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Abstract

The Brownian oscillator model has been successfully employed for modeling solvation dynamics in numerous

femtosecond measurements. To a very large extent, this work has been interpreted on the basis of high-temperature

limits of the theory. We present an analysis of the low temperature limit, which is particularly important for hole

burning, photon echo, and single molecule spectroscopic experiments. Several forms for the bath spectral density are

employed to compute zero phonon absorption line shapes. We show that in all cases the zero phonon linewidth vanishes

at low temperatures, and that the line becomes asymmetric with a sharp rise at the red edge, as expected qualita-

tively. � 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The electron–phonon coupling and pure elec-
tronic dephasing of the S0 ! S1 transition of
molecules imbedded in host molecular solids at
low temperatures (typically 6 20 K) have long
been subjects of considerable interest. The zero
phonon line (ZPL) of the optical transition probes
pure electronic dephasing. Linear electron–pho-
non coupling gives rise to phonon sideband
structure associated with the ZPL [1]. This struc-
ture can be due to phonons of the host or pseudo-

localized modes intimately associated with the
guest molecule. In the former case the one-phonon
profile is governed by the density of states of the
host and a frequency dependent coupling constant.
The latter has yet to be calculated for any molec-
ular system. Within the context of the multimode
Brownian oscillator (MBO) model [2], the pseudo-
localized phonon would be a primary oscillator
whose decay is governed by coupling to bath
modes. Off-diagonal quadratic electron–phonon
coupling, the analog of the molecular Duschinsky
effect, is one mechanism for pure electronic deph-
asing [3]. Diagonal quadratic electron–phonon
coupling associated with a pseudo-localized mode
is another [4,5], the so-called exchange coupling
mechanism. In organic systems comprised of large
guest and host molecules the energies of phonons
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(intermolecular modes) that contribute to the
phonon sideband are typically 6 50 cm�1. In this
paper we are not concerned with higher energy
intramolecular modes of the probe molecule.
During the 1970s absorption spectroscopy was

used to study phonon structure and pure electronic
dephasing in many mixed crystal systems (see, e.g.,
[6] and references therein). Later, photon echo and
hole burning spectroscopies were brought to bear
[7–10]. More complete theories of pure electronic
dephasing emerged [11,12]. By the early 1980s our
understanding of phonon structure and pure elec-
tronic dephasing had reached a rather mature
stage. Most of the mixed crystal systems studied
exhibited weak linear electron–phonon coupling
(Huang–Rhys factor S < 1) which resulted in well
resolved and symmetric ZPLs at sufficiently low
temperatures. Attention then shifted to the homo-
geneous width of the ZPL in glasses and polymers.
Initially, spectral hole burning was the technique
used to probe the homogeneous width of the ZPL
and its associated phonon structure [13,14]. The
results, together with those of time-resolved reso-
nant fluorescence line narrowing experiments on
trivalent rare earth ions in inorganic glasses [15–
18], established that the magnitude and tempera-
ture dependence of the ZPL width are anomalous
compared to those in crystals at low temperatures.
The connection with the bistable tunneling config-
urations (two-level systems, TLS) responsible for
the anomalous heat capacity, thermal conductivity
and acoustic properties of glasses at very low tem-
peratures [19] was quickly made [13,20–22]. Several
theories for pure electronic dephasing emerged
which explained the close to linear dependence of
the ZPL width on temperature (610 K). For re-
views see [23–25]. Following the above studies of
the ZPL, photon-echo [26,27] and time-resolved
hole burning experiments [28,29] were brought to
bear on the problem of the magnitude and tem-
perature dependence of the ZPL profile. A key
finding was that the homogeneous ZPL width in
amorphous solids can depend on the ‘‘waiting’’
time between preparation of the coherent state and
probing of the ZPL. This is a consequence of
spectral diffusion due to tunneling of TLS that
occurs on a longer time scale than the excited state
lifetime. Again, the focus in the experiments with

