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Disorder and funneling effects on exciton migration in treelike dendrimers
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The center-bound excitonic diffusion on dendrimers subjected to several types of nonhomogeneous funnel-
ing potentials is considered. We first study the mean first passage time~MFPT! for diffusion in a linear
potential with different types of correlated and uncorrelated random perturbations. Increasing the funneling
force, there is a transition from a phase in which the MFPT grows exponentially with the number of genera-
tionsg to one in which it does so linearly. Overall the disorder slows down the diffusion, but the effect is much
more pronounced in the exponential compared to the linear phase. When the disorder gives rise to uncorrelated
random forces there is, in addition, a transition as the temperatureT is lowered. This is a transition from a high-
T regime in which all paths contribute to the MFPT to a low-T regime in which only a few of them do. We
further explore the funneling within a realistic nonlinear potential for extended dendrimers in which the
dependence of the lowest excitonic energy level on the segment length was derived using the time-dependent
Hatree-Fock approximation. Under this potential the MFPT grows initially linearly withg but crosses over,
beyond a molecular-specific andT-dependent optimal size, to an exponential increase. Finally we consider
geometrical disorder in the form of a small concentration of long connections as in thesmall world model.
Beyond a critical concentration of connections the MFPT decreases significantly and it changes to a power law
or to a logarithmic scaling withg, depending on the strength of the funneling force.
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I. INTRODUCTION

Extended dendrimers~Fig. 1! are nanoscale Cayley-tree
like supermolecules that exhibit an energy gradient from
periphery to the center of the molecule. Their unique hie
chical self-similar structure can be described by three ing
dients: the basic building block~e.g., phenyl acetylene linea
segment!, the branching of the end points, and the numbe
generations. The number of basic elements grows expo
tially with the number of generationsg, and the number of
elements at the periphery of the molecule is comparabl
the number of bulk elements.

Recent theoretical and experimental studies@1–4# have
shown that the electronic excitations of these dendrimers
spatially localized within each segment. For these dendr
ers, lengthening of the linear tree branches towards the
leads to a hierarchy of localization lengths. Hence the e
ton energy decreases with generation from the peripher
the core. Thisenergy funnelcombined with the large numbe
of absorbing elements at the periphery makes these dend
ers potentially efficient single molecule antenna systems@5#.
Excitons created upon optical excitation of the shortest lin
segments at the periphery diffuse through the intermed
regions, finally reaching the core where an energy trap
located. Excitation transfer proceeds via Coulomb interac
and may be described by the Frenkel exciton model. Th
retical studies@6# have focused on calculating the time
takes for an exciton generated at the surface to reach
core. This trapping time is a direct measure of the efficien
of the antenna. Its dependence on the number of genera
g and the funneling driving force was calculated.

These studies, which were able to capture some impor
features of excitonic diffusion on dendrimers, assumed
all the tree branches~namely, the linear polymeric chains! of
a given generation are identical. This implies that the exci
1063-651X/2002/65~2!/021803~12!/$20.00 65 0218
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energies are fixed. In reality interaction with the solvent a
intramolecular vibrations induce slow~quenched! fluctua-
tions in the energy.~Nonlinear @7# and single molecule@8#
spectroscopy typically show nanosecond to millisecond b
motions whereas the exciton trapping times are typically
the picosecond range@5,9#!.

On a more fundamental level, diffusion in disordered m
dia is an active field of statistical physics@10#. Different
forms of correlations among energy levels were conside
and nontrivial behaviors, such as the difference between
typical and the average diffusion, anomalous scaling,
others, were found in some cases. Independently, theore
investigations of dynamics on Cayley trees~or Bethe lat-
tices! lead to many interesting results. Exact solutions ex
for some problems and bear important consequences.
rected polymer on Cayley trees is one of the interesting
amples where a spin-glass-like transition was predicted@11#.
As shown below, the problem of diffusion on a disorder
Cayley tree exhibits such a transition as well and thus ha

FIG. 1. Extended phenylacetylene dendrimers with increas
total number of generations.
©2002 The American Physical Society03-1



TABLE I. The different dendrimer models considered in this work and the relations between them.
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considerable theoretical significance.
In a recent letter@12#, we reported preliminary studies o

the effects of nonlinear dependence of the excitonic ene
and realistic quenched disorder on excitonic diffusion
Cayley-tree-like dendrimers. We further carried out analy
investigations of diffusion on a disordered Cayley tree wit
linear potential. Our findings can be summarized as follo

~i! Due to the nonlinear variation of the funneling pote
tial with the generation, an optimal generation numbern* (g)
was found beyond which the nonlinear potential drastica
diminishes the light-harvesting efficiency. Moreover, incre
ing of the trapping time by the disorder~by slowing down
the exciton diffusion! will be more pronounced if the den
drimer crosses this optimal size. Hence, for dendrim
larger than the optimal size, even though the total pho
absorbance will increase due to the increase in the numb
peripheral light absorbing sites, the slower excitonic mig
tion towards the active center will make the light-harvest
antenna less effective.

~ii ! We investigated the diffusion on a Cayley tree in t
presence of a linear potential and considered various type
disorder, depending on the correlations among the en
fluctuations. For a specific type of disorder@See model~iv!#,
we found a dynamic phase transition to a highly disorde
phase where only a few paths dominate the exciton mig
tion. This resembles the equilibrium replica symmetry bre
ing transition found in other random systems~e.g., directed
polymers in random media!.

