get

δρ(t) =
∑

k>0; k<0

zk(t)ξk;

zk(t) =zk(0)e−i�kt;

zk(0) =(
ξk, δρ(0)

)
.

(55)

A scalar product (η1, η2) of two one-electron density
matrices in the Liouville space spanned by L can be
defined as

(η1, η2) ≡ (η1|η2) = Tr
(
ρ̄
[
η

†
1, η2

])
. (56)

This is an unusual scalar product since it is anti-
Hermitian, i.e., (η1, η2) = −(η†

2, η†
1). With respect

to this scalar product the Liouville operator L be-
comes Hermitian: (Lη1, η2) = (η1, Lη2). This can be
explained as follows. Let us consider two vectors η

and ζ belonging to the Liouville space spanned by
the CEO eigenvectors given by Eq. (50). We can
write for the scalar product (η, ζ ) the following ex-
pansion over the CEO eigenmodes:

(η, ζ ) =
∑

k

(η, ξk)(ξk, ζ ). (57)

Similarly the action of the Liouville operator L on
a generic vector ϕ = ∑

k ξk(ξk, ϕ) can be repre-
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sented as

Lϕ =
∑

k

�kξk(ξk, ϕ). (58)

Making use of the above two expressions, and as-
suming ζ = Lϕ, we can express (η, Lϕ) as

(η, Lϕ) =
∑
k,h

(η, ξk)(ξk, ξh)�h(ξh, ϕ). (59)

Using the anti-Hermicity of the scalar product
(η1, η2) = −(η†

2, η†
1), we obtain

(η, Lϕ) = −
∑
k,h

(ϕ†, ξ†
h )(ξ†

h , ξ†
k )�k(ξ†

k , η†). (60)

Note that because of the orthogonality of the modes,
(ξk, ξh) = δkh, we are allowed to change �k into �k

when going from Eq. (59) to Eq. (60). Making use of
the notation with negative indexes, Eq. (52), we get

(η, Lϕ) =
∑
k,h

(ϕ†, ξ−h)(ξ−h, ξ−k)�−k(ξ−k, η†). (61)

The sum over the CEO modes runs over both posi-
tive and negatives indexes; Eq. (61) is equivalent to

(η, Lϕ) =
∑
k,h

(ϕ†, ξh)(ξh, ξk)�k(ξk, η†). (62)

The right-hand term of Eq. (62) is identified with
(ϕ†, Lη†) through the use of Eq. (59), and we finally
have

(η, Lϕ) = (ϕ†, Lη†) = −(L†η, ϕ) = (Lη, ϕ). (63)

The second equality holds because of the anti-
Hermicity of the scalar product and the last one
results from the anti-Hermicity of L.

The CEO algorithm is aimed at computing a
few low-energy eigenvalues and the corresponding
eigenvectors of the operator L [Eq. (50)]. The compu-
tation is carried out with the Lanczos type algorithm
discussed in [12]. According to Eq. (55) the CEO
eigenvectors can be interpreted as electronic normal
modes which represent the time evolution of the den-
sity matrix following an initial deviation from the
equilibrium δρ(0). Another useful way to view the
matrices ξk comes from the expression of the linear
response of the system in terms of ξk [13]. By com-
paring the usual sum over states expression with the
CEO expression involving the ξk, ξk can be identi-
fied with the one-electron transition density matrix
between the ground and the excited state of en-
ergy εk = �k + ε0, i.e., (ξk)nm = 〈k|c†

ncm|0〉. It is
worth noting that if we express the density matrix
as a single Slater determinant at all times (TDHF
approximation), ρ(t) becomes idempotent. Thus the

matrix δρ(t) has to be a particle–hole matrix (the
proof follows from Appendix E if a δρ = ρ̄xδx is
considered). As a direct consequence the eigenvec-
tors of the Liouville operator L are also particle–hole
matrices, see Eq. (55).

