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The numerical effort and convergence of equilibrium and nonequilib(fumite field) techniques for
simulating the response of classical systems to a sequencesiodrt pulses are examined. The
former is recast in terms af point correlation functions andth order stability matrices which
contain higher order generalized Lyapunov exponents, whereas the latter involves sums over
perturbed trajectories. The two methods are tested for a highly chaotic system: The Lorentz gas, and
for the less chaotic quartic oscillator. @003 American Institute of Physics.
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I. INTRODUCTION ternal force; the same trajectories can then generate the re-
sponse for all values ofy,...,7,. This is a notable advan-

Dynamical systems may be effectively studied by sub i : .
jecting them to external perturbations and watching thdage. On the other hand, the simulations are complicated by

responsé:® Most valuable information may be extracted th'e appearance of stability mqtrigeg which diverge rapidly
from multidimensional techniqués® based on the applica- with time. This poses a severe limitation on the accuracy and
tion of a sequence of short pulses at time- + and limits practical simulations to short times. In nonequilibrium

measuring a signal after the last pulse at tir:t;(a’z-...'goher— simulations, on the other hand, the trajectories are run and
ent NMR and laser spectroscopy provide snapg.hots of spingl,re pe_rturbed at the “'_’“es Of. i_nteracti_ons with the fields. No
vibrational and electronic dynamics over a broad range Opumerlcally problematic stability matrices appear. However,
timescales from femtoseconds to millisecoRdRecently the simulation requires different trajectories for each choice
higher order Raman spectroscopy has received r’nucﬂf 71,...,7, and therefore needs to be repeated many times.

attention® = Other types of perturbatiorisnechanical, tem- We Slh?," sutrvery]/ both stra}:ﬁ'glis ?ngilgroposte. new er?.u;:'b”.ﬁm
perature jump, voltageare widely used as well, simulation techniques without stability matrices which wi

Denoting the external field envelope By ), the signal combine the advantages"of both methods.
can most generally be expressed as the expectation value oflaEQUILIBRIUM “SCHRO DINGER PICTURE”
dynamical variableB at the time of measuremehtTo nth REPRESENTATION

order in the field we have We consider a system with Hamiltonidiy(x) coupled

t n 72 to a spatially homogeneous fiel{t) through
B(ﬂ)tzfd f d _f drE E(7._.)--E
(0= | do | "dryye: | AE(T)E(T0) - E(72) HY (. — ECDA(X) -

XE(71)S™M(t, 7y T 1. 0esTps 1) 1) wherex is a point in'phase—spatteoordinate; and momenta
and A(x) is an arbitrary phase-space variable, such as the
Here, S"™(t, 7, 7h_1,...,72,71) IS the nth order response dipole moment of the system. The total Hamiltonian of the
functionof the system. The variation of the response with theexternally driven system is
n time inter\_/gISTja_l—rj \_Nithljlzjl,...n (lwthere the ?ett H(X,t)=Ho(x)+H'(x,t). )
= 7n+1) providesn- imensiona (D) correlation plots, from The phase-space densip(x,t) evolves according to the
which details on the system’s dynamics can be extracted. Thﬁouville equation
same information may be obtained in the frequency domain q '
by using long continuous-waveCW) perturbing fields and f?_P_ r _— B A S
tuning their frequencies. The connection between the two imt iLp, iL={..H}={. Ho+tH}=ilo+il". (4
terms of multidimensional Fourier tréa\nsforms is well docu-pere 1 1is the classicaPoisson bracketwhich for two
mented and will not be discussed here. _ arbitrary phase-space variabdéx) andB(x) reads
In this paper we examine two basic strategies for deter-

mining classical nonlinear response functightRF9 with (A B}zw__a_A E (5)
computer simulations: equilibriurfcorrelation function'>*3 ' " ox; o
and nonequilibriuntfinite field)** simulations. The former is Here and in the following Einstein’s summation convention
based on unperturbed trajectories of the system with no exs implied andw;; takes values-1, 0, and 1.
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We now expancp(x,t) in powers of the strength of the Here, AB={A,B} is the Poisson bracket for two arbi-

external field, trary phase-space variablel(x) and B(x). The double
bracket({---) denotes a matrix element in Liouville space.
p(x,1)=p O, t) + pV(x,t) +- -+ pMV(X,t)+-+-.  (6) Equation(13) can be interpreted as follows: We start with the

) ) equilibrium phase-space distribution which is a vector in
The zeroth order termp™™(x,t) is the unperturbed phase- | joyyille space denoted by the kébeq)). Each of then
space density and we assume that it is an equilibrium distrizctions of the external field on the distribution is represented
bution conserved by the phase flow with Liouville operatorby a Poisson brackét. In the time intervals between actions

i (0) =
Lo, i.e, p™ (X, 1) = peqdX)- the time evolution is described y(7)=exp(—iL7), where