The purpose of this paper is to elaborate on and ext
the results reported in our previous study. We further rep
the numerical study of diffusion on a Cayley tree with
specific kind of geometric disorder obtained by adding a f
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random connections between various sites to the usual
structure. Thissmall world model was first introduced by
Watts and Strogatz@13# for Euclidean lattices.

The organization of the paper is as follows. The mean fi
passage line~MFPT! for random walk is reviewed in Sec. II
In Sec. III we discuss diffusion on a random Cayley tree w
a linear potential. The effect of nonlinear potential on t
exciton migration is reported in Sec. IV. The small wor
model is studied in Sec. V. Finally, we conclude in Sec.
with a summary of our results.

A flow chart ~Table I! of the different models discussed i
this paper is given in Table I. The various models will b
explained later.

II. RANDOM WALKS AND THE MEAN FIRST PASSAGE
TIME „MFPT …

The MFPT is a faithful measure of the trapping efficien
defined as the average time it takes for an exciton to diff
from the periphery to the core, where it gets trapped@14#.
Another quantity of interest related to the MFPT is the me
residence time~MRT!, which is the average time spent on
site of the tree~branch of the dendrimer! @14,15#. Our theo-
retical effort focused on calculating the MFPT and the MR
for a continuous time random walk with exponential dist
bution of waiting times, which gives a master equation
the probabilityPn(t) of the exciton to be on siten at time t.
If the energy depends only on n, the problem becomes ef
tively one dimensional forPn(t). The random walker on the
nth site of the one-dimensional chain jumps to nearest s
with ratesRi ~toward the reflecting point! andTi ~toward the
3-2
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trap!. The random walk is described by the master equa
@15#

dP~ t !

dt
52AP~ t !, ~1!

whereP(t) denotes the probability vector and hence the s
vival probability S(t)5(1

gPn(t). A is the tridiagonal transi-
tion matrix. Written explicitly in terms of the ratesR andT,

Ṗ0~ t !5T1P1~ t !,

Ṗ1~ t !5T2P2~ t !2~T11R1!P1~ t !,

Ṗn~ t !5Tn11Pn11~ t !1Rn21Pn21~ t !

2~Tn1Rn!Pn~ t ! ~1,n,g!,

Ṗg~ t !5Rg21Pg21~T!2TgPg~ t !. ~2!

The trap (P0) is not included in Eq.~1!, while reflecting
boundary conditions are imposed atn5g.

The formal solution of Eq.~1! is

P~ t !5exp~2At!P~0!, ~3!

where P(0) is the initial condition. P(0)
5@0,0,0, . . . ,1,0,0,0, . . . #T for an excitation that starts in th
nth generation. The MFPT is obtained by integrating t
survival probabilitiesPn(t) over time

t~g!5E
0

`

(
n51

g

Pn~ t !dt5 (
n51

g E
0

`

Pn~ t ![ (
n51

g

tn , ~4!

where tn is the MRT for generationn. Using the genera
solution, Eq.~3! @15,16#,

E
0

`

P~ t !dt5E
0

`

exp~2At!P~0!dt5A21P~0!. ~5!

Hence the MRT at siten is given by

tn5E
0

`

Pn~ t !5(
j

An j
21Pj~0!. ~6!

For an excitation that starts at the highest~periphery! gen-
erationg, Pj (0)5d jg and the MRT is given by@6#

t15
1

T1
, n51, ~7!

tn5
1

Tn
1 (

i 50

n22 S 1

Ti
D )

j 5 i 11

n21

j j , 1,n<g, ~8!

wherejn[Rn /Tn11 is the detailed balance ratio. The MFP
is given by
02180
n
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t~g!5 (
n51

g21

tn ~9!

5 (
m51

g
1

Tm
1 (

m52

g22

(
i 50

m22 S 1

Ti
D )

j 5 i 11

m21

j j . ~10!

An explicit form of this equation is given in the Appen
dix. Hereafter, we assumeTn51 and treatjn as independen
variables with jn5c exp$2b@e(n11)2e(n)#%, where c
11 is the coordination number of the tree (c52 in our
case!, e(n) denotes the energy of thenth segment, andb
5(KT)21 is the Boltzmann factor.

III. RANDOM WALK AND MFPT ON A DISORDERED
CAYLEY TREE WITH A LINEAR FUNNEL

The linear funneling potential assumes the form

ē~n!5nF, ~11!

F being the potential difference. For this modeljn5j0
5c exp(2bF). Equation~10! can be easily summed~see the
Appendix for details! to yield for the MFPT,

t~g!55 j
jg21

~j21!2
2

g

j21
for j5” 1

g~g11!

2
for j51.

~12!

For largeg (@1), Eq. ~12! shows three distinct behav
iors.

~a! j.1: t(g);exp(g ln j) ~exponential regime!.
~b! j,1: t(g);g ~linear regime!.
~c! j51: t(g);g2 ~diffusive behavior!.
Real dendrimers have energy fluctuations and quenc

~slow! energy disorder plays an important role in the ene
transfer dynamics@17#. We have studied the effects of diso
der on diffusion in the presence of a linear potential by co
sidering four models of disorder denoted by~i!–~iv!. These
will be described below.

A. Intergenerational quenched disorder

Assuming that energy fluctuations in the segment leng
of the same generation are identical, the diffusion is map
into an effective one-dimensional problem. We denote t
type of disorder intergenerational.

