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The effective exciton coherence length in molecular aggregates is calculated using a nonlocal, real-space
representation of the linear optical response. Simulations of polarized absorption and linear dichroism
demonstrate that the spectra depend on local properties of the molecular aggregate segment where the exciton
coherence is delocalized. This allows us to limit the calculations to small segments of a large aggregate,
avoiding the complexity of computing long-range coherences.

I. Introduction

The exciton states in a perfect crystal represent standing
waves of electronic excitation delocalized over the entire
crystal1,2 with infinitely long coherence lengths. However, this
infinite coherence length has little physical significance. In any
realistic system such as molecular aggregates, proteins, and
polypeptides3 we do not expect distant regions to interact
coherently. Static disorder and dynamic environmental and
structural fluctuations destroy correlations between the phases
of distant molecular sites. Typical electronic and vibrational
properties are therefore local and should be described by wave
packets of excition states.4 An intuitive physical picture should
then be based on properties of these wave packets rather than
on individual exciton eigenstates, which merely provide a
convenient basis set for representing the wave packets. Since
different spectroscopic techniques prepare different types of
wave packets, an excitonically coupled system can display a
variety of coherence lengths. This issue was addressed recently
for photosynthetic antenna complexes and chromophore ag-
gregates, where the coherence lengths associated with CD,
cooperative spontaneous emission (superradiance), and pump-
probe spectroscopy were defined and calculated.5-13

The coherence length is crucial for theoretical modeling. If
the coherence lengths are very short, any description based on
the highly delocalized exciton basis states does not provide an
intuitive physical insight, since the long-range coherences of
individual exciton states will cancel out once the optical
properties are calculated. A local (real space) description of the
exciton states is then more adequate for computing exciton
coherence lengths. Such description, as proposed below, makes
it possible to perform calculations on small segments of
molecular aggregates and avoid the complexities of computing
unnecessarily long-range coherences.

The presence of two or more molecules, with no parallel
transition dipole moments, in a unit cell of an ideal molecular
crystal or in repeat unit (RU) of an ideal molecular aggregate
causes the Davydov splitting of the absorption exciton band.2

In this case, each exciton band can be characterized by its central

(resonance) energy and polarization associated with the orienta-
tions of the exciton transition dipoles. For instance, absorption
spectra from a molecular crystal or ideal aggregate with two
identical nonparallel chromophores in a RU show two perpen-
dicularly polarized absorption bands.2 A more interesting
example is an infinite molecular aggregate with a helical
geometry, whose excitonic absorption spectrum has two bands,
polarized parallel and perpendicular to the helical axis.14 An
important example of such a helical chromophore is theR-helix
structure in proteins and polypeptides.15 Excitonic interactions
have a profound influence on the linear and nonlinear optical
response in the UV14,16-23 and the IR.24-28

The Davydov splitting is closely related to the translational
symmetry of ideal crystals and is obtained in long molecular
aggregates by imposing artificial periodic boundary conditions.
If the coherence length associated with the optically produced
exciton is short, the polarized spectra should be insensitive to
translational symmetry and should rather reflect the local
geometry within the exciton coherence length. This can be
detected using polarized spectroscopic techniques such as linear
dichroism (LD).

This article develops a local real-space picture of optical
response of excitons. Our analysis applies to a broad class of
dynamical processes involving the electronic excitation in
molecular crystals2,29,30 and nanostructures4-13,28 as well as
vibrational response due to interacting localized vibrations,24-27,31

which can be described by the Frenkel model; we shall refer to
these various types of molecular assemblies as molecular
aggregates.

In section II we focus on the coherence lengths associated
with polarized linear absorption measurements by introducing
the real space picture for the linear Frenkel excitonic response
and the corresponding inverse participation ratio (IPR). In
section III we present numerical simulations for a model
aggregate possessing helical geometry. The linear dichroism
ratio and effective polarization angle of exciton wave packets
are introduced and calculated in section IV. In section V we
discuss our results and conclude.

