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Probing single molecule kinetics by photon arrival trajectories
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Multitime correlation functions of photon arrival times in single molecule fluorescence resonant
energy transfer measurements are computed using a simple model representing slow conformational
dynamics described by a collective stochastic Gaussian coordinate. The analogy with time domain
nonlinear optical spectroscopy is explored. Various statistical measures of distributions of single
photon arrival times and fluorescence lifetimes are employed to analyze non-Poissonian statistics.
© 2002 American Institute of Physic§DOI: 10.1063/1.14757591

I. INTRODUCTION ing an N-time measurement and obtalh point correlation
functions of various moments of. Xie and co-workerd
The study of individual molecules in the condensehave demonstrated how this technique may be employed to
phases is a new and fascinating field which attracts consichrobe single DNA and tRNA conformational fluctuations on

erable attention of both experimentalists and theotists. a broad range of time scales through fluorescence resonant
Single molecul¢SM) measurements provide detailed micro- energy transfetFRET).??

scopic information about the distributions of various quanti-  nodels for multitime correlation functions required for

ties whereas conventional bulk experiments only yield theikhe analysis of photon arrival trajectories were developed.
average. SM signals exhibit stochastic behavior due to couzpag et al. computed the four-time correlation function of
pling W|gr19var|ous molecular and environment degrees Ofine third order response functions for a chromophore coupled
freedom?™" Early SM studies obtained fluorescence trajectoq 5 path consisting either of many two-level systems utiliz-

ries binned on a ms time scale when the molecule is suq-ng the Kubo—Andersen sudden jump stochastic nfddel
jected to a strong saturating field. Trajectories of intensitie$, 5 monic degrees of freedofthe spin-boson mode?* Be-
g_rﬁfre_quenues show evidence for slow kinetics or spectraly ;e higher order correlation functions provide increasingly
! u_?lon._ lation f , f f ) . more detailed microscopic information on the system and
wo-time correlation functions of fluorescence Intensi- ., ¢,rther he used to compute various measures of correla-

ges pro_\rnd_e add|t|(|)ntgl Hg]fr? rmatu?]n on ﬁh?tonb Statr'ft'cs'tion of variables of the environment, they serve as a powerful
rown—1Iwiss corretatio ave shown pnhoton bunching, +,q| i the studies of evolution of slow environments. Barkai

antibunching, and other characteristic signatures of the Stoét al. used the four-time correlation function to study station-

chastic nature of the_ electric field. S_uchzexpenments Wer%ry fluorescence fluctuations of a molecule undergoing spec-
later performed on single atoms or ioHs? SM measure-

) - : ral diffusion?®
ment in the condensed phase subsequently utilized this tech- ) . .
. o . ! In this paper we consider FRET dynamics where a chro-
nique to provide information about the dynamics of slow

coordinates at both cryogenic and room temperakéid-18 mophore is quenched by an acceptor and their distance is

Recently, a new experimental technique has been app”ef(g.lctuatmg due to, e.g., conformational motion. When that

for probing SM dynamics by exciting the molecule with a mg?'on |sk.faster than the.characte.rtljstm kmguc t|medscalg,
train of pulses and recording a sequence of chronologtgal ( ordinary kinetic rate equations provide an adequate descrip-

and photon arrival times, i.e., delay)( times between an ton of dynamics; the dynamics is governed by ensemble
excitation pulse and the emitted phot@ig. 1).1°2°The set ave_ragec_i ra_te c_onstants and stochastic trajegtorl_es obey Pois-
{t, 7} constitutes aphoton arrival trajectory(PAT). tis con-  Sonian distributions. Howeyer, Wheg the motion is slow, the
trolled by the incoming pulse train andby the excited state Stalistics becomes non-Poissonfdri:*We assume that mo-
lifetime. It is then possible to simultaneously probe in reation of the environment is much slower than the fluorescence
time fast(ns to p3 kinetics throughr and its variation on a lifetime. We compute multitime correlation functions and
much slower(ms, t) time scale. Multitime correlation func- Moments of the distribution of photon arrival times and two-
tions are commonly used in the description of nonlinear oplime correlation functions accessible through single and two
tical response. Brown—Twiss correlation techniques prob&me measurements. These quantities provide statistical mea-
equilibrium stationary fluctuations and are thus the analogsures for slow dynamics through non-Poissonian arrival time
of frequency domainonlinear optical measurements. In con- distributions. When data from many stochastic trajectories
trast, PAT experiments resemtilene domainmultiple pulse  are collected, the distributions of arrival times are convoluted
nonlinear spectroscoplyand have the capacity to provide with static distributions of realizations of the random envi-
considerably more detailed and direct information. This in-ronment. Moments and correlation functions can thus be
cludes, e.g., two-time statistics of two measurements sepaiewed as stochastic variables which may be used to decon-
rated byt,, and more generallj-time statistics by conduct- volute the two. We relate statistical measures of the dynam-
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f, t, (P(T)>EJ AXP(7;X)Ped X), @

