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Disorder and funneling effects on exciton migration in treelike dendrimers
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The center-bound excitonic diffusion on dendrimers subjected to several types of nonhomogeneous funnel-
ing potentials is considered. We first study the mean first passage(RHRET) for diffusion in a linear
potential with different types of correlated and uncorrelated random perturbations. Increasing the funneling
force, there is a transition from a phase in which the MFPT grows exponentially with the number of genera-
tionsg to one in which it does so linearly. Overall the disorder slows down the diffusion, but the effect is much
more pronounced in the exponential compared to the linear phase. When the disorder gives rise to uncorrelated
random forces there is, in addition, a transition as the temperatsriwwered. This is a transition from a high-

T regime in which all paths contribute to the MFPT to a Idwegime in which only a few of them do. We

further explore the funneling within a realistic nonlinear potential for extended dendrimers in which the
dependence of the lowest excitonic energy level on the segment length was derived using the time-dependent
Hatree-Fock approximation. Under this potential the MFPT grows initially linearly githut crosses over,

beyond a molecular-specific ariddependent optimal size, to an exponential increase. Finally we consider
geometrical disorder in the form of a small concentration of long connections as smiak world model.

Beyond a critical concentration of connections the MFPT decreases significantly and it changes to a power law
or to a logarithmic scaling witly, depending on the strength of the funneling force.
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[. INTRODUCTION energies are fixed. In reality interaction with the solvent and
intramolecular vibrations induce sloéguenched fluctua-
Extended dendrimer&ig. 1) are nanoscale Cayley-tree- tions in the energy(Nonlinear[7] and single molecul¢8]
like supermolecules that exhibit an energy gradient from thépectroscopy typically show nanosecond to millisecond bath
periphery to the center of the molecule. Their unique hierarmotions whereas the exciton trapping times are typically in
chical self-similar structure can be described by three ingrethe picosecond rand®,9)). S
dients: the basic building blodte.g., phenyl acetylene linear  On @ more fundamental level, diffusion in disordered me-
segment, the branching of the end points, and the number ofdia is an actlve_fleld of statistical physi¢40]. Dlﬁerent
generations. The number of basic elements grows exponefRms of correlations among energy levels were considered
tially with the number of generatiorgy and the number of and nontrivial behaviors, such as the difference between the

elements at the periphery of the molecule is comparable td/Pical and the average diffusion, anomalous scaling, and
the number of bulk elements. others, were found in some cases. Independently, theoretical
Recent theoretical and experimental studies4] have investigations of dynamics on Cayley trew Bethe lat-
shown that the electronic excitations of these dendrimers ardices lead to many interesting results. Exact solutions exist
spatially localized within each segment. For these dendrimfor some problems and bear important consequences. Di-
ers, lengthening of the linear tree branches towards the cofé€cted polymer on Cayley trees is one of the interesting ex-
leads to a hierarchy of localization lengths. Hence the exci@Mples where a spin-glass-like transition was preditidd
ton energy decreases with generation from the periphery t8S shown below, the problem of diffusion on a disordered
the core. Thignergy funnetombined with the large number Cayley tree exhibits such a transition as well and thus has a
of absorbing elements at the periphery makes these dendrim-
ers potentially efficient single molecule antenna systgsihs
Excitons created upon optical excitation of the shortest linear
segments at the periphery diffuse through the intermediate
regions, finally reaching the core where an energy trap is
located. Excitation transfer proceeds via Coulomb interaction
and may be described by the Frenkel exciton model. Theo-
retical studieg 6] have focused on calculating the time it
takes for an exciton generated at the surface to reach th
core. This trapping time is a direct measure of the efficiency
of the antenna. Its dependence on the number of generatior I
g and the funneling driving force was calculated. o — O=
These studies, which were able to capture some importan* —4
features of excitonic diffusion on dendrimers, assumed that
all the tree branchemamely, the linear polymeric chainef FIG. 1. Extended phenylacetylene dendrimers with increasing
a given generation are identical. This implies that the excitonotal number of generations.
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TABLE I. The different dendrimer models considered in this work and the relations between them.

Dendrimer
LinearlPotential TDHF Potential
l l G l i Disorder Free Energetic Disorder
Disorder Energetic ];‘_)me dnc (Section IV) (Section IV)
Free Disorder isorder
(Section II) (Section IIT) (Section V) l
l Random Intergenerational ~ Random Intersegment
Intersegment Energy [Model (i")] Energy [Model (iii")]
Intergenerational
Random Energy Random Force ~ Random Energy Random Force
[Model (i)] [Model (ii)] [Model (iii)] [Model (iv)]
considerable theoretical significance. random connections between various sites to the usual tree

In a recent lettef12], we reported preliminary studies of structure. Thissmall world model was first introduced by
the effects of nonlinear dependence of the excitonic energWatts and Strogatizl 3] for Euclidean lattices.
and realistic quenched disorder on excitonic diffusion on  The organization of the paper is as follows. The mean first
Cayley-tree-like dendrimers. We further carried out analyticpassage linéMFPT) for random walk is reviewed in Sec. II.
investigations of diffusion on a disordered Cayley tree with ajn Sec. 11l we discuss diffusion on a random Cayley tree with
linear potential. Our findings can be summarized as followsy |inear potential. The effect of nonlinear potential on the
(i) Due to the nonlinear variation of the funneling poten- exciton migration is reported in Sec. IV. The small world
tial with the generation, an optimal generation numiefg) model is studied in Sec. V. Finally, we conclude in Sec. VI
was found beyond which the nonlinear potential drasticallywith a summary of our results.
diminishes the light-harvesting efficiency. Moreover, increas- A flow chart(Table |) of the different models discussed in

ing of the trapping time by the disordéby slowing down  this paper is given in Table I. The various models will be
the exciton diffusion will be more pronounced if the den- explained later.