amorphous hosts was on chromophores exhibiting
weak linear electron–phonon coupling. This cou-
pling is typically dominated by a one-phonon
profile with a peak energy of �15–30 cm�1. For
sufficiently low burn fluences the zero phonon hole
(ZPH) profiles were generally observed to be Lo-
rentzian in high resolution experiments. Very re-
cently, non-Lorentzian ZPH profiles were reported
for Al-phthalocyanine tetrasulphonate in glassy
water films [30]. These profiles were more sharply
tipped than a Lorentzian but still symmetric. The
non-Lorentzian behavior was shown to be a con-
sequence of the dispersive kinetics of non-photo-
chemical hole burning due to the angle between the
laser polarization and transition dipole, off-reso-
nant absorption of the ZPL and the distribution of
non-photochemical hole burning rates due to
structural disorder.
Single molecule spectroscopy has also been

applied to chromophores exhibiting weak elec-
tron–phonon coupling in crystals and polymers at
low temperatures [31–34]. In all cases we are aware
of the single molecule line shapes did not exhibit
significant asymmetry (see, e.g., [35]). We note that
the effects of TLS tunneling on single molecule line
shapes have been studied theoretically [36–38] and
that complex multi-component line shapes can, in
principle, arise when an absorber is strongly cou-
pled to one or two nearby TLS with slow jump
rates (slow modulation limit). When this is not the
case, i.e. the absorber is weakly coupled to a ‘‘sea’’
of TLS, symmetric line shapes are expected.
Of particular relevance to this paper is that at

sufficiently low temperatures the ZPL of the guest/
host systems characterized by weak linear elec-
tron–phonon coupling exhibit symmetric profiles
whose widths are determined by longitudinal re-
laxation and pure electronic dephasing/spectral
diffusion. Thus, the coupled phonons appear to be
underdamped to an extent that precludes a sig-
nificant contribution from them to the ZPL pro-
file, especially on its high energy side. (By way of
calibration, ZPL widths as determined by hole
burning, photon echo and single molecule spec-
troscopies for 1pp� states with ns lifetimes are <1
cm�1 for T 6 10 K.) That this is not the case at
high enough temperatures is due in part to the
strong temperature dependences of pure electronic
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dephasing and the Franck–Condon factor of the
ZPL (see, e.g., [39]). Unfortunately there is a
dearth of high-resolution data on systems that
exhibit strong linear electron–phonon coupling.
However, such coupling is unrelated to damping
of phonons that is governed by off-diagonal qua-
dratic electron–phonon coupling in the case of a
pesudo-localized mode. Thus, even in the case of
strong linear coupling the modes could be strongly
underdamped.
In this paper we explore the application of the

MBO model to the optical spectra of chromo-
phores in host solids at low temperatures. The
MBO model has been used successfully in the high
temperature limit to interpret room temperature
data on optical coherence loss of chromophores in
liquids due to solvation dynamics [40–44]. Appli-
cation of the model to optical spectra requires the
incorporation of other electronic dephasing
mechanisms into the linear response function in
addition to the MBO model. The line shape of the
transition at the position of the ZPL in the MBO
model is determined by cjðxÞ, xj, and Sj which are
the frequency dependent damping constant, fre-
quency, and Huang–Rhys factor of the jth primary
BO. As noted by Toutounji et al. [45], it is only
when the frequency dependence of cj is properly
taken into account that one can adequately de-
scribe the contribution from phonon dynamics to
the ZPL profile. Often this dependence is neglected
(ohmic dissipation); this is expected to lead to a
maximum contribution from phonons to absorp-
tion in the ZPL region. Toutounji et al. did not
investigate non-ohmic dissipation, choosing in-
stead to eliminate the MBO ZPL from the linear
response function and to replace it with a Lo-
rentzian ZPL with a width governed by electronic
dephasing. Their main result was a response
function that accounts for electronic dephasing
and modes exhibiting linear coupling or diagonal
quadratic coupling. Presented here is an analysis
of how ohmic and non-ohmic damping affect the
absorption spectra of the MBO model at low
temperatures for systems exhibiting linearly cou-
pled primary oscillators that are underdamped. It
reveals how a physically reasonable non-ohmic
damping function, cjðxÞ, can lead to an MBO ZPL
that has essentially zero linewidth at sufficiently

low temperatures. Thus, by multiplying the linear
response function by the response function for
other mechanisms of electronic dephasing the
MBO model can be used to simulate absorption
(emission) spectra of chromophores in host media.
In Section 2 we briefly review the formal basis

of the MBO model to establish the notation and
the level of approximation. Section 3 demonstrates
the intricacy of approaching the low-T limit, which
is a result of the fact that certain parts of series
expansions must be summed completely. Section 4
turns to the numerical evaluation of lineshapes for
ohmic and non-ohmic damping and Section 5
summarizes our results.