II. Exciton Coherence Length

The ground state|0〉 of a molecular aggregate with N units
can be written as a direct product
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where|l0〉 denotes the ground state of thelth unit. TheN locally
excited configurations|n〉, whereby only a single RUn is in
the excited state|nf〉 form the basis for the single exciton
manifold

where n ) 1, 2, ...N. These |n〉 locally excited states are
degenerate for the aggregate consisting of identical RU.29,32

The excitonic Hamiltonian of the aggregate has the following
matrix elements in the local basis set (eq 2)

where εn is the first excited-state energy of thenth unit,
renormalized by the Coulombic interaction with the others in
their ground states.Jnm represents the resonance Coulombic
interaction between different locally excited states|m〉 and |n〉
and is responsible for exciton splitting.Jnm is usually calculated
using the dipole-dipole approximation2,25,33-36

where dn and dm are the dipole transition moments of the
individual n andm RU, andRnm is the vector connecting the
centers of their transition moments. However, the Frenkel
exciton model can be applied in a more general case provided
charge transfer between adjacent RUs is negligible. In this case,
Jnm can be calculated by a summation of electrostatic charge
pair interaction terms. This requires knowledge of the charge
distribution within the chromophores forming the aggregates
RU which can be obtained from quantum chemistry calcula-
tions.27

The stationary (exciton) eigenstates|k〉, (k ) 1,2, ..., N) of
the Hamiltonian [eq 3] with energiesωk are linear combinations
of the locally excited states|n〉.2,28,31

We consider the linear absorption spectrum

whereS(ω - ωk) is a line shape function, centered atωk, and
normalized to a unit area. The width of each exciton absorption
line is determined by the dephasing rateσk. Mk ) (Mk‚ê), where
M k is the exciton transition dipole moment andê is a unit vector
along the polarization direction of the light. The transition
dipoles are

wheredn is the electronic transition dipole of thenth RU and
ckn is the kth exciton state expansion coefficient [eq 5].
Substituting eq 7 into eq 6 we obtain for the parallel perpen-
dicular and depolarized absorption components

where

and the polarization prefactors areúnm
| ) (dnê|)(dmê|), únm

⊥ )
(dnê⊥)(dmê⊥), andúnm

d ) 1/3(dn
x dm

x + dn
y dm

y + dn
z dm

z ). Parallelê|

and perpendicularê⊥ polarization components are defined with
respect to the aggregate axis.

Using eqs 8 and 9 the linear absorption is directly related to
the exciton coherence length at energyω, determined by the
variation ofRnm

a (ω) with n-m. The effective coherence length
can be defined by the inverse participation ratio (IPR) associated
with Rnm

a (ω)10,37,38 [Equation 12 in ref 10 forLf can be
obtained be substitutingRa

nm with the exciton Green’s function
absolute value|Gnm|. In this caseLf spectral distribution with
Lorentzian function forGnm has a width two times smaller than
that with Rnm ) Im(Gnm). Equation 12 in ref 10 missed aGnm

factor in the numerator. Here we give the correct definition,
which was used in the calculations reported in ref 10.]

To determine the variation range for the IPR and illustrate
its physical significance we consider the following limiting
cases.

Case 1.Narrow line width,σk , |ωk-ωk′|, for all k, k′ )
1,...,N. In this case the optical excitation atω ) ωk can select
only a single exciton state corresponding to the following not
vanishing term in the sum of eq 9

where we substituteS(0) ) 1/σk for the normalized line shape.
The substitution of eq 11 into eq 8 shows that the exciton
transitions are well resolved. Normalization of the exciton wave
functions givesckn(ω) ∝ 1/xN. Thus,Rnm

a (ω) scales asRnm
a (ω)

∝ 1/N and Lf
a ) N. This reflects a uniform (delocalized)

distribution of the excitation over the entire aggregate.
Case 2.Broad line width,σk . |ωk-ωk′|. The exciton bands

overlap and we get

Rnm
a (ω) is now independent ofN and scales asRnm

a (ω) ∝ 1; eq
10 givesLf

a ) 1, indicating that the effective coherence length
is equal to unity. This represents the complete localization of
the electronic excitation on a single RU. For intermediate values
of σk, Lf

a (ω) varies between 1 andN, providing a precise
measure of the relevant exciton size at frequencyω. In the next
section we calculateLf numerically for a specific model of the
aggregate geometry.