drimer crosses this optimal size. Hence, for dendrimers
larger than the optimal size, even though the total photon
absorbance will increase due to the increase in the number of, R ANDOM WALKS AND THE MEAN FIRST PASSAGE

peripheral light absorbing sites, the slower excitonic migra- TIME (MFPT)
tion towards the active center will make the light-harvesting
antenna less effective. The MFPT is a faithful measure of the trapping efficiency

(i) We investigated the diffusion on a Cayley tree in thedefined as the average time it takes for an exciton to diffuse
presence of a linear potential and considered various types @fom the periphery to the core, where it gets trappad.
disorder, depending on the correlations among the energinother quantity of interest related to the MFPT is the mean
fluctuations. For a specific type of disord@ee modeliv)],  residence timéMRT), which is the average time spent on a
we found a dynamic phase transition to a highly disorderedite of the tregbranch of the dendrimgf14,15. Our theo-
phase where only a few paths dominate the exciton migraretical effort focused on calculating the MFPT and the MRT
tion. This resembles the equilibrium replica symmetry breakfor a continuous time random walk with exponential distri-
ing transition found in other random systelfesg., directed bution of waiting times, which gives a master equation for
polymers in random media the probabilityP,(t) of the exciton to be on site at timet.

The purpose of this paper is to elaborate on and extentf the energy depends only on n, the problem becomes effec-
the results reported in our previous study. We further reportively one dimensional foP,(t). The random walker on the
the numerical study of diffusion on a Cayley tree with anth site of the one-dimensional chain jumps to nearest sites
specific kind of geometric disorder obtained by adding a fewwith ratesR; (toward the reflecting poinandT; (toward the
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trap). The random walk is described by the master equation

[15]

dP(t)
—gr = AP(D), (1)

PHYSICAL REVIEW &5 021803

g-1
(9)= 2, tn )
g 1 g—2 m—2 1 m—1
:mz=l T_m—i_m=2 ;0 (?)J i+1 gl (10)

whereP(t) denotes the probability vector and hence the sur-

vival probability S(t) ==¢P,(t). A is the tridiagonal transi-
tion matrix. Written explicitly in terms of the ratd® and T,

Po(t)=T;P4(1),

P1(t)=T,P,(t)— (Ty+Ry)Py(t),

Pa()=Tns1Pns1()+Ry_1Pp_1(t)
_(Tn+ Rn) Pn(t) (1<n<g)7

Pg(t)=Ry-1Pg-1(T) = TgPg(1). 2
The trap @,) is not included in Eq(1), while reflecting
boundary conditions are imposedrat g.
The formal solution of Eq(1) is

P(t)=exp(—At)P(0), (3
where P(0) is the initial  condition. P(0)
=[0,0,0...,1,0,0,0...]" for an excitation that starts in the

nth generation. The MFPT is obtained by integrating the

survival probabilitiesP,(t) over time

w Y g - g
(g)= f S putdt=3, f P)=> t, (@
0 n=1 n=1J0 n=1

wheret, is the MRT for generatiom. Using the general
solution, Eq.(3) [15,16,

J ‘P(t)dt=f exp— ADP(0)dt=A"1P(0).  (5)
0 0
Hence the MRT at sita is given by

th= JO Pn<t)=$ A, 'P;(0). (6)

For an excitation that starts at the highgsriphery gen-

erationg, P;(0)=djq and the MRT is given by6]
= ! =1 7
tl_T_l’ n=1, (7
1 2
n:-l—_ 2 ( )J]I—,!;—l gjv 1<n$g! (8)
whereé,=
is given by

An explicit form of this equation is given in the Appen-
dix. Hereafter, we assunig,=1 and treat,, as independent
variables with ¢,=cexp—B[e(n+1)—e(n)]}, where c
+1 is the coordination number of the tree=2 in our
case, e(n) denotes the energy of theth segment, ang
=(KT) ! is the Boltzmann factor.

IIl. RANDOM WALK AND MFPT ON A DISORDERED
CAYLEY TREE WITH A LINEAR FUNNEL

The linear funneling potential assumes the form

‘€(n)=nF, (11)

F being the potential difference. For this mod&l= &,
=c exp(—BF). Equation(10) can be easily summedee the
Appendix for details to yield for the MFPT,

€1 9
(6-1)2 &1

+1
g(gz ) for ¢=1.

for

3 £+1

7(9)= (12

For largeg (>1), Eq. (12 shows three distinct behav-
iors.

(@ &>1: 7(g)~exp@ln é (exponential regime
(b) £&<1: 7(g)~g (linear regime.
(c) é=1: 7(g)~g? (diffusive behavioy.

Real dendrimers have energy fluctuations and quenched
(slow) energy disorder plays an important role in the energy
transfer dynamic§l7]. We have studied the effects of disor-
der on diffusion in the presence of a linear potential by con-
sidering four models of disorder denoted @y-(iv). These
will be described below.

A. Intergenerational quenched disorder

Assuming that energy fluctuations in the segment lengths
of the same generation are identical, the diffusion is mapped
into an effective one-dimensional problem. We denote this
type of disorder intergenerational.