Appendix B: TDHF Calculation
of Nonadiabatic Couplings

The NAC can be expressed in a form suitable
for the TDHF applications making use of perturba-
tion theory. According to the definition of the NAC,
Eq. (2), we need to express the first derivative of
the wavefunction with respect to the nuclear co-
ordinate x. To that end we perturb the molecular
Hamiltonian by introducing a small displacement �

for a given nuclear coordinate x. To first order in �

we have

Ĥ(x + �) = Ĥ(x) + �
∂Ĥ
∂x

+ o
(
�2). (64)

We can apply standard perturbation theory [22] to
get the first-order approximations to the eigenval-
ues εk(x + �) and eigenvectors |k(x + �)〉 of the
perturbed (displaced) Hamiltonian Ĥ(x+�). For the
eigenvalues we have

εk(x + �) = εk(x) + �

〈
k(x)

∣∣∣∣∂Ĥ
∂x

∣∣∣∣k(x)
〉
+ o(�2). (65)

This can be immediately used to calculate the deriv-
ative of the eigenvalue itself

∂εk(x)
∂x

= lim
�→0

εk(x + �) − εk(x)
�

=
〈
k(x)

∣∣∣∣∂Ĥ
∂x

∣∣∣∣k(x)
〉
. (66)

Equation (66) is the celebrated Hellmann–Feynman
theorem for the computation of the atomic forces in
molecules [23]. The same line of arguments can be
used to calculate the derivative of the wavefunction
as well. The first-order correction to the wavefunc-
tion is∣∣k(x + �)

〉 = ∣∣k(x)
〉

− �
∑

j>0; j 	= k

∣∣j(x)
〉 〈 j(x)

∣∣ ∂Ĥ
∂x

∣∣k(x)
〉

εj(x) − εk(x)
+ o

(
�2). (67)

The derivative is thus given by

∂|k(x)〉
∂x

= lim
�→0

|k(x + �)〉 − |k(x)〉
�

= − ∑
j>0; j 	= k

∣∣j(x)
〉 ∣∣j(x)

∣∣ ∂Ĥ
∂x

∣∣k(x)
〉

εj(x) − εk(x)
.

(68)
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According to Eq. (2) we need to compute the deriv-
ative of the full many electron excited state wave-
function to get the NAG. We shall show that this
can be done with a considerably reduced informa-
tion (i.e., the one-particle transition density matrices
obtained from a TDHF computation). Substituting
the expression for the derivative of the wavefunc-
tion Eq. (68) into the definition of the NAG, Eq. (2),
we get

Ax
ik = 〈i|ĥx|k〉

εi − εk
; i 	= k, (69)

where we have introduced the notation ĥx ≡ ∂Ĥ/∂x.
It is important to note that this is a one-electron
operator. Indeed, when the derivative of the mole-
cular Hamiltonian is evaluated with respect to an
arbitrary nuclear coordinate x, the two-electron part
of the Hamiltonian involving the electron–electron
repulsion does not depend on the position of the nu-
clei, and does not enter ĥx. When an atomic orbital
basis set is employed, we have vibronic coupling
also in the coefficients of the two-electron part of the
Hamiltonian (39), i.e., 〈ij|kl〉 depends on the nuclear
positions. This does not imply that ĥx is a two-
particle operator, but the matrix elements of ĥx in
an atomic orbital representation will depend also on
the derivative of the two-electrons integrals. ĥx can
thus be written in terms of the creation (c†

n) and an-
nihilation (cm) operators introduced earlier

∂Ĥ
∂x

≡ ĥx =
∑
nm

hx
nmc†

ncm. (70)

To calculate the matrix elements of this opera-
tor entering Eq. (69) we can thus use the TDHF
one-particle transition density matrices (ρij)nm =
〈i|c†

ncm|j〉, given in [13] in terms of the eigenvectors ξi

of the Liouville operator L. Introducing ρij and the
transition energies �j = εj − ε0 into Eq. (69) we get
Eq. (4). The expression for NAC which involve the
ground state, Eq. (5), is simpler and merely requires
the knowledge of ρi0 ≡ ξi and ρ0i ≡ ξ

†
i , which are

available from a CEO computation.
Thus TDHF computation of the NAC requires the

explicit expression for the matrix elements of the
one-electron operator ĥx, Eq. (70). This will be de-
rived in Appendix C.

