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Stochastic trajectories in single molecule kinetics coupled to several Gaussian Markovian
coordinates are analyzed using a generating function obtained by solving the multidimensional
Smoluchowski equation. Multitime correlation functions are computed and used to identify direct
signatures of non-Poissonian kinetics resulting from coupling to slow coordinates. Effects of various
degrees of correlation between collective coordinates with multiple time scales are studaD2©
American Institute of Physics[DOI: 10.1063/1.1446433

I. INTRODUCTION oxidase binding kinetics by measuring a fluorescence signal
of these “on” and “off” states®?? Kinetic data obtained
The last decade witnessed considerable advances in flugrom statistical analysis of single molecule trajectories can
rescence detection and microscopy of processes involvinghen be used to calculate correlation functions of the distri-
single molecules and quantum dots in condensed phassitions of on- and off-time periods. These functions can in
environments:*® Compared to highly averaged bulk mea- turn be used for calculating various measures of correlation
surements, single molecule spectroscéBMS) reveals de-  of variables of the environment such as the joint distribution
tailed microscopic information on both the molecule underof several on- or off time&2?1222428These provide useful
study and its environment. For example, SMS can probgnformation on how slow dynamics of the environment
slow motions compared to the characteristic relaxation timesnodulates the single molecule kinetics.
of the molecule, which is not possible using bulk techniques.  Several stochastic models have been proposed for SMS
SMS signals exhibit stochastic behavior originating fromkinetics23-26:29-31 xje %18 and Barbara and co-workéts
translational and rotational  diffusidi;*® spectral  have described the time evolution of the survival probability
fluctuations] conformational motion8} and chemical of 4 single molecule to remain in a certain state using a
changes and trapping causing fluorescence blinkKifA  kinetic equation where the rate depends on two states. Using
statistical analysis of the observed stochastic trajectories prgr two-conformational-channel model, the joint probability
vides detailed information on these molecular processes. (jstribution of two adjacent on- and off-time events was
When all environment degrees of freedom are fast comgomputed and showed memory effects due to conformational
pared with the kinetic time scale, ordinary rate equationgjyctuations of a proteift’® Geva and Skinner presented a
provide a simple and intuitive framework for studying method of evaluating the interconversion rates between the
chemical dynamics. In this case SMS carries no new inforyyg conformational states using weights of the lifetimes as a
mation since stochastic trajectories obey Poissonian statisti¢gnction of the acquisition timé Berezhkivskiiet al. stud-
governed by the macroscopic rate constants. However, Whgq piexponential fluorescence decay of a SM modeled by a
kinetic rates are coupled to slow degrees of freedom, th@yq-state system and obtained an expression for the prob-
ordinary kinetic scheme no longer holds and stochastic tragpjjity density of the decay amplitudés.They have also
jectories do provide new microscopic information about th€gyiended their analysis to describing fluorescence decay of
system.. 'I;he non-Poissonian  statistics of = stochastig, g\ undergoing multistate conformational dynanfcs.
trajectqr|e§ shows up, €.9.,1n long tails in distributions of ¢4 applied a similar modulated N-conformational-channel
dynamical quantitie&”~ reactive modef* The required numerical effort of this ap-

_ Multi_time correl_ation functions of th_e disj[ributions of proach grows rapidly with the number of conformers of re-
time periods for a single molecule to be in various states arg.iants and products.

interesting quantities characterizing the slow bath motions. | this paper we consider continuogsather than dis-

For example, the active site of cholesterol oxidase involvegetg model for conformational change in both reactants and

flavin adenine dinucleotide, which is only fluorescent in its 5o qycts and model the fluctuations as Gaussian Brownian
oxidized form. This allows the study of a single Ch°|eSter°|coordinates, described by a generalized Langevin or

Smoluchowski equatioft>-3zwanzig used this model to
dElectronic mail: mukamel@chem.rochester.edu predict nonexponential decay curves for the passage of a
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molecule through a fluctuating bottleneck and describe the m

binding of a ligand to myoglobin, assuming that the rate is XEE ujxj:uTx, ©)
proportional to the area of the bottlene@uadratic sink>’ =1

Eizenberg and Klafter studied molecular motions through awhereu;’s are fixed coefficientsy” is the transpose of the
one-dimensional series of uncorrelated and correlated bottlerectoru, anduu= 1. The dynamics of is described by the
necks and investigated the decay profile of the averagemh-dimensional stochastic equation

ligand concentratio® Effects of finite ligand size were in- .

cluded as welf® Wang and Wolynes have used path integrals x(t)=—Gx(t) +F(1). (4)

to extend the analysis of Zwanzig to study a stretched expox;'s are thus taken to be uncorrelated variables with unit
nential correlation function of the bottleneck radius fluctua-yariance so tha¢xx™) =1 where(:--) denotes ensemble av-
tions. They obtained a closed expression for the timeeraging andl is the unit matrix.G is the mxm matrix of

resolved survival probabilifj and computed the decay rate constantg; describing fluctuations ir. F(t) is a
“intermittency ratio,” a quantitative measure of the memory Gaussian noise with

effects induced by the slow coordinate. Bicout and SZabo , ,
have extended Zwanzig’'s model by modeling the bottleneck (F(1)=0, (F(OF(t"))=2D5(t—t"). (5)
radius as a sum of several Gaussian Markovian variables. The mx m matrix of correlation ofx is

