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Design strategies for pulse sequences in multidimensional optical
spectroscopies
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A unified description of resonant multiple-pulse experiments in coupled spin-1
2 systems in NMR

spectroscopy and two-level systems in optical spectroscopy is presented. The connection between
the NMR product operator formalism and the Liouville space pathways in optical spectroscopy is
established. We show how the information obtained in various strong field two and three pulse NMR
experiments can be extracted by combining heterodyne detected phase-controlled weak field signals
generated at different directions. These results allow the design of sequences of weak optical pulses
that accomplish the same goals as strong field multidimensional NMR spectroscopy. ©2001
American Institute of Physics.@DOI: 10.1063/1.1391266#
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I. INTRODUCTION

Multidimensional NMR spectroscopy has been a va
able and well established technique for over two decade
allows us to probe structure and dynamics of molecules
great detail by manipulation of spin coherences in multi
pulse sequences, exploiting spin–spin interactions thro
chemical bonds or directly through space.1,2 Optical spec-
troscopy has only recently reached a state where similar
trol over vibrational or electronic coherences is possib
This is due to the much shorter timescales involved that
quire ultrafast pulse techniques to perform coherent mult
mensional optical spectroscopy. Pulse shaping and p
control of femtosecond pulses has been experiment
achieved over the last few years.3 These ultrafast pulses hav
been used in various recent experiments to achieve m
dimensional laser spectroscopy and the control and man
lation of vibrational and electronic coherences.4–12 The the-
oretical description of optical multiple pulse spectrosco
was developed in parallel with the experimental techniqu
The treatment of weak pulse experiments in terms of Li
ville space pathways13 has been successfully applied to pr
pose new third- and fifth-order spectroscopies.14 An alterna-
tive description of third-order spectroscopy is given by t
Nonlinear Exciton Equations that allow to describe the n
linear response of large aggregates of strongly coupled th
level systems.15,16 These theoretical methods yield direct
the nth-order response function which can be convolu
with n arbitrary envelopes of weak pulse fields to give t
signal for anyn-pulse experiment.13 The calculation of the
response function is typically rather involved due to its ge
erality. An nth-order heterodyne experiment involves t
control of n time intervals and thus constitutes a
n-dimensional~nD! spectroscopy.17 One is typically inter-
ested only in a comparatively low dimensional~2D, 3D!
spectrum even if many more pulses are used to manipu
the coherences. This means that only a few of the poss
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time delays in a pulse sequence are varied and the dec
which delays are varied should be based on the desired
formation and on a more detailed knowledge of the syst
that is studied.

The common way in which a 2D NMR pulse sequence
presented involves four distinct blocks: preparation, evo
tion, mixing, and detection.18 The detection period yields on
time domain and incrementing the evolution period yie
the other time domain. The preparation sequence contain
pulses that are applied to the system before the first t
domain which is incremented in consecutive experimen
The time delays between pulses in the preparation block
not changed and can be optimized to prepare the spin sy
in a specific initial nonequilibrium state. Similarly, the mix
ing sequence consists of all pulses between the evolution
the detection period and is also fixed. It serves to map
coherence pattern that evolved during the evolution per
into a different pattern at the beginning of the detection
riod, thus revealing correlations in the system that is stud
In the simplest cases, preparation and mixing can consis
only a single pulse each. However, these simple techniq
do not directly yield information about the system that wou
not be accessible by series of 1D experiments. The
power of 2D NMR becomes apparent if preparation and
mixing consist of multiple pulses, creating and manipulati
coherences in very specific ways, thus uncovering spin–s
interaction topologies.

Multidimensional spectroscopy is usually carried out o
resonance. This simplifies the theoretical description con
erably since only few of the Liouville space pathways co
tributing to the nonlinear response functions dominate
response and should be retained. The theoretical tool de
oped to describe resonant multiple-pulse NMR spectrosc
is the product operator formalism~POF!.1,19 In the POF all
pulses are assumed to be resonant and are described as
pings acting on an initial density matrix and yielding a tran
formed density matrix. The density matrix itself is expand
in a basis of spin-12 product states in which the action o
pulses is especially simple to describe. The transforma
9 © 2001 American Institute of Physics
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rules are given for all possible basis states. Similarly,
action of the free evolution Hamiltonian in the weak~isotro-
pic! J-coupling limit, where the spin–spin coupling
smaller than the transition frequency differences, is a
given in the form of transformation rules that contain t
evolution time as a parameter. This formalism yields a v
compact and efficient analytic description of pulsed exp
ments that has been the basis of most pulse sequence d
opments in liquid state NMR. The situation in optical spe
troscopy is more complicated than in NMR for the lack o
Hamiltonian that is as general and universally valid as
spin-12 Hamiltonian of NMR. Yet the success of the PO
makes it desirable to have a theoretical tool that is simila
its versatility for pulse sequence development in opti
spectroscopy. The use of transformation rules for the den
matrix evolution has several advantages over other
proaches. It provides more insight into the generation of
spectroscopic signal and its dependence on the sys
Hamiltonian than purely numerical simulation schem
since it yields an analytic expression for the signal that
pends on the Hamiltonian parameters. It also allows
straightforward implementation of the algebraic transform
tion rules in computer algebra codes, making it easier
handle more complicated pulse sequences.

The closest analog to spin-1
2 NMR is optical spectros-

copy of coupled two-level systems. These can be realized
electronic transitions~visible! or, approximately, for strongly
anharmonic vibrational transitions~infrared!. In this paper
we develop the necessary operator mappings to desc
resonant optical multiple pulse spectroscopy of wea
J-coupled two-level systems and study the similarities a
differences between optical spectroscopy of two-level s
tems and NMR spectroscopy of spin-1

2 systems. Our aim is to
show which coherence manipulations commonly used
NMR can be performed by weak optical fields. This includ
phase cycling and coherence transfer pathway selec
which are effects achievable by macroscopic observation
therefore closely related to phase-matching and directio
detection.20 We will not consider strong optical pulses wit
finite flip angles21 but rather develop a formalism for th
limit of small perturbations by the pulse fields. Strong fiel
in laser spectroscopy affect the vibrational dynamics of
systems studied. This can be used to control the dynamic
NMR, strong fields only affect the spin dynamics and due
the weak spin-vibrational coupling and the low pulse en
gies it is possible to observe unperturbed native molec
dynamics with strong fields in this case. To obtain simi
information from laser spectroscopy we resort to weak fi
techniques. We will first compare the Hamiltonian of weak
J-coupled two level systems for optical spectroscopy w
the commonly used liquid state NMR Hamiltonian. We th
derive the necessary transformation rules for an oper
treatment of optical spectroscopy in the weak field limit
analogy to the POF. Subsequently, we give a brief overv
of some key ideas in 2D NMR and present important sim
NMR pulse sequences: COSY~2D correlation spectroscopy!,
NOESY ~2D Nuclear Overhauser Effect spectroscopy!, 2D
exchange spectroscopy, and double quantum spectros
Based on the operator transformation rules we can desc
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optical three-pulse experiments in close analogy to NMR a
identify optical weak field techniques that contain the sa
information as their NMR analogs. Appendix A summariz
some useful operator identities and properties to set the s
for the description of two-level systems. In Appendix B w
survey in some detail the description of a single spin-1

2 in a
magnetic field side by side with the analogous description
a two-level system in optical spectroscopy to make it ea
to pinpoint the similarities and differences between bo
types of spectroscopies. Finally, Appendix C contains clo
expressions for the optical response of an ensemble
weakly coupled two-level systems to a three-pulse seque

II. PARAMETRIZED HAMILTONIAN FOR COUPLED
SPINS OR TWO-LEVEL SYSTEMS IN AN
EXTERNAL FIELD

An optical two-level system labeleda is characterized
by its transition frequencyva5Ea2Eb ~we use units in
which \51) between the two states under considerat
(ua& and ub&) and by the matrix elements of the dipole o
erator P̂, i.e., the static dipole momentsmb5^buP̂ub& and
ma5^auP̂ua& and the transition dipole momentmab

5^auP̂ub&5^buP̂ua&!. Each of these matrix elements
given by a three-dimensional vector withx, y, andz compo-
nents in a properly chosen coordinate system. The diag
elementsmb andma are real due to the hermiticity ofP̂ while
the transition dipole moment can, in general, be comp
valued and we therefore definemab5mr1 i mi .

The most general form of the dipole operator for a tw
level system is therefore given by

m5 1
2~ma1mb!I1~ma2mb!Iz1mr Ix1mi Iy , ~1!

whereIx , Iy , andIz are spin-12 operators~Pauli matrices, see
Appendix A! and we have usedm to denote the dipole op
erator acting on the space of$ub&,ua&% in analogy with NMR
terminology~see Appendix B!. In this equation allm with a
superscript denote ordinary three-dimensional vectors anm
is a vector of three 232-matrices. In terms of creation an
annihilation operators Eq.~1! can be written as

m5 1
2~~ma1mb!@B†,B#11~ma2mb!@B†,B#

1mr~B†1B!2 i mi~B†2B!!, ~2!

where the creation and annihilation operatorsB† andB sat-
isfy the Pauli commutation relationship given in Appendix
Equation~2! can be recast in the more compact form

m5maB†B1mbBB†1 1
2 mabB1 1

2 mbaB†. ~3!