T, T, where( . . .) denotes the ensemble average over the equilib-
rium distribution ofX. Its nth moment is

k <,LLn>Ef drm"(P(7)). 3

0
o N . o Different realizations of the random environment give
FIG. 1. Macroscopic timeg) and arrival times £) in a photon arrival time

trajectory obtained from a time resolved multiple pulse photon countingrlse toa Q|str|but|on ofun(X). We define thenth moment of
experiment. 7 for a givenX,

pat)= [ drstum 0. @
ics of conformational relaxation to experimentally accessible _
distributions of photon arrival times. We can now look at itpth moment,

In Sec. Il we compute moments of the distributions of

multitime correlation functions of photon arrival times for a Mp(#n)5<(ﬂn)p>:f AX(sn(X))PPed X)  p=1.2,....
stretched exponential distribution of the passage times. We (5)
examine several statistical measures which probe the envi- o . o .
ronment dynamics and deviations of the photon arrival timeMp(#n) Which is only accessible from individual SM trajec-
distributions from Poissonian statistics. Distributions andfories may be computed using the generating functioh;*®
moments of the two-time correlation functions of photon ar-!-€-:
rival times for single and two time measurements when the dP
fluorescence lifetime depends exponentially on a single slow M (u,) = [d_ypf dXPeq(X)ey“n(x)
Gaussian variable are computed in Sec. lll. In Sec. IV we
establish the one-to-one gorresponq§nce betwegn a hierar%erey is the Laplace variable conjugate jg,(X).
of experimentally accessible quantities expressing probabil- 1, probe deviations of the distribution of arrival times

ity densities of observing photon arrival times and distribu-f;gm exponential(non-Poissonian statistisswe define the
tions of fluorescence lifetimes. We model conformationaljyiterence

motion as a stochastic Gaussian process. Moments and two-
time correlation function of fluorescence lifetime are com-  dp(n)=Mp(n) —[M1(1n) 1P, (7)
puted in Sec. V and our results are summarized in Sec. VI.

(6)

y=0

and the ratio

M p(Mn)

r =—.
II. MOMENTS OF MULTITIME DISTRIBUTIONS p(n) [Mq(pn)]P
OF PHOTON ARRIVAL TIMES

®

For Poissonian statistic$l () =(un)P, so thatdy(un)
Consider a single time measurement in which an optica=0 andr p(x,) = 1.

pulse interacts with a SM which emits a photon after the  In an ensemble of stochastic trajectories, the time evolu-
arrival time 7 (see Fig. 1L We assume that depends on a tion of X is convoluted with the distribution oX obtained
stochastic variableX representing the conformation whose from the distribution of photon arrival times. A single time
equilibrium distribution is given byDeqfx), When the con- measurement reveals equilibrium distributions of quantities
formation characteristic time scalg * is slow compared of interest, but is not sensitive to slow motiah, andr ,,
with fluorescence lifetimél (T<7y 1), the photon arrival provide non-Poissonian signatures of the distribution of ar-
times can be described by the passage time distributiondval times due to static inhomogeneity of conformations. To
Y(7;X) [known also as the waiting time distribution in probe slow environment motions, we need to study the dy-
continuous-time-random-walkCTRW)].2°=%® For a particu- hamics of correlations of photon arrival times by considering
lar realizationX, the arrival time probability densiti?,(X,7)  their multitime correlation functions. To that end, we extend
is a single time experiment to aétime experimentFig. 1) in

which we send a train of optical pulses and record a se-

P1(X, ) =7 X)Ped X). @ quence of arrival timesl,rz?...,rn IC;:orresponding to a se-