We shall calculate stochastic trajectories for the fluctuat-
ing bottleneck model and analyze the statistics of single- AW =(x(D)xXT(0))=exp{ ~ G}, ©)
molecule three- and two-state kinetics. The formalism furtheand the correlation functio@(t) =(X(t)X(0)) is related to
allows us to compute multitime correlation functions of rel- A(t) by
evant physical quantities to any order, utilizing a generating T T
function for the distribution of jumps between the various CH=uA(u=uTexy ~Gtju. 0
states. The present analysis extends the earlier stochastic Combining Egs(2) and(3), we obtain
studies of single-molecule kinetfés*since it describes sys- K= xTK 12y (®)
tems with several collective coordinates with arbitrary de- 12 '

grees of correlations undergoing fluctuations over mu|tip|eNhereK1ﬁ25k12uuT.
time scales. The model has two types of time scales; the kinetic time

In Sec. Il we introduce our model for a reaction de-and a characteristic time scale xf. If x;'s are fast com-
scribed by a bottleneck which depends quadratically on sewared to the kinetics, they can be averaged out and the sur-
eral slow variables. In Sec. Ill we use the Greens’ function ofvival probability of state[1) assumes a simple exponential
the multidimensional Smoluchowski equation to calculateform, exd—(Kipt}, (K1) being the ensemble averaged ki-
multitime correlation functions and the generating functionnétic rate. However, in the opposite limit a single molecule
for the distribution of jumps among states in arstate ki- “sees” how these coordinates modulate its dynamics and
netic scheme. We introduce a hierarchy of averaged physic&MS directly probes fluctuations of slow bath variables
quantities containing increasingly higher level of informationwhich determine the decay rate.
which allows a complete statistical analysis of the stochastic ~\We assume that the system startstat, in state|1)
trajectories. This formalism is then used in Sec. IV to studywith the collective coordinates,. Its probability to remain
the statistics of a three-state sequential kinetics when fludn state [1) at time t with the collective coordinates,
tuations of both bottlenecks have various degrees of correld11(X,t;Xo,to), satisfies the multivariable Smoluchowski
tions and to compute the joint probability distribution of two equation
jumps. In Sec. V we consider two-state reversible kinetics 9
with two collective coordinates and calculate the probability EPll(x,t|x0,to)= 5GxPll(x,t|xo,t0)
distribution for on-time events and the joined probability dis-

tribution function for adjacent on—off-time events. Technical Jd o
details are given in the Appendices. + 5D5P11(X,t|xo,to)
—K1oP11(X,t|Xo,to), 9
I}i.n;]rEH'ﬁCSgRVlVAL PROBABILITY IN IRREVERSIBLE where D=G+GT.
In Appendix A we present the solution to E@) in the
Consider a kinetic two-state model absence of a chemical reactidne., settingK,,=0). The
solution to Eq.(9) with K, included is given in Appendix B
[D)—12). 1) [Eqg. (B8)] and will be used for constructing the multitime

We use the Zwanzig's model for a passage through a fluctucorrelation functions in the next section.
ating bottleneck where the kinetic rafg, depends quadrati-

cally on a collective stochastic variable®” i.e., Il MULTITIME CORRELATION FUNCTIONS

K= k12X2. (2) FOR N-STATE IRREVERSIBLE KINETICS
We represenX as a sum oim uncorrelated Gaussian Mar- We now consider a sequential one-dimensional kinetics
kovian coordinates; ,?® involving n states
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|1)—[2)—=[3)—+--—|n), (100 Pisit1oisa(Xt,tilXo,t0)
. . . . . 1 (92 1 m/2 1 1/2
whereK; ;. is the kinetic rate of théth reaction governed _ o+
by the bottleneck coordinats; Ny i1 19i 0|\ 27 defY(t;—tg)]
X Tr[G]t to) 1Tft to)
o exp ——(t;—ty) rexp, — sx -
Kiis1=ki i1 XP=xTKI 71y, (11) 2 (b 2%ih(t
o —2¢i KT x+ xT ot —t x]
and K="=k ;,,uu”, i=12,...,n—1. The survival Piea et xifa(ti—to)o
probabilities associated with the transitidis to |i + 1) for 1
i=12,...,n—1 now form a vector xexp[ - Exg[fs(tf—to)
P _2¢i+2Ki+1HH2]X0]H , (16)
P i 1= i 4=0
P(x,t|xg,to)= _2,2 (X,t[x0,t0), (12 A
Pn-1n-1 where we have used the identity, [ =exp{Tr[InM]}.