The Hamiltonian symmetries and therefore the symm
try of the statesub& and ua& determine the properties ofm
and lead to considerable simplifications in the followin
cases:22

• For statesub& andua& with well-defined and the same pa
ity, only mabÞ0, while mb5ma50.

• If the Hamiltonian has rotational symmetry about one ax
say thez-axis, thenM is a good quantum number andmab

is a complex vector for transitions withDM561. Other-
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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wise the statesub& and ua& can always be represented b
real wave functions andmab5mr is a real vector.

In NMR all spins align with respect to the external field a
the magnetic moment depends isotropically on the spin.
magnetic moment operator of a spin-1

2 system contains there
fore only one parameter~rather than four three-dimension
vectors! and is given by23,24

m5g IW5g~exIx1eyIy1ezIz!, ~4!

whereg is the gyromagnetic ratio andex , ey , ez are the unit
vectors in thex, y, andz directions, respectively. Due to th
high symmetry, the spin-1

2 system is more closely related t
an atomicsp-transition in a strong electric field rather than
transitions in molecules. Equation~4! can also be recast in
terms of theB, B† operators,

m5
g

2
~~ex1 iey!B1~ex2 iey!B†1ez@B†,B# !. ~5!

The general Hamiltonian of a single two-level systema in
an electric fieldE(t) is given by

Ha5
va

2
@Ba

† ,Ba#2m•E~ t !, ~6!

whereE in optical spectroscopy usually is a linearly pola
ized field with frequencyv, amplitudeE0(t) and phasef
5k•r2w

E~ t !5E0~ t !cos~vt2f!. ~7!

The term in Eq.~1! that is proportional to the identity opera
tor I only causes an energy offset but no observable evolu
and will therefore be discarded, as commonly done in NM

The coupling to a resonant field can be described by
effective Hamiltonian obtained by invoking the rotatin
wave approximation~RWA! ~compare with Appendix B!,

Heff
a 5

1

2
~va2v!@Ba

† ,Ba#1
v1

2
~Ba

†eif1Bae2 if!, ~8!

where v1[mab
•E0 is the Rabi frequency.25,26 Due to the

RWA only the transition dipole moments are included in t
coupling to the field and contributions from permanent
poles are discarded. Note that in thek50 limit

B†eif1Be2 if5B†e2 iw1Beiw

55
~B†1B! for w50

2 i ~B†2B! for w5
p

2

2~B†1B! for w5p

i ~B†2B! for w5
3p

2

. ~9!

In NMR, the pulse fields with phases 0,p/2, p, and 3p/2 are
therefore commonly denotedx, y, x̄ ~or 2x), and ȳ ~or
2y) pulses, respectively. This convention becomes c
when the Hamiltonian~8! is expressed in Cartesian bas
operators,22

Heff
a 5~va2v!Iz

a1v1~ Ix
a cosf2Iy

a sin f!. ~10!
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The full Hamiltonian for a system of coupled two-level sy
tems in an external field is obtained by adding an interact
Hamiltonian:

Heff5(
a

Heff
a 1 (

a,b
HJ

ab . ~11!

The most general interaction between two two-level syste
a and b can be described by a tensorJ that couples the
vector operatorsIWa and IWb,

HJ
ab5 IWa•Jab• IWb . ~12!

The indirect, electron-density mediated, coupling betwe
nuclear spins in a molecule has this general form since
electron density of a molecule is anisotropic. In a liquid, t
fast ~on the NMR timescale! rotational reorientation of the
molecule with respect to the external field averages the
sor J and reduces it to the isotropic indirect coupling
which case the averaged coupling tensor is given by the t
of J times the identity matrix,1

HJ, iso
ab 5Jab~ Ix

aIx
b1Iy

aIy
b1Iz

aIz
b! ~13!

5Jab~Ba
†Bb1BaBb

†1 1
4@Ba

† ,Ba#@Bb
† ,Bb#!. ~14!

The direct magnetic dipole–dipole coupling between t
spins is described by a traceless tensorJ of rank 1 that av-
erages to zero under fast rotational reorientation. The s
dard liquid state NMR Hamiltonian therefore contains in a
dition to the Zeeman term only the indirect isotrop
coupling terms. In contrast, the solid state NMR Ham
tonian, where no fast rotational reorientation takes place
dominated by the direct dipole–dipole interaction since
standard geometries this is several orders of magnitude la
than the indirect couplings.24

The NMR product operator formalism is based on t
assumption that theJ-coupling between the two-level sys
tems is weak, i.e., the transition frequency differences
tween different spins are large compared to their coupl
uva2vbu@uJabu. In this case the basis of product state
built from the local spin eigenstates of the uncoupled Ham
tonian, is a good approximation to the eigenstates of
coupled Hamiltonian. In this basis the dipole operator a
therefore the action of the pulses retains its simple lo
form.27 The isotropic coupling of two spins is given by Eq
~13!. The terms involvingIx

aIx
b and Iy

aIy
b yield off-diagonal

matrix elements in the Hamiltonian expressed in the prod
basis. According to perturbation theory to first order inJ,
these off-diagonal elements can be neglected if the coup
is much smaller than the transition frequency difference, i
if the coupling is nonresonant. The general truncated w
J-coupling NMR or optical Hamiltonian for an arbitrar
number of spins is then given by Eq.~11! combined with Eq.
~8! or ~10! and

HJ
ab5Jab Iz

aIz
b . ~15!

Equation~15! can be alternatively rewritten in terms of cre
ation and annihilation operators as follows

HJ
ab5

Jab

4
@Ba

† ,Ba#@Bb
† ,Bb#. ~16!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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This Hamiltonian forms the basis for the model calculatio
in the remainder of the paper. We shall also need the Ha
tonian for the free evolution between pulses. Using the sa
approximations we have

H05(
a

vaIz
a1 (

a,b
Jab Iz

aIz
b[HZ1HJ, ~17!

or using creation/annihilation operators

H05(
a

va

2
@Ba

† ,Ba#1 (
a,b

Jab

4
@Ba

† ,Ba#@Bb
† ,Bb#. ~18!

In this model the coupling HamiltonianHJ commutes with
the Zeeman HamiltonianHZ . This simplifies the calculations
and analysis.

III. PRODUCT OPERATOR FORMALISM FOR WEAK
OPTICAL FIELDS

In this section we will derive a description of optic
spectroscopy of two-level systems subject to weak pulse
close analogy to the POF of NMR. We will only consid
nonoverlapping pulses which is the common case in NM
and enforce a time-ordering of the interactions of the sys
with the electromagnetic fields. A zero delay therefore d
not refer to overlapping pulses but to two distinct puls
~ideally rectangular! with a time delay that is very short com
pared to any evolution of the system. In NMR this is co
monly referred to ascomposite pulses. For weaklyJ-coupled
two-level systems the free evolution of the system betw
pulses is the same as in the POF and the formalism will t
allow us to describe the evolution of the density matrix a
lytically, like in liquid state NMR.

The evolution of the density matrixr is given by the
Liouville–von Neumann equation

ṙ t52 i @Ht ,r t#2Gr t , ~19!

where the time-dependent HamiltonianHt5H01Vt can be
separated into the unperturbed partH0 @e.g., the Hamiltonian
of Eq. ~17!# and the interaction with the electromagnetic fie
Vt52m•E(r ,t). The relaxation superoperatorG will be ne-
glected in most of the following discussion. The correspo
ing Liouville operators are defined as

L0r5@H0 ,r#2 i Gr, Vtr5@Vt ,r#, Lt5L01Vt .
~20!

The formal solution of the Liouville–von Neumann equati
for a sequence ofn well separated pulses of durationt̃ j and
with delayst j ( j 51, . . . ,n) can be written as

r t5G0~tn!Gp~ t̃n!G0~tn21!

3Gp~ t̃n21!•••G0~t2!Gp~ t̃2!G0~t1!Gp~ t̃1!r0 , ~21!

wheretn is the time after the end of the last pulse andtn

5( j 51
n21(t j1 t̃ j ) which gives t5tn11 . The propagators

~Green’s functions! are given by

Gp~ t̃ j !5exp1S 2 i E
t j

t j 1 t̃ jLtdtD
and
Downloaded 26 Sep 2001 to 128.151.176.125. Redistribution subject to 
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G0~t j !5exp~2 iL0t j !, ~22!

where exp1 refers to the positive time ordered exponent
operator.13

We further decompose the total fieldE(r ,t) into a sum
of fields representing the individual pulses.

E~ t !5(
j
Ej~ t2t j ! exp@2 i ~v j t2f j !#

1Ej* ~ t2t j ! exp@ i ~v j t2f j !#. ~23!