Intergenerational energy fluctuations can be introduced in
two ways. In the absence of correlations, we obtain the stan-
dard diagonal disordefrandom-energymodel (i), where a

random parte,, is added to the linear energg(n). In the
second form of disordefrandom force modefii)], the en-
ergy differenced\e, [=e(n+1)—e(n)] are tr%\ted as ran-

dom variables with the positive average valu€s) to en-

R,/T,+1 is the detailed balance ratio. The MFPT sure funneling. Both models are one dimensional and the

MFPT is given by Eq(10).
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1. Model (i): Random intergenerational energy erage(e,)=0 ande(n) is the linear potential defined in Eq.
In this model, all segments in a given generation have théll). A similar random-energy model has been considered
same random energy. Generational energies are made raeviously[18] for a discrete random walk.

dom by adding a fluctuating paet, to the linear potential Hereafter() will denote the average over djgorder. We
define ,=exp(—Be,) and assuméz,~) and (%~ “) to be
e(n)=e(n)+e,. finite. The subscriph in (%) is omitted because the random

variables e,’s are independent and identically distributed.
e,'s are independent and identically distributed with the av-Hence

nén-1- - E261=cexd — Ble(n+1)—e(n)j]cex — B{e(n) —e(n—1)}]---cexd — B{e(3) —€(2)}]c

Xexd — p{e(2) —e(1)}] (13
= &olexd — Blen+1— €)1 (14
|
Averaging over realizations of disorder gives (g)~{1}+{& exd — B(e,— €1)]+1}
(€nénmr- - EE)=(m)(n 1)&. (15) T{éoexd —plesme) T+ -

+{¢o eXF[—,B(Gg— 6971)]"' 1}
=&olexp(— Bey)exp( Ber) +exp— Beg)exp Bey)
(r(@)~(m{n ") 70(9), (16) + o exp(— Beg)exp Bey 1)} +. (18)

Substituting this in Eq(10) gives for the MFPT

wherery(g) is the MFPT[see Eq(12)] for a linear potential
with no disorder.

Similar to the ordered case, the disorder-averaged MFPT —(g—1 “1y4q. 19
has three distinct regimes: lineagy< 1), quadratic € (r(@)=(g=Déo(m{n )+ g 19

=1), and exponentialgo>1) depending on the value . To calculate the fluctuation of the MFPT around its aver-

Even though they dependence and the critical poinfo(  age we need[ 7(g)]?). Taking the disorder average of the
=1) of the MFPT do not change by disorder, the mag”'“‘desquare of Eq(19)

of the disorder-averaged MFPT exceeds the corresponding
value for the ordered system. Disorder slows down the first
passage diffusion. If the fluctuating part of the energy

Averaging over realizations of disorder gives

(@)1 =(g-DE(MXn 3 +2(g—1) & n){n ")

e, has a Gaussian probability distributioRg(€)=(1/ g—
V27N )exp{ — €2/2\%}, then 20, )—(9—2)}§S<77>2<77_1>2
(g)~(m)(n ) 70(Q) +29(g—Déom{(n 1) +9% (20
=(exp(— Ben))(exp Ben)) To(Q) From the average MFPT E¢19),
=exp( B\?) 7o(9).

([7(@1?=(9-D*E(mX 0 1> +29(g— D éo(m)(n )
The average MFPT is thus increased by the disorder- +g? 21)
dependent factor of exp¢A?). '

So far we have considered only the average MFPT, but - .
due to disorder there will be fluctuations in the MFPT corre-.. Cpmblnlng Egs(20) and (21) we obtain for the fluctua-
. : L ) .~ .~ tion in the MFPT,

sponding to various realizations of disorder. The distribution
of MFPT due to disorder may be directly observed in single

2\ _ 2 2
molecule spectroscopj19]. We have calculated the rms ([A7(@)])=({7()])~([7(9)]
fluctuations in the MFPT{(A 7)) ={(7—(7))?) in different — g D+ 2(n) (7Y
regimes of( 7(g)).
In the linear regime §,<1), only the terms linear ig in —3(ny*(n 1. (22)

Eq. (10) are sufficient to yield the correct scalifig terms of
g) for both (7(g)) and(A7?). Considering only the linear Hence the relative fluctuation in the linear regimg, (
terms in Eq.(10), we get <1) will be given by
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At {((A7(g))%)*? “typical” diffusion time is calculated asr,,=exp(In 7(g)).
T:W Following [20], we define different scaling regimes of the
MFPT andry,, .
VISP ™ 2+ 2( )~ 1= 3( )% p~ )2} 12 (@) (¢£)<1: (7(g)) is linear ing. (£?) determines the fluc-
= L+ el m)7 D) tuation around the averagér®(g))~g? as long ag£%)<1
9 YA and hence the relative fluctuatiafv/7 goes to a constant
1 (similar to the random-energy cas&or (£?)>1, however,
~—. (23 (7%(g)) grows exponentially withg as the typical behavior
Vg starts to differ from the MFPT. §£)>1, (7(g)) is always
_ _ _ _ exponential ing. However, 7, varies depending on the
In the previous calculation, only the terms lineagimere  value of (In ¢) (whether less than, equal to, or greater than
kept in order to obtain the fluctuation around the average in).
the linear regime. The same calculation in the exponential (p) (£)>1,(In£)<0: The typical first passage time
regime, which will be considered next, only involves the[rtyp(g)=exp(ln 7(g))] does not follow the average expo-
term containing the highest product 6 in Eq. (10). Atthe  nential behavior, but rather grows like a power lgfwith
transition point{,=1, proceeding along the same lines for o =(5(In £)2)/2(In £). For a Gaussian probability distribu-
the linear case but keeping all the termsr6§) in EqQ. (10)  tion P¢(A€) the above formula yielda = 8202 (In &).
and puttingé,=1 at the end yield$7/r=1/\/g. The same (©) (¢)>1,(In&)=0 [21]: At this transition point(the

scaling was found above in the linear regime. ~ “Sinai point”), {7(g)) is exponential irg, but the more rep-
nated by the single term in expressid®). In this case (d) (£)>1,(In&>0: In this regime, both 7(g)) and

Tiyp(9) diverge exponentially withy.