In a SM photon arrival experiment, data on the number ofquence of realizationX;,X,,...,X,. This allows to con-
observed arrival times are collected from many stochastistruct a hierarchy of quantities containing all the microscopic
trajectories; different realizations &fhave differentP; pro-  information on dynamics of a molecule. In general, we can
files and we thus obtain a distribution of survival probability compute  the  conditional  probability  distribution
densities.P,(X,7) is a key physical quantity which can be P,(Xq,71,X5,75,....X,,7n;t1,...,tn_1) Of detectingn pho-
used to construct quantities corresponding to both SM antbns corresponding to realizatioXs ,Xs,...,X,, and arrival
bulk measurements. For instance, the bulk survival probabiltimes,,7,,...,7,, with separation intervals,... ,t,_; in a
ity density(P(7)) can be computed as series ofn consecutive measurements,
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Pn(xl,Tl,Xz,Tz, PR ,Xn,’Tn;tl, e ,tn_l)

=i(7h,X,)G(X, ’tnfl|xn71 An-2) (-1 X0-1) Mie |
X+ X G( X3, 10| X, 1) (723 X5)
X G(Xp,t4|X1,004(71;X1), 9

where G(X;,tj_1|Xi_1,ti_») is the conditional probability

for having X; at timet; _; givenX; at timet; {, i=1,2,....
The ensemble-averagdbulk) joint distribution of ob-

servingn arrival timesrq,...,7, separated by,,...,t,_1 is

olu) |

given by
dDwZ]
<Pn(71, o yTh ;tl, e 1tl’l*l)> N
.6 0.7 08 09 1
=fdmmfdn 5
FIG. 2. Top panel: thg@th moment of the photon arrival times distribution
XPa(Xy, 71, - XnsyTasty, o tno1) Peq(Xl), (10 Mp(un) vs B forn=1 andp=1 (solid line) andp=2 (dashed ling Second

panel: the ensemble averageth moment of photon arrival timegs,,) for

and the n-time correlation function of arrival times n=2 (dashed ling and forn=1 (solid line). Third panel: the difference

T1y ++ T is dy(un) of the pth moment of the photon delay times distributibvh,( )
my My and the ensemble average of thiéhn moment of photon delay timgg,)
<7' (0)---7 (tnfl» taken topth power vsg for p=3, n=1 (dashed lingand forp=2,n=1
(solid line). Bottom panel: the differencel(u,) vs 8 for p=3, n=2
— my ..M ashed ling and M,(u,) for p=2, n=2 (solid line). For clarity some
dry dr.r . (dashed ling and M, fi (solid line) lari
ni1 n curves were multiplied by the factors as indicatedsa=1.
X(Pn(Tl...Tn;tl...tn,1)>, (11)
mey, ... my=12,.... and
In ann-time SM measuremeni-time correlation func- _ Mp(Chm.te)
Rp(cnmv 1)= (15)

tions of photon arrival times are evaluated from many SM [M1(Cpm,t) 1P
stochastic trajectories, and are distributed over realizations gqo;  poisson statistics, we haveD ,(Cpm.t1)

X1, X5, ... X,. We define the multitime extension of _Mp(Mn)Mp(Mm) [My(u)M () 1P and Ry(Cpmity)

Eq. (4), Mo(n)r p(m). The two-time quantities then carry no new
Cm.  m(Xy,0; Koo tno1) information. Equation$7) and (8) along with Egs(14) and
v (15) probe non-Poissonian signatures in the distributions of
B My mp photon arrival times which is directly accessible from a
=f dry den 17177 Ty single and two-time SM measurement.
Single time measurements probe static fluctuations and
XPn(X1, 71, oo Xny ity oo toa)- (12) may be analyzed using Eq¥) and(8). Two time measure-
Crm,,...m (X1,0; ... Xp,ty_1) are stochastic variables, and ments provide information on the dynamics of fluctuations
it is useful to look at theimpth moment[analogous to Eq. @nd may be characterized by E¢$4) and (15). In the next
)], section we compute the dlstrlbuthns, moments and two-time
correlation functions of photon arrival times for a model sys-
Mp(le ..... m, B TP S tem.
f Xmf dXy-- f dX, Ill. SINGLE AND TWO TIME MEASUREMENTS
OF ARRIVAL TIME DISTRIBUTIONS

