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Probing single molecule kinetics by photon arrival trajectories
Valeri Barsegov and Shaul Mukamel
Department of Chemistry, University of Rochester, Rochester, New York 14627-0216

~Received 13 December 2001; accepted 13 March 2002!

Multitime correlation functions of photon arrival times in single molecule fluorescence resonant
energy transfer measurements are computed using a simple model representing slow conformational
dynamics described by a collective stochastic Gaussian coordinate. The analogy with time domain
nonlinear optical spectroscopy is explored. Various statistical measures of distributions of single
photon arrival times and fluorescence lifetimes are employed to analyze non-Poissonian statistics.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1475751#
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I. INTRODUCTION

The study of individual molecules in the conden
phases is a new and fascinating field which attracts con
erable attention of both experimentalists and theorists1–4

Single molecule~SM! measurements provide detailed micr
scopic information about the distributions of various quan
ties whereas conventional bulk experiments only yield th
average. SM signals exhibit stochastic behavior due to c
pling with various molecular and environment degrees
freedom.5–9 Early SM studies obtained fluorescence trajec
ries binned on a ms time scale when the molecule is s
jected to a strong saturating field. Trajectories of intensi
or frequencies show evidence for slow kinetics or spec
diffusion.

Two-time correlation functions of fluorescence inten
ties provide additional information on photon statistic
Brown–Twiss correlations10 have shown photon bunching
antibunching, and other characteristic signatures of the
chastic nature of the electric field. Such experiments w
later performed on single atoms or ions.11,12 SM measure-
ment in the condensed phase subsequently utilized this t
nique to provide information about the dynamics of slo
coordinates at both cryogenic and room temperature.1,2,13–18

Recently, a new experimental technique has been app
for probing SM dynamics by exciting the molecule with
train of pulses and recording a sequence of chronologicat)
and photon arrival times, i.e., delay (t) times between an
excitation pulse and the emitted photon~Fig. 1!.19,20 The set
$t,t% constitutes aphoton arrival trajectory~PAT!. t is con-
trolled by the incoming pulse train andt by the excited state
lifetime. It is then possible to simultaneously probe in re
time fast~ns to ps! kinetics throught and its variation on a
much slower~ms, t) time scale. Multitime correlation func
tions are commonly used in the description of nonlinear
tical response. Brown–Twiss correlation techniques pr
equilibrium stationary fluctuations and are thus the anal
of frequency domainnonlinear optical measurements. In co
trast, PAT experiments resembletime domainmultiple pulse
nonlinear spectroscopy21 and have the capacity to provid
considerably more detailed and direct information. This
cludes, e.g., two-time statistics of two measurements s
rated byt1 , and more generally,N-time statistics by conduct
9800021-9606/2002/116(22)/9802/9/$19.00

Downloaded 21 Aug 2002 to 128.151.176.185. Redistribution subject to 
d-

-
ir
u-
f
-
b-
s
l

-
.

o-
re

h-

ed

l

-
e
s

-
a-

ing an N-time measurement and obtainN point correlation
functions of various moments oft. Xie and co-workers20

have demonstrated how this technique may be employe
probe single DNA and tRNA conformational fluctuations o
a broad range of time scales through fluorescence reso
energy transfer~FRET!.22

Models for multitime correlation functions required fo
the analysis of photon arrival trajectories were develop
Zhao et al. computed the four-time correlation function o
the third order response functions for a chromophore coup
to a bath consisting either of many two-level systems uti
ing the Kubo–Andersen sudden jump stochastic model23 or
harmonic degrees of freedom~the spin-boson model!.24 Be-
cause higher order correlation functions provide increasin
more detailed microscopic information on the system a
can further be used to compute various measures of cor
tion of variables of the environment, they serve as a powe
tool in the studies of evolution of slow environments. Bark
et al.used the four-time correlation function to study statio
ary fluorescence fluctuations of a molecule undergoing sp
tral diffusion.25

In this paper we consider FRET dynamics where a ch
mophore is quenched by an acceptor and their distanc
fluctuating due to, e.g., conformational motion. When th
motion is faster than the characteristic kinetic time sca
ordinary kinetic rate equations provide an adequate desc
tion of dynamics; the dynamics is governed by ensem
averaged rate constants and stochastic trajectories obey
sonian distributions. However, when the motion is slow, t
statistics becomes non-Poissonian.26–28 We assume that mo
tion of the environment is much slower than the fluoresce
lifetime. We compute multitime correlation functions an
moments of the distribution of photon arrival times and tw
time correlation functions accessible through single and
time measurements. These quantities provide statistical m
sures for slow dynamics through non-Poissonian arrival ti
distributions. When data from many stochastic trajector
are collected, the distributions of arrival times are convolu
with static distributions of realizations of the random en
ronment. Moments and correlation functions can thus
viewed as stochastic variables which may be used to de
volute the two. We relate statistical measures of the dyna
2 © 2002 American Institute of Physics
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9803J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 Single molecule kinetics
ics of conformational relaxation to experimentally accessi
distributions of photon arrival times.