Inserting Eq.(6) into the Liouville equatior(4) and col- I L ~
lecting terms of the same order one obtains a set of coupleld_'__| IS _the _L'OUV'”e operator. BotiA a_nd Glr) are opera-
ors in Liouville space. Finally we multiply the evolved dis-

differential equations. These equations can be formall);_ _ X S
solved yielding®® tribution with the bra(B| and take the trace. This yields the

change in the expectation value®fo nth order in the field
for impulsive (very shorj fields. The response to arbitrary

t . .
(Dt :f dreiLot=mrH’, , 7 field envelopes can then be obtained from Eg.
P 0 = {H' pead @) To evaluate the response functi8H” we use the iden-
t tity
@)t :J' dr J'Tqu_ e iLolt- 7 g ilo(ma ) .
R A N t {A.p}=—Bhp, 14
X{H",pequ (€] for a canonical equilibrium distributiop. The first order
response is then given by
t ™ ) : SY(t,1)= a4 B(B(1)A(71)). (15)
p(n)(t)ZJ’ dTnJ’ dTn,l---f dre tolt=m) ’ dry
0 0 0

L iLo(re D L iLg(re ) This fluctuation dissipation theorethconnects the observ-
X{H' e olm™in-1{H", . {H',e” o2 m able linear response functic®?® with an equilibrium corre-
X{H',peqd}}} (9) lation function of the unperturbed system. In order to com-

pute higher order NRFs we introduce a hierarchy of different
where we have assumed that the system is in equilibriunarder stability matrices defined as follows:
prior tot=0.

The time dependent average of an observaghg(t)) is MO () =xi(Ty), (16)
- axj(71)

B(t))= ] d JB(X). 10 (1) =_

(B(1)) f xp(X,1)B(X) (10) M (72, = 2 (17)

The integration in the above equation extends over the entire
phase-space. Using the expansion for the phase-space density p(

2)(7_ I )_ azxk( Tl)
. . ik\73:72,71)=
p(x,t) we can separate the different orders in the external N

IXi(73)9Xj(T2) (18

field, and so on. Ther(+ 1)-time nth order stability matrix is gen-
erally defined as
B<n>(t)zf dxp™(x,t)B(x). (11)
) 9™, (1)
Thus, for perturbations of typé2) the response functions Mi . ..i (Tn+1:7n.e072,71)= X ()X (a)
from Eq. (1) are n+1 2 (19
S(n)(thnaTnfla---vTZle):(_l)nf dxB(x)eiLo(t=) M{P(r,,71) is the stability (or monodromy) matrixassoci-
ated with the dynamics. Using this notation, the second order
x{A,e to(n~7n-1) response can be written as
x{...,e o= TIA b d?
{ WAool ) S, 72, m) = B2 g~ (BIOA(T)A(T1))
(12 1472
This nth order NRF describing the response at titn® n —,Bi<B(t)w~
short pulses at times, ,...,7, can be recast in the following dry 4
compact fornt. " , ,
XM (72, ) A (1) A(T1)), (20

S (P .
5 5 where Aj =9A/dx; . The third order response assumes the
={(BlG(t—70) - "AG(T2— 71) Al pequ)- (13)  form
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d3 2
S®(t, 73,75, 71) =B3W<B(t)A(73)A( m)A(1y))— B2

2

drdrs B(1) i Al (T) Al( ) A(T) M (73, 72))

- B2 (B(t)wijAl (13) AL 1) A(T)M (73, 71))

d Tld )
2

B Gradms (BOGA () AL T A(T M (73, 71))
d ! " / (1) (1)
+:8d_Tl(B(t)wmnwijAm(Ta)An(Tz)Ak(Tl)Mm (TSvTZ)Mjk (7'2,7'1)>
d ’ ' " (1) (1)
+:8d_Tl<B(t)“)mnwij'°‘m(7'3)Ai (T2)Ag(T) My (TSaTl)Mjk (7'2,7'1)>

d
+Bd—Tl<B(t>wmnw”A;n<rg)A((a)A&(n)M.<J-2k><rz,rz.n)Mal.)(rg,rz». (21)

Here, A (x)=°A(X)/ dx,dx, . Note that in Eq(11) of Ref.  Ill. “HEISENBERG” AND INTERMEDIATE
12, M@ has been factorized. Equati¢®l) is the complete EQUILIBRIUM REPRESENTATIONS
expression for the third order response function. While thé®F RESPONSE FUNCTIONS

linear response can be written as a simple correlation func- : . . .
tion, expressions for the second and third order response in- By invoking the classical analogues of the Saiinger

. . : -~ "and Heisenberg pictures we can recast @8) in different
volve first and second order stability matrices, respecuvelyformS which provide complementary insights. In the previ-

In generalnth order response functions involve stability ma- ous section we let the Poisson brackets in @) act to the

trices up to °Tde” L. . . . right. This is the classical analogue of tBehralinger pic-
In a practical calculation stability matrices can be deter-, : -

. . : . . ; ture whereby the phase-space density changes with time.
mined by integration of appropriate equations of motion. For.