Note that in the numerical implementation of E#j6), taking

h . lution i d by th led Smol the derivative with respect tg,; ., evaluated at the point
whose time evolution Is governed by the coupled Smo U, .1=0 is equivalent to multiplying the expression on the

chowski equations right-hand side with the ratio (efq ¢, K' ' "1x}—1)/
bit1.
J J Equation(16) can be directly extended for calculating
EP(XvHXOvtO): 5GXP(X,t|Xo,to) multitime correlation functions. Formally, it is convenient to

evaluate first the joined probability for a different model
with a Gaussian(rather than quadraticdependence of the

1% J
+5D5P(x,t|xo,t0) rate on the collective coordinates, i.eK;;;1(X)
=expx"¢K'"'*1x}. A similar approach was adopted for
—KP(X,t[Xg,t0)- (13 computing multitime correlation functions for nonlinear

spectroscop§?*® We then define the following auxiliary

quantity representing the joined probability of observing
Here,K is thenxn rate matrix andk; ;= —=iK; i+1.°%*"  n-jumps weighed by the equilibrium distribution of;,

We shall use the Green function solution of E43) for Ped(Xo) (see Appendix B
the survival probabilityP; ; give in Appendix B to calculate
multitime correlation functions for this model. Of primary
interest is the joint probability for the system to jump from
state|i) to state|i+1) at time t=t, when the collective
coordinate isx,, followed by transition to statéi +2) at
time t; when the collective coordinate is = N K12 %0) P1a(Xa, ta|Xo,to) Kag(xa)
n

Q[n](XOvtO!¢O!X11t1!¢1! ceeo X vtf !¢n—1)

X Py X, to]Xq 1) Kga(Xg) X . ...
Pi_i+1i+2(Xs,teXo,to)
X Pn—l,n—l(xf 1tf|xn—1vtn—l)Kn—l,n(Xf)Peq(XO)-

17

1
=N Kii+a(%0) Pi i (X X0, to) Kiy 1+ 2(Xp), (14 . . o
2 Equation(17) is a generalization of Eq14). Closed expres-
sions forQ!" andN,, are given in Appendix EQI" carries
all the relevant information on the dynamid@s of higher
order in the number of jumpdi]) contain information on
higher order correlations, i.e., correlations among more
evolution periods(individual stateli)- and state|i +1)-

whereN, is a normalization factor{=t;—tg)

N,= fo drf dxof dx; Ki i +1(Xo) time events on a single molecule trajectory
{(11X11t1)!(2!X2!t2)1 e ,(n,Xn,tn)}.
X Py (X6t X0y to) Kis 114 2(X¢). (15) We next define the generating functioff—*4

S(7y,7,,...,7_1) for the probability distribution of
n-jumps which occur at the end;) of each time interval
Using Eq.(B8), Eq. (14) can be recast in the form i=ti—t_1,i=12,...,n—1

Downloaded 11 Mar 2002 to 128.151.176.185. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 Multitime correlation functions 4243

S, 70, e Tt) We shall compute the distribution of jumps in the follow-
ing sections. The joined probability distribution function for
EJ dxf---j dX1J dx, QI states. .. |i,), ... |ig),...-time events of interest can be
- — - calculated fronF" (7,75, ... ,7,_4) by integrating out the
intermediate periods, i.e.,
X (Xo,tor o Xate, 1o Xete, o). (18) P

Using Eg. (E1) and carrying out the integration over R(

e Try e Ty e e s)
Xg:X1, - - - X¢ IN EQ. (18), we obtain a closed expression for ca o o o
the generating function =, dr g . drepqg . drs-1 . A7

S[n](TllTZ!""Tn—l) XF[l](Tl,Tz,...,'ﬂ,l). (23)
1/ 1 \@2nmi=1 1 12 Finally, the probability distribution of observing-jumps
= N(E) AL (—de[Y(r,)]) during timet is given by
t Th—1 72
TG [ :f J J
Xexp[ [2 ](Ti)] PYI(t) OdTnfl . dry» . dry

XF[H](Tl,Tz,...,Tn_l). (24)

' (19 Note that these quantities are only accessible from stochastic
_ o SM trajectories; bulk measurements only provide quantities
whereM is anmXxm matrix with elements averaged over the distribution of initial conditions.

M(7,Tig1, .- ’Tnfl):fl(Ti)—Zd)iKiHi*l’

2 1/2
X(de(M(Ti yTidls e o iTn—l)])

IV. STATISTICS OF TRAJECTORIES

for i=n—1 (200 |N A THREE-STATE KINETICS
and We have applied the generating function formalism to
M(Ti,Tisgs e Tnoq) study the three-state irreversible single molecule kinetics
~fy(m)— 2K i) 14)=12)-13) (29
T . with kinetic rateK;, andK,3, controled by bottleneck vari-
—fa(7i) M(7i41, .o v7no0) (i), ablesX; and X, respectively, with an arbitrary degree of
for i=n—2.n-3.... 0. 21) correlations.X; and X, are described by two collective co-
’ Y ordinatesx, andxy, i.e.,
The first two factors in the product overn—1,...,1 X = Ur Xt UneX
in Eq. (19) represent the probability distribution for the sys- 17 F1a%a b H1b%hy
tem to be in a certain state during the time interwal The Xo=UpaXa+ UppXy, (26
third factor (inversely proportional to the matrikl) repre- . S .
. ) . . : with the equilibrium correlations
sents time evolution of correlations among various sfigte
and/or stateli +1)-time events,i=1,2,...,n, of duration (X3y=uf,+u?,,
T,...,7n_1. Because of the slow variables, this factor 5 ) 5
shows interesting dynamics resulting in non-Poissonian sta- (X3)=Uzat Uz, (27

tisticg with spegific signgturgs in the distributi.ons of releyant (X1 X0) = (XX 1) = Uy alipa+ UgpUsp -

physical quantities. This will be illustrated in the coming

sections. We takek,,=k,;=1 and assume that the decay of cor-
Using the generating function we can readily compute’@lations(Xy(t)X,(t")) is slow compared té;, andkps.