Intergenerational energy fluctuations can be introduced
two ways. In the absence of correlations, we obtain the s
dard diagonal disorder~random-energy! model ~i!, where a
random parten is added to the linear energyē(n). In the
second form of disorder@random force model~ii !#, the en-
ergy differencesDen @5e(n11)2e(n)# are treated as ran
dom variables with the positive average valuesē(n) to en-
sure funneling. Both models are one dimensional and
MFPT is given by Eq.~10!.
3-3
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1. Model (i): Random intergenerational energy

In this model, all segments in a given generation have
same random energy. Generational energies are made
dom by adding a fluctuating parten to the linear potential

e~n!5 ē~n!1en .

en’s are independent and identically distributed with the a
P
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eragê en&50 andē(n) is the linear potential defined in Eq
~11!. A similar random-energy model has been conside
previously@18# for a discrete random walk.

Hereafter^& will denote the average over disorder. W
definehn5exp(2ben) and assumêh61& and ^h62& to be
finite. The subscriptn in ^h& is omitted because the rando
variablesen’s are independent and identically distribute
Hence
jnjn21•••j2j15c exp@2b$e~n11!2e~n!%#c exp@2b$e~n!2e~n21!%#•••c exp@2b$e~3!2e~2!%#c

3exp@2b$e~2!2e~1!%# ~13!

5j0
n$exp@2b~en112en!#%. ~14!
er-
e

Averaging over realizations of disorder gives

^jnjn21•••j2j1&5^h&^h21&jo
n . ~15!

Substituting this in Eq.~10! gives for the MFPT

^t~g!&;^h&^h21&t0~g!, ~16!

wheret0(g) is the MFPT@see Eq.~12!# for a linear potential
with no disorder.

Similar to the ordered case, the disorder-averaged MF
has three distinct regimes: linear (j0,1), quadratic (j0
51), and exponential (j0.1) depending on the value ofj0.
Even though theg dependence and the critical point (j0
51) of the MFPT do not change by disorder, the magnitu
of the disorder-averaged MFPT exceeds the correspon
value for the ordered system. Disorder slows down the fi
passage diffusion. If the fluctuating part of the ener
en has a Gaussian probability distributionPG(e)5(1/
A2pl)exp$2e2/2l2%, then

^tg&;^h&^h21&t0~g!

5^exp~2ben!&^exp~ben!&t0~g!

5exp~b2l2!t0~g!. ~17!

The average MFPT is thus increased by the disord
dependent factor of exp(b2l2).

So far we have considered only the average MFPT,
due to disorder there will be fluctuations in the MFPT cor
sponding to various realizations of disorder. The distribut
of MFPT due to disorder may be directly observed in sin
molecule spectroscopy@19#. We have calculated the rm
fluctuations in the MFPT,̂(Dt)2&5Š(t2^t&)2

‹ in different
regimes of̂ t(g)&.

In the linear regime (j0,1), only the terms linear inj in
Eq. ~10! are sufficient to yield the correct scaling~in terms of
g) for both ^t(g)& and ^Dt2&. Considering only the linea
terms in Eq.~10!, we get
T

e
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t~g!'$1%1$j0 exp@2b~e22e1!#11%

1$j0 exp@2b~e32e2!#11%1•••

1$j0 exp@2b~eg2eg21!#11%

5j0$exp~2be2!exp~be1!1exp~2be3!exp~be2!

1•••1exp~2beg!exp~beg21!%1g. ~18!

Averaging over realizations of disorder gives

^t~g!&5~g21!j0^h&^h21&1g. ~19!

To calculate the fluctuation of the MFPT around its av
age we need̂@t(g)#2&. Taking the disorder average of th
square of Eq.~19!,

^@t~g!#2&5~g21!j0
2^h&2^h22&12~g21!j0

2^h&^h21&

12H S g21

2 D 2~g22!J j0
2^h&2^h21&2

12g~g21!j0^h&^h21&1g2. ~20!

From the average MFPT Eq.~19!,

^@t~g!#&25~g21!2j0
2^h&2^h21&212g~g21!j0^h&^h21&

1g2. ~21!

Combining Eqs.~20! and ~21! we obtain for the fluctua-
tion in the MFPT,

^@Dt~g!#2&5^@t~g!#2&2^@t~g!#&2

5gj0
2$^h2&^h22&12^h&^h21&

23^h&2^h21&2%. ~22!

Hence the relative fluctuation in the linear regime (j0
,1) will be given by
3-4
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Dt

t
5

^~Dt~g!!2&1/2

^t~g!&

.
Agj0$^h

2&^h22&12^h&^h21&23^h&2^h21&2%1/2

g$11jo^h&^h21&%

;
1

Ag
. ~23!

In the previous calculation, only the terms linear inj were
kept in order to obtain the fluctuation around the average
the linear regime. The same calculation in the exponen
regime, which will be considered next, only involves t
term containing the highest product ofj ’s in Eq. ~10!. At the
transition pointj051, proceeding along the same lines f
the linear case but keeping all the terms oft(g) in Eq. ~10!
and puttingj051 at the end yieldsdt/t.1/Ag. The same
scaling was found above in the linear regime.

In the exponential regime (j0.1), the MFPT is domi-
nated by the single term in expression~10!. In this case

t~g!.jg21jg22•••j2j1 .

The average MFPT is then̂t(g)&.j0
g^h&^h21& for large

g, as expected. In this approximation̂ @t(g)#2&
.j0

2g^h2&^h22&, and the fluctuation in the MFPT is

Dt

t
.F ^h2&^h22&

~^h&^h21&!2
21G 1/2

, ~24!

which is a constant independent ofg.