In Sec. II we compute moments of the distributions
multitime correlation functions of photon arrival times for
stretched exponential distribution of the passage times.
examine several statistical measures which probe the e
ronment dynamics and deviations of the photon arrival ti
distributions from Poissonian statistics. Distributions a
moments of the two-time correlation functions of photon
rival times for single and two time measurements when
fluorescence lifetime depends exponentially on a single s
Gaussian variable are computed in Sec. III. In Sec. IV
establish the one-to-one correspondence between a hiera
of experimentally accessible quantities expressing proba
ity densities of observing photon arrival times and distrib
tions of fluorescence lifetimes. We model conformation
motion as a stochastic Gaussian process. Moments and
time correlation function of fluorescence lifetime are co
puted in Sec. V and our results are summarized in Sec.

II. MOMENTS OF MULTITIME DISTRIBUTIONS
OF PHOTON ARRIVAL TIMES

Consider a single time measurement in which an opt
pulse interacts with a SM which emits a photon after
arrival time t ~see Fig. 1!. We assume thatt depends on a
stochastic variableX representing the conformation whos
equilibrium distribution is given byPeq(X). When the con-
formation characteristic time scaleg21 is slow compared
with fluorescence lifetimeT (T!g21), the photon arrival
times can be described by the passage time distribut
c(t;X) @known also as the waiting time distribution i
continuous-time-random-walk~CTRW!#.29–35 For a particu-
lar realizationX, the arrival time probability densityP1(X,t)
is

P1~X,t!5c~t;X!Peq~X!. ~1!

In a SM photon arrival experiment, data on the number
observed arrival times are collected from many stocha
trajectories; different realizations ofX have differentP1 pro-
files and we thus obtain a distribution of survival probabil
densities.P1(X,t) is a key physical quantity which can b
used to construct quantities corresponding to both SM
bulk measurements. For instance, the bulk survival proba
ity density ^P(t)& can be computed as

FIG. 1. Macroscopic times (t) and arrival times (t) in a photon arrival time
trajectory obtained from a time resolved multiple pulse photon coun
experiment.
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^P~t!&[E dXc~t;X!Peq~X!, ~2!

where^ . . . & denotes the ensemble average over the equ
rium distribution ofX. Its nth moment is

^mn&[E dttn^P~t!&. ~3!

Different realizations of the random environment gi
rise to a distribution ofmn(X). We define thenth moment of
t for a givenX,

mn~X![E dttnc~t;X!. ~4!

We can now look at itspth moment,

M p~mn![^~mn!p&5E dX~mn~X!!pPeq~X! p51,2,... .

~5!

M p(mn) which is only accessible from individual SM trajec
tories may be computed using the generating function,26,32,33

i.e.,

M p~mn!5F dp

dypE dXPeq~X!eymn(X)G
y50

, ~6!

wherey is the Laplace variable conjugate tomn(X).
To probe deviations of the distribution of arrival time

from exponential~non-Poissonian statistics!, we define the
difference

dp~mn![M p~mn!2@M1~mn!#p, ~7!

and the ratio

r p~mn![
M p~mn!

@M1~mn!#p . ~8!

For Poissonian statistics,M p(mn)5^mn&
p, so thatdp(mn)

50 andr p(mn)51.
In an ensemble of stochastic trajectories, the time evo

tion of X is convoluted with the distribution ofX obtained
from the distribution of photon arrival times. A single tim
measurement reveals equilibrium distributions of quantit
of interest, but is not sensitive to slow motion.dp and r p ,
provide non-Poissonian signatures of the distribution of
rival times due to static inhomogeneity of conformations.
probe slow environment motions, we need to study the
namics of correlations of photon arrival times by consider
their multitime correlation functions. To that end, we exte
a single time experiment to anN-time experiment~Fig. 1! in
which we send a train ofn optical pulses and record a se
quence of arrival timest1 ,t2 ,...,tn corresponding to a se
quence of realizationsX1 ,X2 ,...,Xn . This allows to con-
struct a hierarchy of quantities containing all the microsco
information on dynamics of a molecule. In general, we c
compute the conditional probability distributio
Pn(X1 ,t1 ,X2 ,t2 ,...,Xn ,tn ;t1 ,...,tn21) of detectingn pho-
tons corresponding to realizationsX1 ,X2 ,...,Xn and arrival
timest1 ,t2 ,...,tn , with separation intervalst1 ,...,tn21 in a
series ofn consecutive measurements,

g

AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9804 J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 V. Barsegov and S. Mukamel
Pn~X1 ,t1 ,X2 ,t2 , . . . ,Xn ,tn ;t1 , . . . ,tn21!