X(le ----- my (X107 .. Xq tn-1))PPed Xy).  (13) We assume a stretched exponential form for the passage

In a previous work, we used a generating function approacﬂme distribution,

to compute multitime correlation functions of relevant physi- 1 r\A
cal quantities for SM trajectories in environments with sev- lﬁ(XyT):No? exp —| 7

eral slow variables with vanous degrees of correlations

: (16)

(5) and (6)] may be used to computd ,’s. I'(x) is the Gamma function. We further assume that the
We further define the correspondlng difference and ratig®xcited state lifetime depends exponentiallyXyn
Ef the pth moment. For the two-time correlation function, we T(X)=T.exdaXx], (17)
ave

whereT. is the characteristic lifetime and paramegecon-
Dp(Chmit) =M p(Crm,ta) =[M1(Cpita) 1P (14 trols the magnitude of its fluctuation. This corresponds to the
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Dexter mechanism or to quenching by electron tran3fes.

taken to be a Gaussian Markovian variable described by the

Langevin equation and exponential correlation funcffon,

(X(t)X(0))=o? exf — yt], (18
where 2= (X(0)?)q stands for the equilibrium magnitude
of fluctuations andy is the fluctuation decay rate. Equilib-
rium distribution ofX is

X2

1 1/2
Pec{X)Z(ZWUZ) exr{—ﬁ .

The conditional probability densit®(X,t; Xq,tp) to find
X at timet, provided that it wa, at timet, is governed by
the Smoluchowski equation,

(19

&GXt'Xt—ﬁXG+aD&G 20
ﬁ(”O'O)_(?_Xy &_X(?_X’ (20
whereD is the diffusion constant.
Using Eq.(3), we obtain
1 [(n+1
()= NOEF(T) exd 3a%0%n?]. (22)

(mn) forn=1 and 2 is plotted in Fig. 2upper middle pangl
as a function of8. It monotonically decreases witB.

For the pth moment ofu,, [Eq. (5)] we obtain

1 (n+1

M p(/-Ln): No EF T
M(mn) versusg for p=1 and 2 anch=1 is shown in Fig.
2 (top panel.

The X-dependennth moment of arrival time$Eqg. (4)],
is given by

p 1
ex Eazcrzpzn2

. (22

1 [n+1
,un(X)zNO—F(—) exgaXn. (23

B\ B

Using Egs.(21) and (22), we have computed(u,) [EQ.
(7)] versusB. The results are displayed in Fig. 2 for1,
p=2, and 3(lower middle panglandn=2, p=2, and 3
(bottom panel All curves decrease monotonically.

Using Eq.(11), we obtain

n+1
B

2.2

% a~o
ex 2

Figure 3 showg 7"(0)7™(yt1)) = (pn){m) (bottom panel

r m+1
B

n m 2 1
(7(0) 7 (t1)>=N0E2F

(m?+2mne "1+n?)

(29)

forn=m=1 andB=1 and 0.8. Both curves decay to zero as
yt, tends to infinity. Correlations of photon arrival times

have larger amplitude and last longer for bigger
For the distribution of two-time correlation function of
photon arrival time$Eq. (12)] we obtain

Single molecule kinetics 9805

FIG. 3. the reduced

Top panel:
—Ip(pn)rp(sm) vs yty for n=m=1, g=1; p=2 [NRp(tl), dashed ling
and p=3 [10’3~Rp(t1), solid ling. Bottom panel: differenced(t;)
=(7"(0)7"(yt1)) = {mn){pm) Vs yt; for n=m=1; B=1 (dashed lingand
B=0.8(solid ling); a=o=1.

ratioR,(t;) = Ry(Cpm, ¥t1)

Cnm(xlaO;XZatl)

N2 1 r n+1 m+1 G(X, t1:X1.0)
OBZ B B 281N
X exdaX;n+aX,m], (25

where the Green'’s function solution of EQO) is
1 1/2
27702(1—627(tt0)))

o

In Fig. 4 we display the joined distribution
Cnm(X1,0;X5,t1)Pe(X;) for B=n=m=1 and several val-
ues oft;. The diagonal X;=X,) part of the distribution
moves toward loweK; and X, and decays whereas the off-
diagonal part grows as, increases. The diagonal feature
representing theX;,X, entanglement disappears altogether
for long t; and implies uncorrelated distributions ¥f and
Xz, 1.6, Cym(X1,0;X2,t1) = mn(X1) m(X2) Pe(X2) -

The pth moment of the distribution the two-time corre-
lation function of photon arrival timelEq. (12)] is given by

:

2 2.2
Xexp{ 5 (m?+2mne "1+n?)