T(g)l’fg,lfgfz' I

. _ B. Intersegment quenched disorder
The average MFPT is their(g) )= £3(7){ 1) for large

g, as expected. In this approximation([r(g)]?) ~ When energy fluctuations exist within the same genera-
zggg< 72)(n~2), and the fluctuation in the MFPT is tion (intersegment disordgrthe system can no longer be
mapped into a one-dimensional model and we have to use
Ar ()72 12 Egs. (4) and (6) to compute the MFPT for the actual tree
AT ANTAT ) 1 , (24) structure. The energy of sitg, is denotedey(n). The ran-
T [ {(m)n1)? dom variablest,’s become matricegP®, where f,q) rep-

resentggth point of thenth generation and thpth point of

which is a constant independent @f the (n+ 1)th generation(note thatc is not included in this
) _ _ definition) The detailed balance ratio becomed)
2. Model (ii): Random intergenerational force :eXF{—,BAqu(n)]ISEXFI—E(Ean—Eqn)], where €, is the

In this model energy differences between consecutivg|yctuating part of the energy angd=exp(—B[e(n+1)
generations are randomly distributed, but again all segments—;

in the same generation are identical. Fluctuations of the erlir;gré)h]i)n g(srgtii?:zZg)'l.'hznlz/lnllPrlls)}/(\;rc;npz\;vr('[eic?esfglrenaeséga;ttt?é
ergy levels are correlated and the energy differercesare : . ) ) . :

assumed to be identically distributed according to Somgerlpheral site § of the g-generational tree is

probability distributionP(Ae,). This diffusion model was (tYo(g))={1}+{(&F+ )+ 1} + {4+ 49

studied extensively in various contexts and was reviewed in

[22]. The effect of disorder is more pronounced in this case +ENE+ BN (EHEN L+ - -
compared with the random-energy model. The average 1111 12
MFPT is given by HENEC O )FEC O )
+EMAE () )HEN ()N
_ (6)9-1 9 (25 111 i 1,2 2
<T(g)>—<§>(<§>_1)2 B-1 ) +(EEt e+ (26)

(7(g)) again has three regimes, but the transition occurs at We define the initial site average MFRISA-MFPT) as

(¢)=1. Note that in modeli), this condition was,=1, and 1 N
disorder did not change the transition point. In the present (g)=— >, 799, (27)
model, however, the transition point is shifted due to the Ng ig=1

stronger effect of disorder. In some regimes of the MFPT, the

effect of disorder is so strong that the typical diffusion timewhere Ng=(1+c¢)c9 ! is the number of peripheral sites
differs from the MFPT. This indicates a broad distribution of (leaves of the tree

the MFPT where the average is affected by the rare configu- 7(g) may be expressed agdisee Eq(9)] as a sum over
rations with long first passage time. The more representativiSA-MRT,
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g 200 . . T
7(9)=2, tn. (28) ;
n=1 ,!
A /
— . 160 F B / .
Each of thet,, is made of a sum of products ové&s up to ° /
generatiom. Formally it may be expressed as /
i
N 120 | / 1
J— 7
t,=1+ — > ™, 29 = 9 /
" k§=:1 ck_lik§=:l 'k @9 T /
v 7
n S — 80 Va -
whereT; stands for the contribution t, from a subtree /
rooted at sita, in generatiork and spreading out to theth /'
generation. This contribution is made of products of ( 40k yd _
—k) ¢&'s along thec" % paths going from the sitg, to the X "°nﬂf§éfﬁ; ....................
c"~ X different sites in generation. The kth generation has L model (jii} ===
c“~ ! rooted subtrees with =1, . . . ¢k~ . The contributions =2 , ,
. ) 0
from subtrees rooted at the same generation are independent 3 6 9
of each other. Symbolically, 9
FIG. 2. The MFPT for the linear potential with both types of
n_ p.a|— _
Tik_Em <pq£€lrm &m _zm exp{ 'Bqum AEPq(m)} random-energy fluctuationgindistinguishable from each other

(30) compared to that of the pure systdin the exponential regime
Inset: the same in the linear regime.
wherel’,, are all paths on this subtree frofto generation

n. (i) can be simply extended to this case with almost identical

results(Fig. 2 shows the average MFPT for both the mogels
In the linear regime, the MFPT expression can be ap-
In a fully disordered tree all segment energies X are  proximated by neglecting terms of ordét and higher. For
random and uncorrelated. The techniques applied in model=2 we have

1. Model (iii): Random intersegment energy

Q) ~{1} +{Eexd — Bler,~ €1 )1+ Eex — Bler,—e1 )]+ L +{Eexd — Bler,—€1,) ]+ Eex — Bley,—€1)) ]+ 1}
+oH{Eexd - pley —er )]+ éexd—Bley e )]+1}
=&exd—pler,~er)]+exd— Bler,~ e )]f+exd —Bler,— 1)1+ exd — Blez,—€r,) ]+ -
+exd —Bler —ey )]+exd —Blex—er )]}+0. (31

Upon averaging over realizations of disorder we obtain ([ 7(g)]12)=2(g—1)&X n?)( 5 2)+2(g— 1) ¥ n)%( 5 ?)