III. Model Calculations of the Exciton Coherence Length

We consider an aggregate withN ) 100 RU resembling the
R helix of protein with 3.6 RU per turn. The helix has a pitch

|0〉 ) ∏
l)1

N

|l0〉 (1)

|n〉 ) |nf〉∏
l*n

N

|l0〉 (2)

hnm ≡ 〈n|H|m〉 ) εnδnm + Jnm (3)

Jnm ) (dndm)Rnm
-3 - 3(dnRnm)(dmRnm)Rnm

-5 (4)

|k〉 ) ∑
n)1

N

ckn|n〉 (5)

A(ω) ) ∑
k

|Mk|2S(ω - ωk) (6)
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N

ckndn (7)

Aj(ω) ) ∑
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Rnm
j (ω) (j ) ||, ⊥, d) (8)
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j (ω) ) únm
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cknckm
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Lf
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(∑
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a
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of ∼5.4 Å and the C′ carbon atoms lie on a cylindrical surface
with a radius of 1.6 Å from the helix axis. Each peptide plane
is inclined by∼19° relative to the helix axis, and the angle
between a CdO bond and the helix axis is∼22°. Transition
momentsdn are oriented at-40° to the carbonyl bond (positive
angles are measured toward the N atom of amide group).21 The
helix axis occurs along the (0Z)-axis of our coordinate system,
and each RU has a transition dipole momentdn forming angle
of 54.3° with the helical axis. The resonance dipole-dipole
Coulombic energies for four closest RU are calculated using
eq 4 and set toJn,n+1 ) 650 cm-1 (given an oscillator strength
of 0.198 equal to that of NMA21), Jn,n+2 ) -278 cm-1, Jn,n+3

) - 394 cm-1, andJn,n+4 ) 58 cm-1, whereasn+5 and higher
terms are neglected.

The exciton energies,ωk, and wave functions,ckn, are
evaluated by direct diagonalization of the Hamiltonian (eq 3).
We note that the calculation of the exciton states in a helical
aggregate is equivalent to a 1D molecular chain with four
interacting nearest neighbors.

In the following, we assume a Gaussian line shapeS(ω -
ωk) ) 1/(x2πσk) exp[-{(ω - ωk)2}/{2σk

2}] in eqs 6 and 9,
where ωk is the exciton energy, andσk is the dephasing
rate, set to be identical (σ ) σk) for all k. Three models with
(A) weak σ ) 5 cm-1, (B) intermediateσ ) 100 cm-1, and
(C) strongσ ) 3000 cm-1 dephasing rates were used. The
helices in the ensemble are oriented along the (0Z) direction,
and the polarization prefactors in eq 9 areúnm

| ) dn
z dm

z ,

únm
⊥ ) 1/2(dn

x dm
x + dn

y dm
y ). The coefficient 1/2 in theú⊥ comes

from averaging over the rotations of the helices around their
axis.

The absorption spectra calculated using eqs 8 and 9 are shown
in Figure 1. In all calculations we set the origin of the exciton
energy scale at the center of the depolarized absorption band in
model (C) (the lowest panel in Figure 1 (C)). The dephasing
line width in model (A) is smaller than the exciton splitting.
Thus, all exciton transitions are well resolved. There is one
strong transition polarized along the (0Z)-axis blue shifted from
the origin by∆ω ) 75 cm-1 and three perpendicularly polarized
transitions displaced from the absorption center by∆ω ) -127
cm-1, ∆ω ) -9 cm-1 and ∆ω ) 110 cm-1. The parallel
spectrum A| is blue shifted compared to the strongest perpen-
dicular one (A⊥) by 84 cm-1. These two components represent
the parallel and perpendicularly polarized lines which could be
observed in an ideal (infinite) helix.14 The other two strong
components resolved in the perpendicular spectrum must vanish
in the case of the infinite aggregate. Further increase of the
dephasing rate in models (B) and (C) results in the overlap
between the parallel and the perpendicular excitonic transitions.
They are not resolved in the depolarized spectra in the lowest
row of Figure 1.