G(X,t;Xg,tg) =

(X—Xqe~ y(t—to))Z
202(1—e27(“°))}' (20

n+1

B

m+1

M p(Cpmit1) =N3 3

1
EF

(27)
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FIG. 4. The joint distributiorC,,,(X1,0;X5, yt1) PeX1) Vs X; and X, for
B=1,n=m=1 and fixedyt,: yt;=0.05(top panelg 0.5 (middle panels
and 5.0(bottom panels both two-dimensional surfacdteft column and

contour plots(right column are shown.

My(Cy1,t1) for =1 and 0.8 is displayed in Fig. 5 fqu
=1 (top panel and 2(bottom panel All curves approach the
asymptotic valueM (u,)M,(um) for longt,. M,(u,) and
Mp(m) beco_me uncorrelated faster f@@=1 compared
with 5=0.8. Rp(cnmatl):Rp(Cnm’tl)_rp(Mn)rp(,U«m) is
displayed in Fig. 3 foB3=1,n=m=1 andp=2 and 3(top

pane).

250011

M;(C)
1500

500

FIG. 5. Thepth moment of the distribution of the two-time correlation
function of photon arrival time$/ ,(Cp,nty) vs yt; for n=m=1, g=1
(dashed lingand 0.8(solid line): p=1 (top panel andp=2 (bottom panet

a=o=1.

h

V. Barsegov and S. Mukamel

IV. APPLICATION TO EXPONENTIAL DISTRIBUTION
OF PASSAGE TIMES

In this section we analyze the distributions of photon
arrival time for the exponential passage time distribution,
i.e., settingB=1 in Eq.(16). In Sec. Il we have constructed
a set of distribution®,,P-, . .. P, containing increasingly
more detailed information about correlations among photon
arrival times. Similarly, we can construct a hierarchy of
quantities containing all the relevant microscopic informa-
tion about the environment motion. We define the probability
distribution of a molecule to have the fluorescence lifetime
T,, F1(T;), normalized as

f F1(Ty)dT,;=1, (28

and in general, the joint distribution of a molecule to be
in n states with lifetimesT,,T,, ..., T, at moments of
time separated by n—1 intervals tj,ty, ... t,_1,
Fa(T1,To, ... Thityuts, ... t,—1) Nnormalized as

j dTlJ’ dTnFn(TliTZ .. .Tn;tl,tz . ‘tn*l):]"
(29

When the conformational fluctuations are much slower
than fluorescence lifetime, the distributions of fluorescence
lifetimes and photon arrival times are related by the Laplace
transforms

” 1 —7qIT
Pi(r)= | dT{Fy(Ty)=—e "',
0 T,

(30
Po(7T1,72, o .7t to, oo tn)

0 0 0

XFn(T11T21 e yTn;tl,tZ, P !tn—l)

1

X effllTlfrlezf o1l Ty
TlTZ' . .'I'n

Equationg30) show the one-to-one correspondence between
the distributions of photon arrival timeB,’'s and distribu-
tions of fluorescence lifetimes,’s. Having evaluated®,’s
from experiment, we can compuke,’s by inverse Laplace
transforms and thus, gain information on the environment
motion.

Hereafter in this section we compute quantities which
contain averaged information about the arrival time and fluo-
rescence lifetime statistics as well as environment dynamics.
From experimental data one can obtain moments of photon
arrival time defined in Eq(3) and the two-time correlation
function of photon arrival times,

(7"(0)7™(t1))=Mpm(ty)
EJ’wdTlfwdepz(Tl,Tzitl)TgTrzn- (31
0 0

These quantities are related to the corresponding moments of
fluorescence lifetime,
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(T")= j:dTplan, 32

and to the two-time correlation functions of fluorescence

lifetimes,
(T(0)T™(t1))=Knm(t1)

Ef dTlf dT,Fo(Ty, Tyt TITS.
0 0

(33
For our model, using Eq$4), (31), and(33), we find
(TMH=T(n+1)"Y") (34
and
Kom(D)=(T(n+1)I'(m+1)) M (1), (35

wherel'(n+1)=n!