The j th pulse field in the sum is determined by its envelo
Ej (t) and polarization~note thatEj is a vector!, its frequency
v j and the phasef j5k j•r2w j that consists of the spatia
contribution k j•r (k j being the wave vector! and an addi-
tional arbitrary controllable phasew j .20,28 The j th field is
nonzero only during the interval fromt j to t j1 t̃ j and we can
therefore also decomposeVt in sums over the contribution
of the individual pulses,

Vt5(
j

Vj5(
j

2m•Ej~ t2t j !exp~2 i ~v j t2f j !!

2m•Ej* ~ t2t j !exp~ i ~v j t2f j !!. ~24!

The Liouville operatorVt can be decomposed analogous
with Vjr5@Vj ,r#. The treatment of the free evolutionG0

during the delay periodst j between the pulses is identical fo
NMR and optical spectroscopy but differences between
two arise from several facts.20,29The equilibrium density ma-
trix ~initial condition! r0 is given by the high temperatur
approximation in NMR while in optical spectroscopy it wi
either contain only the global ground state of the syst
~zero temperature! or be even more complicated based on t
eigenvalues of the HamiltonianH0 . More important are the
differences in the treatment of the pulse propagation op
tors Gp( t̃ j ). In NMR the field wavelength is much longe
than the sample size and therefore there are no ph
matching conditions that have to be fulfilled. This is in co
trast to optical spectroscopy where phase-matching yie
directional responses. NMR therefore effectively cor
sponds to thek50 limit. The other important difference is
that NMR is a strong field spectroscopy while optical spe
troscopy is typically carried out in the weak field regime.

It is convenient to treat the pulse propagation operat
Gp( t̃ j ) as effective mappingsGpj

:r t j
→r t j 1 t̃ j

without explic-
itly stating their time-dependent nature and then to keep o
the time variablest j for the description of the experiment. I
the strong field limit in NMR this is possible since one c
neglect the free evolution due toL0 during the pulse, as long
as all eigenvalues ofH0 ~in the rotating frame, i.e., the off
sets from the pulse frequency! are small compared to th
Rabi frequency. This yields the well known expressions
scribing pulses as finite rotations in spin space with phasf
and flip-angleu.1,19 The general transformation rules a
summarized in Table I. In the weak field limit the free ev
lution can be discarded during the pulse either for sim
reasons as in NMR or if the duration of the pulse is sh
compared to the frequency detuning from resonance.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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exponential function inGp( t̃ j ) can then be expanded to fir
order in the field, yielding the formal expression,

Gpj
r8Ir2 i @Vj ,r#5~ I2 i Vj !r. ~25!

Here the relaxation caused byG is discarded during the
pulses. The density matrix prepared by ann-pulse sequence
to nth-order in the fields is then given by

r t
(n)5~2 i !n G0~tn!VnG0~tn21!

3Vn21•••G0~t2!V2G0~t1!V1r0 . ~26!

The lower order terms may be obtained by systematic
substitutingV-operators by identity operatorsI and summing
over all terms that then contain the same number ofV’s.

The transformations used to describe a pulse sequ
are conveniently depicted by arrows in the following way

r85G0~t!r ↔ r ——→
H0t

r8, ~27!

r85Gp~t!r ↔ r ——→
~u!f

r8, ~28!

r852 iVr ↔ r ——→
fw

r8. ~29!

In addition to the transformation symbols for free evoluti
H0t and strong pulses (u)f , that are generally used in NMR
we have introduced a symbol representing the applicatio
a weak pulsefw which is characterized by its phasef. The
most commonly used pulses in NMR have flip anglesu
5 p/2,p and phasesf50,p/2 ,p, 3p/2. The Zeeman and
theJ-coupling Hamiltonian commute, as noted above, in o
weakJ-coupling case, making it possible to factorize the fr
evolution propagator as

G0~t!5GZ~t!GJ~t! or r ——→
HJ

r8 ——→
HZ

r9. ~30!

The fact thatHZ andHJ commute also implies that the prod
uct basis, which is the eigenbasis ofHZ , is still the eigenba-
sis of the weakJ-coupling Hamiltonian. This simplifies the
evaluation of the pulse and evolution propagators consi
ably. In the case of strongJ coupling we can still express th
action of pulses by the simple transformation rules in
product basis and then transformr to the eigenbasis ofH0 to
calculate the evolution due toG0 . The NMR product opera-
tor formalism gives transformation rules for all possib
terms that constitute the density matrix under the action
GZ , GJ and strong pulses, which allows us to calculate
density matrix propagation analytically for an arbitrary NM
experiment.1,19 We can use the same transformation rules
the free evolution periods in pulsed resonant optical sp

TABLE I. Pulse transformation rules for spin-
1
2 systems in the NMR prod-

uct operator formalism. The anglesu andw denote the flip angle and puls
phase~in the x-y plane!, respectively.

Operator
~u!w
——→

Ix (cos2 w1sin2 w cosu) Ix1cosw sinw(12cosu) Iy2sinw sinuIz
Iy cosw sinw(12cosu) Ix1(sin2 w1cos2 w cosu) Iy1cosw sinuIz
Iz sinw sinu Ix2cosw sinu Iy1cosu Iz
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troscopy. Yet it is necessary to derive transformation rules
the action of the weak optical pulses. We have to take i
account that unlike in NMR the dipoles of the optical tra
sitions are anisotropic and have fixed orientations with
spect to the molecular frame. They also vary between dif
ent chromophores of the same transition frequency. Ano
difference is that, as shown in Appendix B, spin syste
naturally absorb and emit circularly polarized radiation wh
in optical spectroscopy linearly polarized light is common
used. While the discussion so far in this section was m
general, we now return to the effective Hamiltonian in E
~8!, which implies the RWA, to determine the nonzero mat
elements of the operatorsVj for resonant spectroscopy:

Vj ,ab5 1
2Vj ,ab

1 eif j1 1
2Vj ,ab

2 e2 if j , ~31!

where

Vj ,ab
1 5mab

•Ej~vab2v j !, ~32!

Vj ,ab
2 5mab

•Ej* ~vab1v j !. ~33!

HereEj (v)[*dtEj (t)exp(ivt) denotes the spectral envelop
of the j th pulse.30 The operatorsVj can then be expressed i
terms of theB† andB operators:

Vj5
1
2~Vj ,ab

1 eif jB†1Vj ,ab
2 e2 if jB!, ~34!

which for Vj ,ab
1 5Vj ,ab

2 becomes

Vj5Vj ,ab~ Ixcosf j2Iy sin f j !

5 1
2Vj ,ab~ I1eif j1I2e2 if j !. ~35!

The application of a pulse to aIx component of the den
sity matrix yields therefore,

Vj Ix}2@ Iy ,Ix#sin f j5 i sin f j Iz ~36!

and to aIy term,

Vj Iy}@ Ix ,Iy#cosf j5 i cosf j Iz . ~37!

These are perturbation theory results for the limiting case
weak fields and are therefore in general different from
rotations found for the strongp/2-pulses in NMR (k50, see
also Table I!, where

Ix ——→
~p/2!w

cos2 wIx1cosw sin wIy2sin wIz , ~38!

Iy ——→
~p/2!w

sin2 wIy1cosw sin wIx1coswIz . ~39!

Keeping in mind thatf5k•r2w, which accounts for the
change in sign of the sinw terms, we can see that for th
special cases wherew50,p/2,p, 3p/2 the transformations
due to weak pulses and the NMRp/2-pulses are closely
related. For the weak pulses though, the component that
incides with the rotation axis is mapped to zero in this ord
of the field, while it is retained for strong pulses in NMR
This is a result of the expansion of the response in order
the field in Eq.~26!. The component parallel to the rotatio
axis, which is the component that remains in theIx– Iy plane
after the pulse, contributes to the response one order low
the fields in the perturbative expansion and can be obse
in a different phase-matched direction. Since NMR cor
sponds to thek50 limit, all these responses are observ
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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simultaneously and the POF rules have to account for th
The application of a pulse to anIz term yields

Vj Iz}@ Ix ,Iz#cosf j2@ Iy ,Iz#sin f j

52 i ~cosf j Iy1sin f j Ix!, ~40!

which is, apart from the overall factori, the same result a
for a p/2-pulse in NMR:

Iz ——→
~p/2!w

2coswIy1sin wIx . ~41!

Immediate application of two consecutive pulses gives

VkVj Iz}2 i ~cosf j cosfk@ Ix ,Iy#2sin f j sin fk@ Iy ,Ix# !

5~cosf j cosfk1sin f j sin fk!Iz

5cos~f j2fk!Iz , ~42!

which is2Iz for a phase relationship between the two puls
of f j2fk5p.

Similarly, the application of two back-to-back pulses
Ix yields

VkVj Ix} i sin f jVkIz}sin f j~cosfkIy1sin fkIx! ~43!

and toIy

VkVj Iy} i cosf jVkIz} cosf j~cosfkIy1sin fkIx!.
~44!