As shown in section II, for excitation at frequencyω the
exciton state coherence length can be estimated as the FWHM
εa of Rnm

a (a ) ||, ⊥, d) plotted vsm-n, which must depend on
the value of the line widthσ. Figure 2 displaysRnm

a vs m-n.

Figure 1. Absorption spectra (solid lines) and linear dichroism (eq 13) (dotted lines) of model helical aggregate consisting ofN ) 100 RU,
calculated for models (A)-(C). A| and A⊥ are the absorption spectra for light polarized parallel and perpendicular to the oriented helixes, respectively,
andAd are depolarized absorption spectra. The origin of the exciton energies is shifted to the center of the depolarized absorption band in (C). (This
convention is used though out this paper.)
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Calculations ofRnm
| andRnm

⊥ , Rnm
d in Figure 2A are performed

for the strongest exciton transitions that are shifted from the
absorption band center by∆ω ) 75 cm-1 and∆ω ) -9 cm-1,
respectively. The FWHM for this model,ε| ) 70, ε⊥ ) 100,
andεd ) 100, indicates that the exciton is delocalized over the
aggregate. An increase in the exciton line width, results in a
gradual decrease in the value of the FWHM as shown in Figures
2B and C. For Figure 2B it becomesε| ≈ ε⊥ ≈ εd ≈ 20 at the
center of the parallel, perpendicular, and depolarized absorption
bands respectively, and for model (C)ε| ) ε⊥ ) εd ) 1,
indicating that the electronic excitation dephases within 20 (B)
and 1 (C) RU.

The IPR, depicting the exciton coherence length as the
function of the exciton energy, is displayed in Figure 3. For
model (A), Lf

a(ω) is peaked at the well resolved exciton
energies in the absorption spectra (Figure 1). The two main
exciton transitions (∆ω ) 75 cm-1 and∆ω ) -9 cm-1) are
delocalized in the polarized spectra, havingLf

| ) 71 andLf
⊥ )

39. The contribution of these transitions to the depolarized
absorption spectrum is associated with smaller coherence length
Lf

d ) 25 andLf
d ) 27, respectively. As the dephasing rateσ is

increased in models (B) and (C), the exciton lines overlap, giving
rise to smooth behavior ofLf

a(ω). To demonstrate thatLf
a(ω) is

closely correlated with the FWHM ofRnm, we compare the
values of Lf

a(ω), given in Figure 3 at the center of each
corresponding exciton absorption band, to the width of the
associated values ofεa given above. We find the following

values of the IPR: (B)Lf
| ) 16, Lf

⊥ ) 35, Lf
d ) 29, and (C)Lf

|

) Lf
⊥ ) Lf

d ) 1.2. These are close to the correspondingεa

values given earlier.
We expect that for a finite exciton coherence length, the

absorption spectrum as well as the IPR can be computed using
a small segment of an aggregate. This is illustrated in Figure 4,
where we show the dependence ofLf

a(ω) as well as line shape
of A|, A⊥, and Ad on the number of RU for the line width
adopted in model (C). Panels 1-3 show the IPRLf

a(ω) for
aggregates with different lengthsN ) 5, 10, 15, 20, 25, 100.
As N increases, the maxima of the IPR converge to a maximum
value of∼1.2. The difference between the maximum values of
Lf

a(ω) for N ) 5, 10, 15, 20, 25, andLf
a(ω) for N ) 100 is

shown in panels 4-6. For N ) 25 this difference approaches
zero and does not change asN grows. In panels 7-9 we plot
the difference between absorption line shape ofN ) 100 RU
aggregate and absorption line shapes of the smaller size (N )
5, 10, 15, 20, 25) aggregates. All absorption lines were
normalized to have the same peak value forN ) 25, the
variation in the absorption line shape is of the order of 1%.
This suggests that (ω) and the absorption line shape do not
depend on the physical size of the aggregate (providedN > 25
for the adopted parameters).