2. The multimode Brownian oscillator model

The multimode Brownian oscillator (MBO)
model is based on the classic work of Lax [46] and
Kubo [47], taking advantage of their proof that a
second-order cumulant expansion is exact for
treating the absorption lineshape of linearly cou-
pled electron–phonon systems. The origin of its
name is that for certain forms of the spectral
density the model can be described by a few col-
lective oscillators that satisfy a Langevin equation,
providing an intuitive physical picture and a basis
for analyzing molecular dynamics simulations [2].
The model assumes a two electronic-level system
with some primary nuclear coordinates coupled
linearly to it and to a harmonic bath:

H ¼ jgiHghgj þ jeiHehej þ H 0; ð1Þ
where

Hg ¼
X
j

p2j
2mj

"
þ 1
2
mjx

2
j q
2
j

#
; ð2Þ

He ¼ �hx0eg þ
X
j

p2j
2mj

"
þ 1
2
mjx

2
j ðqj þ djÞ2

#
; ð3Þ

and

H 0 ¼
X
n

p2n
2mn

2
4 þ 1

2
mnx

2
n qn

 
�
X
j

cnjqj
mnx2n

!235:
ð4Þ
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Here pjðpnÞ; qjðqnÞ, and mjðmnÞ represent the mo-
mentum, the coordinate, and the mass of the jth
(nth) nuclear mode of the primary (bath) oscilla-
tors, respectively. dj is the displacement for the jth
nuclear mode in the excited electronic state. H 0

describes the bath oscillators and their coupling to
the primary oscillators with a coupling strength
cnj. The cross terms in qjqn [48,49] are responsible
for damping.
The purely electronic energy level separation is

�hx0eg and the energy gap coordinate operator is
defined as

U ¼ He � Hg � �hx0eg: ð5Þ
Hereafter a single primary oscillator is assumed.
The subscript j is retained in order to identify pa-
rameters belonging to this oscillator but it is un-
derstood that j ¼ 1.
Linear absorption lineshapes are computed by

truncating the cumulant expansion of the response
function at second order [2]. This is exact for the
present model. The parameters of the Hamiltonian
are transferred to a correlation function

CjðtÞ ¼ � 1

2�h2
½hUðtÞUð0Þqgi � hUð0ÞUðtÞqgi�; ð6Þ

where UðtÞ is the operator U in the interaction
representation and qg is the ground-state vibra-
tional density matrix. The Fourier transform of
the correlation function has an imaginary part [2,
Eqs. (8.64)] known as the spectral density:

~CC00
j ðxÞ ¼

2kjx2jxcjðxÞ
x2c2j ðxÞ þ x2j þ xRjðxÞ � x2


 �2 : ð7Þ

Here 2kj is the jth mode contribution to the Stokes
shift

2kj ¼
mjx2j d

2
j

�h
: ð8Þ

Alternatively we can write kj ¼ Sj�hxj, where Sj is
the dimensionless Huang–Rhys factor. Sj can vary
from much less than unity (weak coupling) to
equal to greater than unity (moderate/strong cou-
pling). The spectral distribution of the coupling is

cjðxÞ ¼ p
mj

X
n

c2nj
2mnx2n

½dðx � xnÞ þ dðx þ xnÞ�:

ð9Þ

The real part RjðxÞ of the self-energy is related to
ciðxÞ by the Kramers–Kronig relation [16]:

RjðxÞ ¼ � 1
p
PP

Z 1

�1
dx0 cjðx0Þ

x0 � x
; ð10Þ

where PP stands for principal part.The absorp-
tion lineshape is given by

rBOðxÞ ¼ 1
p
Re

Z 1

0

dt exp i x
h

�x0eg� kj

�
t� gðtÞ

i
;

ð11Þ
where [2, Eq. (8.13a)]

gjðtÞ ¼
Z t

0

ds1

Z s1

0

ds2Cjðs2Þ; ð12Þ

or, in the Fourier representation [2, Eq. (8.25)],

gjðtÞ ¼ � 1
2p

Z 1

�1
dx

~CC00
j ðxÞ
x2

� ½1þ cothðb�hx=2Þ�½e�ixt þ ixt � 1�: ð13Þ

The Boltzmann factor cothðb�hx=2Þ, where
b ¼ 1=kBT , reflects the thermal population of the
bath modes.