[c~tn ;Xn!G~Xn ,tn21uXn21 ,tn22!c~tn21 ;Xn21!

3•••3G~X3 ,t2uX2 ,t1!c~t2 ;X2!

3G~X2 ,t1uX1,0!c~t1 ;X1!, ~9!

where G(Xi ,t i 21uXi 21 ,t i 22) is the conditional probability
for havingXi at time t i 21 given Xi at time t i 21 , i 51,2,... .

The ensemble-averaged~bulk! joint distribution of ob-
servingn arrival timest1 ,...,tn separated byt1 ,...,tn21 is
given by

^Pn~t1 , . . . ,tn ;t1 , . . . ,tn21!&

5E dX1•••E dXn

3Pn~X1 ,t1 , . . . ,Xn ,tn ;t1 , . . . ,tn21!Peq~X1!, ~10!

and the n-time correlation function of arrival times
t1 , . . . ,tn is

^tm1~0!•••tmn~ tn21!&

5E dt1•••E dtnt1
m1•••tn

mn

3^Pn~t1 . . . tn ;t1 . . . tn21!&, ~11!

m1 , . . . ,mn51,2, . . . .

In an n-time SM measurement,n-time correlation func-
tions of photon arrival times are evaluated from many S
stochastic trajectories, and are distributed over realizat
X1 ,X2 , . . . ,Xn . We define the multitime extension o
Eq. ~4!,

Cm1 , . . . ,mn
~X1,0; . . . ;Xn ,tn21!

[E dt1•••E dtn21t1
m2•••tn

mn

3Pn~X1 ,t1 , . . . ,Xn ,tn ;t1 , . . . ,tn21!. ~12!

Cm1 , . . . ,mn
(X1,0; . . . ;Xn ,tn21) are stochastic variables, an

it is useful to look at theirpth moment@analogous to Eq.
~5!#,

M p~Cm1 , . . . ,mn
,t1 , . . . ,tn21!

[E dX1E dX2•••E dXn

3~Cm1 , . . . ,mn
~X1,0; . . . ;Xn ,tn21!!pPeq~X1!. ~13!

In a previous work, we used a generating function appro
to compute multitime correlation functions of relevant phy
cal quantities for SM trajectories in environments with se
eral slow variables with various degrees of correlatio
among them.26 The generating function technique@see Eqs.
~5! and ~6!# may be used to computeM p’s.

We further define the corresponding difference and ra
of thepth moment. For the two-time correlation function, w
have

Dp~Cnm ,t1![M p~Cnm ,t1!2@M1~Cnm ,t1!#p ~14!
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Rp~Cnm ,t1![
M p~Cnm ,t1!

@M1~Cnm ,t1!#p . ~15!

For Poisson statistics, we haveDp(Cnm ,t1)
5M p(mn)M p(mm)2@M1(mn)M1(mm)#p and Rp(Cnm ,t1)
5r p(mn)r p(mm). The two-time quantities then carry no ne
information. Equations~7! and ~8! along with Eqs.~14! and
~15! probe non-Poissonian signatures in the distributions
photon arrival times which is directly accessible from
single and two-time SM measurement.

Single time measurements probe static fluctuations
may be analyzed using Eqs.~7! and ~8!. Two time measure-
ments provide information on the dynamics of fluctuatio
and may be characterized by Eqs.~14! and ~15!. In the next
section we compute the distributions, moments and two-t
correlation functions of photon arrival times for a model sy
tem.