With two phase-controlled pulses it is therefore possible
achieve the simultaneous inversion ofIz and one ofIx , Iy
which is the same result as forpx or py-pulses in NMR
~compare Tables I and III foru5p). The pulses that form
the composite pulse must have a phase difference ofp. To
invert Ix , the first phase must be (p/2)1kp while with a
pulse phase ofkp for the first pulse it is possible to invertIy
in addition toIz . What is different from NMR though is tha
a px-pulse preserves theIx component and apy-pulse theIy
component while the weak composite pulses map these c
ponents to zero~in this order!.

Note that sinf and cosf contain both the geometric an
the pulse phase and therefore:

cosf j5
1
2~eik j •re2 iw j1e2 ik j •reiw j !

sin f j5
2 i

2
~eik j •re2 iw j2e2 ik j •reiw j !.

For a sequence of pulses with wave vectorsk1 ,k2 , . . . ,kn ,
the phase-matching conditions yield 2n signals in the
directions given by kS5( i 51

n 6k j . For these signals

TABLE II. Transformation rules for operators under the action of we
pulses. The full transformation of the density matrix is described by
transformation rules withfw while the rules withf6 describe the result
including macroscopic directional detection~see text!.

Ix Iy Iz I1 I2

——→
fw

i sinfIz i cosfIz 2 i (cosfIy1sinfIx) 2e2 ifIz eifIz

——→
f1 1

2eifIz ( i /2)eifIz 2
1
2eifI1 0 eifIz

——→
f2

2
1
2e2 ifIz ( i /2)e2 ifIz

1
2e2 ifI2 2eifIz 0
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(kS2(6k j )•r50 is satisfied for all sitesr in the macro-
scopic sample. Adding two signals observed in directio
that differ by the sign ofk j of only one pulse therefore give
a signal corresponding to a term with cosfj→coswj and
subtraction yields the sinfj→2sinwj term. For a single
pulse it is possible to get the same result by taking the rea
imaginary part of the signal in only one of the directions1k
or 2k.

Phase matching and directional detection are mac
scopic effects which allow to observe signals related to
erators which are not self-adjoined and that could theref
not be microscopic observables. This is completely ana
gous to the signals observed after phase-cycling or to the
of the operatorI1 as detection operator in NMR.31 We use
the density matrix rather as a tool to describe the outcom
the macroscopic experiment than the microscopic evolu
of the system that is studied. It is therefore possible to int
duce pulse transformation operators that correspond to
serving the signal in only one phase-matched direction,

Vj ,abI
1eif j and Vj ,abI

2e2 if j , ~45!

which we will symbolize by the transformations

r ——→
f1

r8 and r ——→
f2

r8. ~46!

Each of these transformations can be directly related t
sum of two double-sided Feynman diagrams where a fi
with wave vector1k (2k) interacts with either the bra o
the ket of the density matrix element.

All transformation rules necessary to describe a we
pulse experiment are given in Table II. We can summar
them in a similar fashion as in the diagrams used for
product operator formalism~see e.g., Ref. 1 Fig. 2.1.4!. The
Iz evolution and the coupling transformations are identica
the POF and describe the evolution underG0(t) during the
delay times. Since we can generate terms in the density
trix expansion that containI1 or I2 by applying the phase
matchedf1 andf2 pulses, we also need to know the tran
formation rules forI1 andI2 for free evolution (a5x, y, or
z!:

Ik
6 ——→

fIz
k

Ik
6e7 if, ~47!

Ik
6 ——→

f2Iz
k Ia

l

Ik
6 cosf7 i 2Ik

6Ia
l sin f, ~48!

Ik
6 ——→

f2Ix
k Ia

l

Ik
6 cos2

f
2 1Ik

7 sin2
f
2 6 i Iz

kIa
l sin f, ~49!

TABLE III. Pulse transformation rules for two consecutive weak puls
with phasesf j and fk . With the appropriate phase relationship the res
resembles the action of a NMRp pulse~see text and Table I!.

Operator ——→
f j

w

——→
fk

w

Ix sinfj(cosfkIy1sinfkIx)
Iy cosfj(cosfkIy1sinfkIx)
Iz cos(fj2fk)Iz

e

AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Ik
6 ——→

f2Iy
k Ia

l

Ik
6 cos2

f
2 2Ik

7 sin2
f
2 22Iz

kIa
l sin f. ~50!

These rules are rarely used in the POF for the descriptio
NMR experiments since pulses that produceI6 terms are not
directly available without directional detection. The di
grams forx- and y-pulses differ from the ones in the PO
Since we treat the weak field limit to first order we effe
tively obtain the derivative operators. The possible fl
angles are the two orthogonal cases ofu50 andp/2, while
in NMR any finite flip angle can be achieved.u50 corre-
sponds to no interaction with the field and contributes to
response one order lower in the field. The operators that
constant under the NMR pulse transformations are map
to zero in a given order, i.e.,x-pulses transformIz → 2Iy
→2Iz → Iy → Iz and mapIx to zero andy-pulses transform
Iz → Ix → 2Iz → 2Ix → Iz and mapIy to zero.

The application of a pulseP simultaneously to two~or
more! two-level systems is described in NMR by the app
cation of the transformation operators to the individual co
ponents in the direct product, i.e.:

P~ Ia ^ Ib!5PIa ^ PIb . ~51!

In the weak field limit pulses act on products of operat
according to the Leibniz rule~product rule!, i.e.,

P~ Ia ^ Ib!5PIa ^ Ib1Ia ^ PIb , ~52!

which is the mathematical property of a derivation opera
This formally expresses the fact that in the weak field lim
the coherence order can only change by61.

In summary, the general procedure for the calculation
the effect of a pulse sequence on a density matrix consis
the following steps:

1. In the low temperature limit start withr05)a(Ia2Iz
a).

2. Apply alternatingly pulse propagators and free pro
ators.

•Apply the pulses according to the rules in Table
keeping the terms containing the phasesf for book-
keeping.

•The free evolution underG0(t) during the delayst can
be obtained analytically in the weakJ-coupling limit
using the rules of the NMR product operator formalis

3. In the final expression substitutef5k•r2w to see which
directional signals have to be added with the respec
prefactors to obtain results corresponding tox- or y-pulses
or which directional signals are discarded to simplify t
spectra by coherence pathway selection.

4. Substitute the appropriate phasesw for phase-cycling,
composite pulses, etc.

Once the density matrix has been calculated,
nth-order signal can be computed as its trace with the dip
operator,

P(n)5tr$mr (n)% where m5(
a

ma
abBa1ma

baBa
† .

~53!
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As an example for these transformation rules, let us cons
the photon echo~PE! technique32 for a single two level sys-
tem:

r05Iz ——→
f1

2

1
2e

2 if1I2

——→
HZt1

1
2e

i (vt12f1)I2

——→
f2

1

1
2e

i (vt12f11f2)Iz

——→
f3

1

2 1
4e

i (vt12f11f21f3)I1

——→
HZt3

2 1
4e

i (v(t12t3)2f11f21f3)I1. ~54!

Here we labeled the second delay timet3 to indicate that the
possible delay between pulses 2 and 3 has been chose
t250. The initial density matrix has been simplified toIz
since the term due toI does not yield any observable sign
for a single two level system. The trace of Eq.~53! yields the
term with a phase combination2f11f21f3 which repre-
sents the PE signal obtained in the phase matched direc
2k11k21k3 .

IV. TWO-DIMENSIONAL OPTICAL ANALOGS OF NMR
PULSE SEQUENCES

The simple two- and three-pulse strong field experime
are of great importance in liquid state NMR spectrosco
and yield detailed information about weaklyJ-coupled spin-
1
2 systems. In the following we will demonstrate how th
same type of information can be extracted for optical tw
level systems with weak pulses. We first discuss some
portant properties of the basic 2D NMR techniques. We th
apply the general operator formalism presented in Sec. II
three-pulse experiments performed on a system of wea
J-coupled two-level systems. Comparison of the result
density matrix evolution and responses with the correspo
ing NMR experiments reveals the close analogies betw
weak and strong field experiments.

A general two-dimensional NMR experiment contai
four distinct blocks:~1! preparation block,~2! evolution pe-
riod of variable durationt1 , ~3! mixing block, and~4! de-
tection periodt2 . The complex one-dimensional FID sign
is detected as a function oft2 in a series of experiments in
which t1 is incremented. This yields a discretized 2D arr
of data points as a representation of the 2D signal in the
time variablest1 and t2 . A single peak in this spectrum i
commonly described1 by the Fourier transform of a function

p~t1 ,t2!5c ~P~t1!exp~2~ iv1G!t1!!•~P~t2!

3exp~2~ iv81G8!t2!!, ~55!

wherec is the complex amplitude,v,v8 are the frequencies
with which the coherence evolves duringt1 and t2 , G,G8
are the corresponding relaxation rates, andP(t) are window
functions~in the simplest case rectangular! that are nonzero
only for the times for which the signal is recorded. The tw
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dimensional Fourier transformation yields a spectrum a
function of the two corresponding frequency variablesV1

andV2 .

p̃~V1 ,V2!5c E
2`

`

dt2eiV2t2E
2`

`

dt1eiV1t1p~t1 ,t2!.