2. Model (ii): Random intergenerational force

In this model energy differences between consecu
generations are randomly distributed, but again all segm
in the same generation are identical. Fluctuations of the
ergy levels are correlated and the energy differencesDen are
assumed to be identically distributed according to so
probability distributionP(Den). This diffusion model was
studied extensively in various contexts and was reviewe
@22#. The effect of disorder is more pronounced in this ca
compared with the random-energy model. The aver
MFPT is given by

^t~g!&5^j&
^j&g21

~^j&21!2
2

g

^j&21
. ~25!

^t(g)& again has three regimes, but the transition occur
^j&51. Note that in model~i!, this condition wasj051, and
disorder did not change the transition point. In the pres
model, however, the transition point is shifted due to
stronger effect of disorder. In some regimes of the MFPT,
effect of disorder is so strong that the typical diffusion tim
differs from the MFPT. This indicates a broad distribution
the MFPT where the average is affected by the rare confi
rations with long first passage time. The more representa
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‘‘typical’’ diffusion time is calculated ast typ5exp̂ ln t(g)&.
Following @20#, we define different scaling regimes of th
MFPT andt typ .

~a! ^j&,1: ^t(g)& is linear ing. ^j2& determines the fluc-
tuation around the average.^t2(g)&;g2 as long aŝ j2&,1
and hence the relative fluctuationdt/t goes to a constan
~similar to the random-energy case!. For ^j2&.1, however,
^t2(g)& grows exponentially withg as the typical behavior
starts to differ from the MFPT. If̂j&.1, ^t(g)& is always
exponential ing. However, t typ varies depending on the
value of ^ ln j& ~whether less than, equal to, or greater th
1!.

~b! ^j&.1, ^ ln j&,0: The typical first passage tim
@t typ(g)5exp̂ ln t(g)&# does not follow the average expo
nential behavior, but rather grows like a power lawga with
a5^d(ln j)2&/2^ ln j&. For a Gaussian probability distribu
tion PG(De) the above formula yieldsa5b2l2/2(lnj0).

~c! ^j&.1, ^ ln j&50 @21#: At this transition point~the
‘‘Sinai point’’ !, ^t(g)& is exponential ing, but the more rep-
resentativet typ(g) is only exponential inAg @22#.

~d! ^j&.1, ^ ln j&.0: In this regime, botĥ t(g)& and
t typ(g) diverge exponentially withg.

B. Intersegment quenched disorder

When energy fluctuations exist within the same gene
tion ~intersegment disorder!, the system can no longer b
mapped into a one-dimensional model and we have to
Eqs. ~4! and ~6! to compute the MFPT for the actual tre
structure. The energy of siteqn is denotedeq(n). The ran-
dom variablesjn’s become matricesjn

p,q , where (p,q) rep-
resentsqth point of thenth generation and thepth point of
the (n11)th generation.~note thatc is not included in this
definition.! The detailed balance ratio becomesjn

p,q

5exp@2bDepq(n)#5j exp@2b(epn11
2eqn

)#, where eqn
is the

fluctuating part of the energy andj5exp„2b@ē(n11)
2 ē(n)#… ~so j05cj). From now on we assume that th
branching ratioc52. The MFPT for a particle released at th
peripheral site 1g of the g-generational tree is

^t1g~g!&5$1%1$~j1
1,11j1

1,2!11%1$j1
1,1~j2

1,11j2
1,2!

1j1
1,1~j2

2,31j2
2,4!1~j2

1,11j2
1,2!11%1•••

1$j1
1,1~j2

1,1
„•••~ !•••…1j2

1,2
„•••~ !•••…!

1j1
1,2~j2

2,3
„•••~ !•••…1j2

2,4
„•••~ !•••…!1•••

1~jg21
1,1 1jg21

1,2 !11% . ~26!

We define the initial site average MFPT~ISA-MFPT! as

t~g!5
1

Ng
(

i g51

Ng

t i g(g), ~27!

where Ng5(11c)cg21 is the number of peripheral site
~leaves of the tree!.

t(g) may be expressed again@see Eq.~9!# as a sum over
ISA-MRT,
3-5
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t~g!5 (
n51

g

t̄ n . ~28!

Each of thet̄ n is made of a sum of products overj ’s up to
generationn. Formally it may be expressed as

t̄ n511 (
k51

n21 H 1

ck21 (
i k51

ck21

Ti k
n J , ~29!

where Ti k
n stands for the contribution tot̄ n from a subtree

rooted at sitei k in generationk and spreading out to thenth
generation. This contribution is made of products ofn
2k) j ’s along thecn2k paths going from the sitei k to the
cn2k different sites in generationn. The kth generation has
ck21 rooted subtrees withi k51, . . . ,ck21. The contributions
from subtrees rooted at the same generation are indepen
of each other. Symbolically,

Ti k
n 5(

Gm
S )

pqmPGm

jm
p,qD 5(

Gm

expF2b(
pqm

Depq~m!G ,
~30!

whereGm are all paths on this subtree fromi k to generation
n.

1. Model (iii): Random intersegment energy

In a fully disordered tree all segment energies (e i n
) are

random and uncorrelated. The techniques applied in mo
n

te
o

02180
ent

el

~i! can be simply extended to this case with almost ident
results~Fig. 2 shows the average MFPT for both the mode!.