3. Ohmic dissipation; linewidth at low temperature

When cj � xj the primary oscillator is over-
damped and causes line broadening. In this paper
we focus on the opposite underdamped limit
xj � cj where a progression of primary oscillator
vibrational lines appears. At zero temperature we
expect the ZPL linewidth to vanish. The way it
does depends on the spectral density. In the ab-
sence of detailed information about the bath and
its coupling, the damping ciðxÞ is often approxi-
mated by a constant, cj. This simplification,
known as the ohmic approximation, is made largely
for convenience, because the physical meaning
would be that the product of mode density and
interaction strength is a constant, for which there
is no formal justification. Should the approxima-
tion happen to be a good one, however, it simpli-
fies the theory in that it enables certain analytic
expressions to be derived and the self-energy cor-
rection equation (10) vanishes. In the numerical
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work presented below we omit self energies alto-
gether, regardless of the spectral dependence of the
damping, because our interest centers on line-
shapes.
We write CjðtÞ in terms of its real and imaginary

parts C0
jðtÞ and C00

j ðtÞ, respectively:

CjðtÞ ¼ C0
jðtÞ þ iC00

j ðtÞ ð14Þ

In the ohmic case these functions are given by [2,
Eqs. (8.67a)–(8.67c)]

C0
jðtÞ ¼

�h
4mjfj

cothði/j�hb=2Þ expð
h

�/jtÞ

þ cothði/0
j�hb=2Þ expð�/0

jtÞ
i

�
2cj
mjb

X1
n¼1

mn expð�mntÞ
x2j þ m2n
� �2 � c2j m2n

; ð15Þ

and

C00
j ðtÞ ¼ � �h

2mj
� 1
fj
expð�cjjtj=2Þ sinðfjtÞ: ð16Þ

Here fj ¼ ðx2j � c2j Þ
1=4
, /j ¼ cj=2þ ifj, /0

j ¼
cj=2� ifj, and mn ¼ ð2p=�hbÞn (the Matsubara fre-
quencies).
The absorption spectrum associated with the

MBO model for a single primary oscillator con-
sists of a ZPL and a series of satellites at
�hx0eg � n�hxj (n ¼ 1; 2; . . .). The widths and relative
strengths of all the lines depend on the parameter
Sj, the temperature T, and the magnitude and
shape of the damping ciðxÞ. At low temperature,
we expect that the ZPL for this model will have
zero width regardless of the precise frequency de-
pendence of the damping, because phononic re-
laxation is absent and electronic dephasing has not
been included.
Let us consider the low-temperature expression

for gjðtÞ: C00
j ðtÞ does not depend on temperature,

and for C0
jðtÞ we have in this limit

C0
jðtÞ ¼ D2j expð�/jtÞ �

2cj
mjb

X1
n¼1

mn expð�mntÞ
ðx2j þ m2nÞ

2 � c2j m2n
:

ð17Þ

We have defined D2j ¼ x3jd
2
j=2fj, where dj ¼

ðmjxj=hÞ1=2dj is the dimensionless displacement

parameter. An oscillator j coupled to an electronic
system makes the following contribution to the
function gjðtÞ [15, p. 229, Eq. (8.67a)]:

gjðtÞ ¼ g0jðtÞ þ g00j ðtÞ; ð18Þ

where g00j ðtÞ is purely imaginary in the present ap-
plication (low damping, defined as cj � 2xj).
Using Eq. (17) we get

g0jðtÞ ¼ gIjðtÞ þ gIIj ðtÞ; ð19Þ

where

gIjðtÞ ¼
D2j
/2j

½/jt þ expð�/jtÞ � 1� ð20Þ

and the contribution of the Matsubara series is

gIIj ðtÞ ¼ �
2cjn

2
j

mjb

X1
n¼1

mn
R t
0
ds1
R s1
0
ds2 expð�mns2Þ

ðx2j þ m2nÞ
2 � c2j m2n

:

ð21Þ
Performing the double integral in the numerator
we obtain

gIIj ðtÞ ¼ �
4D2j cjfj
�hb

X1
n¼1

t � m�1n ð1� expð�mntÞÞ
ðx2j þ m2nÞ

2 � c2j m2n
:

ð22Þ
Summing this series in the low-temperature limit
can be accomplished by making use of the fact
that large-n (thus large mn) terms are dominant
for large b, which allows the sum to be well
approximated by an integral. The general results
are rather complicated in form, but it is possible
to extract the contribution of the sum to gIIj ðtÞ
that is linear in t, and it precisely cancels the
linear term appearing in gIjðtÞ. For the term in
Eq. (22) that is linear in t, we make the ap-
proximationX1
n¼1

1

ðx2j þ m2nÞ
2 � c2j m2n

¼
X1
n¼1

1

ðx2j þ T 2a n2Þ
2 � c2j T 2a n2

� 1
Ta

Z 1

0

dx

ðx2j þ x2Þ2 � c2j x2
; ð23Þ
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where x ¼ mn ¼ Tan and Ta ¼ 2p=�hb (temperature
in angular frequency units). Eq. (23) is readily in-
tegrated, giving

1

2icjfjTa

tan�1 x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2j � icjfj

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2j � icjfj

q
2
64

�
tan�1 x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2j þ icjfj

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2j þ icjfj

q
3
75

1

0

; ð24Þ

where Xj ¼ ðx2j � c2j=2Þ
1=2
. This expression van-

ishes at the lower limit, leaving

p
4icjfjTa

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2j � icjfj

q
0
B@ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2j þ icjfj
q

1
CA

¼ p
4icjfjx

2
j Ta
icj ¼

p
4fjx2j Ta

: ð25Þ

Reduction to such a simple form is greatly facili-
tated by the fact that ðX4j � c2j f

2
j Þ
1=2 ¼ x2j . When

expression (25) is used to evaluate the term of
Eq. (22) that is linear in t, we find

½gIIj ðtÞ�lin
t

�
4D2j cjfj
�hb

� p
4fjx2j Ta

¼ �
4D2j cj
8x2j

¼ �
xjcjd

2
j

4fj
: ð26Þ

This term will exactly cancel the real part of the
linear term in gIjðtÞ:

½gIjðtÞ�lin
t

�
D2j
/j

¼
x3j d

2
j

2fj
� 1
1
2
cj þ ifj

¼
xjd2j
2fj

1

2
cj

�
� ifj

�
: ð27Þ

The remaining sums in gIIj ðtÞ consist of a short-
lived damping factor and a constant.
In our numerical evaluation of the equivalent

expression (13) for gjðtÞ, we have found that the
real part of gjðtÞ is finite at large t and contains no
term linear in t, as shown in Fig. 1.
If we neglect gIIj ðtÞ the system response function

has the form

JðxÞ ¼ �i
Z 1

0

dt exp½ixt � gIjðtÞ�

¼ A
X1
n¼0

1

n!
ð�D2j=/

2
j Þ

n

�
Z 1

0

dt expf½ðix � n/j � ðD2j=/jÞ�tg;

ð28Þ
where A absorbs non-essential factors and the
summation comes from an expansion of the mid-
dle term of Eq. (20) in a Taylor series. The integral,
including a factor )i for convenience, has the low-
damping limit value

1

x þ i n/j þ
D2j
/j

 � !
cj�xj

1

x � nxj þ Sjxj þ icj
nþSj
2

 � :
ð29Þ

(We have used the fact that Sj ¼ D2j=x
2
j in this

limit.) Therefore, under these conditions the pre-
dicted partial width of the ZPL (n ¼ 0) is 2Sjcj.
Furthermore, this width is directly traceable to the
linear term of (20) via the last term in the square
brackets in Eq. (28). This implies that in the case of
low ohmic damping strength ðcj � xjÞ the low-
temperature width of lines in the MBO spectrum
would be 2Sjð2nj þ 1Þcj, where nj is the thermal
occupation number of oscillator j, and therefore
approach a finite value 2Sjcj as T ! 0 [14].However

Fig. 1. Comparison of the real part of the line shape function

gjðtÞ obtained analytically by truncating the correlation func-
tion (upper curve) and numerically (lower curve). The param-

eters used in each case cj ¼ 3 cm�1, xj ¼ 25 cm�1, Sj ¼ 1:8, and
T ¼ 0:01 K.
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once the Matsubara terms are included this width
vanishes.
Fig. 1 shows a comparison of the function gIjðtÞ,

Eq. (20), with a direct numerical evaluation of g0jðtÞ
from the real part of Eq. (13). The large secular
increase in gIjðtÞ is responsible for the excess width.
The imaginary part g00j ðtÞ is reproduced rather
precisely by numerical calculations.