III. SINGLE AND TWO TIME MEASUREMENTS
OF ARRIVAL TIME DISTRIBUTIONS

We assume a stretched exponential form for the pass
time distribution,

c~X,t!5N0

1

T
expF2S t

TD bG , ~16!

whereb.0, N05bG(1/b) is a normalization constant, an
G(x) is the Gamma function. We further assume that
excited state lifetime depends exponentially onX,

T~X!5Tc exp@aX#, ~17!

whereTc is the characteristic lifetime and parametera con-
trols the magnitude of its fluctuation. This corresponds to

FIG. 2. Top panel: thepth moment of the photon arrival times distributio
M p(mn) vs b for n51 andp51 ~solid line! andp52 ~dashed line!. Second
panel: the ensemble averagednth moment of photon arrival timeŝmn& for
n52 ~dashed line! and for n51 ~solid line!. Third panel: the difference
dp(mn) of the pth moment of the photon delay times distributionM p(mn)
and the ensemble average of thenth moment of photon delay timeŝmn&
taken topth power vsb for p53, n51 ~dashed line! and for p52, n51
~solid line!. Bottom panel: the differencedp(mn) vs b for p53, n52
~dashed line! and M p(mn) for p52, n52 ~solid line!. For clarity some
curves were multiplied by the factors as indicated,s5a51.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9805J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 Single molecule kinetics
Dexter mechanism or to quenching by electron transfer.X is
taken to be a Gaussian Markovian variable described by
Langevin equation and exponential correlation function,32

^X~ t !X~0!&5s2 exp@2gt#, ~18!

wheres25^X(0)2&eq stands for the equilibrium magnitud
of fluctuations andg is the fluctuation decay rate. Equilib
rium distribution ofX is

Peq~X!5S 1

2ps2D 1/2

expF2
X2

2s2G . ~19!

The conditional probability densityG(X,t;X0 ,t0) to find
X at timet, provided that it wasX0 at timet0 is governed by
the Smoluchowski equation,

]

]t
G~X,t;X0 ,t0!5

]

]X
gXG1

]

]X
D

]

]X
G, ~20!

whereD is the diffusion constant.
Using Eq.~3!, we obtain

^mn&5N0

1

b
GS n11

b D exp@ 1
2a

2s2n2#. ~21!

^mn& for n51 and 2 is plotted in Fig. 2~upper middle panel!
as a function ofb. It monotonically decreases withb.

For thepth moment ofmn @Eq. ~5!# we obtain

M p~mn!5N0S 1

b
GS n11

b D D p

expF1

2
a2s2p2n2G . ~22!

M p(mn) versusb for p51 and 2 andn51 is shown in Fig.
2 ~top panel!.

The X-dependentnth moment of arrival times@Eq. ~4!#,
is given by

mn~X!5N0

1

b
GS n11

b D exp@aXn#. ~23!

Using Eqs.~21! and ~22!, we have computeddp(mn) @Eq.
~7!# versusb. The results are displayed in Fig. 2 forn51,
p52, and 3~lower middle panel! and n52, p52, and 3
~bottom panel!. All curves decrease monotonically.

Using Eq.~11!, we obtain

^tn~0!tm~ t1!&5N0
2 1

b2 GS n11

b DGS m11

b D
3expFa2s2

2
~m212mne2gt11n2!G .

~24!

Figure 3 showŝ tn(0)tm(gt1)&2^mn&^mm& ~bottom panel!
for n5m51 andb51 and 0.8. Both curves decay to zero
gt1 tends to infinity. Correlations of photon arrival time
have larger amplitude and last longer for biggerb.

For the distribution of two-time correlation function o
photon arrival times@Eq. ~12!# we obtain
Downloaded 21 Aug 2002 to 128.151.176.185. Redistribution subject to 
e

Cnm~X1,0;X2 ,t1!

5N0
2 1

b2 GS n11

b DGS m11

b DG~X2 ,t1 ;X1,0!

3exp@aX1n1aX2m#, ~25!

where the Green’s function solution of Eq.~20! is

G~X,t;X0 ,t0!5S 1

2ps2~12e22g(t2t0)! D
1/2

3expF2
~X2X0e2g(t2t0)!2

2s2~12e22g(t2t0)!G . ~26!

In Fig. 4 we display the joined distribution
Cnm(X1,0;X2 ,t1)Peq(X1) for b5n5m51 and several val-
ues of t1 . The diagonal (X15X2) part of the distribution
moves toward lowerX1 andX2 and decays whereas the of
diagonal part grows ast1 increases. The diagonal featu
representing theX1 ,X2 entanglement disappears altogeth
for long t1 and implies uncorrelated distributions ofX1 and
X2 , i.e., Cnm(X1,0;X2 ,t1)5mn(X1)mm(X2)Peq(X2).

The pth moment of the distribution the two-time corre
lation function of photon arrival times@Eq. ~12!# is given by

M p~Cnm ,t1!5N0
2S 1

b2
GS n11

b DGS m11

b D D p

3expFa2s2p2

2
~m212mne2gt11n2!G .