In the linear regime, the MFPT expression can be
proximated by neglecting terms of orderj2 and higher. For
c52 we have

FIG. 2. The MFPT for the linear potential with both types
random-energy fluctuations~indistinguishable from each other!
compared to that of the pure system~in the exponential regime!.
Inset: the same in the linear regime.
t1g~g!'$1%1$j exp@2b~e12
2e11

!#1j exp@2b~e12
2e11

!#11%1$j exp@2b~e13
2e12

!#1j exp@2b~e23
2e12

!#11%

1•••1$j exp@2b~e1g
2e1g21

!#1j exp@2b~e2g
2e1g21

!#11%

5j$exp@2b~e12
2e11

!#1exp@2b~e12
2e11

!# f 1exp@2b~e13
2e12

!#1exp@2b~e23
2e12

!#1•••

1exp@2b~e1g
2e1g21

!#1exp@2b~e2g
2e1g21

!#%1g. ~31!
Upon averaging over realizations of disorder we obtai

^t1g~g!&52~g21!j^h&^h21&1g

5~g21!j0^h&^h21&1g for largeg, ~32!

wherej052j with c52.
The average MFPT is identical for models~i! and ~iii !.

The fluctuation of the MFPT around its average is connec
to ^@t(g)#2&. Taking the disorder average of the square
Eq. ~31!
d
f

^@t~g!#2&52~g21!j2^h2&^h22&12~g21!j2^h&2^h22&

12$2~g21!%j2^h&^h21&12H S 2~g21!

2 D
2~g21!22~g22!J j2^h&2^h21&2

12$2g~g21!%j^h&^h21&1g2. ~33!

The average MFPT equation~32! yields
3-6
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^@t~g!#&254~g21!2j2^h&2^h21&2

14g~g21!j^h&^h21&1g2

5~g21!2j0
2^h&2^h21&212g~g21!j0^h&^h21&

1g2. ~34!

Equations~33! and ~34! yield for the fluctuation in the
MFPT

^@Dt~g!#2&5^@t~g!#2&2^@t~g!#&2

5gj0
2H 1

2
^h2&^h22&1

1

2
^h&2^h22&

1^h&^h21&22^h&2^h21&2J . ~35!

The relative fluctuationDt/t;1/Ag scales withg the
same way as in the case of intergenerational disorder, bu
amplitude is smaller in this model. This can be seen by co
paring Eqs.~22! and~35! and usinĝ h&2<^h2&. This is also
verified by our numerical calculation~Fig. 3! where we have
kept all the terms in the MFPT expression. In the exponen
regime, the relative fluctuationsDt/t will still saturate to a
g-independent value, but the latter will be also smaller th
that reached with model~i!.

The differences between models~i! and ~iii ! may also
stem from the additional fluctuations in the MFPT for t
latter model, which arise from distinct initial sites at the p
riphery. For initial excitations starting at two different p
ripheral sites~on the same dendrimer! separated by an ultra
metric distancep, the fluctuations in the MFPT is given by

^@Dt~g!#2&;p.

FIG. 3. The relative fluctuation in the MFPT for both types
random-energy disorder~intergenerational and intersegment! with a
linear potential~in the linear regime!.
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This is not surprising because the two excitons start
from two different sites separated by an ultrametric dista
p have to movep segments before they can be on the sa
path. Hencep is the only relevant length scale for the flu
tuation int(g) mentioned above. Averaging over all possib
peripheral sites, the fluctuation scales withg the same way as
the dendrimer-to-dendrimer fluctuations discussed abo
The amplitude of the fluctuation is different from that of th
dendrimer-to-dendrimer fluctuations and depends heavily
the branching ratioc of the tree.

2. Model (iv): Random intersegment force

This model assumes that all energy differenc
@Depq(n)[ep(n11)2eq(n)# between neighboring seg
ments are random. We observe a new transition apart f
the usual linear to exponential regime transition of t
MFPT. This is a one-step replica symmetry breaking tran
tion from a weakly disordered~high-temperature! phase to a
highly disordered~low-temperature! phase. In the weakly
disordered phase all paths contribute tot(g), whereas in the
highly disordered phaset(g) is dominated by a few paths
Similar dynamic transition was predicted@23# for kinetic
pathways in protein folding.

This transition occurs only in this model. It cannot occ
in models~i! and ~ii ! since in these models there is effe
tively a single pathway from the periphery to the center~i.e.,
all pathways are equivalent!. It cannot occur in model~iii !
since the random-energy effect is very limited. For any pa
independent of its length, only the random energies at
initial and final sites are contributing. This is insufficient
cause an energetic disparity that will overcome the entro
advantage of having maximum number of paths contributi

In the low-temperature phase the distribution ofjn
p,q

5exp@2bDep,q(n)# becomes very broad. The important co
tributions will come from those paths for whic
( (pq)n

Dep,q(n) is large and negative. We also assume t

the constant forceē5eo is weak and the system is in th
exponential regime. The linear regime will be discussed la
We thus focus on the largej regime~it is sufficient for them
to be typically larger than 1/c). In this regime, the larges
contributions will come from the longest paths, and if
qualitative change in the behavior will occur it will be no
ticeable first in the dominant contribution from the largest
all subtrees. We will thus look for a new behavior in th
ISA-MRT by examining the maximal tree rooted atk51.
The same argument may be repeated while looking att(g):
its dominant contribution in this regime will come fromt̄ g ,
namely, the ISA-MRT on the most extremal generation w
n5g.

Searching for a possible abrupt change in the propertie
ISA-MFPT, we will therefore examine the largest tree co
tributing to t̄ g;T1

g since it has the largest energy dispari
As long as its behavior is normal, so will be all other term
Once its behavior changes, it will affect that oft̄ g and then
that of t(g), to which it makes the largest contribution.