~56!

The peak shape of a single two-dimensional peak in
simple case is then given by~not including the effect of the
observation windowsP)

p̃~V1 ,V2!5c ~a~V1!a8~V2!2d~V1!d8~V2!!

1 i ~2a~V1!d8~V2!2d~V1!a8~V2!! ~57!

with the Lorentzian absorptive and dispersive componen

a~V1!5
G

~v2V1!21G2
, a8~V2!5

G8

~v82V2!21G82
,

~58!

d~V1!5
V12v

~v2V1!21G2
, d8~V2!5

V22v8

~v82V2!21G82
.

~59!

An appropriate choice of the detection phase~or an overall
phase correction in the data processing step! allows to select
either the real or the imaginary part of the complex sig
p̃/c in Eq. ~57!. The real part, which corresponds to the re
part of the spectrum for a real amplitudec, contains mixed
phase peaks which consist of the sum of a pure absorp
and a pure dispersive signal. The absorptive part gives
maximum spectral resolution1 since the peaks are well loca
ized. With a correctly designed pulse sequence and appro
ate 2D data processing1 it is possible to obtain pure 2D ab
sorptive spectra experimentally. It is therefore high
advantageous to measure the full complex spectrum and
only the absolute value signal. Intermediate relaxation
gimes which do not yield a simple exponential decay of
signal as in NMR will result in more complicated two
dimensional peak shapes.4

A. NMR two-pulse techniques

In the simplest case, the preparation and mixing blo
consist of only one pulse each, yielding a basic NMR tw
pulse echo sequence (p/2) –t1– (p) –t2 @Fig. 1~c!# and the
COSY ~correlation spectroscopy! sequence (p/2) –t1

– (b) –t2 @flip angleb,p, Fig. 1~a!#. Here the phases of th
pulses~usually indicated as a subscript to the flip angles
brackets! have been omitted since only the relative pha
within the pulse sequence matter and can, in the simp
case, all be chosen to be the same as the phase of the
pulse. In more sophisticated schemes, the phases of the
and second pulse are systematically changed in consec
experiments and the resulting spectra are added to select
cific coherence transfer pathways~phase-cycling, see below!.
Sometimes it is profitable to place the mixing pulse in t
evolution period which gives essentially the same techni
but changes the way the spectra are displayed. Thisdelayed
acquisitionconverts the basic methods into the well-know
Downloaded 26 Sep 2001 to 128.151.176.125. Redistribution subject to 
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J-resolved spectroscopy~JRS! (p/2) –t1/2– (p) –t1/2–t2

and SECSY ~spin echo correlation spectroscop!
(p/2) –t1/2– (b) –t1/2–t2 , respectively.

COSY is the basic 2D correlation spectroscopy te
nique and employs a single mixing pulse with rotation an
b to induce coherence transfer. The evolution duringt1 as
well as t2 depends on both transition frequencies and c
plings, giving rise to complicated multiplet patterns in bo
V1 and V2 . The coherence transfer yields off-diagon
peaks between multiplets that correspond to coupled sp
This allows the identification of coupled spins and the int
pretation of the observed coupling multiplets. The result
peak pattern for a weaklyJ-coupled two-spin model system
is shown in Fig. 1~a!. SECSY contains the same informatio
as COSY and differs from it only by the delayed acquisiti
which starts at the top of the coherence transfer echo. T
can be of practical importance in systems that contain gro
of chromophores with large differences in their transiti
frequencies without couplings between the groups. The c
ventional correlation sequences then lead to 2D spe
where the cross-peaks lie within a narrow band along
diagonal and it is possible to reduce the spectral width in
V1 domain by delaying the acquisition, similar to the ca
shown in Fig. 1~b!.1 JRS is the simplest example of a two
dimensional NMR technique for the separation of intera
tions. The centralp mixing-pulse refocuses the evolutio
due to the Zeeman term at the end of timet1 . The effective
evolution duringt1 is therefore only due to the couplin
term in H0 . After 2D Fourier transformation, the spectru
depends only on the couplings in theV1-domain and on
frequencies and couplings in theV2-domain, which yields a
skew spectrum. The resulting peak pattern for a wea
J-coupled two-spin model system is shown in Fig. 1~b!. An
additional skew transformation (V185V1 , V285V22V1)
results in a 2D spectrum that only contains couplings inV1

and frequencies inV2 .
All of these pulse sequences can be performed in eith

homonuclear~one-color! or heteronuclear~two-color! fash-
ion. Here the term homonuclear describes a system con
ing of spins with transition frequencies that are all cover
by the pulse bandwidth and therefore all excited unse
tively by the pulse. In a heteronuclear system it is possible
selectively excite one kind of spins at one frequency and
other kind at their transition frequency which is well sep
rated. In the heteronuclear mode of these experiments
first pulse is applied to only one kind of spins while th
second pulse is applied simultaneously at both frequenc

B. Optical three-pulse analogs of 2D NMR techniques

As we will discuss next, there are no direct analogs
the simple two-pulse 2D NMR experiments in weak fie
spectroscopy due to the differences in the coherence tran
achievable by weak and strong field spectroscopy. It is p
sible though to compare NMR three-pulse experiments
are extensions of the basic two-pulse schemes with co
sponding optical experiments.

In the following we consider two weakly coupled two
level systems with the model Hamiltonian of Eq.~17! to
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Spectra of two-pulse NMR
techniques for a model system of tw
weakly J-coupled spinsa andb. The
transition frequencies are chosen a
va58 andvb522 and the coupling is
J54 in arbitrary units. In the right
column only the absorptive contribu
tions are shown for clarity. Solid con
tour lines represent a positive signa
while negative contours are dotted.~a!
COSY spectrum with ap/2 mixing
pulse. The spectrum contains diagon
peaks at (va 6 J/2,va 6 J/2 ) and
(vb 6 J/2,vb 6 J/2) and cross-peaks
at (va 6 J/2,vb 6 J/2 ) and (vb

6J/2,va 6 J/2 ). ~b! J-resolved spec-
trum. The spectrum contains peaks
(2J/2,va,b 2 J/2) and (1 J/2,va,b

1 J/2 ). ~c! Spectra for the same tech
nique but without delayed acquisition
giving rise to peaks along the diago
nal. These spectra are closely relate
to the COSY spectra in the first row
but here the mixing pulse has a flip
anglep.
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identify the closest optical analogs of the basic three-pu
2D NMR experiments. The energy level scheme for t
model including the transition frequencies is given in Fig.
The energies corresponding to the levels are2V1J/4,
2D2J/4, D2J/4, andV1J/4, whereV5(va1vb)/2 and
D5(va2vb)/2 andva ,vb are the chromophore transitio
frequencies andJ is the weak coupling. The lowest energy
the ground stateg, followed by two singly excited state
e,e8 and the highest energy is the doubly excited statef. The
energy difference between ground stateg and doubly excited
state f is 2V and between the single excited states 2D. A
model system that is comparable to a weakly coupled
spin system has to fulfill further requirements. The homo
neous linewidths should be small enough so the coupli
Downloaded 26 Sep 2001 to 128.151.176.125. Redistribution subject to 
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can be resolved and the coupling needs to be small comp
to the difference in transition frequency.

A convenient way of comparing optical and NMR puls
sequences is in terms of their coherence order pathway
grams. The coherence order of a product operator in the d
sity matrix expansion can be determined by its decomp
tion in I1 and I2 operators and is given by the differenc
between the number ofI1 and the number ofI2 occurring in
the decomposition.1 The coherence order of terms in th
Feynman diagrams describing single Liouville space pa
ways can be easily determined as the difference between
excitation number~in terms of the eigenstates of the coupl
Hamiltonian! of the ket- and the bra-state. Ann quantum
coherence is characterized by the fact that it acquires
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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overall phase factor of exp(2inw) under rotation with an
anglew about thez-axis. This property makes it possible
separate different orders by the use of phase-shifted pu
and forms the basis ofphase-cyclingtechniques.1

The application of a weak pulse can only change
coherence order by61. In the operator formalism this fol
lows from the fact that the action of a pulse is distribut
over a product operator according to the ‘‘product rule’’
Eq. ~52!. In the resulting sum of product operators each te
differs in exactly one place from the product operator bef
the pulse, yielding a change in coherence order of61. This
is different from NMR, where strong pulses can give rise
terms where the coherence order changes by any of the
ues 0,61,62, . . . depending on the product operator befo
the pulse. Evolution during the pulse without a change
coherence order in NMR can occur for two different reaso
either the pulse has a finite flip angle which is different fro
p/2 and some part of the product operator remains untra
formed, or the product operator coincides with the rotat
axis of the pulse transformation.For weak pulses any signa
that is due to the interaction with a pulse and is observed
a phase matched direction looks like the interaction with
p/2 pulseand the operator that coincides with the rotati
axis of this apparentp/2 pulse is mapped to zero. This als
rules out coherence order changes of zero for weak p
sequences. If we want to translate coherence order path
diagrams from NMR to optical spectroscopy, we thus have
retain only the pathways with changes of61 and drop all
other pathways.