~27!

FIG. 3. Top panel: the reduced ratioR̃p(t1)5Rp(Cnm ,gt1)

2r p(mn)r p(mm) vs gt1 for n5m51, b51; p52 @R̃p(t1), dashed line#

and p53 @1023R̃p(t1), solid line#. Bottom panel: differenced(t1)
5^tn(0)tm(gt1)&2^mn&^mm& vs gt1 for n5m51; b51 ~dashed line! and
b50.8 ~solid line!; a5s51.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9806 J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 V. Barsegov and S. Mukamel
M p(C11,t1) for b51 and 0.8 is displayed in Fig. 5 forp
51 ~top panel! and 2~bottom panel!. All curves approach the
asymptotic valueM p(mn)M p(mm) for long t1 . M p(mn) and
M p(mm) become uncorrelated faster forb51 compared
with b50.8. R̄p(Cnm ,t1)5Rp(Cnm ,t1)2r p(mn)r p(mm) is
displayed in Fig. 3 forb51, n5m51 andp52 and 3~top
panel!.

FIG. 4. The joint distributionCnm(X1,0;X2 ,gt1)Peq(X1) vs X1 andX2 for
b51, n5m51 and fixedgt1 : gt150.05 ~top panels!, 0.5 ~middle panels!,
and 5.0~bottom panels!; both two-dimensional surfaces~left column! and
contour plots~right column! are shown.

FIG. 5. The pth moment of the distribution of the two-time correlatio
function of photon arrival timesM p(Cnm ;t1) vs gt1 for n5m51, b51
~dashed line! and 0.8~solid line!: p51 ~top panel! andp52 ~bottom panel!;
a5s51.
Downloaded 21 Aug 2002 to 128.151.176.185. Redistribution subject to 
IV. APPLICATION TO EXPONENTIAL DISTRIBUTION
OF PASSAGE TIMES

In this section we analyze the distributions of phot
arrival time for the exponential passage time distributio
i.e., settingb51 in Eq. ~16!. In Sec. II we have constructe
a set of distributionsP1 ,P2 , . . . ,Pn containing increasingly
more detailed information about correlations among pho
arrival times. Similarly, we can construct a hierarchy
quantities containing all the relevant microscopic inform
tion about the environment motion. We define the probabi
distribution of a molecule to have the fluorescence lifetim
T1 , F1(T1), normalized as

E F1~T1!dT151, ~28!

and in general, the joint distribution of a molecule to
in n states with lifetimesT1 ,T2 , . . . ,Tn at moments of
time separated by n21 intervals t1 ,t2 , . . . ,tn21 ,
Fn(T1 ,T2 , . . . ,Tn ;t1 ,t2 , . . . ,tn21) normalized as

E dT1•••E dTnFn~T1 ,T2 . . . Tn ;t1 ,t2 . . . tn21!51.

~29!

When the conformational fluctuations are much slow
than fluorescence lifetime, the distributions of fluorescen
lifetimes and photon arrival times are related by the Lapla
transforms

P1~t1!5E
0

`

dT1F1~T1!
1

T1
e2t1 /T1,

~30!
Pn~t1 ,t2 , . . . ,tn ;t1 ,t2 , . . . ,tn!

5E
0

`

dT1E
0

`

dT2•••E
0

`

dTn

3Fn~T1 ,T2 , . . . ,Tn ;t1 ,t2 , . . . ,tn21!

3
1

T1T2•••Tn
e2t1 /T12t2 /T22 . . . 2tn /Tn.

Equations~30! show the one-to-one correspondence betw
the distributions of photon arrival timesPn’s and distribu-
tions of fluorescence lifetimesFn’s. Having evaluatedPn’s
from experiment, we can computeFn’s by inverse Laplace
transforms and thus, gain information on the environm
motion.

Hereafter in this section we compute quantities wh
contain averaged information about the arrival time and fl
rescence lifetime statistics as well as environment dynam
From experimental data one can obtain moments of pho
arrival time defined in Eq.~3! and the two-time correlation
function of photon arrival times,

^tn~0!tm~ t1!&[Mnm~ t1!

[E
0

`

dt1E
0

`

dt2P2~t1 ,t2 ;t1!t1
nt2

m . ~31!

These quantities are related to the corresponding momen
fluorescence lifetime,
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9807J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 Single molecule kinetics
^Tn&[E
0

`

dTF1~T!Tn, ~32!

and to the two-time correlation functions of fluorescen
lifetimes,

^Tn~0!Tm~ t1!&[Knm~ t1!