Appendix C: The Expression for ĥx

We can obtain a closed expression for the op-
erator ĥx in terms of the derivative of the matrix

elements of the Hamiltonian with respect to an
arbitrary nuclear displacement x. To that end we
consider the perturbation on the Hartree–Fock solu-
tion for the ground state induced by a displacement
along x. Applying the derivative operator ∂/∂x to
the Hartree–Fock equation [F(ρ̄), ρ̄] = 0 we get (see
Appendix H for the explicit definition of the deriva-
tives of the various terms)

∂

∂x
[t + Vρ̄, ρ̄] = [

tx + Vxρ̄ + Vρ̄x, ρ̄
] + [

t + Vρ̄, ρ̄x]
= [

F(ρ̄), ρ̄x] + [
Vρ̄x, ρ̄

] + [
tx + Vxρ̄, ρ̄

]
= Lρ̄x − [

ρ̄, tx + Vxρ̄
] = 0. (71)

The same Liouville operator L that describes elec-
tronic excitations induced by an external electric
field [6, 15], also represents the perturbation on the
density matrix induced by a small displacement of
nuclear coordinates:

Lρ̄x = [
ρ̄, tx + Vxρ̄

]
. (72)

The effect of this displacement is equivalent to
adding an external field � that perturbs the isolated
molecule Hamiltonian (64) through the operator ĥx

instead of the dipole operator µ̂ coupled to the elec-
tric field E . This allows us to identify the matrix
elements of ĥx with tx + Vxρ̄.8 This can be put on
a firm basis as shown below. The derivative of the
idempotency condition of ρ̄ implies that ρ̄x belongs
to the particle–hole space (see Appendix E), so that
it may be expanded in terms of the eigenvectors of L

ρ̄x =
∑
j>0

ax
j ξj + bx

j ξ
†
j . (73)

These eigenvectors are orthonormal and they come
in conjugate pairs ξj, ξ

†
j with eigenvalues �j

and −�j, respectively. Using the scalar product that
makes the Liouville operator Hermitian, Eq. (56),
we have the following orthonormality relations for
a given CEO eigenvector:

(ξ , ξ ) = Tr
(
ρ̄[ξ†, ξ ]

) = 1;

(ξ†, ξ†) = Tr
(
ρ̄[ξ , ξ†]

) = −1;

(ξ , ξ†) = Tr
(
ρ̄[ξ†, ξ†]

) = 0;

(ξ†, ξ ) = Tr
(
ρ̄[ξ , ξ ]

) = 0.

(74)

To compute the coefficients ax
j and bx

j of Eq. (73),
we consider the scalar product of Eq. (72) with the

8The equation for the first-order perturbation ξ (t) to the
ground state density matrix ρ̄ with respect to an electric field
E(t) is: i[∂ξ (t)/∂t] − Lξ (t) = −E(t)[µ, ρ̄] [6]. In the limit of a static
field E this reduces to Lξ = E[ρ̄, µ].
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eigenvectors ξj and ξ
†
j(

ξj, Lρ̄x
) = (

ξj,
[
ρ̄, tx + Vxρ̄

])
;(

ξ
†
j , Lρ̄x

) = (
ξ

†
j ,

[
ρ̄, tx + Vxρ̄

])
.

(75)

Substituting the expansion of ρ̄x into Eqs. (75), mak-
ing use of the orthonormality conditions (74) for the
left-hand side of Eqs. (75) we get

(
ξj, Lρ̄x) =

(
ξi, L

∑
i>0

ax
i ξi + bx

i ξ
†
i

)

=
(

ξj,
∑
i>0

ax
i �iξi − bx

i �iξ
†
i

)

= ax
j �j(ξj, ξj) = �jax

j , (76)

and (
ξ

†
j , Lρ̄x) =

(
ξ

†
i , L

∑
i>0

ax
i ξi + bx

i ξ
†
i

)

=
(

ξ
†
j ,

∑
i>0

ax
i �iξi − bx

i �iξ
†
i

)

= −bx
j �j

(
ξ

†
j , ξ†

j

) = �jbx
j . (77)

This yields the following expression for the coeffi-
cients:

ax
j = (ξj, [ρ̄, tx + Vxρ̄])

�j
;

bx
j =

(ξ†
j , [ρ̄, tx + Vxρ̄])

�j
.