We conclude that exciton coherence within the modelR-helix
is delocalized over a small number chromophores for models
(B) and (C). TheN ) 100 aggregate model is suitable to
reproduce delocalized dynamics in the case of the narrow

Figure 2. Delocalization of quantitiesRnm
| Rnm

⊥ , andRnm
d vs n-m in a helical aggregate consisting ofN ) 100 RU calculated for models (A)-(C).

(A) Rnm
| is calculated at∆ω ) 75 cm-1, as well asRnm

⊥ and Rnm
d at ∆ω ) -9 cm-1. (B) Rnm

| Rnm
⊥ and Rnm

d are calculated at the centers of the
absorption bands A|, A⊥, and Ad in Figure 1B, taking place at∆ω ) 78 cm-1, ∆ω ) -7 cm-1, and∆ω ) 38 cm-1, respectively. (C)∆ω ) 0 cm-1

for all Rnm
| Rnm

⊥ andRnm
d .
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absorption line width; however, in addition to the two parallel
and perpendicular components predicted for an infinite helix,
we see additional well resolved lines in the perpendicular
polarized spectrum, resulting from the breakdown of the periodic
boundary conditions. The increased overlap between the exciton
bands with different polarization in models (B) and (C) leads
to a single absorption band with an average polarization. In the
next section we investigate this by determining the value of
the linear dichroism and the effective polarization angle of the
transition dipole.

IV. Polarization of Absorption Spectrum and Exciton
Coherence Length

The linear dichroism (LD) ratio,d is defined as

where d assumes the values-1 e d e 1. The value ofd
indicates whether the parallel or the perpendicular component
dominates the absorption spectrum measured with depolarized
light.

The LD is plotted for models (A)-(C) of N ) 100, together
with the depolarized absorption in Figure 1. For model (A) the
LD ratio for the exciton lines at∆ω ) -9 cm-1 and∆ω ) 75
cm-1 is d ) -1 andd ) 1, indicating that these components
are polarized perpendicular and parallel to the helical axis,
respectively. The other two components, well resolved in the

perpendicularly polarized spectrum at∆ω ) -127 cm-1, and
∆ω ) 110 cm-1, ared ) -0.97 andd ) -0.93, respectively,
which are slightly higher than-1, indicating that these
components result from the aggregate finite size. In fact, weak,
but still resolved counterparts of these peaks are seen in the
upper panel of Figure 1A.

The increased line width [models (B) and (C)] corresponds
to stronger overlap between the parallel and perpendicular
spectral lines, resulting in the reduction of the range ford to
the intervals of [-0.93, 0.4] and [-0.05, 0.06], respectively. If
the broadening and the splitting are of the same order of
magnitude as in model (B), the centers of the parallel and
perpendicular bands have small offset and this immediately
shows up in the LD spectrum as wide variation of the dichroism
ratio. Further increase of the dephasing rate in (C) suggests that
in the case of large broadening, specific parallel or perpendicular
polarization may not be assigned to the exciton wave packets.

The average polarization of the exciton absorption band, with
respect to the orientation of the parallel component, at frequency
ω can be defined by the angleθ(ω)

whereθk is the angle between the polarization direction of the

Figure 3. Frequency dependent exciton inverse participation ratio (IPR)Lf
| Lf

⊥ and Lf
d due to optical excitation by light polarized parallel,

perpendicular to the (0Z)-axis and by depolarized light, respectively, calculated for models (A)-(C) of a helical aggregate consisting ofN ) 100
RU.

d ≡ A| - A⊥

A| + A⊥
(13)

cos2[θ(∆ω)] )

∑
k

cos2θk|Mk|2S(∆ω - ωk)

∑
k

|Mk|2S(∆ω - ωk)

(14)
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parallel component of the narrow exciton band and each of the
Mk transition moments.