[E
0

`

dT1E
0

`

dT2F2~T1 ,T2 ;t1!T1
nT2

m .

~33!

For our model, using Eqs.~4!, ~31!, and~33!, we find

^Tn&5G~n11!21^tn& ~34!

and

Knm~ t !5~G~n11!G~m11!!21Mnm~ t !, ~35!

whereG(n11)5n!
More detailed information on statistics and dynamics

correlations of the environment can be extracted from hig
order correlation functions~see Appendix!.

Equations~34! and~35! map the moments and two-tim
correlation functions and correlation of photon arrival tim
fluctuations available from experiment onto correspond
moments andn-time correlation functions and correlation o
fluctuations of fluorescence lifetimes. In the next section
utilize the multitime correlation functions to compute dist
butions of fluorescence lifetimes and photon arrival tim
We also compute moments and the two-time correlat
functions of fluorescence lifetime and photon arrival time

V. MULTITIME STATISTICS OF ARRIVAL
AND KINETIC TIMES

The probability density of a molecule to have fluore
cence lifetimeT1, is given by

F1~T1![E dX1Peq~X1!d~T12T~X1!!, ~36!

and the joint distribution of a molecule to be in stateX1 with
lifetime T1 at timet50, and in stateX2 with lifetime T2 after
time t5t1 is

F2~T1 ,T2 ;t1![E dX1E dX2Peq~X1!d~T12T~X1!!

3G~X2 ,t1 ;X1,0!d~T22T~X2!!. ~37!

We can compute then-time distribution of fluorescence life
times, i.e.,

Fn~T1 ,T2 , . . . ,Tn ;t1 , . . . ,tn21!

[E dX1•••E dXnd~Tn2T~Xn!!

3G~Xn ,tn21 ;Xn21 ,tn22!

3•••3G~X2 ,t1 ;X1 ,t0!d~T12T~X1!!Peq~X1!. ~38!

Assumingb51 anda51 and using Eqs.~36!, ~37!, ~30!,
and ~4!, we obtain
Downloaded 21 Aug 2002 to 128.151.176.185. Redistribution subject to 
e

f
r

g

e

.
n

-

F1~T1!5S 1

2p D 1/2

~Tce
x1!21Peq~x1! ~39!

and

F2~T1 ,T2 ;t1!5
1

2p
~Tc

2ex11x2!21Peq~x1!G~x2 ,t1 ,x1,0!,

~40!

where

x1,25 log
T1,2

Tc
. ~41!

In Fig. 6 we presentF1(T1) ~top panel! which is peaked
around the average value of the fluorescence lifetime,^T&. In
Fig. 7 we displayF2(T1 ,T2 ;t1) for several values oft1 .
Here, the diagonal (T15T2) peak corresponding to th
T1 , T2-entanglement decays ast1 increases. At longert1 the
off-diagonal part of the density grows relative to the diago
part, and diagonal feature of the joint distribution is com
pletely washed out. This implies that at longert1 the
T1 , T2-correlation decays andT1 andT2 become statistically
independent, i.e.,F2(T1 ,T2 ;t1)5F1(T1)F1(T2). To better
demonstrate this point, we display in Fig. 8 the differenc

d~T1 ,T2 ;t1![F2~T1 ,T2 ;t1!2F1~T1!F1~T2! ~42!

for several values oft1 . The hump ofd(T1 ,T2 ;t1) along the
diagonal at shortert1 acquires more off-diagonal feature
and gradually decays at longert1 . This can be understood in
the following way: when separation between any two ph
tons is short and the environment is slow, a molecule reta
memory of its previous states, i.e., stateX2 with the lifetime
T2 remembers stateX1 with the lifetime T1 after t1, the
fluorescence decays from statesX1 and X2 are correlated,

FIG. 6. Probability distributions of fluorescence lifetimeF1(T1) ~top panel!
and fluorescence photon arrival timeP1(t1) ~middle panel! for a51, s

51. Bottom panel: The differencednm(t1) ~solid line! and K̄11(t1) ~dashed
line! as a function of reduced separation timegt1 for n5m51.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



n
s
ili
se

pa
e-
It
-

es-
s.

e

o-

-

Eq.
of

ted
e

lly
a-

,
ce
ime

pre-

-

9808 J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 V. Barsegov and S. Mukamel
and the joint distribution of lifetimesT1 andT2 become non-
Poissonian.d(T1 ,T2 ;t1) probes deviations from Poissonia
statistics. However, at longer separation times fluctuation
the environment decay, and a molecule reaches its equ
rium state before being excited again. In this ca
F2(T1 ,T2)5F1(T1)F1(T2) and the lifetime statistics is
Poissonian.