2(9—1))

+2{2(g— 1)} &% 77><77l>+2[ 2

(t(g))=2(g—1)&n)(n ) +g
=(g—1D)é(n)(n Y)+g forlargeg, (32
—<g—1)—2<g—2>]§2<n>2<n1>2

where &,=2¢ with c=2. +2{29(g— 1)} & )7~ HH+g° (33
The average MFPT is identical for moddis and (iii ).

The fluctuation of the MFPT around its average is connected

to ([ 7(g)]%). Taking the disorder average of the square of

Eq. (3 The average MFPT equatidB?2) yields
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0.15 - - - . - - This is not surprising because the two excitons starting
from two different sites separated by an ultrametric distance

0.14 _
p have to movep segments before they can be on the same
0.13 . i path. Hencep is the only relevant length scale for the fluc-
model (i} + . . . . .
0.12 model (iii) = § tuation in7(g) mentioned above. Averaging over all possible

peripheral sites, the fluctuation scales wgtthe same way as

0.1 the dendrimer-to-dendrimer fluctuations discussed above.

e 01 The amplitude of the fluctuation is different from that of the
2 0.09 dendrimer-to-dendrimer fluctuations and depends heavily on
' the branching rati@ of the tree.
0.08
0.07 2. Model (iv): Random intersegment force
0.06 This model assumes that all energy differences
[Aepg(n)=€p(n+1)—eq(n)] between neighboring seg-
0.05 ments are random. We observe a new transition apart from
0.04 : : : : : - the usual linear to exponential regime transition of the
2 4 6 8 10 12 14 16 MFPT. This is a one-step replica symmetry breaking transi-
g tion from a weakly disorderethigh-temperatunephase to a

FIG. 3. The relative fluctuation in the MFPT for both types of h!ghly d|sordered(l0W-temperatu.r)e pfise. In the V\_/eakly
random-energy disordeintergenerational and intersegmenith a  disordered phase all paths contributer{g), whereas in the
linear potential(in the linear regimp highly disordered phase(g) is dominated by a few paths.

Similar dynamic transition was predictd@®3] for kinetic
2 Al 1N2¢2/ N2/ —1\2 pathways in protein folding.
([ =4(g—D)%¢EXmAn ") This transition occurs only in this model. It cannot occur
+4g9(g—1) ¥ 7,><7]—1>+g2 in models(i) and (ii) since in these models there is effec-
tively a single pathway from the periphery to the certer.,
=(g—- D% mX(n 2 +29(g— D éo m)(n ") all pathways are equivalentlt cannot occur in modefiii )

g (34) since the random-energy effect is very limited. For any path,

' independent of its length, only the random energies at the
_ _ o initial and final sites are contributing. This is insufficient to
Equations(33) and (34) yield for the fluctuation in the cause an energetic disparity that will overcome the entropic

MFPT advantage of having maximum number of paths contributing.
In the low-temperature phase the distribution &f9
([A7(g)1?)=([7(9)1>)—{[(g)])? = exy] — BAe,(n)] becomes very broad. The important con-
1 1 tributions will come from those paths for which
zgfé §<772><7772>+§(77>2(7772> E(pq)nAep,q(n) is large and negative. We also assume that

the constant force= ¢, is weak and the system is in the

exponential regime. The linear regime will be discussed later.
(=2 H?. (35 We thus focus on the largeregime(it is sufficient for them

to be typically larger than &). In this regime, the largest

) ) ] contributions will come from the longest paths, and if a
The relative fluctuationA7/7~1/\g scales withg the qualitative change in the behavior will occur it will be no-

same way as in the case of intergenerational disorder, but thieaple first in the dominant contribution from the largest of
amplitude is smaller in this model. This can be seen by Comy sybtrees. We will thus look for a new behavior in the
paring Eqs(22) and(35) and using(7)°<(7°). Thisis also  |5A-MRT by examining the maximal tree rooted lat=1.

verified by our numerical calculatiaffrig. 3) where we have Th : gy
, : . t b ted while look :
kept all the terms in the MFPT expression. In the exponential e same argument may be repeated while looking(g)

regime, the relative fluctuations+/ will still saturate to a Its dorlnﬁntlg%nmgl:;_tlon 'ﬂ this regime W'chome frqrg, ith
g-independent value, but the latter will be also smaller thamn‘ime y, the I1SA- on the most extremal generation wit

that reached with modél). - . . . .

The differences between model® and (iii) may also Searching fore_lpossmle abrupt c_hange in the properties of
stem from the additional fluctuations in the MFPT for the SA-MFPT, we will therefore examine the largest tree con-
latter model, which arise from distinct initial sites at the pe-tributing to ty~T¢ since it has the largest energy disparity.
riphery. For initial excitations starting at two different pe- As long as its behavior is normal, so will be all other terms.
ripheral sitegon the same dendrimeseparated by an ultra- Once its behavior changes, it will affect that pf and then
metric distancep, the fluctuations in the MFPT is given by that of 7(g), to which it makes the largest contribution.