various observables which measure correlations of slow co- We considered three casefi) positively correlated

ordinates. First, the probability distribution of observing Pottlenecks(PC, (X;X5)>0), we setu;;=u;p=Uy=Uy,

n-jumps with time intervals; (i=1,2,. .. n—1) is obtained = 1/v2 and decay rate constapt;= y1,= y21= y2,=1.0 for

by taking thenth derivative of the generating function with Poth transitions{ii) negatively correlated bottleneckbIC,

respect to the parametefs, d1, by, . . . b1 and then set-  (X1X2)<0), We Setui;=Ug,=1/12, Uz =Uz=—1/y2 and

ting o= 1= o= ... =, 1=0 Y11= Y12= ¥Y21= Y2o= 1.0 for both transitions an@ii) uncor-
related bottleneck$UC, (X;X,)=0), we setu;;=1.0, uy,

F[n](Tl!TZ' e !Tnfl) :0, Y11= 10, V22= Y12= ')/21:0 for the k12 transition and
gn U21=0, Up1=1.0, ¥25=1.0, y11= y15= ¥21=0 for the k3

= transition. In all calculations the time variables are given in
-1 dPpad P19 units of 14’ [see Eqs(D3)].
In Fig. 1 we display the joint distributioR[?1( 7, 7,) of
undergoing|1)—|2) and|2)—|3) transitions during times
(22 7, and 7, for the three cases. Both three-dimensional plots

X[S[”](Tl,rz, . ,Tn_l)]¢0:¢1:¢2:-~:¢n,l:0-
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FIG. 1. The joined probability distribution functida(r,,7;) of observing transitionl)— |2) during timer, and|2)—|3) during timer, for the models UC
(top), PC (middle), NC (bottom). Two-dimensional surfacegeft column and contour plotgright column).

(left column and contour plotgright column are shown. behavior can be easily rationalized. In the PC model, at time

For the UC cas€&?!(7,,7,) simply factorizes into a product t=t, the second gat¥X, is open when the first gate is, and

of distributions associated with each state and a bottleneck,, X, cooperate to increase the rate. This allows the mol-

variable (i.e., X; and X, control transitions|1)—|2) and  ecule to rapidly pass from staf#) to state|3) through the

2)—[3), respectively intermediate statg2). For this reasorr[?! in the PC model
F(7y,m)=F(1)F(7). (28)  is maximized at=t,. For the NC case, th¥, gate is ini-

In the PC case we observe a sharp decal!®f(r;,7,). In  tially closed whereas th¥, gate is open ani;, X, coop-

the NC case, the situation is differe!?! is zero at early ~erate to reduce the rate. Here, the molecule makgs)a

times, suddenly increases at later times, followed by a sharp>|2) transition and waits at the second gate for the negative

decrease to zero. These two qualitatively different types otorrelations to decay before it can undergo the second tran-
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40

F(z)

20

FIG. 2. Top panel: the joined probability distribution function of on-time-
eventsFEZl(r) for the models Slong tail curve,y;=0.1) and Fshort tail 5 5 Top: the joined probability distribution function of on-time events
curve, y;=100). Bottom panel: the diagonal sectiop=r7, of the dlﬁer,— F[2(7) for the models S$lower curve in the region between intersection
ence functlonl?(r,r) for the models S(.curve attaining minimum,y; points, v, =y,=0.1), SF(middle curve,y,=0.1 andy,=100), and FF
=0.1) and F ¢,=100). D(7,7) is normalized byb(0,0). (upper curve,y;=y,=100). Bottom: the diagonal section =, of the
difference functiorD (7, 7,) for the models S8ower curve attaining mini-
mum, y; = y,=0.1), SF(middle curve reaching a plateay; =0.1 andy,

sition from statg2) to |3). Because of thisP?! in the NC = =100, and FF(upper curve,y,=yj=100). D(r,7) is normalized by
model reaches its maximum at later times, around D(0,0).
Nl/’ylz.

Contour plots ofF?l(r;,7,) contain distinct signatures

of correlations among collective coordinates. The plot for thedistributions of on- and off-time periods. The multitime cor-

UC (PO case is concavéconvey along the diagonal, relation function is given in Eq.C1). Closed expressions for

= 7o. For the NC case, the contour lines are convex befor he generating functions for the distribution of two, three
F[2] reaches the maximum when the bottleneck variables aré. - 2 9 ’ ’