; S . : : Fime dependent averagéB(t)) are then written over this
instance, application of the chain rule yields an equation L\ /olving bhase-space densjigx.t) [see Eq(10)]. Alterna-
motion for the first order stability matrix, gp P ! a4 i

tively, S can be evaluated by acting with all Poisson brack-

ets to the left. Using thisHeisenberg picture(operators,
- (22)  rather than the density matrix, change with time find that
axj(t') S can be written in terms of ann¢1)-time nth order
o ] o ) stability matrix. This alternative view considers the time evo-
The derivativesix(t")/dx;(t") appearing in the right-hand ytion of observables along trajectories starting from phase-

side of the above equation involve second derivatives of thgpace points distributed according to an initial phase-space
potential energy. This equation of motion can be solved withyensity

the same integrator used to determine the time evolution of

the system itself. For high order stability matrices similar _ f
equations of motion can be derived. (B(V) dxp(x,0)B[x(D)]. 29

_ So far we have considered acanc_)nlcgl ensemple. EdUs; the Heisenberg picture, dynamical variablBx(t)]
tions (14) can be extended for any which is a function of evolve according to the Liouville equation

the Hamiltonian only,

IX (")

d
go M) =MDt

s iLB (26)
—_— |
dp . dp ot '
{APHOO I={AH} o =A (23

wherelL is the Liouville operator from Eq.4).

By repeated integration by parts usin
In particular, in the microcanonical ensembjgH(x)] yrep g yP g

« S(E—H) we have{A,p(H)}=Adp/JE. Expressions for
canonical response functions can therefore be easily modi-
fied to a microcanonical ensemble by using microcanonical o can move from the Schtimger picture to the Heisen-

correlation functions and simply replacingby J/JE. For  hery picture of nonlinear response functions. Integrating by
instance, the microcanonical fluctuation dissipation theore”barts once and usinB(t) =exp(Lt)B(0) we obtain the first

f dxA{B,C}zfdx{A,B}c, 27)

reads order response function in the Heisenberg picture,
a a SV (t, ) =({A(11),B(D)}). (28)
St=—— —(B(t)A(T1))me- 24
me. JE <97'1< (DA Ime 9 The second order response function is
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S<2>(t,72,71):<{A( 1).4A(7,),B(1)}}), (29 Note that while in the Heisenberg picture no time derivative
) . appears in the second order response function, there is one in
and thenth order response function can be written very com-ihe jntermediate picture and two in the Satirger picture.

pactly as In the case of the third order response function changing
SOt 71y from the Schrdinger representation to the first intermediate
representation reduces the highest order of stability matrices
=({A(T) {A(T2),. . {A(Th_1) fA(T0),B(1) 1} - }}). appearing in the equation by ofiexpressions includét )

(30 but notM )], We then get

. d2
Note that the doyble bracket express[@y. (13)] includes SO(t, 74,7, 7,) = _ﬁzd - (wmnB,’(t)M#,( rar)
both representations. 71073

Evaluating the Poisson brackets appearing in the Heisen-

: ) XA/
berg form of the response functions becomes complicated An(T)A(TIA(T1))
rapidly with growing order. The first and second order re- ) 1 )
sponse functions obtained from the above expressions are +Bd_7_1<wmnBI (M7, (73,1) Ap(73)
_ 2 ’ 1
SVt ) =(wij A (1) BL(OM (11,1)), (31) X wijA ()AL TOM(72,71)). (39
and In contrast to the third order response function in the Schro

2) . / " (1) dinger representatiofsee Eq.(21)], there are no second or-

S2(t,75,71) = (@i oA (D[ A (2) M (71,75) der stability matrices in the expression above. This signifi-

XM (71, 72)BLOMD (71, t) + AL (1) cant computational advantage was exploited by Lotfhg.
Naively, one might hope to get rid of even the first order

XM{fn(71,71,m2)BIOM{Y (7, 1)+ Al(1,)  stability matrix by proceeding another step towards the
Heisenberg representation. When doing that, however, sec-

(1) " (1) (1)
XMin(71,72) Brg(OMjs (71, )My (72,1) ond order matrices return and one loses the numerical advan-