The contribution ofT{ is akin to a partition function of a
([AT(9)]%)~p. so-called “random-directed polymer” on a Cayley tree,
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which is known to have a glass transitiGn the thermody-
namic limit). Physically the transition is between a high-
temperature phase=T,, at which all paths contribute, while _
for T<T, only a finite number of them do. The transition is High Temp
of one-step replica symmetry breaki(QRSB type. Then

—0 replica trick was used to study its transition point. A

complete analysis using this trick is availalplel]. Here we

present a simpler, more intuitive outline. In the very-high- *®
temperature regime it may be shown that all moments of the

MFPT (or the “partition function,” in the polymer pictune
obey(T¥)=(T)X. Hence, in the largd- limit, all thermody- Low Temp
namic properties of the quenched system are given by those
in which the disorder is annealed. In this regifig]) is

Linear

easily computed and found to be Exponential
(T =[c(exp— BAe))°. (36) ;
For largeg we have FIG. 4. The ,,T) phase diagram for the replica symmetry

breaking transition.

(T =[exp - Bf}1°, (37
any overlap vanishes. AT=0 there is a single dominant
wheref(B8) = —(1/8)In(T}) is the free energy per generation. path with the minimal energythe “ground state) that
When the random-energy differende follows a Gauss-  makes the only contribution and thus both paths will overlap
ian  distribution Pg(Ae€)=(1/\2m\)exd —(Ae—e€p)?/  all the way givingg=1 with probability 1. It was shown
2)\?], the free energy is given by [11] that for this system the only two possible overlaps are
g=0 and q=1. Their respective probabilities, however,
,8f=,6‘so—lnc—%/32)\2. change in the glassy phase and are given by

P(q)=4d(q) for pB<pBy and
The transition point can be determined by the vanishing
point of the entropyS(= —f/dT=Inc—\%2T? , where we P(@)=mas(q)+(1-m)s(q—1) for B>B,, (39
assumedKg=1). This yields B4= 2 Inc/\, which is the ’
transition temperature from the weakly disordered to thGWheresz/Tg was introduced before.
highly disordered phase. So far the discussion was limited to the exponential re-
For low temperatureg8> 34 the entropy remains zero. gime. Increasing, will lead to the transition into a linear
This is achieved11] by expressing the free energy & regime ate,= €’ (/3). For B< S, the transition is given by
= €o—Inc/mB—mBA%2, andme[0,1] is chosen such thdt  the expected “annealed” condition(¢)=1, which yields

is maximal. Forg<pBy, m=1 and the previous result c*—inc/g+1\2 For 8>, in the glassy phase free en-
holds. Forg>pg,, dt/om=0 (which impliesdf/dT=0)  grgy is given by
yields

_Inc mp\?
VZBIAnc:%q_ (39) mA=mst 2 0

For a general distribution the requirement is to maximize Sincemp= 5, the critical force remains constant within
9 q the glassy phase fdry<T<0 and is equal to its value at the

transition point 3= Bg), which is given by

f(m)=— miﬂ[ln c+In{exp(—mpBAe))].

Inch  VJ2IncA N
* = =
The physical meaning ah is explained by the existence € (B>Bgy)= 2Inc + 2 A2ine. (4D
of a finite (in the thermodynamig—o limit) number of
paths that contribute t&9, and therefore tdy and 7(g) as The expectedd,,T) phase diagram is shown in Fig. 4
well. To see that, we need to define the oveddetween the We should also note that crossimgy within the linear

contribution of two different productgaths in the sumland  regime yields only a glassy crossover and not a sharp tran-
its distributionP(q) ], which plays here the role of an order sition. This is due to the fact that the ISA-MRT converges to
parameter. It is defined as the weighteger all pathgfrac-  a finite value even ag— «. The longer paths thus make an
tion of the way the two paths will go together on the sameexponentially smal(in their length contribution, the system
segments, averaged over the disorder. At high temperaturés dominated by paths of finite length and the “glass transi-
all paths are essentially equivalent and the probability fortion” takes place in an effectively finite system.
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IV. MFPT FOR THE NONLINEAR TIME-DEPENDENT 80 T T T T T T T T
HARTREE-FOCK POTENTIAL

In the preceding section the funneling energy was as- nr

sumed to vary linearly with the generation number

(=0,1,2...,9). However, electronic structure calculations 80 z; e
by Tretiak, Chernyak, and Mukamfg4] show a strong non- 0= e
linear dependence of the exciton enefgy n). N0r

The funneling effect of extended dendrimers originates N
from the variation of the segment lengths. We denotenby g4r
(=1,2,...90) the nth generation starting from the center.
The peripheraln=g generation is made from them=1 30

monomer. The number of monomers increases by one going
from one generation to the next towards to the center. The
number of acetylene monomers in théh generation is thus
I=g—(n—1). The n dependence of the excitation energy
was computed using the time-dependent Hartree-Fock
(TDHF) technique and fitted to the forfi25]

0.5
g—(n— J 42 g

FIG. 5. The MFPT vgj for the ordered TDHF nonlinear poten-
with A=2.80+0.02 (eV) and.=0.669+0.034. tial for different branching ratios of the tree.