The contribution ofT1
g is akin to a partition function of a

so-called ‘‘random-directed polymer’’ on a Cayley tre
3-7
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which is known to have a glass transition~in the thermody-
namic limit!. Physically the transition is between a hig
temperature phaseT>Tg at which all paths contribute, while
for T<Tg only a finite number of them do. The transition
of one-step replica symmetry breaking~1RSB! type. Then
→0 replica trick was used to study its transition point.
complete analysis using this trick is available@11#. Here we
present a simpler, more intuitive outline. In the very-hig
temperature regime it may be shown that all moments of
MFPT ~or the ‘‘partition function,’’ in the polymer picture!
obey ^Tk&5^T&k. Hence, in the large-T limit, all thermody-
namic properties of the quenched system are given by th
in which the disorder is annealed. In this regime^T1

g& is
easily computed and found to be

^T1
g&5@c^exp~2bDe!&#g. ~36!

For largeg we have

^T1
g&5@exp$2b f %#g, ~37!

wheref (b)52(1/b)ln^T1
g& is the free energy per generatio

When the random-energy differenceDe follows a Gauss-
ian distribution PG(De)5(1/A2pl)exp@2(De2e0)2/
2l2#, the free energy is given by

b f 5be02 ln c2
1

2
b2l2.

The transition point can be determined by the vanish
point of the entropyS(52] f /]T5 ln c2l2/2T2 , where we
assumedKB51). This yieldsbg5A2 lnc/l, which is the
transition temperature from the weakly disordered to
highly disordered phase.

For low temperaturesb.bg the entropy remains zero
This is achieved@11# by expressing the free energy asf
5e02 ln c/mb2mbl2/2, andmP@0,1# is chosen such thatf
is maximal. Forb,bg , m51 and the previous resu
holds. Forb.bg , ] f /]m50 ~which implies ] f /]T50)
yields

m5
A2 lnc

bl
5

bg

b
,1. ~38!

For a general distribution the requirement is to maxim

f ~m!52
1

mb
@ ln c1 ln^exp~2mbDe!&#.

The physical meaning ofm is explained by the existenc
of a finite ~in the thermodynamicg→` limit ! number of
paths that contribute toT1

g , and therefore tot̄ g andt(g) as
well. To see that, we need to define the overlapq between the
contribution of two different products~paths! in the sum@and
its distributionP(q)#, which plays here the role of an orde
parameter. It is defined as the weighted~over all paths! frac-
tion of the way the two paths will go together on the sa
segments, averaged over the disorder. At high temperat
all paths are essentially equivalent and the probability
02180
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any overlap vanishes. AtT50 there is a single dominan
path with the minimal energy~the ‘‘ground state’’! that
makes the only contribution and thus both paths will over
all the way givingq51 with probability 1. It was shown
@11# that for this system the only two possible overlaps a
q50 and q51. Their respective probabilities, howeve
change in the glassy phase and are given by

P~q!5d~q! for b,bg and

P~q!5md~q!1~12m!d~q21! for b.bg , ~39!

wherem5T/Tg was introduced before.
So far the discussion was limited to the exponential

gime. Increasingeo will lead to the transition into a linea
regime ateo5eo* (b). For b,bg the transition is given by
the expected ‘‘annealed’’ conditionc^j&51, which yields
eo* 5 ln c/b11

2bl2. For b.bg , in the glassy phase free en
ergy is given by

f ~m,b!5
ln c

mb
1

mbl2

2
. ~40!

Sincemb5bg the critical force remains constant withi
the glassy phase forTg,T,0 and is equal to its value at th
transition point (b5bg), which is given by

e0* ~b.bg!5
ln cl

A2 lnc
1

A2 lncl

2
5lA2 lnc. ~41!

The expected (eo ,T) phase diagram is shown in Fig. 4
We should also note that crossingbg within the linear

regime yields only a glassy crossover and not a sharp t
sition. This is due to the fact that the ISA-MRT converges
a finite value even asg→`. The longer paths thus make a
exponentially small~in their length! contribution, the system
is dominated by paths of finite length and the ‘‘glass tran
tion’’ takes place in an effectively finite system.

FIG. 4. The (e0 ,T) phase diagram for the replica symmet
breaking transition.
3-8
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IV. MFPT FOR THE NONLINEAR TIME-DEPENDENT
HARTREE-FOCK POTENTIAL

In the preceding section the funneling energy was
sumed to vary linearly with the generation numbern
(50,1,2, . . . ,g). However, electronic structure calculation
by Tretiak, Chernyak, and Mukamel@24# show a strong non-
linear dependence of the exciton energy~on n).

The funneling effect of extended dendrimers origina
from the variation of the segment lengths. We denote bn
(51,2, . . . ,g) the nth generation starting from the cente
The peripheraln5g generation is made from them51
monomer. The number of monomers increases by one g
from one generation to the next towards to the center.
number of acetylene monomers in thenth generation is thus
l 5g2(n21). The n dependence of the excitation ener
was computed using the time-dependent Hartree-F
~TDHF! technique and fitted to the form@25#

e~n!5AF11
L

g2~n21!G
0.5

~42!

with A52.8060.02 (eV) andL50.66960.034.

A. Ordered dendrimer

Using Eq.~42!, the detailed balance ratio becomes

jn5c exp2
A

kT H S 11
L

g2nD 0.5

2S 11
L

g2n11D 0.5J .