More detailed information on statistics and dynamics of
correlations of the environment can be extracted from higher

order correlation functionésee Appendix
Equations(34) and(35) map the moments and two-time
correlation functions and correlation of photon arrival time

Single molecule kinetics 9807

0.2
kM) o.15

0.05

Piz) 94

0.6 i
1 110.4
0.2

=i

0 4

h

FIG. 6. Probability distributions of fluorescence lifetifhg(T,) (top panel
and fluorescence photon arrival tinig(7;) (middle panel for a=1, o

fluctuations available from experiment onto corresponding=1. Bottom panel: The differenca,(t;) (solid line) andKy(t,) (dashed

moments andh-time correlation functions and correlation of

line) as a function of reduced separation timig for n=m=1.

fluctuations of fluorescence lifetimes. In the next section we

utilize the multitime correlation functions to compute distri-

butions of fluorescence lifetimes and photon arrival times.
We also compute moments and the two-time correlation

functions of fluorescence lifetime and photon arrival times.

V. MULTITIME STATISTICS OF ARRIVAL
AND KINETIC TIMES

The probability density of a molecule to have ﬂuores-W

cence lifetimeT,, is given by

Fl(Tl)Ef dX;Ped X1) 6(T1—T(Xy1)), (36)

and the joint distribution of a molecule to be in statgwith
lifetime T, at timet=0, and in state, with lifetime T, after
timet=t, is

Fz(leTz;tl)Ej dxlj AXoPed X1) 8(T1—=T(Xy))

X G(X3,t1;X1,006(T,—T(Xy). (37

We can compute the-time distribution of fluorescence life-
times, i.e.,

Fo(To T2 oo Toitss o o)

Ef Xm"'f dX,8(Ty—T(X,))

X G(Xn 1tn—1 ;Xn—l -tn—z)
X X G(Xp,t15X1,t0) 8(T1 = T(X1))Ped X1).  (38)

AssumingB=1 anda=1 and using Eqs(36), (37), (30),
and(4), we obtain

1 1/2
Fl(Tl):(E) (T€*) 1P Xy) (39
and
1 2 X1 +Xo\—1
Fz(leTz;tl):E(Tcel 2) " "PedX1) G(X2,t1,X1,0),
(40
here
-
X1 2= IogT—l'z. (42)

C

In Fig. 6 we presenE(T;) (top panel which is peaked
around the average value of the fluorescence lifetifg, In
Fig. 7 we displayF,(T,,T,;t;) for several values of;.
Here, the diagonal T;=T,) peak corresponding to the
T,, To-entanglement decays &sincreases. At longetr; the
off-diagonal part of the density grows relative to the diagonal
part, and diagonal feature of the joint distribution is com-
pletely washed out. This implies that at longer the
T,, To-correlation decays anty andT, become statistically
independent, i.e.F,(T,,T,;t1)=F(T1)F1(T,). To better
demonstrate this point, we display in Fig. 8 the difference,

d(Tq,Tost)=Fo(Tq,Toity) —F1(T1)F1(Ty) (42)

for several values df;. The hump ofd(T,,T,;t;) along the
diagonal at shortet; acquires more off-diagonal features
and gradually decays at longgr. This can be understood in
the following way: when separation between any two pho-
tons is short and the environment is slow, a molecule retains
memory of its previous states, i.e., stag with the lifetime

T, remembers stat&,; with the lifetime T, after t;, the
fluorescence decays from statés and X, are correlated,
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cence lifetimes can be evaluated from experimentally acces-
sible correlation function of photon arrival times. Using Egs.
(39) and (40) we have computed theth moment and the
two-time correlation function of fluorescence lifetime. We

obtain
(TM =TI exd 3n%0?] (43
and
B o?(1—e 2 ( InT, )2
Knm(t)_ex 2 0_2(1+efy’[) +m
~ Xexg Xn+me "+ InT,)?]
l-e M 1 I 5
xXexp — W'FE (nTC) . (44)