For the same reasons, the application of two weak pu
can only result in zero quantum and double quantum te
and does not yield any observable signal. This changes if
pulses have a finite flip angle or if we include diagonal e
ments of the dipole operator. The simplest possible tw
dimensional optical experiments thus consist of three pu
where one of the delayst1 or t2 can be either attributed to
the preparation or the mixing block and the remaining t
delayst2 or t1 andt3 give, after Fourier transformation, th
two frequency domains.

The general third-order responses~see Appendix C! for
the three-pulse experiments were obtained using a M
implementation of the operator formalism expressions gi
in Sec. III. Collecting the terms with a common overa
phase factor yields the directional responses which can
compared to the Feynman-diagrams given in Fig. 3. In
present model of two coupled two-level systems all states

FIG. 2. Energy level scheme for a model system of two weaklyJ-coupled
two-level systemsa andb with transition frequenciesva ,vb and coupling
J.
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given in the level scheme of Fig. 2. In total there are3

possible Liouville-space pathways. The two pathways w
and6(k11k21k3) do not yield an observable signal for th
current model and are therefore not given. The remaining
pathways can be classified as either containing only
negative or only one positive wave vector. We will label t
pathways with only one negative wave vectorSI , SII , and
SIII , depending on whether the first, second, or third wa
vector has the negative sign and the remaining pathw
with only one positive wavevector areSI8 , SII8 , and SIII8 ,
analogously. The expressions forSI , SII , andSIII are given
in Appendix C andSI8 , SII8 , andSIII8 are given by the com-
plex conjugate expressions.In the examples discussed belo
we show how these elementary signals can be combine
various ways to achieve a particular goal of 2D NMR.In
NMR these signals are not separated spatially but they
be distinguished by their different dependence on the ph
of the field.

The resulting absorptive part of the two-dimension
spectra for very shortt2 are displayed in Fig. 4 assumin
Lorentzian signals of finite linewidth@Eq. ~58! with G5G8
51]. For a simpler comparison with the NMR results, a
interaction matrix elementsVk,g

2 and Vk,g
1 are taken to be

equal. In NMR this is automatically fulfilled for spins of th
same nuclear species since they all share a common g
magnetic ratio and all dipoles are oriented in the same di
tion given by the external static magnetic field. The transit
dipoles for the optical transitions have a fixed orientati
with respect to the molecular frame and can be oriented
bitrarily with respect to the external field. The size of th
transition dipoles can furthermore vary for nonidentical ch
mophores which are of the same type. Transitions with
frequency that lies within the excitation bandwidth~‘‘homo-
nuclear’’ in NMR! can therefore couple to the field with dif
ferent strengths giving rise to peak intensities that differ
two transitions are separated by more than the excita
bandwidth of the pulse~‘‘heteronuclear’’! the pulses that are
applied at the different frequencies might be calibrated
obtain equal transition moments. In addition it is possible
adjust the polarization direction.

The most obvious difference between the optical and
NMR spectra is that in theV1 domain the NMR spectrum
contains peaks atva,b6J/2 while the optical spectra only
contain peaks atva,b2J/2. This is due to the different initia
density matrices. In the NMR high temperature approxim
tion all levels of the level scheme~Fig. 2! are initially popu-
lated and therefore coherences with all possible frequen
can be generated duringt1 while in the optical low-
temperature approximation only the ground state is po
lated and after the first pulse only coherences involving
ground state will evolve~see also Fig. 3!.

C. COSY

Apart from the difference in multiplicity alongV1 , the
spectrum corresponding to the techniqueSIII , wheret2 is
fixed, is the closest analog to COSY~see Fig. 5! since the
mixing sequence consisting of pulses two and three co
lates the coherences between any excited state and
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. Feynman diagrams for three-pulse experime
with non-overlapping pulses for the possible signa
SI,II,III ~right column! and the corresponding coherenc
transfer pathways~left column!. The dashed lines in the
coherence transfer pathway diagrams belong to the
nalsSI,II,III8 .
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ground state that exist duringt1 with all possible coherence
between either the ground or the second excited state an
two single excited states which evolve duringt3 . This is
exactly the idea of the COSY technique. A comparison of
coherence transfer pathways shows thatSIII is essentially the
double quantum filtered version of the basic COSY exp
ment which is described by the NMR pulse sequen
(p/2) –t1– (p/2) –tm– (p/2) –t2 . In NMR all responses
SI,II,III andSI,II,III8 would contribute to the signal and lead
dominating diagonal peaks from, e.g.,SII , even for un-
Downloaded 26 Sep 2001 to 128.151.176.125. Redistribution subject to 
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coupled spins. Double quantum filtering is a phase-cycl
technique that suppresses allSI,II contributions which simpli-
fies the spectra considerably. In the optical case phase
cling is not necessary since it is possible to obtain the sa
signal from directional detection. We can therefore identi

SCOSY~t1 ,t3!5SIII ~t1 ,tm ,t3!, ~60!

where the two time domains are given byt1 and t3 while
t25tm is a constant delay.
FIG. 4. Pure absorptive part of the two-dimensional spectra corresponding to the responsesSI , SII , andSIII for smallt2 ~see also Appendix C!. Solid contour
lines represent a positive signal while negative contours are dotted.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 5. Comparison of the spectrum
from the optical analog of COSY spec
troscopy ~left! with the NMR COSY
spectrum~right! for the same model
system. The difference in multiplicity
along V1 due to the different initial
condition is clearly visible~see text!.
Solid contour lines represent a positiv
signal while negative contours are do
ted.
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D. NOESY and EXSY

The combined responsesSI1SII together correspond to
NOESY where again the second and third pulse consti
the mixing sequence. The signal is frequency labeled by
evolution of the one quantum coherences~1QC! in t1 and
t3 , and cross-peaks appear between chromophores tha
hibit cross-relaxation or transport duringt2 . We can there-
fore identify

SNOESY~t1 ,t3!5SI~t1 ,tm ,t3!1SII~t1 ,tm ,t3!. ~61!

In NOESY the cross-peaks of interest for determining d
tances are due to polarization transfer by the Nuclear O
hauser Effect~dipolar cross-relaxation! during tm . In 1D
spectroscopy the NOE is visible as changes in peak inten
when one of the nuclei is excited by strong irradiation. T
detection of these intensity changes is far less sensitive
the observation of a cross-peak in 2D spectroscopy. EXS
the same technique as NOESY except that the observed
lution duringtm5t2 is due to chemical exchange rather th
cross-relaxation.

The spectra shown in Fig. 4 are fort250 and without
cross-relaxation. The cross-peaks in this case are due to
weak coupling and are considered an unwanted artifac
EXSY or NOESY~‘‘J cross-peaks’’1!.
Downloaded 26 Sep 2001 to 128.151.176.125. Redistribution subject to 
te
e

ex-

-
r-

ity
e
an
is
vo-

the
in

E. J -resolved spectroscopy

In the special case oft250 the responseSI yields an
echo signal. The system is in a11QC duringt1 and in a
-1QC duringt3 and therefore the diagonal peaks refocus
arbitrary inhomogeneous frequency distributions. This sig
is related to the NMR echo sequence which is the basis
J-resolved spectroscopy that was shown in Fig. 1~c! ~without
delayed acquisition!. The optical spectrum contains add
tional peaks that are not cancelled as in NMR due to
different initial conditions and the resulting differences
multiplicity in V1 . Directional detection allows us to remed
the situation by combining optical signals from different d
rections which is impossible in NMR. The combination

SD5SIII ~V1 ,V2!2SII~V1 ,V2! ~62!

gives only the diagonal peaks that can be subtracted fromSI

and yield

SJRS5SI~2V1 ,V2!2SII~V1 ,V2!1SIII ~V1 ,V2!, ~63!

where only the off-diagonal multiplets are retained. This s
nal can be considered an analog ofJ-resolved spectroscop
~see Fig. 6!, since in one frequency dimension the sign
depends only on the transition frequencies while it depe
on both frequencies and couplings in the second dimens
n

-

FIG. 6. Combinations of two-
dimensional spectra observed i
different directions yield for
SJRS5 SI (2 V1 , V2 ) 2 SII ( V1 , V2 )
1SIII (V1 ,V2) ~left! a technique with
the same information content as NMR
J-resolved spectroscopy@right, com-
pare Fig. 1~c!#. Solid contour lines
represent a positive signal while nega
tive contours are dotted.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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It is crucial to detect the full~heterodyne! signal and not
merely its absolute value to be able to construct linear co
binations of signals in different directions in which certa
selected peaks cancel.