still correlated. AfterF[?! passes through the maximum the and four J“m'zf fo_[)th!s mede.n" On;Oﬁ and lon—?lff—qn—
contour lines become concave, indicating the loss of corret-lme (_avents 'StT' ut|9n uncnopswn a single collective
lations. coordinate are given in Appendix D. . o
We have studied the two-state reversible kinetics when
the collective coordinates fluctuations involve multiple time
scales andt;,=Kk,;= 1. In all calculations the time variable is
given in units of 14’ [see Eqs(D3)]. We have calculated
We next turn to multitime correlation functions for the the probability distribution functions of on-time events
two-state reversible kinetic model F[2l(r) and the joined probability distribution function of
1y=|2) 29 adjacent on—off-time e_\/enﬁm(rl,rz) for a model with a
e single collective coordinate, and for two collective coordi-
where the kinetic rates for the forward and backward reacnates with different correlation decay rate constants. Analyti-
tions K4, andK,; are given by Eq(2). cal expressions for these quantities are too lengthy and will
Usually, a stochastic SMS trajectory is followed by not be given herek?!(7) for the model of a single slo\s)
monitoring the fluorescence signal associated with the relfy=0.1) and a single fagF) (v=100) collective coordinate
evant states. Ideally, one of these states is fluoregstate  as well as slow §;=0.1) plus fast ¢,=100) (SF), two fast
“on” ) the other is nofstate “off”),>° and deviations from (y;=v,=100) (FF), and two slow §;=y,=0.01) (S
Poissonian statistics can be evaluated by studying variousollective coordinates is shown in Figs. 2 andt8p). The

V. STATISTICS OF ON-OFF TRAJECTORIES IN TWO-
STATE REVERSIBLE KINETICS
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FIG. 4. Left column: contour plots of
the joined probability distribution
function of the adjacent on—off-time-
eventsFBl(r,,7,) for the models S
(bottom, y;=0.1) and F (top, y;
=100). Right column: contour plots
of the difference functiord®!(7,,7,)
for the models S(bottom, y;=0.1)
and F(top, y;=100).

Poissonian kinetics for fast environmeng-{) serves as first two “gain” terms) and kinetics for the fast environment.
convenient reference. In this case, Because of this, in the kinetic reginfd?!(7) decays faster
F21(r) =k exp —kyt). (30) for a slowﬁinv.ironmer_lt. This is glso the reason why(an
long (t~ 7y, ) time regime, following the chemical transfor-
All curves (S, F, SS, SF, FFstart from the same point mation (1)—|2)), the distribution of on-time events with a
FI?l(7=0) and eventually decay exponentially to zero.sjow environment shows a long tail. Here, the gain terms
However, distributions for the environment involving a slow compete with the loss terms. In the long time limit the gain
coordinate have slower decay initiallgompared with the  (ormg |ose the day and the distribution decays to zero.
fast environment faster decay at intermediate times and For the two collective coordinates, the SE model lies

long time tails, reflecting deviations from Poissonian Statis'between the SS and the FF curves. Thus, as f&l46r) is
tics. Thus, compared with a fast environment, in a slow en- ' '

) < short ql i éoncerned, the single molecule kinetics with slow and fast
vironment SNOTer and fonger times are more Pronounced, o e coordinates can be reconstructed by superposing
compared with the characteristic time of the decay of fluc

. . L . kinetics with fast and slow environments. Note that due to
tuations at the expense of the intermedidi@etic) region. . . .
. i . - the dynamics of each coordinate, the curves intersect at
The points of intersection of the curves in Figs. 2 and 3 horter tim mpared with the sinal rdinate model
naturally partition the kinetics into the three regimes.For s OI eF' ezco dpse displ €s ?e colot a;(teh c(;jets
short times {< yi_l), the molecule maintains its memory of buti n I?S.d' an we ﬁ|s_p ay con 0L[|3r]p ots o ; € h'S r-
the initial conditions(non-Markovian behavior In this re- ution of adjacent on—off-time events™(ry,7,) for the

gime, dominated by the environment dynamics, a slow enviS&me models. In all cases, the overall pattern is a two-

ronment has a longer memory of the initial condition as comdimensional exponential decay with respectrtoand .
pared with a fast environment, and thus a single molecul&!€re, in any direction passing througf=7,=0 and bisect-
with a slow environment has a higher probability to remainind @ contour plot we observe the same features as in
in its initial state. Right after the first intersection point, the F'2(7): slower initial decay oF*)(,,7,) in region(a) for
molecule entergb) the intermediate 4] '~t<y; ') time @ slow environment as compared with a fast environment,
regime, where its memory of the initial conditions is de- faster decay in the kinetic regime and long tails. Thus, quali-
stroyed(“kinetic regime”) due to the presence of interaction tatively the decay profile does not depend on the number of
with the environment $K—2x?). Note that the intersection jumps separating the periods of interest. Comparing the de-
point is unique(no memory, i.e., a single molecule with any cay profile of F[3/(7,,7,) for the S, F, SS, and SF models,
(slow or fas} environment will pass through this point. In the we see that the decay Bf3!(7,, ,) is faster in the presence
kinetic regime, evolution is strongly dominated by the kinet-of an additional coordinatén SS and SF models

ics [the third “loss” term in Eqg.(4)] in the case of a slow An interesting feature df®1( 7, 7,) is the entanglement
environment, and is a competition between the dynafies  of 7, andr,. Comparing the contour plots &°( 7, 7,) for
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tour plots for the fast environment in Figs. 4 and 5; here, as

for FB1(r,,7,) contour plots are symmetric with respect to

the interchanger,< 7)]. However, for slow coordinates,

correlations after an initial decay reappear at later times fol-
¢ lowed by an eventual decay to zero.