Non-Poissonian features may also be studied by com
ing the two-time correlation function of fluorescence lif
timesT1 andT2 with a product of corresponding moments.
follows from Eq. ~35! that correlation function of fluores

FIG. 7. The joint probability distributionF2(T1 ,T2 ;t1) of observing fluo-
rescence decay lifetimes (T1 and T2 are given in units ofTc) in two con-
secutive PAT measurements for fixed reduced separation timegt151 ~top
panels!, 5 ~middle panels!, and 10~bottom panels! for a51, s51; both
two-dimensional surfaces~left column! and contour plots~right column! are
shown.

FIG. 8. The differenced(T1 ,T2 ;t1) (T1 andT2 are given in units ofTc) for
fixed reduced separation timegt151 ~top panels! and 5~bottom panels! for
a51, s51; both two-dimensional surfaces~left column! and contour plots
~right column! are shown.
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cence lifetimes can be evaluated from experimentally acc
sible correlation function of photon arrival times. Using Eq
~39! and ~40! we have computed themth moment and the
two-time correlation function of fluorescence lifetime. W
obtain

^Tn&5Tc
n exp@ 1

2n
2s2# ~43!

and

Knm~ t !5expFs2~12e22gt!

2 S ln Tc

s2~11e2gt!
1mD 2G

3exp@ 1
2~n1me2gt1 ln Tc!

2#

3expF2S 12e2gt

2s2~11e2gt!
1

1

2D ~ ln Tc!
2G . ~44!

Note that apart from factorsG(n11) and G(n11)G(m
11) @see Eqs.~34! and ~35! in Sec. IV#, ^tn& and Mnm(t)
are given by Eqs.~43! and ~44!, respectively.

In Fig. 6 ~bottom panel, solid curve! we display the dif-
ference,

dnm~ t1![Knm~ t1!2^Tn&^Tm& ~45!

for n5m51 normalized bydnm(0). This quantity directly
probes the dynamics of deviations of the distribution of flu
rescence lifetimes from Poissonian statistics. At shortt1

when t1!g21, distribution of lifetimes is manifestly non
Poissonian. For longert1 (t152 or 3g21) we observe small
deviations from Poissonian distribution. For longt1 (t1

55g21) Knm(t1) tends to^Tn&^Tm& and the distribution is
essentially Poissonian. The same difference function in
~45! probes dynamics of deviations of the distribution
photon arrival times.

To study conformational dynamics we have compu
the two time correlation function of fluorescence lifetim
fluctuations@Eq. ~A4!# for m5n51 and obtained

K̄11~ t1!5K11~ t1!2^T&~K10~ t1!2K01~ t1!!1^T&2, ~46!

where^T& and ^T&2 are given by Eq.~43! with n51 andn
52, respectively.K10 andK01 are obtained from Eq.~44! by
substituting n51, m50 and n50, m51, respectively.
K̄11(t1)/K̄11(0) is displayed in Fig. 6~bottom panel, dashed
curve!. This quantity can be evaluated from experimenta
accessible correlation function of photon arrival time fluctu
tions,M̄11(t) ~whenn5m51, K̄ andM̄ are same functions
see Appendix!. It directly measures decay of fluorescen
lifetime fluctuations and thus, can be used to deduce a t
scale of motion of the environment.

Finally, we have computedP1(t1) and P2(t1 ,t2 ;t1)
from F1(T1) andF2(T1 ,T2 ,t1) using Eqs.~30!. Closed ex-
pressions of these quantities are lengthy and are not
sented here. In Fig. 6~middle panel! we plot P1(t1), and in
Fig. 9 we displayP2(t1 ,t2 ;t1) for several values oft1 .
Similar to F2(T1 ,T2 ,t1), we find decay accompanied by re
distribution of the probability density along thet1- and
t2-axes ast1 increases.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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VI. CONCLUSIONS

In this paper we computed moments of multitime dist
butions and the correlation functions of photon arrival tim
quantities accessible through PAT. These quantities may
used to study the evolution of distributions caused by a s
environment. Non-Poissonian statistics provides signatu
of correlation and dynamics of the environment. Both sta
~due to various realizations of the random environment! and
dynamic~time evolution! properties of the environment su
rounding the molecule may be studied.