(78)

Since both ρ̄ and tx + Vxρ̄ are Hermitian, Eq. (78)
shows that the coefficients, like the eigenmodes,
come in conjugate pairs, bx

j = (ax
j )†. This guaran-

tees that the derivative of the density matrix is also
Hermitian. As must be the case because ρ̄x is the
derivative of the Hermitian matrix ρ̄. Perturbative
calculation gives for the derivative of the density
matrix (see Appendix D)

ρ̄x = −
∑
j>0

Tr(ξjhx)ξ†
j + Tr(ξ†

j hx)ξj

�j
. (79)

ρ̄x is thus expanded over the basis set of the CEO
transition density matrices ξj, ξ

†
j . Comparing the

result of the expansion carried out using the coeffi-
cients ax

j and bx
j . [Eq. (78)] with Eq. (79) we can make

the following identifications:

ax
j → (

ξj,
[
ρ̄, tx + Vxρ̄

]) = − Tr
(
ξ

†
j hx

)
;

bx
j → (

ξ
†
j ,

[
ρ̄, tx + Vxρ̄

]) = − Tr
(
ξjhx

)
.

(80)

Finally, using the definition of the scalar product
(ζ1, ζ2) and expanding the left-hand term of the
above equalities, we obtain Eq. (6) (see Appendix F).

Appendix D: Derivative of the
Single-Electron Ground State
Density Matrix

Using the perturbative expression for the deriv-
ative of the wavefunction, we can immediately get
a closed expression for the derivative of the single-
electron density matrix. Considering the wavefunc-
tion approximated by a single Slater determinant,
we can apply the standard definition of the one-
electron density matrix in the second quantized
form: (ρ̄)nm = 〈0|c†

ncm|0〉. The derivative of the den-
sity matrix can be carried out

(ρ̄x)nm = ∂

∂x
〈0|c†

ncm|0〉

= ∂〈0|
∂x

c†
ncm|0〉 + 〈0|c†

ncm
∂|0〉
∂x

. (81)

To evaluate this expression we need the deriva-
tive of the ground state bra and ket. Making use of
Eq. (68), we have

∂|0〉
∂x

= −
∑
j>0

|j〉 〈j|ĥ
x|0〉

�j
;

∂〈0|
∂x

= −
∑
j>0

〈0|ĥx|j〉
�j

〈j|.
(82)

We have denoted the transition energy from the
ground state as �j = εj−ε0. Substituting Eq. (82) into
Eq. (81) we obtain for the derivative of the ground
state density matrix

(ρ̄x)nm = −
∑
j>0

〈0|ĥx|j〉
�j

〈j|c†
ncm|0〉 + 〈0|c†

ncm|j〉 〈j|ĥ
x|0〉

�j
.

(83)
Finally adopting the definition of the CEO eigen-
modes (ξj)nm = 〈j|c†

ncm|0〉, (ξj)
†
nm = 〈0|c†

ncm|j〉, and the
second quantized version of ĥx = ∑

nm hx
nmc†

ncm, we
get

ρ̄x = −
∑
j>0

Tr(ξ†
j hx)ξj + Tr(ξjhx)ξ†

j

�j
. (84)

Note that the derivative of the density matrix turns
out to be Hermitian: (ρ̄x)† = ρ̄x (the operator ĥx

is Hermitian). This is the direct consequence of the
Hermiticity of the density matrix. Using the same
approach it is possible to derive closed expressions
for the derivative of excited states density matrices
and transition density matrices over excited states.
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The final result is

(
ρx

ij

) =
∑
k 	= i

〈i|ĥx|k〉
εi − εk

(ρkj)nm −
∑
k 	= j

(ρik)nm
〈k|ĥx|j〉
εk − εj

. (85)

By substituting the NAG from Eq. (69) in the above
expression for ρx

ij, we obtain Eq. (7). This shows that
it is possible to expand the derivative of the general
transition density matrix in terms of transition den-
sity matrices (vectors in Liouville space) where the
coefficients are given by the NAG.