e(n)=Al1+

can be seen in Fig. [plotted using the Eq44) of t,] for the
TDHF potential. At the generations near the peripheagy (
Using Eq.(42), the detailed balance ratio becomes —n<g) the energy difference between generations is large
0.5 and the funneling force is so strong that it overcomes the
outward entropic force af=2. Near the center, on the other
]' hand, the larger ig, the weaker is the funneling force and
the entropic term dominates. The competing effects nearly

cancel at some intermediate generativan* (g) where the

The points of the same generation are identical and Wexciton spends maximum time. For largean estimate for

can caIc_uIate the MRT and MFPT. for th_is potential using then* may obtained from the recursion relation satisfitrdm
expressiong8) and (10) for one-dimensional random walk Eq. (8)] by the MRT's

starting at the periphery. The mean time spent by an exciton

A. Ordered dendrimer

A L 0.5
fn:CGXp—ﬁ{<1+g_—n) - 1+m

in the nth generation is given by th=&n_1tn_1+1. (46)
L 0.5 9 : : : : :
tn=exp{—A 1+m] } 8
) ] os oo
xgl c-1) exr{A' 1+ m] } (44) 71

The total time to reach the trap will be sum of all thgs,
and the MFPT is

9 9 L 05 o
T(g)=n§l rn=nzl ex;{—A 1+m] } 4
n L 05 3
le c(”l)exp{A 1+ m] } (45) ol

The above expression fa(g) is plotted in Fig. 5 to show Tr
that the MFPT for this potential is quite different compared
to that for the constant potential difference. We find that it
depends linearly og for the first few generations, but gradu-
ally changes to exponential with increasigg

The behavior of the MFPT can be better understood in FIG. 6. The MRT vsn for the ordered TDHF potential for dif-
terms of MRT. The MRT is not a monotonic function of n, as ferent values ofy.
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30 T T T T T T 100 T T T T T T T T
1
25 /
QFE 05f [
20 r 0 ," 1 1 iiii
80 - 16 11 16
A /
15 I~ @ g /’_/
< v /
3 4t /
10+
no disorder ——
inter-generational disorder -----
5F 20+  inter-segment disorder
0 i 1
9 10

n FIG. 8. The MFPT for the TDHF potential with both types of
random energyindiscernible from each othecompared to that of

FIG. 7. The free energy(n) for the ordered TDHF nonlinear the pure system. Inset: their relative rms variationgvs

potential are plotted for different values of

For ty to be maximalt,./t,=&,+1t,<1, henceg,<1.  Mum value of the'fluctuation is taken to bhe4% pf the

Similarly requiring7,/7,_,>1 yields&,_,+1/7,_;>1, so  €Nergy value_. Similar to Fhe .random-ene.rgy moc(e)|s§1nd

for large 7,_, (or equivalently largeg) we may takeg, , (i) for the linear potent!gl, mtergenerqﬂon@xhodel ()]

>1. 7, is therefore maximized a& — 1 from below. Using and intersegmerjimodel (iii")] types of disorder were con-

expression (43) we obtain n~(g—«x+1) where Sidered separately. .

x [=«(A,L,c)] is a constantindependent ofi andg) and For the mtergeneratlona[ random eng[gyodel ()] we

n*(g) is the closest integer. This formula works well for our Used the MFPT expressioiil0) obtained for a one-

system forg=12 and holds approximatelpff by only one dimensional @ndom walk. For the intersegment random en-

generatiopfor 7<g<11. Clearly, the larger thg, the better €'y [model (iii") ], the MFPT formula26) for a Cayley tree

is the estimate of* (g). can be useq to calc_ulate the time spent by an exciton in the
To understand the behavior of the MRT, the reduced fre&th generation startm(i:; from the point(the points are la-

energyu(n) = Be(n)—nInc is plotted in Fig. 7. The MRT is  Peled as 1,2.3..,277) at the periphery,

maximal at the site at which the free energy is minimum. For

large g, both n* (g) and the energy difference between the n n—m

center anch* incieases witlg. As a fesult, _the time to reach t,= E ex Be(m,1)] E exd — Be(n,n)]t, (47)

the center frorm* grows exponentially withg (the time to m=1 r=1

arrive atn* from n=g is always much shortgrlf g is small

enough, however, the values wf andu(n*) increase only

weakly with g and the MFPT dependence gmnmay be ap-

proximated by a power serigglominated initially by the

linear term).

wheree(n,r) is energy of theth branch of thenth genera-
tion of the treer can take values 1,2,3..,2"" 1. The MFPT
is obtained by summing all thg's. The effect of disorder

. - was studied by numerically averaging the MFPT over differ-
For fixedg, the MFPT may be changed by variations of ent realizations of the disorder and is plotted in Fig. 8. This

the coordination numberand the temperature Decreasing shows the disorder-averaged (0" realizations MEPT for

the temperature makes the funneling more effective. As Both intergenerational and intersegment disorders and also

“?S”“’ the crossover from the I||_’1ear to the e.xp_onenual refhe case with no fluctuation. Disorder seems to work against
gime occurs at a higheag. Increasing ¢ has a similar effect:

both the outbound “entropic force,” which competes with the funneling and increases the MFPT. The effect of disorder

the energy funneling, and the MEPT incredBig. 5). I?: more pronounced in the exponential regime of the MFPT
g,

We have shown that for ordered dendrimers there exists ig. 8. Hence, to achle\{e efﬂqent funnellng', de”d”mefs

temperature and coordination number dependent specific ould not_exceed the o_ptlmal size beyond Wh.'Ch the nonlin-
- . . . : ear potential and the disorder make the excitons exponen-

size, below WhI.Ch the the MFPT is almost Ilnear_ @ tially slow
whereas above it the MFPT starts to grow exponentially. The disorder-averaged MFPT is identical for the intergen-
erational disorder model ‘(i and the intersegment disorder
model (iii"), consistent with our analytical calculation for