Note that apart from factord’(n+1) and I'(n+1)I"(m

02 0.6 1

T, +1) [see Eqs(34) and(35) in Sec. IV], {7y and M ,(t)
are given by Eqgs(43) and(44), respectively.
FIG. 7. The joint probability distributiorf,(T,,T,;t;) of observing fluo- In Fig. 6 (bottom panel, solid curyewe display the dif-
rescence decay lifetime§ { and T, are given in units ofT ;) in two con- ference
secutive PAT measurements for fixed reduced separation iqre 1 (top !
nel middl nels and 1 m panelsfor a=1, o=1; h
t?;ofj?r’nSn(sioﬂglesSr?a;fse?t cdolu?rfgoatltr?d cgr?toil)rspcl)otgrighi golurrY]r)bac::e dnm(tl) = Knm(tl) - <-|-n><-|—m> (45)

shown.
for n=m=1 normalized byd,(0). This quantity directly

probes the dynamics of deviations of the distribution of fluo-
and the joint distribution of lifetime$,; andT, become non- rescence lifetimes from Poissonian statistics. At shert
Poissoniand(T,,T,;t;) probes deviations from Poissonian Whent;<y~*, distribution of lifetimes is manifestly non-
statistics. However, at longer separation times fluctuations dPoissonian. For longe, (t;=2 or 3y~ ') we observe small
the environment decay, and a molecule reaches its equililgleviations from Poissonian distribution. For lorig (t,
rium state before being excited again. In this case=57 ") Knm(t:) tends to(T")(T™) and the distribution is
F,o(T,,T,)=F(T,)F4(T,) and the lifetime statistics is essentially Poissonian. The same difference function in Eq.
Poissonian. (45) probes dynamics of deviations of the distribution of

Non-Poissonian features may also be studied by compaphoton arrival times.

ing the two-time correlation function of fluorescence life-  To study conformational dynamics we have computed
timesT, andT, with a product of corresponding moments. It the two time correlation function of fluorescence lifetime
follows from Eq. (35) that correlation function of fluores- fluctuations[Eq. (A4)] for m=n=1 and obtained

Ka(ty) = Kap(ty) = (TH(Kao(t) = Koa(t1)) +(T)2,  (46)

where(T) and(T)? are given by Eq(43) with n=1 andn

0.6 =2, respectivelyK ;o andK, are obtained from Edq44) by
T, substituting n=1, m=0 and n=0, m=1, respectively.
K11(t1)/K14(0) is displayed in Fig. Gbottom panel, dashed
curve. This quantity can be evaluated from experimentally
0.2 0.8 1 accessible correlation function of photon arrival time fluctua-
1 tions,M;(t) (whenn=m=1, K andM are same functions,
see Appendix It directly measures decay of fluorescence
0.6 lifetime fluctuations and thus, can be used to deduce a time

T, scale of motion of the environment.
- Finally, we have computedP,(71) and P,(7y,75;t})
’ from F,(T;) andF,(T,,T,,t;) using Eqs.(30). Closed ex-
0.2 0.6 1 pressions of these quantities are lengthy and are not pre-
T sented here. In Fig. Gniddle panel we plotP,(7,), and in

FG. 8 The diff €T, Tit,) (T, andT iven in units o) § Fig. 9 we displayP,(7,,75;t;) for several values of;.
. 8. The differencel(T,,T,;t1) (T, andT, are given in units off ) for S - . _
fixed reduced separation timeg; =1 (top panelgand 5(bottom panelsfor Similar toF5(Ty,T5,t), we find decay accompanied by re