~43!

The points of the same generation are identical and
can calculate the MRT and MFPT for this potential using
expressions~8! and ~10! for one-dimensional random wal
starting at the periphery. The mean time spent by an exc
in the nth generation is given by

tn5expF2AH 11
L

g2~n21!J 0.5G
3(

r 51

n

c(n21) expFAH 11
L

g2~r 21!J 0.5G . ~44!

The total time to reach the trap will be sum of all thetn’s,
and the MFPT is

t~g!5 (
n51

g

tn5 (
n51

g

expF2AH 11
L

g2~n21!J 0.5G
3(

r 51

n

c(n21) expF AH 11
L

g2~r 21!J 0.5G . ~45!

The above expression fort(g) is plotted in Fig. 5 to show
that the MFPT for this potential is quite different compar
to that for the constant potential difference. We find tha
depends linearly ong for the first few generations, but gradu
ally changes to exponential with increasingg.

The behavior of the MFPT can be better understood
terms of MRT. The MRT is not a monotonic function of n,
02180
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e
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n

can be seen in Fig. 6@plotted using the Eq.~44! of tn# for the
TDHF potential. At the generations near the peripheryg
2n!g) the energy difference between generations is la
and the funneling force is so strong that it overcomes
outward entropic force ofc>2. Near the center, on the othe
hand, the larger isg, the weaker is the funneling force an
the entropic term dominates. The competing effects ne
cancel at some intermediate generationn5n* (g) where the
exciton spends maximum time. For largeg, an estimate for
n* may obtained from the recursion relation satisfied@from
Eq. ~8!# by the MRT’s,

tn5jn21tn2111. ~46!

FIG. 5. The MFPT vsg for the ordered TDHF nonlinear poten
tial for different branching ratios of the tree.

FIG. 6. The MRT vsn for the ordered TDHF potential for dif-
ferent values ofg.
3-9
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For tN to be maximal,tn11 /tn5jn11/tn,1, hencejn,1.
Similarly requiringtn /tn21.1 yieldsjn2111/tn21.1, so
for large tn21 ~or equivalently largeg) we may takejn21
>1. tn is therefore maximized asjn→1 from below. Using
expression ~43! we obtain n;(g2k11) where
k @5k(A,L,c)# is a constant~independent ofn andg) and
n* (g) is the closest integer. This formula works well for o
system forg>12 and holds approximately~off by only one
generation! for 7<g,11. Clearly, the larger theg, the better
is the estimate ofn* (g).

To understand the behavior of the MRT, the reduced f
energyu(n)5be(n)2n ln c is plotted in Fig. 7. The MRT is
maximal at the site at which the free energy is minimum. F
large g, both n* (g) and the energy difference between t
center andn* increases withg. As a result, the time to reac
the center fromn* grows exponentially withg ~the time to
arrive atn* from n5g is always much shorter!. If g is small
enough, however, the values ofn* andu(n* ) increase only
weakly with g and the MFPT dependence ong may be ap-
proximated by a power series~dominated initially by the
linear term!.

For fixed g, the MFPT may be changed by variations
the coordination numberc and the temperatureT. Decreasing
the temperature makes the funneling more effective. A
result, the crossover from the linear to the exponential
gime occurs at a higherg. Increasing c has a similar effec
both the outbound ‘‘entropic force,’’ which competes wi
the energy funneling, and the MFPT increase~Fig. 5!.

We have shown that for ordered dendrimers there exis
temperature and coordination number dependent spe
size, below which the the MFPT is almost linear ing,
whereas above it the MFPT starts to grow exponentially.

B. Random-energy fluctuations

We introduced disorder by adding a fluctuating part to
energy from an uniform probability distribution. The max

FIG. 7. The free energyu(n) for the ordered TDHF nonlinea
potential are plotted for different values ofg.
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mum value of the fluctuation is taken to be64% of the
energy value. Similar to the random-energy models~i! and
~iii ! for the linear potential, intergenerational@model (i8)#
and intersegment@model (iii8)# types of disorder were con
sidered separately.

For the intergenerational random energy@model (i8)# we
used the MFPT expression~10! obtained for a one-
dimensional random walk. For the intersegment random
ergy @model (iii8)#, the MFPT formula~26! for a Cayley tree
can be used to calculate the time spent by an exciton in
nth generation starting from the point 1~the points are la-
beled as 1,2,3, . . . ,2g21) at the periphery,

tn5 (
m51

n H exp@be~m,1!# (
r 51

n2m

exp@2be~n,r !#J , ~47!

wheree(n,r ) is energy of therth branch of thenth genera-
tion of the tree.r can take values 1,2,3, . . . ,2n21. The MFPT
is obtained by summing all thetn’s. The effect of disorder
was studied by numerically averaging the MFPT over diff
ent realizations of the disorder and is plotted in Fig. 8. T
shows the disorder-averaged (;104 realizations! MFPT for
both intergenerational and intersegment disorders and
the case with no fluctuation. Disorder seems to work aga
the funneling and increases the MFPT. The effect of disor
is more pronounced in the exponential regime of the MF
~Fig. 8!. Hence, to achieve efficient funneling, dendrime
should not exceed the optimal size beyond which the non
ear potential and the disorder make the excitons expon
tially slow.