We have examined the time evolution of correlations
between adjacent on- and off-time periods by calculating the
diagonal section4{;= 7,) of the difference functio (7, 7)
for the various cases. The results are presented in Figs. 2 and
3 (bottom). The time profile ofD(7,7) for the SS and FF
models is qualitatively similar to the S and F models, the
presence of an additional coordinate with the same time scale
does not bring any new feature to the kinetics. However, the
additional fast collective coordinate complicates the dynami-
cal correlations between adjacent on- and off-time periods.
Because of slow and fast coordinates in the SF model, an
environment is both faster in regiga) and slower in region
(c), and in the kinetic regioib) the decay of correlations is
suppressed. In this case of a slow environment, the on—off
transitions are thus more likely to occur either at shorter or at
longer times. In the SF case, although the amplitude of the
deviations of the distributions of jumps from Poissonian sta-
tistics is lowered at longer times, these deviations do not
vanish in the kinetic regime. This implies that the on—off
transitions are less likely to occur at longer times and most

frequently occur in the intermediate time scale. Thus, for an
»’ environment described by collective coordinates with nota-
0 1 2 300 05 10, 15 20 S bly different decay rates, a quiet period separating intervals
: of sudden bunching on a single molecule trajectory may be-
FIG. 5. Left column: contour plots of the joined probability distribution COMe shorter.
function of the adjacent on—off-time-everf$l(r,,,) (left column for The present approach is practical provided the correla-
the models SS(bottom, y;=v,=0.1), SF (middle, y;=0.1 andy;  tion function of fluctuation$Eq. (7)] can be represented as a
=100), and FF(top, y3=7,=100). Right column: contour plot of the =~ g,;m of few exponentials. For othée.g., stretched exponen-
difference functionD®(r;,,) (right column for the models SSbottom, tial) forms a path integral representation should be more ad-
v1=7v5=0.1), SF(middle, y;=0.1 andy;=100), and FF(top, y;= v, . N .
=100). Color code is the same as in Fig. 4. equate. A different kinetic model can be obtained by replac-
ing the quadratic dependence of the rate &j.with K(X)
=9d(X—Xyp), i.e., assuming that the process occurs at a curve
the SF model with those for the SS and FF models, we not’grossing region. Fon slow coordinates this corresponds to

that for slow coordinates the contour lines are shifted to_ann—l-d|men3|onal region. Assuming a single slow coordi-

wards longerr; and shorterr, compared with fast environ- nate =1), we recover the Marcus rate theory. In this case

ments where the contour plots are symmetric with respect Q'€ need to compute the probability distribution at the curve

the interchange of;, and 7,. This entanglement is a sigha- crossing point and the problem can be mapped into a con-

. . ’45 . . . _
ture for the non-Poissonian characteiré!(7,,7,). Indeed, tinuous time random wal®“® It will be interesting to com

for a fast environment the on- and off-time events are uncorP2€ the statistical properties of SM trajectories for the curve

related (independent and F®l(7,,7,) factorizes[see Eq. crossing and fluctuating bottleneck models.
(28)] Thus, longer on-time durations facilitate shorter off-
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andD(74,7,)=0, the time evolution and the magnitude of
D(7q,7y) Yyields the two-dimensionat, , 7, time correlation
profile of on- and off-time periods. Contour plots of In the absence of a chemical reaction, the evolution of
d(r,7,) for models S, F, SS, SF, FF are depicted in Figs. 4he probability density of finding a slow coordinatexatat
and 5. OverallD(7,7,) shows a decay of correlations be- timet provided it started off at, at timet, can be described
tween adjacent on- and off-time periofsee, e.g., the con- by Eg.(9) with K;,=0

APPENDIX A: THE MULTIDIMENSIONAL
SMOLUCHOWSKI EQUATION
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_(9 P(x,t to)= _& GxP(x,t t
X, [ Xp, XP (X, 1| Xp,
at ( | 0 O) IX ( | 0 0)

Jd _d
+&D5P(x,t|xo,to). (A1)

The Green’s function solution of this equatioRis

Go(Xt,t¢|Xg,to) =

1 1/2
(2m)Mdef 1-A(7)AT( 7')]]
1
X exp[ —50x— A(7)%o]"

X[l_A(T)AT(T)]l[xf_A(T)Xo])a

(A2)

wherer=t;—ty. The Green’s function for the collective co-

ordinateX can be evaluated as

FO(Xf-tf|X01tO):f J'dxodx S(uT™x—X¢)

X Go(Xt,tf|Xo,to)

X 5(UTX0_X0)Peq(X0), (A3)
whereP.(Xo) is given by
Ped Xo) = f dx S(u"™X—Xg)Ped X), (A4)
and

PedX) = lim Go(x¢ ,t¢|Xo,to) = (27m) " ™Zexp{ — 3x"x}
tg—oo

(A5)

in Eqg. (3). A chemical reaction(1) has been included by
adding a sink ternk; ;. ; for the transitioni)—|i+1) into

the Smoluchowski equatioffAl).

APPENDIX B: GREEN'S FUNCTION
FOR THE SMOLUCHOWSKI EQUATION

In this Appendix we present the Green’s function of the
Smoluchowski equation(9) for the survival probability
P11(Xs ,t¢|Xo,to) for the reaction stefil)— |2). The survival

probability P;;(x¢,t¢|Xo,tg) for the reaction stepli)
—|i+1) can be constructed in a similar way.