4. Lineshapes for ohmic and non-ohmic damping

profiles

To model damping strengths with spectral
structure, we adopt the form

cjsðxÞ ¼ cj0 � xs � expð�x=xDÞ; ð30Þ

which gives a maximal broadening of the primary
oscillator structure for sidebands that are dis-

placed by an amount sxD from the zero point line.
The temperature dependence of the MBO ZPL
and nearby lines is studied by applying the nu-
merical method employed by Zhao and Knox [50],
which consists of trapezoidal integration to obtain
the functions leading up to the absorption line
shape. After appropriate parameters and a func-
tional form of cjðxÞ is chosen, C00

j ðxÞ is obtained
from Eq. (7). The grid of x values for the subse-
quent integration is checked by testing the nu-
merical value of the integral

kj ¼
1

p

Z 1

0

dx
C00

j ðxÞ
x

; ð31Þ

gjðtÞ is then obtained from Eq. (13), and finally
rBOðxÞ is calculated from Eq. (11). The time inte-
gration grid is checked by varying tmax (the alias of
infinity), and the number nt of grid points, which is
typically 20,000 or 40,000 for tmax ¼ 200 ps. The

Fig. 2. Narrowing of the zero phonon line (ZPL) with decreasing temperature in a multimode Brownian oscillator (BO) model ab-

sorption spectrum in the low-ohmic-damping limit. Parameters are cj ¼ 3 cm�1, xj ¼ 25 cm�1, and Sj ¼ 1:8. The four temperatures
correspond to 0.07, 0.21, 0.70, and 2:1 cm�1. Spectra are scaled to unity at maximum. The original relative peak heights were

12.55:6.78:2.55:1. Energy is measured relative to the 0–0 transition energy, and no self-energy corrections have been made. Oscillations

in the T ¼ 0:1 and 0.3 K cases are numerical artifacts imposed by the Fourier transform time range.
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final integral being a Fourier transform, a limiting
accuracy of � nt=tmax is placed on the frequency
(energy) dependence of the result. In order to re-
mind the reader of this limitation, we have not
smoothed any resulting spurious oscillations. In
the following examples, all frequencies and ener-
gies are expressed as wavenumbers and all spectra
are plotted on a scale whose zero corresponds to
�hx0eg.
Fig. 2 shows spectra for an ohmic damping of

cj ¼ 3 cm�1 and Sj ¼ 1:8, illustrating the fact that
the ZPL has a width much narrower than
2Sjcj ¼ 10:8 cm�1. There is a clear asymmetry of
the ZPL arising from the lack of occupied bath
modes at low temperature. Phonon absorption
processes are impossible and hence a sharply
dropping low-energy profile results on the ZPL.
Conversely, bath phonon emission processes can
occur and the high-energy profile is not sup-
pressed.

In Fig. 3(a) and in Fig. 5 the ZPL width is seen
to rise essentially linearly with temperature. This
happens because the phonon occupation number
is the only variable or parameter determining the
width, under the white-noise conditions of ohmic
damping. Fig. 3(b) repeats (a) in log scale, mag-
nifying the low-temperature portion. The effect of
the limited accuracy of the simplified Fourier
transform algorithm is clearly seen. It is also
manifested in the oscillations in Fig. 2 at 0.1 K,
where an attempt is being made to approximate a
near-delta function.
When ohmic damping is replaced by Eq. (30),

the linewidth picture changes substantially. First
we illustrate the situation at T ¼ 30 K, Fig. 4. As
the parameter s increases from 0.25 to 0.75, the
ZPL narrows greatly. This can be attributed to
the fact that the coupling to bath modes in the
vicinity of zero frequency is increasingly sup-
pressed as s rises. The n ¼ �1 lines at x ¼
�25 cm�1 remain at a fairly constant width be-

Fig. 3. (a) Computed ZPL width for the case cj ¼ 3 cm�1,

xj ¼ 25 cm�1, and Sj ¼ 1:8. The width is clearly approaching
zero with temperature. (b) Log plot of the data, showing the

limit imposed by numerical methods at T < 0:1 cm�1.