Our analysis assumed that the fluorescence lifetim
much faster than the environment~otherwise SMS recover
bulk results! and we modeled the conformational dynam
as a stochastic process with stretched exponential pas
time distribution. Statistical measures which probe dev
tions of distributions of photon arrival times from Poissoni
statistics and carry information on the dynamics of corre
tions were computed. Moments and two-time correlat
functions of photon arrival times accessible through sin
and two-time measurement when the passage time dist
tion is exponential were analyzed. We explored the one
one correspondence between a hierarchy of probab
densities of photon arrival times, quantities available exp
mentally and a hierarchy of distributions of fluorescence li
time, quantities directly probing dynamics of the enviro
ment surrounding a molecule. Moments and the two-ti
correlation function of fluorescence lifetime were compu
and related to the corresponding moments and the two-
correlation function of photon arrival times, respectively.

We have also studied the two-time correlation functio
for the fluorescence lifetimes and lifetime fluctuations, a
related them to the corresponding correlation functions

FIG. 9. The joint probability distributionP2(t1 ,t2 ;t1) of arrival timest1

andt2 (t1 andt2 are given in units ofTc) in a two time PAT measurement
for fixed reduced separation timegt151 ~top panels!, 5 ~middle panels!,
and 10~bottom panels! for a51, s51; both two-dimensional surfaces~left
column! and contour plots~right column! are displayed.
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photon arrival times and arrival time fluctuations. The
quantities directly probe slow motion the environment a
can be used to evaluate its relaxation time scale.

In general, when the conditionT!g21 is not met, the
distributions of photon arrival times accessible throu
single, two- andn-time measurement are given by

P1~t1!5K expF2E
0

t1
dt

1

T1~ t !G L , ~47!

P2~t1 ,t2 ;t1!5K expF2E
0

t1
dt

1

T1~ t !G
3expF2E

t1

t11t2
dt

1

T2~ t !G L¯,

Pn~t1 ,t2 , . . . ,tn ;t1 , . . . ,tn21!

5K expF2E
0

t1
dt

1

T1~ t !GexpF2E
t1

t11t2
dt

1

T2~ t !G
3 . . . 3expF2E

tn21

tn211tn
dt

1

Tn~ t !G L ,

respectively. These quantities can be evaluated by path
grals and are reminiscent of correlation functions appea
in nonlinear spectroscopy.21,24 Discrete ~multistate! n-state
jump models of the slow environment23–25 can be computed
as well utilizing the present approach.
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APPENDIX: THE N-TIME CORRELATION FUNCTIONS
OF PHOTON ARRIVAL TIMES AND FLUORESCENCE
LIFETIME

The n-time correlation functions oft ’s and T’s,
Mm1 ,m2 , . . . ,mn

(t1 ,t2 , . . . ,tn21) and Km1 ,m2 , . . . ,mn
(t1 ,

t2 , . . . ,tn21) are related by

Km1 ,m2 , . . . ,mn
~ t1 ,t2 , . . . ,tn21!

5)
i 51

n

G~mi11!21Mm1 ,m2 , . . . ,mn
~ t1 ,t2 , . . . ,tn21!,

~A1!

where

Km1 ,m2 , . . . ,mn
~ t1 ,t2 , . . . ,tn21!

5E
0

`

dT1•••E
0

`

dTn

3Fn~T1 ,T2 , . . . ,Tn ;t1 ,t2 , . . . ,tn21!T1
m1•••Tn

mn

~A2!

andMm1 ,m2 , . . . ,mn
(t1 ,t2 , . . . ,tn21) is defined in Eq.~11!.
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Another experimentally accessible useful measure
correlations of the environment is the correlation functio
of fluctuations in the photon arrival time,dt[t2^t&, de-
fined as

M̄m1 ,m2 , . . . ,mn
~ t1 ,t2 , . . . ,tn21!

[E
0

`

dt1•••E
0

`

dtn

3Pn~t1 ,t2 , . . . ,tn ;t1 ,t2 , . . . ,tn21!dt1
m1•••dtn

mn,

~A3!

this quantity is directly related to then-time correlation func-
tion of fluctuations in the fluorescence lifetime,dT5T
2^T&,

K̄m1 ,m2 , . . . ,mn
~ t1 ,t2 , . . . ,tn21![E

0

`

dT1•••E
0

`

dTn

3Fn~T1 ,T2 , . . . ,Tn ;t1 ,t2 , . . . ,tn21!dT1
m1•••dTn

mn.

~A4!

For example, two-time correlation functions ofdt and dT

are related byK̄11(t)5M̄11(t).
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