We assume that initially our systefa single molecule
and collective coordinates of the environmeistin equilib-
rium in state|1). The Smoluchowski equatiof®) can be

solved by using the following ansatz>"4344

m/2
P11(X¢,t¢|Xo,to) = Z) exp{—g(ti—to)}

xexp{— 3x{f1(t;—to)Xy

+x{fa(t—to)Xo— 3Xgf3(tr—to)Xo},

(B1)

Barsegov, Chernyak, and Mukamel

with the initial conditions f{(0)=f,(0)=f3(0)=1 and
g(0)=0. Substituting Eq(B1) into Eg. (3), we obtain the
following ordinary differential equations for the time-
dependent parametefgt), f,(t), f5(t), andg(t):

f,= —2f,Df; +f,G+GTf; + 2K 2,

1
2

. (B2)
f3 = - 2f2 Df2

f,== (f,G+G'f,) — 2f,Df,

g=Ti[Df,—G].

The first equatioriB2) can be solved by introducing two
auxiliary matricesy andz, such thaf;=ZzY ~1, whereY !
denotes an inverse of matr&?>®Then, by substituting this
back into Eg.(B2), we obtain the following system of
coupled matrix ordinary differential equations:

Y=-GY+2DZ,

Z=2K1"2y+ Gz, (B3)

with the initial conditionsY(0)=Z(0)=1. The solution of
Eqgs.(B3) is [see Eqs(11) and(12)]

Y 1
(Z =eXI0{tQ}( 1), (B4)
where
-G 2D
Q= ( 2K 12 GT) ' (B5)

With the solution(B4) for Y andZz, f,, f5, andg(t) can
now be calculated. Fag(t) we obtain

g(t)=Tr{3(IN[Y]-G(1))}, (B6)
and

fi(ti—to) =Z(t—to) Y " H(ti—to),

fz(tf—to)=exp[ J:fdt(G—Zfl(t)D)]l, (B7)
0

tf

0

We obtain

mi2 1 172
P11(Xfatf|xo,to):(z) (m)

xexp{ Tr[ZG] (tt—to)]

1 T
X ex —Exffl(tf—to)xf

T 1-
+X; fats—to)Xo— EXOfB(tf_tO)XO :

(B8)
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APPENDIX C: MULTITIME CORRELATION FUNCTIONS
FOR TWO-STATE REVERSIBLE KINETICS

We consider the model given by E@9). To obtain the
joint probability to jump from statél) to state|2) at the
time t=ty when the collective coordinate ig followed by
transition back to statfl) at timet=t; when the collective
coordinate is X;, Pi_»_.1(Xs,ff|Xo,tg), we substitute
K?73-K?~1in Egs.(14) and(15). We obtain:

P121(Xs,t¢|x0,t0)

1 (72 1 m/2 1 1/2
T Np iy [(E) (detY(tf—ton)

TG
exp{ [2 ](tt_to)]eXp{_ IX{[f1(t —to)

— 21K 2]xg+ X{ fo(tr— o) Xo}

xexp{— %Xg[fs(tf_to)_2¢2K2H1]X0}} :
¢1: ¢2:0

€y

Similarly, in order to obtainQ for this model, in the
irreversible model10) we need to identify stateis of odd
order,i=1,3,2 -1 with state|1) and states of even order,
i=2,4,2 with state [2). This amounts to substituting
Kiir1i—Kyp for i=1,3,...,2—-1 and K ;;;—Ky; for i
=2,4,...,2 in Egs.(17) and(E1). For instance, for a pro-
cess involvingn jumps between statés) and|2) (n-even,
the expression for Q then becomes

QY ,(Xo.to, o Xa t1, b1, - - - Xeotr, 1)

1 ( 1 )nm/Zi—n

2

1 1/2
(de[Y(ti_ti—l)])

X exq’@(ti _ti—l)] eXPr - %XiT[fl(ti —ti_1)

— 2K T X x] ot — t 1)Xi1]

1=2
N;, i=1

1
xexp — 5Xi-alfa(ti—ti-q)

_2¢i+1Ki+lﬂi+2]Xi1Hpeq(xo)1 (C2

with the normalization factor

Nﬁ:zzf f f f f K12(X0) P11(X1,t1]Xo  to)
71l Th XgJ X1 X¢

X Kp1(X) Poo(Xp, to| X1, t1)

XK 1p(X)* P (X | Xn—1,tn— 1) Ko1(Xf) Peg(Xo) -
(C3

Multitime correlation functions 4249

substitution K'=1*1=K'~2 for i=1,3,...21—1, and
KI=1*1=K?~1fori=24,...,2 have been made. Then, the
probability distribution function ofh jumps during time in-
tervals; can be calculated using E(1), and the distribu-
tion of state|1)- or state|2)- and statg1)- or state|2)-time
events can be computed using E22).