Fig. 4. Effect of damping function on spectra at 30 K for ohmic

damping and non-ohmic damping of the form cjðxÞ ¼
cjsx

s expð�x=xDÞ for s ¼ 0:25, 0.50, and 0.75. Frequency pa-
rameters are xD ¼ x ¼ 25 cm�1. In these examples, Sj ¼ 0:5.
The damping strength cjs has been chosen in each non-ohmic
case to make cjðxjÞ ¼ 3 cm�1, which is the value of the constant

cj in the ohmic case. This maintains a fairly constant n ¼ 1
linewidth as s varies. Curves are displaced vertically to enable

comparison of line shapes, but the vertical scale is otherwise the

same for all four cases. As s increases, the lowest-frequency

damping cjðx � 0Þ is better suppressed and a sharp line in-
creasingly dominates the 0–0 transition region. Again energy is

measured relative to the 0–0 transition energy, and no self-

energy corrections have been made.
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cause we have deliberately chosen the damping
function (30) to have the value 3 cm�1 at
x ¼ 25 cm�1 for each value of s.
Fig. 5 shows the temperature dependence of the

widths of the zero phonon and n ¼ 1 lines. The
depression of the ZPL width at both s ¼ 0:25 and
s ¼ 0:50 is clear, although in the s ¼ 0:25 case the
ZPL width depression is restricted to lower tem-
peratures. In that case, ðs ¼ 0:25Þ the damping
maximizes at 6:25 cm�1, and its value at that en-
ergy is relatively large ð4:49 cm�1Þ because of the
requirement that cjsð25Þ ¼ 3. The n ¼ 1 linewidth
at low temperature is independent of s because of
this same arbitrary requirement. Note the rather
good linearity of the ZPL width in the ohmic case.
The numerical calculations show that here the
term in g0jðtÞ that is linear in time is also linear in
temperature in the temperature range shown, a
fact which might be directly related to the linearity
in width.

The parameter s that characterizes non-ohmic
damping in our calculations (see Eq. (30)) should
be equal to or greater than 2 in practice. A value
s ¼ 2 corresponds to a Debye density of states for
low frequency bath modes. A primary oscillator is
likely to be librational in nature. Thus, it should
couple weakly to low frequency acoustic modes of
the bath which would increase s above 2. Addi-
tional calculations (not shown) were performed
with larger values of s, particularly 2 and 4. All
linewidths were completely suppressed at low
temperatures and the numerical calculation be-
came unstable as T was increased.

5. Concluding remarks

In this paper we analyze the MBO lineshape in
the low temperature limit. On physical grounds we
expect the ZPL lineshape to become asymmetric as
T ! 0 with a sharp rise in the low frequency edge
since the bath can only accept, rather than pro-
vide, energy in this case. We further expect the
linewidth to vanish at T ¼ 0 where the bath fluc-
tuations are suppressed. Our calculations demon-
strate these trends analytically in the case of ohmic
damping and numerically for certain representa-
tive non-ohmic spectral densities. The variation of
the linewidth with temperature depends strongly
on the precise form of the spectral density, as il-
lustrated in our calculations for the non-ohmic
dissipation model. For ohmic dissipation, the
vanishing of the linewidth involves a delicate
cancellation of terms involving the series of
Matsubara frequencies. The Matsubara expansion
is very useful at high temperatures where it con-
verges rapidly. At low temperatures, the entire
series (Eq. (15)) needs to be resummed and it may
be better to abandon the expansion altogether and
directly carry out the Fourier expansion (Eq. (13))
numerically. Since the MBO linewidth vanishes at
T ¼ 0, we expect lifetime broadening to take over
and dominate the lineshape. However, at finite and
low temperatures the MBO model may make a
significant contribution to the linewidth, in addi-
tion to other electronic dephasing mechanisms
such as coupling to a bath made of two level sys-
tems in glasses.

Fig. 5. Temperature dependences of the widths of the ZPL and

the n ¼ 1 line for ohmic damping and non-ohmic damping of
the form cjðxÞ ¼ cjsx

s expð�x=xDÞ for s ¼ 0:25 and 0.50.
Other parameters are chosen as described in the caption of

Fig. 4 and with the same values.
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