Appendix E: Representation of ρ̄x

in the CEO Basis Set

The derivative of the idempotency condition
ρ̄2 = ρ̄ implies that the derivative of the density
matrix ρ̄x belongs to the space spanned by the CEO
eigenvectors (the particle–hole subspace of the sin-
gle Slater determinant space). To show that we start
with the derivative of the idempotency

ρ̄xρ̄ + ρ̄ρ̄x = ρ̄x. (86)

We adopt the molecular orbital representation for
the density matrices9

ρ̄ =
(

0 0
0 1

)
; ρ̄x =

(
a b
c d

)
. (87)

Expanding the matrix products in Eq. (86) using this
representation we get(

0 b
c 2d

)
=

(
a b
c d

)
. (88)

This immediately implies that the blocks a and d
must be zero. The structure of ρ̄x is then block-off
diagonal, the same as the CEO eigenvectors.

Appendix F: Identification of hx

In order to identify the matrix elements of hx we
have to consider Eqs. (80) and expand the scalar
product on the left-hand side. Below we show that
this scalar product (ξj, [ρ̄, tx + Vxρ̄]) is given by
− Tr{ξ†

j (tx + Vxρ̄)}, so that Eqs. (80) reduce to

ax
j → (

ξj,
[
ρ̄, tx + Vxρ̄

]) = − Tr
{
ξ

†
j

(
tx + Vxρ̄

)}
= − Tr(ξ†

j hx). (89)

9In this representation the blocks are identified as follows:(
UU UO
OU OO

)
. Occupied MO’s are labeled O and unoccupied MO’s

are labeled U.

The equation for bx
j is redundant and it is simply

the conjugate of the equation for ax
j . Equation (89)

finally gives the expression for hx = tx + Vxρ̄.
Let us represent our matrices in the molecular

orbital basis set

ξj =
(

0 α

β 0

)
; ξ

†
j =

(
0 β†

α† 0

)
;

ρ̄ =
(

0 0
0 1

)
tx + Vxρ̄ =

(
A B
C D

)
.

(90)

Expanding the scalar product in Eqs. (80) using its
definition, Eq. (56), we have to compute the trace
of a nested pair of commutators multiplied by the
density matrix

(
ξj,

[
ρ̄, tx + Vxρ̄

]) ≡ Tr
(
ρ̄
[
ξ

†
j ,

[
ρ̄, tx + Vxρ̄

]])
. (91)

We shall compute the right-hand side of Eq. (91)
step by step. The inner commutator can be ex-
panded as follows:

[
ρ̄, tx + Vxρ̄

] =
(

0 −B
C 0

)
. (92)

Making use of the above expression, the outer com-
mutator gives
[
ξ

†
j ,

(
0 −B
C 0

)]
=

(
β†C + Bα† 0

0 −α†B − Cβ†

)
.

(93)

Multiplying by ρ̄ and taking the trace we finally ob-
tain

Tr
(
ρ̄
[
ξ

†
j ,

[
ρ̄, tx + Vxρ̄

]])

= Tr
{(

0 0
0 1

) (
β†C + Bα† 0

0 −α†B − Cβ†

)}

− Tr(α†B) − Tr(Cβ†). (94)

It is easy to show that except for a minus sign the
same result can be obtained from the following sim-
pler formula:

Tr
{
ξ

†
j

(
tx + Vxρ̄

)} = Tr
{(

0 β†

α† 0

) (
A B
C D

)}
(95)

= Tr
(

β†C β†D
α†A α†B

)

= Tr(Cβ†) + Tr(α†B). (96)

We have made use of the cyclic invariance of the
trace, Tr(AB) = Tr(BA). This proves the first equality
in Eq. (89).
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Appendix G: Derivative of a General
Particle–Hole Matrix

To discuss the variation δξ of a general interband
matrix ξ induced by a change δρ̄ of the ground state
density matrix10 it is convenient to introduce a pro-
jection operator P in the Liouville space spanned by
the CEO eigenvectors. P projects a general matrix
into the particle–hole subspace (i.e., the off diagonal
block involving the occupied–unoccupied molecu-
lar orbitals). P is given by

Pζ ≡ [
[ζ , ρ̄], ρ̄

]
. (97)

When P acts on an arbitrary matrix in the sin-

gle electron space ζ =
(

ζUU ζUO

ζOU ζOO

)
it extracts the

particle–hole component

Pζ =
(

0 ζUO

ζOU 0

)
. (98)

As must be the case for any projection operator, P is
idempotent: P2 = P. For a general interband ma-
trix ξ the following condition must be true:

Pξ = ξ , i.e.,
[
[ξ , ρ̄], ρ̄

] = ξ . (99)