The calculated average polarizations for models (A)-(C) are
shown in Figure 5. For model (A), eq 14 givesθ(ωk) ) θk. For
the exciton transition∆ω ) -9 cm-1 and∆ω ) 75 cm-1 the
average angle isθ ) 90° andθ ) 3°, respectively. A decrease
in the exciton coherence length due to the increasing value of
σ in models (B) and (C) dramatically decreases the range ofθ.
For model (B) 45.6° e θ(∆ω) e 66.7°, and for model (C) 53.9°
e θ e 54.4°, where-σ e ∆ω e σ. The value ofθ at the
center of the depolarized exciton absorption band for models

(B) centered at∆ω ) 38 cm-1 is 50.0°, which is close to the
RU polarization angle. For model (C) where the excitation is
localized on a single RU the averaged polarization angle at the
center of the absorption band (∆ω ) 0 cm-1) is exactly, 54.3°,
which is an RU polarization angle.

V. Discussion and Conclusions

The coherence length may be alternatively calculated using
a kinematic view based on exciton wave packets and mean free
paths. The optical line shapes are broadened either by homo-

Figure 4. (1-3) Exciton inverse participation ratio (IPR)Lf
| Lf

⊥ andLf
d, calculated for a helical aggregate withN ) 5, 10, 15, 20, 25, 100 RU.

(4-6) Difference between the maximum values ofLf
| Lf

⊥ andLf
d for N ) 5, 10, 15, 20, 25, and 100 chromophores (Figure 3C) of a helical aggregate.

(7-9) Difference spectra of A|, A⊥, and Ad betweenN ) 100 RU (Figure 1C) andN ) 5, 10, 15, 20, 25 RU helical aggregates. The dephasing
model (C) is adopted in this plot.

Figure 5. Frequency dependence ofθ, the average angle between the excitonic transition dipole and (0Z)-axis for models (A)-(C) of a helical
aggregate consisting ofN ) 100 RU.
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geneous broadening, due, for example, to exciton-phonon
coupling or by inhomogeneous broadening, representing, for
example, the static disorder of conformations. The incident
radiation of frequencyω, therefore, excites several exciton states
lying within the bandwidth 2σ and creates a wave packet with
the momentum spread of∆k, (∆k ) 1,..., N-1, whereN is
number of RU). The exciton coherence length would be
inversely related to this spread,Lf ≡ N/∆k, reflecting the
momentum-position uncertainty principle. Since the exciton
energy depends on its momentumωk ) ω(2πk/N) (k ) 0, (
1,..., ( (N-1)/2, N/2), we find that 2σ∼∆ω ) (∂ω(2πk/N)/
∂k)∆k. According to this

The dispersion relation30 for one-dimensional excitons in the
vicinity of an exciton band-edge (k/N∼0) is ω ) 4Jπ2k2/N2, in
the 1D chain with the nearest neighbor couplingJ. Substituting
this in eq 15 gives an exciton coherence length ofLf ≡ 4π2Jk/
Nσ. Equation 15 can be interpreted as follows: The exciton
mean free path is defined asLf ) uτ, whereu is the exciton
wave packet velocity andτ is the exciton lifetime. Noting that
the exciton group velocity isu ) ∂ω(2πk/N)/∂(2πk/N) andσ )
π/τ we obtain eq 15. Equation 15 and our real space approaches
lead to identical estimates of the coherence length but provide
different physical pictures. Equation 15 is commonly used in
molecular crystals, while the approach employed in this paper
uses a small local (molecular) basis which is more suitable for
molecular aggregates.

In conclusion, using the real space representation for the
polarized and depolarized absorption spectra, we have intro-
duced the associated exciton coherence length, which can be
related to the exciton mean free path. Our approach, which can
be extended to nonlinear coherent techniques, naturally accounts
for the specific details of the linear absorption such as the line
shape function and the oscillator strengths of the relevant exciton
transitions. If the exciton coherence length is small, the
absorption spectrum can be computed using a short segment of
the aggregate. Consequently, the exciton response reflects local
properties such as coupling energies and orientation of the
transition dipoles within the molecular aggregate segment where
the excitation is delocalized. By comparing the polarization of
the exciton bands in an aggregate with the absorption of an
ideal aggregate with infinite exciton coherence length as well
as with the polarization of the single RU absorption band, one
can estimate the exciton localization.
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