a=1, 0=1; both two-dimensional surfacéeft column and contour plots distribution (?f the probability density along the- and
(right column are shown. Tp-axes ad, Increases.
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0.5 photon arrival times and arrival time fluctuations. These
0.4 quantities directly probe slow motion the environment and
0.3 can be used to evaluate its relaxation time scale.
2 . — .
0.2 In general, when the conditioR<y ! is not met, the
0-1\ distributions of photon arrival times accessible through
Oy 3y g o single, two- anch-time measurement are given by
0.5 P frldt 1 4
=(exp — — ),
0.4 1(7-1) 0 Tl(t) ( 7)
03
TZ
02 b t) < Tldt 1
01 2 Tl!TZ; 1)~ expg — T t
AN 0 1(t)
010203 040.
F{ Jtl+72 1 D
0.5 Xexg — dt
ol ty Ta(t)
! Tz(oj'z Pn(Tl,Tz, ...,Tn;tl, ""tn—l)
0.2 )
02 T3 0.1 71 1 ti+ 7o 1
704 &\ =(ex —f dt ex —j dt
' 0102030405 o Ti(b) ty Ta(t)
Tl
th—1+ 7 1
FIG. 9. The joint probability distributioP,(7,,7,;t;) of arrival times, X ... Xexpg — tﬁ ,
andr, (7, and, are given in units off ) in a two time PAT measurements tho1 n( )
for fixed reduced separation timgt;=1 (top panels 5 (middle panels - " St
and 10(bottom panelsfor a=1, o=1; both two-dimensional surfacéeft reSpeCtlvew' Thes? guantltles can bg evaluat_ed by path ".ne
column and contour plotsright column are displayed. grals and are reminiscent of correlation functions appearing

in nonlinear spectroscopy:>* Discrete (multistaté n-state
jump models of the slow environmé&ft?°can be computed
VI. CONCLUSIONS as well utilizing the present approach.

In this paper we computed moments of multitime distri-
butions and the correlation functions of photon arrival times; ACKNOWLEDGMENTS
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environment. Non-Poissonian statistics provides signaturegratefully acknowledged. We wish to thank Professor Sun-
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(due to various realizations of the random environmend

dynamic(time evolution properties of the environment sur-
rounding the molecule may be studied. APPENDIX: THE N-TIME CORRELATION FUNCTIONS

Our analysis assumed that the fluorescence lifetime i F PHOTON ARRIVAL TIMES AND FLUORESCENCE

much faster than the environmefatherwise SMS recovers IFETIME
bulk result$ and we modeled the conformational dynamics  The n-time correlation functions of7’s and T’s,

as a stochastic process with stretched exponential passaggn m oty oo thsg)  and Koo o (b,
time distribution. Statistical measures which probe deviay 2 ) are related b 1 "
PAREE n—1 y
tions of distributions of photon arrival times from Poissonian
statistics and carry information on the dynamics of correIaKml,m2 ..... m (teot2, oo thoa)
tions were computed. Moments and two-time correlation n
functions of photon arrival times accessible through single
P gh SING€ T T(mi+1) M m, . m (trt, - taoa),

and two-time measurement when the passage time distribu- i=1 2
tion is exponential were analyzed. We explored the one-to-

one correspondence between a hierarchy of probability

densities of photon arrival times, quantities available experiwhere

mentally and a hierarchy of distributions of fluorescence life- K
time, quantities directly probing dynamics of the environ-
ment surrounding a molecule. Moments and the two-time Jw o

(A1)

my,mMy, ... mn(tl!t21 e vtnfl)

correlation function of fluorescence lifetime were computed

and related to the corresponding moments and the two-time

correlation function of photon arrival times, respectively. XFo(Ty,To, o Tttty oot ) T TN
We have also studied the two-time correlation functions

for the fluorescence lifetimes and lifetime fluctuations, and (A2)

related them to the corresponding correlation functions ofandM,nl,m2 ,,,,, mn(tl,tz, ... th_q) is defined in Eq(11).
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Another experimentally accessible useful measure Of'F. Diedrich and H. Walther, Phys. Rev. LeB8, 203 (1987).
correlations of the environment is the correlation functions'“H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. L&, 691

of fluctuations in the photon arrival tim&r=7—(r), de-
fined as

my,my, ... | m (tlat21 -1tn—1)
Ef dTl"'J d7,
0 0
Xpn(Tl,’Tz, e ,’Tn;tl,tz, PR ,tn_l)éTlml...éTnmn’
(A3)

this quantity is directly related to thetime correlation func-
tion of fluctuations in the fluorescence lifetim&T=T

—(T),
_m1*m2 ..... mn(tl,tz, . ,tn71)5j0 dTl...fo dTn
. my m,
XFo(T1, oy oo Tty by, oo o) ST - ST
(Ad)

For example, two-time correlation functions 6t and 6T
are related byK;(t)=M4(t).
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