F. Double quantum spectroscopy

All the pulse sequences discussed so far used the se
and third pulse as the mixing block. The second possibility
obtain a two-dimensional spectrum from a three-pulse
quence is to consider the first two pulses as the prepara
sequence and to obtain the two frequency domains fromt2

and t3 . In this case the two responsesSI,II only yield zero
frequency peaks in the first frequency domain since the
tem is in a 0QC state duringt2 . These signals are usuall
unwanted since they are essentially one-dimensional
therefore suppressed in 2D NMR. However, directional
tection allows to directly observe signalSIII which corre-
sponds to the simplest multiple quantum technique in NM
double quantum spectroscopy. We can therefore identify

SDQS~t2 ,t3!5SIII ~tp ,t2 ,t3!, ~64!

where the two time domains are given byt2 and t3 while
t15tp is a constant delay. In this technique the duration
the delaytp can be adjusted with respect to the couplingJ to
maximize the transfer to the 2QC during the preparat
block. The system then evolves with the sum frequency
va1vb during t2 giving rise to a spectrum that contain
peaks at about twice the frequency in the first domain a
usual single quantum experiment. The mixing pulse~pulse
three! then correlates the 2QC with the connected 1QCs

V. CONCLUSIONS

We have developed a description of optical pulse exp
ments using well-separated, time-ordered pulses in the w
field limit for coupled two-level systems that is closely r
lated to the NMR product operator formalism. Describing t
action of weak pulses in terms of transformations in the ba
of Pauli matrices or creation and annihilation operators
based on the RWA for resonant spectroscopy and the r
tionshipDv!v1!v0 , whereDv is the width of the spec-
trum, v1 the Rabi frequency, andv0 the central transition
frequency. The transformation rules for product states of
sis operators offer a very compact description of the inter
tion of the system with the electromagnetic field of t
pulses without dealing with the detailed features of
pulses.

Models for the interaction between optical two-level sy
tems in molecular crystals and aggregates usually are b
on the resonantJ-coupling Hamiltonian

HJ,res5Jab~Ba
†Bb1BaBb

† !. ~65!

Here theIz terms in the full isotropic coupling Hamiltonia
~13! are neglected. Simple models of this kind are based
transition dipole coupling mechanisms~see e.g., Refs. 33
34!. This Hamiltonian leads to the formation of exciton sta
and techniques for its treatment are well-developed.13,15 The
present model@Eq. ~13!# is different and also includes diag
onal couplings. For nonresonant couplings, which is the li
Downloaded 26 Sep 2001 to 128.151.176.125. Redistribution subject to 
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opposite to Eq.~65!, the perturbative expansion inJ ~weak
J-coupling limit! and the use of product states of localiz
basis states for the chromophores allows a real-space i
pretation of the action of the pulse sequence. This consi
ably simplifies the design of specialized pulse sequences
the extraction of specific system parameters like transit
frequencies andJ-couplings and yields a more intuitive pic
ture than possible using the global eigenstates. While
description of weak pulse sequences developed in Sec. I
valid for arbitrary coupling Hamiltonians, it becomes mo
powerful when combined with the weakJ-coupling Hamil-
tonian of Sec. II. The formalism then directly yields analy
cal expressions for the evolution of the density matrix a
for the polarization. Sequences designed in the weakJ limit
may retain their essential features for strongJ as well. In
two-color experiments nonresonant couplings provide
dominant coupling mechanism that can be exploited for
herence transfer.

The selection of coherence transfer pathways which
obtained in NMR by phase-cycling is possible in optic
spectroscopy through directional detection. Signals dete
in different directions can be linearly combined to simpli
the resulting 2D spectra, yielding techniques that resem
NMR results from pulse sequences involving stro
p-pulses. The combination of directional detection, line
combination of signals from different spatial directions, a
cycling of pulse phases gives a high degree of control o
the selection of coherence transfer pathways. To gain
control it is necessary to measure the full complex signal
heterodyne detection and not only the absolute value s
trum. This is common practice in NMR. A further advanta
of heterodyne detection is that after appropriate phase
rection and data processing, it can also yield pure absorp
spectra which have considerably higher resolution than
solute value spectra.

We have identified close optical analogs of the most i
portant liquid state NMR three pulse techniques~COSY,
NOESY, DQS!. Future research will involve the develop
ment of new pulse sequences that carefully account for
differences between NMR and optical spectroscopy. Tw
color experiments analogous to heteronuclear NMR sp
troscopy are one interesting possibility and pulse exp
ments that are tailored to certain classes of compou
~proteins, polymers! could be developed.2 The systematic ex-
tension of the current formalism to arbitrary multi-level sy
tems should not pose fundamental difficulties and will ena
the treatment of a larger variety of systems, including vib
tional systems with moderate anharmonicities. A furth
topic that should be studied is the description of pulse
quence blocks in terms of average Hamiltonians that yi
effective transformations for the whole pulse train. This a
proach has been used effectively in solid state NMR1,35 and
can become important in dealing with the arbitrarily orient
dipoles in optical spectroscopy. Techniques that effectiv
deal with small pulse flip angles, offset effects, and ec
detection have been developed in multidimensional E
spectroscopy36,37and might stimulate further development
optical pulse techniques.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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APPENDIX A: PAULI MATRICES, SPIN-OPERATORS,
CREATION AND ANNIHILATION OPERATORS

In this appendix we survey some well-known opera
properties and relations that are widely used in NMR a
that are needed for the operator transformation rules in S
III. For the description of two-level systems we use opera
bases that contain Cartesian (Ix ,Iy ,Iz) or creation and anni-
hilation (B†,B) operators depending on which basis yiel
the more compact description. The two states forming
Hilbert space on which the operators are defined are typic
called$ua&,ub&% in NMR and$u2&,u1&% in optical spectros-
copy. As a common notation we will use$ua&,ub&% in the
following. Any Hermitian operator on this Hilbert space ca
be expanded in terms of the identity operatorI and the Pauli
matricessx , sy , and sz . In NMR the spin operators ar
usually referred to asIx , Iy , and Iz , which are the Pauli
matrices with appropriate normalization, satisfying the we
known commutation relations~we use units in which\51!:

@ Ix ,Iy#5 i Iz and cyclic permutations of~x,y,z!. ~A1!

The creation and annihilation operators, also called shif
flip operators, are given by

I15Ix1 i Iy and I25Ix2 i Iy . ~A2!

They fulfill the following commutator relationships,

@ I6,Ix#56Iz , @ I6,Iy#5 i Iz ,
~A3!

@ I6,Iz#57I6, @ I1,I2#52 Iz .

To make the comparison with the optical spectroscopy n
tion easier we denoteB†5I1 and B5I2. The inverse rela-
tions are given by

Ix5
1

2
~B†1B! and Iy52

i

2
~B†2B!. ~A4!

The spin operators fulfill further relations:

Ix
25Iy

25Iz
25 1

4I, ~A5!

~B†!25B250, ~A6!

IxIy5
i

2
Iz and cyclic permutations of~x,y,z!, ~A7!

IyIx52
i

2
Iz and cyclic permutations of~x,y,z!. ~A8!

From this follows (@A,B#15AB1BA)

Iz5
1
2 @B†,B#, ~A9!

I5@B†,B#1 . ~A10!

The transformation properties under z-rotations are gi
by1,23
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Rz~w!5exp~ i Izw!5Rz
21~2w!, ~A11!

Ix85Rz
21~w!IxRz~w!5Ix cosw1Iy sin w, ~A12!

Iy85Rz
21~w!IyRz~w!52Ix sin w1Iy cosw, ~A13!

Iz85Rz
21~w!IzRz~w!5Iz , ~A14!

~B†!85Rz
21~w!B†Rz~w!5B†e2 iw ~A15!

B85Rz
21~w!BRz~w!5Beiw. ~A16!

APPENDIX B: HAMILTONIAN FOR A DRIVEN SPIN- 1
2

AND A TWO LEVEL SYSTEM

In this Appendix we present the derivation of the effe
tive rotating-frame Hamiltonian of a spin-1

2 in an electromag-
netic field, following the treatment in Ref. 23. The resultin
Hamiltonian has the same structure as the optical two-le
Hamiltonian of Sec. II.

The magnetic moment operator of a spin-1
2 system is

given by Eq.~4!.23,24 It is isotropic and has the same magn
tude for all spins of the same isotope. The Hamiltonian fo
spin in a magnetic fieldH is

H52m•H~ t !. ~B1!

We assume that the spin is placed in a strong static magn
field H05H0 ez parallel to the z-axis which becomes th
quantizationa axis. All spins are then aligned either para
or anti-parallel with respect to thez-axis which gives rise to
the Zeeman splitting between the statesua& and ub&. The
corresponding energy difference is the Larmor frequen
v05gH0 . A circularly polarized rf-pulse with rotating mag
netic fieldH1(t) is applied in thex-y plane with frequency
v and phasew ~here, effectivelyk50),

H1~ t !5H1~ t !@ex cos~vt1w!1ey sin~vt1w!#. ~B2!

Adding both fieldsH(t)5H01H1(t) the Hamiltonian
reads

~B3!