We introduced disorder by adding a fluctuating part to themodels(i) and (iii ). However the fluctuations around the av-
energy from an uniform probability distribution. The maxi- erage MFPTS7(g), are differentFig. 8) especially for large

B. Random-energy fluctuations

021803-10



DISORDER AND FUNNELING EFFECTS ON EXCITON.. .. PHYSICAL REVIEW &5 021803

200 ' ' ' ' length Ing. Then the average MFPT in a small world one-
A p=005 MJ dimensional chain will be linear in I [i.e., 7(g)~Ing] for
f £0<1.Foréy>1, the MFPT is exponential in ljpand hence
- 1 7(g) ~explIng)=g%, wherea is a constant. In our simu-
o lationsa~1, so the MFPT grows linearly. As the probability
4 p of random connections is decreased, the onset of the small
ol + M Mw‘*’ 1 world effect occurs at larger system siZ@§].
Pt On a tree we add a few random connections between ver-
tices of different generations. The resulting diffusion on such
0 a “small world tree” yields results similar to the one-
dimensional case. Disorder-averaged MFPT again shows
04 =0.005 1 logarithmic (y<<1) or power-law €;>1) scaling with the
ol . 01 5'1 | number of generationg. Since only a few random connec-
tions can make the funneling much faster, it should be worth-
g while to synthesize dendrimers with such shortcuts.

160

<t(g)>
+
.

8ol .

Py

0 1 1 1 1
20 40 60 80 100

g
FIG. 9. The MFPT vg for the small world mode{exponential We have investigated analytically the diffusion on a dis-
regime. Inset: the same for the linear regime. ordered Cayley tree in the presence of a linear potential.
. . Fluctuations around the MFPT showed different forms of
g, and the relative fluctuation saturates to a larger value fogcaling (in terms ofg) depending on the types of disorder

VI. CONCLUSIONS

the intergenerational disorder. and the scaling regime of MFPT. For a specific form of dis-
order(random intersegment forcave found a new dynamic
V. GEOMETRIC DISORDER: DIFFUSION ON A TREE transition in the MFPT. In the low-temperatufieighly dis-
WITH RANDOM CONNECTIONS ordered phase, the MFPT is dominated by a few paths. This

Different forms of generic networks have drawn muchtransition resembles the one-step replica symmetry breaking
recent interest. The small world model was introduced byglass transition found in other disordered systems like
Watts and Strogatfl3] and received considerable attention random-directed polymers.
in the past two year$26]. The model assumes a regular We have also considered exciton diffusion on dendrimers
lattice and fixed number of nearest neighbor connectionsiith a nonlinear funneling energy. For dendrimers with a
with a few randomly chosen connections between verticemonlinear potential larger than a specific size, even though
The essential features of this model &rehigh local con-  the number of light-absorbing sites at the periphery in-
nectivity that resembles a regular gragin, the average dis- creases, the MFPT starts to grow exponentiglgth g),
tance between any two points scales-da L, whereL isthe  resulting in slow exciton trapping. Quenched disorder slows
linear size of the graph. This is an important property of adown the exciton diffusion towards the center. This effect is
random graph. more pronounced when the MFPT of the corresponding or-

Inspired by this model we have studied the effect of a fewdered system is in the exponential regime. Hence to achieve
random connections on the exciton diffusion. We first con-an efficient funneling of excitons, the number of generations
sidered the MFPT for a one-dimensional chain with somemust be restricted to some optimal value. We have deter-
random connections made between any two vertices with eined this optimal size for a particular class of phenylacety-
fixed small probability. For a given chain length there |ene dendrimers. For large dendrimers, the free energy at-
exists a critical probability for random connectionp.( tains its minimum ah*(g) where an exciton spends most of
~L [13]), above which the small world effects are ob- its time during its journey towards the center. Assuming a
served. We have performed a numerical simulation of thesteady supply of long-lived photoexcitations, the excitons
MFPT for a one-dimensional small world chain using a gen-will start gathering atn*(g), rendering the single-exciton
eralized form of the master equati@l), where we allow few  picture invalid. In that case, we have to consider exciton-
hoppings between vertices chosen randomly. We then aveexciton interaction and annihilation proces§2ag.
aged over different realizations of random connections. Finally, we have considered diffusion on a lattice with a
Whenp>p,., we found that the average MFPT scales loga-few random connection&'small world” ) between any two
rithmically (instead of linearywith g (Fig. 9 for £&<1. vertices. The effect of random connections is to reduce the
Whenéy,>1, the disorder-averaged MFPT grows almost lin-effective system size logarithmically. Numerical calculations
early instead of exponentially wit (Fig. 9. This may be show that the disorder-averaged MFPT is also decreased by a
rationalized in terms of the average distance between anlpgarithmic factor. Hence there will be an exponential gain in
two vertices which is supposed to behave ag,lwheregis  the exciton trapping. This might have interesting conse-
the length of the system. Hence we can approximate a smadjuences for information propagation through hierarchical so-
world linear chain of lengthlg by a regular linear chain of cial communication networks.
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FEHEFL A H{ET 92+ 24 6+ 1)
The MFPT equatiorf10) can be expressed as (A2)

(@) ={1+{&+ 1 H{&H8 + L+ 1+
HHénén-1 - Eabat Endnn - &t - Endna
Héat 1t H{Eg18g-2 - 26y T(g>=g+(g—1)§+(g—2)§2+--~2§9—2+§9—1.(A3)
tég-1ég-2 ot €g1ég ot égat ),
(A1) This series can be summed to yield Ef2).
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