The disorder-averaged MFPT is identical for the interge
erational disorder model (i8) and the intersegment disorde
model (iii8), consistent with our analytical calculation fo
models~i! and~iii !. However the fluctuations around the a
erage MFPT,dt(g), are different~Fig. 8! especially for large

FIG. 8. The MFPT for the TDHF potential with both types o
random energy~indiscernible from each other! compared to that of
the pure system. Inset: their relative rms variations vsg.
3-10
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g, and the relative fluctuation saturates to a larger value
the intergenerational disorder.

V. GEOMETRIC DISORDER: DIFFUSION ON A TREE
WITH RANDOM CONNECTIONS

Different forms of generic networks have drawn mu
recent interest. The small world model was introduced
Watts and Strogatz@13# and received considerable attentio
in the past two years@26#. The model assumes a regul
lattice and fixed number of nearest neighbor connecti
with a few randomly chosen connections between vertic
The essential features of this model are~i! high local con-
nectivity that resembles a regular graph,~ii ! the average dis-
tance between any two points scales as; ln L, whereL is the
linear size of the graph. This is an important property o
random graph.

Inspired by this model we have studied the effect of a f
random connections on the exciton diffusion. We first co
sidered the MFPT for a one-dimensional chain with so
random connections made between any two vertices wi
fixed small probability. For a given chain lengthL, there
exists a critical probability for random connections (pc
;L1/d @13#!, above which the small world effects are o
served. We have performed a numerical simulation of
MFPT for a one-dimensional small world chain using a ge
eralized form of the master equation~1!, where we allow few
hoppings between vertices chosen randomly. We then a
aged over different realizations of random connectio
Whenp.pc , we found that the average MFPT scales log
rithmically ~instead of linearly!with g ~Fig. 9! for j0,1.
Whenj0.1, the disorder-averaged MFPT grows almost l
early instead of exponentially withg ~Fig. 9!. This may be
rationalized in terms of the average distance between
two vertices which is supposed to behave as lng, whereg is
the length of the system. Hence we can approximate a s
world linear chain of lengthg by a regular linear chain o

FIG. 9. The MFPT vsg for the small world model~exponential
regime!. Inset: the same for the linear regime.
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length lng. Then the average MFPT in a small world on
dimensional chain will be linear in lng @i.e., t(g); ln g# for
j0,1. Forj0.1, the MFPT is exponential in lng and hence
t(g);exp(a ln g)5ga, wherea is a constant. In our simu
lationsa;1, so the MFPT grows linearly. As the probabilit
p of random connections is decreased, the onset of the s
world effect occurs at larger system sizes@26#.

On a tree we add a few random connections between
tices of different generations. The resulting diffusion on su
a ‘‘small world tree’’ yields results similar to the one
dimensional case. Disorder-averaged MFPT again sh
logarithmic (j0,1) or power-law (j0.1) scaling with the
number of generationsg. Since only a few random connec
tions can make the funneling much faster, it should be wo
while to synthesize dendrimers with such shortcuts.

VI. CONCLUSIONS

We have investigated analytically the diffusion on a d
ordered Cayley tree in the presence of a linear poten
Fluctuations around the MFPT showed different forms
scaling ~in terms ofg) depending on the types of disorde
and the scaling regime of MFPT. For a specific form of d
order~random intersegment force! we found a new dynamic
transition in the MFPT. In the low-temperature~highly dis-
ordered! phase, the MFPT is dominated by a few paths. T
transition resembles the one-step replica symmetry brea
glass transition found in other disordered systems l
random-directed polymers.

We have also considered exciton diffusion on dendrim
with a nonlinear funneling energy. For dendrimers with
nonlinear potential larger than a specific size, even tho
the number of light-absorbing sites at the periphery
creases, the MFPT starts to grow exponentially~with g),
resulting in slow exciton trapping. Quenched disorder slo
down the exciton diffusion towards the center. This effec
more pronounced when the MFPT of the corresponding
dered system is in the exponential regime. Hence to ach
an efficient funneling of excitons, the number of generatio
must be restricted to some optimal value. We have de
mined this optimal size for a particular class of phenylace
lene dendrimers. For large dendrimers, the free energy
tains its minimum atn!(g) where an exciton spends most
its time during its journey towards the center. Assuming
steady supply of long-lived photoexcitations, the excito
will start gathering atn!(g), rendering the single-exciton
picture invalid. In that case, we have to consider excito
exciton interaction and annihilation processes@27#.

Finally, we have considered diffusion on a lattice with
few random connections~‘‘small world’’ ! between any two
vertices. The effect of random connections is to reduce
effective system size logarithmically. Numerical calculatio
show that the disorder-averaged MFPT is also decreased
logarithmic factor. Hence there will be an exponential gain
the exciton trapping. This might have interesting con
quences for information propagation through hierarchical
cial communication networks.
3-11
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APPENDIX

The MFPT equation~10! can be expressed as

t~g!5$1%1$j111%1$j2j11j211%1•••

1$jnjn21•••j2j11jnjn21•••j21•••jnjn21

1jn11%1•••1$jg21jg22•••j2j1

1jg21jg22•••j21•••jg21jg221jg2111%,

~A1!
re

.

M

o
,

C
.

c
.

tt

c
,

.

02180
i-
,

whereTi51 is assumed.
For the linear potential the sum in Eq.~10! assumes the

form

t~g!5$1%1$j11%1$j21j11%1•••1$jn1jn211•••

1j21j11%1•••1$jg211jg221•••1j21j11%.

~A2!

This can be recast as

t~g!5g1~g21!j1~g22!j21•••2jg221jg21.
~A3!

This series can be summed to yield Eq.~12!.
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