APPENDIX D: GENERATING FUNCTIONS
FOR A SINGLE COLLECTIVE COORDINATE

In this Appendix we derive closed-form expressions for
the generating function of two, three, and four jumps for the
two-state reversible kinetics for the case when the environ-
ment can be described by a single collective coordinate. Set-
ting x=x, Eq. (10) for the forward reaction reduces to

1 1/2
P11(Xs ,te[Xg,to) = Esz(tf —to)exp y(ti—to)}

xexp{— 31 (ti—to)xf

+Eo(ti—to)XXo— 3 fa(ti—to)x3}, (D1)

where the functiond {(t;—tg), fo(ti—tg), and fa(t;—tg)
are given by

scosh y't]+sinH y't]

fl(t)z ZSIn}‘['y’t] ’
o= 2 sy (G- to)]" 2
()= scosh y't]—sinf y't]

2 sinf y't] '
andy’ = ys, with
s=(1+4ky,/y)Y2. (D3)

Here, we haves=y, K!~2=k,,. In this case, the generat-
ing function for the n jumps process becomesr,€t;
—ti-1)

i=1

fa(7i) vz
S[n](Tl""’Tn_l):wnfl M(7i,Ti+1, - Tn-1)
X exp{%ri] , (D4)
where
M(7, 741, .. Tao1)=F1(7) =2k for i=n-1,
(DY)
and
M(Ti,Tig1y - sTno1)
2
=fi(m)—2¢ikj+f3(7) - M(THflz’(_T_l? D)
for i=n—-2,...,0, (D6)

with kjj=ki, for i=1,3,...21-1, and kj;=ky;, for i

Again, the generating function for the probability distri- =0,2,4,...,2.

bution ofn jumps is given by Eq918)—(20) provided that a

For n=2 (on-time events the generating function is
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2l 1 1/2 s 1/2 1 1 1/2 Y
Ta(r)

For n=3 (on-off-time eventsthe generating function becomes

1 1/2 Sl SZ 1/2 Y
8[3](71’72):(5) ((2Sinl‘[yiTl])(ZSinl‘[yérz])) eXp{E(“”Z)

1 1 1 1/2
X[ |z : (D)
f ) ~ fa(72)” ~ fa(72)*
1 Ty o)~ = To(ry)+1-
f1(72) 2(7'2)
Tolr) +a(m)—
1(7'2)
|
where at timet=ty, evolving on statd2) for the timer,=t;—t,
followed by jumping to statél) at the timet; and then
F(m)="Fu( 71)— 2k, (D9) propagating on statel) for the timer,=t,—t; followed by
q jumping to statel2) at the timet,). With the help of the
an three-jump generating functigiD8), the probability distribu-
= 7(1+4k12/7,)1/2, tion function of on—off-time events can be computed as
= y(1+4kyy/ y) 2. (010 P!
[3] I o < ]|
One of the often-utilized measures in the statistical” (772 a¢za¢la¢0[s (71.72)199=0,=4,=0-
analysis of single molecule kinetics is the joint probability (D11
distribution of adjacent on-off-time eventse., a joined
probability distribution of jumping from statd ) to state]2) For n=4 (on-off-on-time evenis we get

S (1y,75,79)=

1 Sl SZ Sl v
ﬂ 2 sinif 717-1] 2 sinf y,7,]/ \ 2 sini y; 73] ex E(T1+ T+ T3)

1 1 1/2
- f 21 . f 2
1( 73) f1(1p)+fa(73)— ~2( ™3 fi(71)+f3( 7'2)— 2(7s) (a2
1(73) Fa(r)+fal(7g) — =
f1(73)
1 1/2
.Y (D12)
3(7-1)+l_ Z(Tl) f (’T )2
Tilr0) +15(72)— =2 .
' fa(73)

f1(72) +fa(73)—
1(73)

Using the generating functiofD12) of observing four jumps, the two-time probability distribution function of adjacent
on—on-time eventé.e., a joined probability distribution of jumping from state to state|2) at timet=t,, evolving on state
|2) for the time r,=t,—t, followed by jumping to stat¢l) at the timet, and then propagating on stdtk) for the time
7,=t,—t, followed by jumping to staté2) at the timet, and evolving on stat¢2) for the time 73=t;—t, followed by
jumping to statg1) at the timet=t3), is computed as

a4

[4] -
P78 = g T dadnide

: (D13

{f dzs[ (71,72,73)
¢0:¢1:¢2:¢3:0
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where we have integrated out the intermediate off-time interydletween the on-time events of durationsand 5.

APPENDIX E: EXPRESSIONS FOR Q AND N FOR SEQUENTIAL KINETICS
We consider the model given by E@.0). Substitution of Eq(16) into Eq. (17) yields:

1)“””‘”( L )1/2 T(G]
] et

1
Q[n](X01t01¢O=X11tli¢l= s X vtf 1¢n71): N_n(ﬁ
xexp{ = 3x{[f1(ti—ti_1) = 2K 71w+ X fo(t =t )X 1}

=1

Xexp{— 3x_ [ f3(ti—ti_1) = 2¢b 1 1K’ +PHZ]Xil}} Ped(Xo)- (ED

The normalization factor for an jumps process®=t;,—t,_,, i=1,2,...,n) is

Nn:fl- : J JX J; J K12(X0) P11(X1,t1] X, t0) Kaa(X1) Paa( X, ta] Xq )
T TTnY X0 Y X1 f

X

X Kaa(Xp)* P 1p-1(Xs T Xn—1,tn— 1) K- 10(X¢) Ped Xo), (E2
Q" andN, are used to compute the generating func®H in Sec. IIl.
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