The operatorP(vt1w) describing the action of the pulse o
the spin-12 system has a simple interpretation in terms
infinitesimal rotations as can be seen by comparingP(vt
1w) with Eqs.~A12! and ~A13!

P~vt1w!55
RIxR

21 for w50

RIyR
21 for w5

p

2

R~2Ix!R
21 for w5p

R~2Iy!R21 for w53
p

2

~B4!

with: R5Rz~2vt !. ~B5!

The Rabi frequency is given byv15gH1(t). Integrating
over the pulse yields the flip angleu5g*H1(t) dt.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In the following we will assume for simplicity a rectan
gular pulse during whichH1(t)5H1 is constant and zero
before and after the pulse. The Liouville–von Neuman eq
tion ṙ5@H,r# describing the dynamics of the spin syste
during the pulse is then given by

ṙ52 i ~v0@ Iz ,r#1v1@RIkR
21,r#!, ~B6!

where the indexk can be eitherx, y, 2x, or 2y. The equa-
tion of motion can be simplified by the rotating frame tran
formationr→RrR21:23

2 iv@ Iz ,RrR21#1RṙR21

52 i ~v0@ Iz ,RrR21#1v1@RIkR
21,RrR21# !. ~B7!

Multiplication of Eq.~B7! from the left byR21 and from the
right by R and using the fact that@R,Iz#50 yields the equa-
tion of motion in the rotating frame,

2 iv@ Iz ,r#1 ṙ52 i ~v0@ Iz ,r#1v1@ Ik ,r#!. ~B8!

This result can be simplified by introducing the effecti
HamiltonianHeff,

ṙ52 i @Heff ,r# where Heff5~v02v!Iz1v1Ik . ~B9!

In terms of creation and annihilation operators the effect
Hamiltonian can be written as

Heff
a 5

1

2
~va2v!@Ba

† ,Ba#1
v1

2
~cosw~Ba

†1Ba!

2 i sin w~Ba
†2Ba!!. ~B10!

Rearranging Eq.~B10! results in Eq.~8!.

APPENDIX C: OPTICAL RESPONSE TO A THREE-
PULSE SEQUENCE

We consider the weakJ-coupling Hamiltonian Eq.~17!
for coupled two-level systems. The initial~low temperature!
density matrix is

r0})
a

~ Ia2Iz
a!, ~C1!

while the high temperature approximation in NMR wou
yield an initial density matrixr0}(aIz

a . The evolution under
the three-pulse sequence was computed by
Downloaded 26 Sep 2001 to 128.151.176.125. Redistribution subject to 
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r0 ——→
f1

v

——→
HZt1

——→
HJt1

rt1

——→
f2

v

——→
HZt2

——→
HJt2

rt11t2

——→
f3

v

——→
HZt3

——→
HJt3

rt11t21t3
~C2!

and an overall relaxation term with rateG was added@com-
pare Eq.~55!#. The polarization Eq.~53! is obtained as

P(3)~t1 ,t2 ,t3!5trH rt11t21t3(a ma
abBa1ma

baBa
† J .

~C3!

Detection with an additional heterodyne pulse with envelo
Eh(t) and phasefh yields a signal which can be split int
three terms that comprise contributions with common ph
factors and their conjugate complex counterparts resul
from the B† and B contributions to the dipole operator, re
spectively

S~t1 ,t2 ,t3!5 (
k5I,II,III

Sk~t1 ,t2 ,t3!1Sk8~t1 ,t2 ,t3!.

~C4!

The three componentsSI,II,III are observable in the differen
phase matched directionskI52k11k21k3 , kII5k12k2

1k3 , and kIII 5k11k22k3 and can also be obtained from
the sum-over-states expressions.13 Using the abbreviations

va
25va2

1

2 (
gÞa

Jag , ~C5!

va
b5va1

1

2 S Jab2 (
gÞa,b

JagD , ~C6!

2 Vab5va1vb2 (
gÞa,b

Jag , ~C7!

2 Dab5va2vb1
1

2 (
gÞa,b

~Jbg2Jag!, ~C8!

andVh,a5ma
ab
•Eh the signals are given by:
SI~t1 ,t2 ,t3!52 iei (fh2f11f21f3)e2G(t11t21t3) (
aÞb

@2 Vh,a
2 V3,a

1 V2,a
1 V1,a

2 exp~2 i ~va
2~t32t1!!!

12 Vh,b
2 V3,b

1 V2,b
1 V1,b

2 exp~2 i ~vb
2~t32t1!!!1Vh,a

2 V3,b
1 V2,a

1 V1,b
2 exp~2 i ~2vb

2t112 Dabt21va
2t3!!

2Vh,a
2 V3,b

1 V2,a
1 V1,b

2 exp~2 i ~2vb
2t112 Dabt21va

bt3!!1Vh,b
2 V3,a

1 V2,b
1 V1,a

2

3exp~2 i ~2va
2t122 Dabt21vb

2t3!!2Vh,b
2 V3,a

1 V2,b
1 V1,a

2 exp~2 i ~2va
2t122 Dabt21vb

at3!!

1Vh,a
2 V3,a

1 V2,b
1 V1,b

2 exp~2 i ~2vb
2t11va

2t3!!2Vh,a
2 V3,a

1 V2,b
1 V1,b

2 exp~2 i ~2vb
2t11va

bt3!!

1Vh,b
2 V3,b

1 V2,a
1 V1,a

2 exp~2 i ~2va
2t11vb

2t3!!2Vh,b
2 V3,b

1 V2,a
1 V1,a

2 exp~2 i ~2va
2t11vb

at3!!#, ~C9!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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SII~t1 ,t2 ,t3!52 iei (fh1f12f21f3)e2G(t11t21t3) (
aÞb

@2 Vh,a
2 V3,a

1 V2,a
2 V1,a

1 exp~2 i ~va
2~t31t1!!!

12 Vh,b
2 V3,b

1 V2,b
2 V1,b

1 exp~2 i ~vb
2~t31t1!!!1Vh,a

2 V3,b
1 V2,b

2 V1,a
1 exp~2 i ~va

2t112 Dabt21va
2t3!!

2Vh,a
2 V3,b

1 V2,b
2 V1,a

1 exp~2 i ~va
2t112 Dabt21va

bt3!!1Vh,b
2 V3,a

1 V2,a
2 V1,b

1

3exp~2 i ~vb
2t122 Dabt21vb

2t3!!2Vh,b
2 V3,a

1 V2,a
2 V1,b

1 exp~2 i ~vb
2t122 Dabt21vb

at3!!

1Vh,a
2 V3,a

1 V2,b
2 V1,b

1 exp~2 i ~vb
2t11va

2t3!!2Vh,a
2 V3,a

1 V2,b
2 V1,b

1 exp~2 i ~vb
2t11va

bt3!!

1Vh,b
2 V3,b

1 V2,a
2 V1,a

1 exp~2 i ~va
2t11vb

2t3!!2Vh,b
2 V3,b

1 V2,a
2 V1,a

1 exp~2 i ~va
2t11vb

at3!!#, ~C10!

SIII ~t1 ,t2 ,t3!52 iei (fh1f11f22f3)e2G(t11t21t3) (
aÞb

@Vh,a
2 V3,b

2 V2,b
1 V1,a

1 exp~2 i ~va
2t112 Vabt21va

2t3!!

2Vh,a
2 V3,b

2 V2,b
1 V1,a

1 exp~2 i ~va
2t112 Vabt21va

bt3!!1Vh,b
2 V3,a

2 V2,b
1 V1,a

1 exp~2 i ~va
2t112 Vabt2

1vb
2t3!!2Vh,b

2 V3,a
2 V2,b

1 V1,a
1 exp~2 i ~va

2t112 Vabt21vb
at3!!1Vh,a

2 V3,b
2 V2,a

1 V1,b
1 exp~2 i ~vb

2t1

12 Vabt21va
2t3!!2Vh,a

2 V3,b
2 V2,a

1 V1,b
1 exp~2 i ~vb

2t112 Vabt21va
bt3!!1Vh,b

2 V3,a
2 V2,a

1 V1,b
1

3exp~2 i ~vb
2t112 Vabt21vb

2t3!!2Vh,b
2 V3,a

2 V2,a
1 V1,b

1 exp~2 i ~vb
2t112 Vabt21vb

at3!!#. ~C11!
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For a system of two coupled two-level systems the ab
relationships reduce to the ones given in the level schem
Fig. 2 with the corresponding 2D signals given in Fig. 4.

It can be easily seen that fort150 the signalsSI andSII

become identical~up to interchanging the pulse indices 1 a
2! and fort250 signalsSII andSIII carry the same informa
tion. The resulting four techniques are closely related to p
ton echo, reverse photon echo, transient grating, reverse
sient grating that have been identified earlier.15,16 The
techniques discussed here differ from the these techniqu
that in the current case time-ordering is preserved. The r
cusing echo observed in the standard PE technique (t250)
can be most easily seen in the two first terms ofSII which
depend ont32t1 , yielding an exact recurrence att35t1 for
any inhomogeneous distribution ofva andvb .
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