A change δρ̄ in the density matrix ρ̄, is accompanied
by a change in the associated particle–hole space.
Let us consider the following displacements for the
density matrix and for the general ξ matrix in the
occupied–unoccupied molecular orbital representa-
tion:

ρ̄ + δρ̄ =
(

0 0
0 1

)
+

(
0 δρ̄

δρ̄† 0

)
(100)

ξ + δξ = ξ + (δγ + δϕ) =
(

0 β

α 0

)

+
(

0 δβ

δα 0

)
+

(
δϕ2 0
0 δϕ1

)
. (101)

The variation of the interband matrix ξ consists of
the particle–hole component δγ and the component
outside the particle–hole space δϕ. It is possible to
express δϕ in terms of δρ̄. To that end suffice it to
write Eq. (99) using the displaced quantities

[
[ξ + δξ , ρ̄ + δρ̄], ρ̄ + δρ̄

] = ξ + δξ . (102)

10A nuclear displacement δx can be considered to be the cause
of the variation δρ̄.

Let us compute the inner commutator of Eq. (102) at
first order in δρ̄ and δξ

K + δK ≈ [ξ + δξ , ρ̄ + δρ̄] ≈
(

0 β

−α 0

)

+
(

βδρ̄† − δρ̄α δβ

−δα αδρ̄ − δρ̄†β

)
. (103)

Making use of Eq. (103) it is easy to compute the
two terms of the double commutator (102). For the
particle–hole component this merely results in an
identity with respect to Eq. (101):

[K + δK, ρ̄] =
(

0 β + δβ

α + δα 0

)
= ξ + δγ . (104)

The useful information comes from the particle–
particle/hole–hole component

[K + δK, δρ̄] ≈ [K, δρ̄]

=
(

βδρ̄† + δρ̄α 0
0 −(δρ̄β + αδρ̄)

)
= δϕ. (105)

To cast Eq. (105) in a standard matrix form, we make
use of the following simple relationships:

ξδρ̄ =
(

βδρ̄† 0
0 αδρ̄

)
; δρ̄ξ =

(
δρ̄α 0

0 δρ̄†β

)
.

(106)

We further recall how the density matrix itself acts
on the particle–particle/hole–hole space

ρ̄

(
UU 0

0 OO

)
=

(
0 0
0 OO

)
;

(1 − ρ̄)
(

UU 0
0 OO

)
=

(
UU 0

0 0

)
.

(107)

Making use of Eqs. (106), (107) into Eq. (105) we
get the final expression for the particle–particle/
hole–hole component of the variation of a general
interband matrix ξ

δϕ = (1 − 2ρ̄)(ξδρ̄ + δρ̄ξ ) = (1 − 2ρ̄)[ξ , δρ̄]+ . (108)

Equation (108) can be used to express the intraband
component ϕx

i of the derivative of a CEO eigenvec-
tor ξx

i , e.g., ϕx
i = δϕi/δx. This result is used in Eq. (20)

of the third section.
Let us consider now the equation for the deriv-

ative of the CEO eigenvector, Eq. (18). In order to
solve this equation for ξx

i , we need to consider the
projection operator P already defined with Eq. (97).
Acting with P on ξx

i projects out the particle–hole
component: Pξx

i = γ x
i . It is worth noting that P and L

share the same eigenvectors so that they commute.11

11Any eigenvector ξ of L is a particle–hole matrix, so that
Pξ = ξ [15].
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The shifted Liouville operator L − �i has the en-
tire spectrum of eigenvalues shifted by −�i, but the
eigenvectors are still the same as those of L. Thus
also L − �i commutes with P. Keeping this in mind
we can now directly apply P to Eq. (18). The action
of P on the left-hand side gives

P
{
(L − �i)ξx

i

} = (L − �i)P
(
γ x

i + ϕx
i

) = (L − �i)γ x
i .

(109)
The action of P on the right-hand side gives

PCx
i ≡ Dx

i = [[
Cx

i , ρ̄
]
, ρ̄

]
. (110)

Thus the projection of Eq. (18) in the particle–hole
space is

(L − �i)γ x
i = Dx

i . (111)

This projection can be now expressed in terms of
the eigenmodes ξi of the Liouville operator. Solv-
ing Eq. (111) requires inverting the Liouville oper-
ator L. If this operator is represented in terms of its
spectrum, Lζ = ∑

k>0; k<0 ξk�k(ξk, ζ ), the inversion
becomes straightforward. The shifted Liouville op-
erator in Eq. (18) can be written as

(L − �i)ζ =
∑

k>0; k<0

ξk[�k − �i](ξk, ζ ) (112)

and its inverse is

(L − �i)−1ζ =
∑

k>0; k<0

ξk(ξk, ζ )
�k − �i

, (113)

where the prime denotes that the ith mode is ex-
cluded from the sum. This eliminates divergences
and is consistent with the fact that the derivative ξx

i ,
and so γ x

i , has no projection on ξi [3]. This definition
of the inverse in a space orthogonal to the subspace
spanned by the vector ξi alone can thus be safely
used to compute γ x

i . This is obtained directly by us-
ing this inverse, so that γ x

i = (L−�i)−1Dx
i . The result

is the following final expression:

γ x
i =

∑
k>0; k<0

ξk(ξk, Dx
i )

�k − �i
. (114)

Eq. (114) is used in Eq. (20) of the third section to
compute the CEO eigenvector derivative, ξx

i .

Appendix H: Derivative of the
Fock Matrix

Computing the derivative of the Fock matrix F
with respect to a nuclear coordinate x is required
for deriving the closed expression for the opera-
tor ĥx (see Appendix C). This computation involves

the derivative of the one-electron part and the elec-
tron repulsion term of the Hamiltonian. Applying
the derivative ∂/∂x on the matrix elements of Fij =
tij + (Vρ)ij we have

Fx
ij = tx

ij + (
Vxρ

)
ij + (

Vρx)
ij. (115)

We consider a generic density matrix, not necessar-
ily the self-consistent Hartree–Fock one, ρ̄. For the
one-electron matrix elements we have

(tx)ij = ∂tij

∂x
. (116)

The derivative of the two-electron term is given by
(
Vxρ

)
ij = 2

(
Jxρ

)
ij − (

Kxρ
)

ij(
Jxρ

)
ij =

∑
kl

(ij|kl)xρkl

(
Kxρ

)
ij =

∑
kl

(ik|jl)xρkl

(117)

and (
Vρx

)
ij = 2

(
Jρx

)
ij − (

Kρx
)

ij(
Jρx

)
ij =

∑
kl

(ij|kl)ρx
kl

(
Kρx

)
ij =

∑
kl

(ik|jl)ρx
kl.

(118)

We have defined the derivative of the two-electron
integral

(ij|kl)x ≡ ∂(ij|kl)
∂x

. (119)

For a basis set independent on the nuclear co-
ordinates (e.g., plane waves commonly used in
density functional calculations), the only source
of vibronic coupling comes from the one-electron
matrix elements tij through the potential integral∫

χ∗
i (r)v(r)χj(r) dr. In standard quantum chemistry

computations a geometry-dependent atomic orbital
basis set is commonly used, so that the vibronic cou-
plings enter also the two-electron matrix elements
(ij|kl). This is the reason why the one-electron oper-
ator ĥx described in the fifth section contains Vx as
well.

Finally we note that the derivatives tx and (ij|kl)x

introduced insofar are expressed in the orthonormal
atomic orbital basis set. When a nonorthonormal
basis is used, the relationships between the atomic
matrix elements in the two basis sets can be directly
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used (see Note 7)

tij = 〈χi|t̂|χj〉 = S−1/2
ik 〈χ̃k|t̂|χ̃l〉S−1/2

lj

= S−1/2
ik t̃klS−1/2

lj ;

〈ij|kl〉 = S−1/2
ii′ S−1/2

jj′ 〈i′j′|k′l′〉S−1/2
k′k S−1/2

l′l .

(120)

A relationship between the derivatives of the ma-
trix elements in the two basis sets can be obtained
by differentiating these equations. tx

ij and 〈ij|kl〉x will
involve the derivative of the overlap matrix S; for
example for the one-electron matrix elements we
have

tx = (
S−1/2)xt̃S−1/2 + S−1/2 t̃xS−1/2 + S−1/2t̃

(
S−1/2)x.

(121)
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