+ARTIMiL (11, 72)BUOMA(ry 7 D)), A0S

(32
. . IV. RESPONSE FUNCTIONS OF THE LORENTZ GAS
The third order response can be worked out, but it is rather

complicated and is omitted here. Note that a first order sta- As an illustrative example, we have calculated the re-
bility matrix appears in the linear response and that the secsponse of the Lorentz gdsto short pulses. This two-
ond order response depends on stability matrices up to ordéimensional model consists of a point particle of mass
two. In general S™ explicitly depends on stability matrices moving with momentunp through an infinite array of circu-
up to M and may not be written in terms of simple corre- lar scatterers with radiuR arranged on a triangular lattice
lation functions alone. While in the Heisenberg picture thewith lattice constané. To avoid difficulties in the calculation
highest stability matrix degree appearing in the expressionsf stability matrices, the interaction energyr) of the mov-
of nth order NRFs is, it is only (n—1) in the Schrdinger  ing particle with the scatterers is assumed to be steep but
picture. smooth instead of impulsive. If the moving particle is farther
For nth ordern integrations by part are necessary to goaway thanR from the center of the scatterer, i.e>R,
all the way from Schidinger to Heisenberg representation. V(r)=0. For r<R the interaction potential is given by
But these two pictures are not the only possible onesnBor  V(r)=a(1-r?* with =10 in all our numerical ex-
order there are a total of+ 1 different ways to distribute the amples. At collisions with the scatterer the equations of mo-
time dependence between the observables and the phagien of the system itself and of the stability matrices are
space density. Equatici3d) hasn A factors. The number of integrated with the velqcity Verlet aIgorithFﬂ.The density
actions to the right can vary between(Schralinge) to 0 of the scattererp=N/V is rglated_ to the lattice constant by
(Heisenbery giving n+1 possibilities. Besides the two lim- »=2/(v3a®). At close packing with the scatterer in contact
iting pictures (Schralinger to Heisenbejgthere aren—1 ~ @=2R and the close packed density ds- 1/(2‘/3R2)_- The
intermediaterepresentations, in which the time dependenceState of the system is uniquely specified by coordinates and
is shared by observables and phase-space density. SwitchiffPMmentax={Xo,X1,X2,Xs}={dx,dy,Px,Py}. Initial condi-
among representations is equivalent to carrying out an inteions of the moving particle are distributed canonically, i.e.,
gration by parts. For computational purposes it is sometimeROSitions q={dy,qdy} are homogeneously distributed in
advantageous to work in one of these intermediate picturegh® area not occupied by the scatterers and momenta
There is no intermediate representation for the first ordeP=1{Px.Py} are distributed according to P(p)

2 . . .
response function. For the second order response there is ofi&P(~Bp72m). All results presented in this article were
intermediate representation, obtained forg=1. Throughout, the unit of length 8, the

unit of energy iskgT, the unit of momentum and field
d strength is kg T) Y2, and the unit of time istAR2/kgT) Y2
2) - S R/ ’ (1) ) B
S2(t, 75,71 ,3d71<w|JBk(t)A, (T2)Mi’ (72, A(T1)). We imagine that the Lorentz gas is perturbed at different
(33) times 7; by short pulseskE;S(t—7;) coupling to q,, the

Downloaded 08 Dec 2003 to 128.200.11.122. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



9348 J. Chem. Phys., Vol. 119, No. 18, 8 November 2003 C. Dellago and S. Mukamel

x-coordinate of the moving particle. As a consequence offhe third order response functions appearing in the above

such an impulsive perturbation tlxecomponent of the mo- equation can be expressed as

mentum, p,, changes discontinuously from, to p,+E;.

The resulting average current idirection, j(t)=p,(t), 3) B 3

can be written in terms of the response functions © (LTLTLTU=| (Px(D)P(72))

s™(t,7,,...,7). For the Lorentz gas these response func- )

tions take particularly simple forms. For instance, the Schro _ E

di . . 3 <px(t)px Tl)> (40)
inger picture response functions up to order three are

B
Sm“’“):(m)”x(”px(ﬁ))' 39 s<3><t,72,rl,n>=(§> (PP T2IPE()
B\? B\?2
S2(t,7,7) = ( ) (PuDPy( 7)Px(7)) ( ) (D OMD (7,70 72))
:8 2
‘(a><px(”M(zlz)(’2’“)>' (30 (g) (POPK(72)), (41
St 73,7 r)=(ﬁ)3<p(t)p(r)p(r)p(r» B
R im) R SR SAR (E) (Px(IPZ(72)Px(70)
ﬁ 2
_(E) (Pu(OP(TME (75.72) (B )2<px(t>px (M (72, 7))
2
(B) (PP T)ME (75, 71) (ﬁ)3<p Ops(r)
m X x\ 71
'6 ? ML
<px(t)px(73) 22(72171)> E <p (t)M 2(7_2 7 7_1)> (42)
X 22 ’ ’

: §)<px<t>m@<rz,rz,n> oo
3(3)(t,7'2-7'217'2):(m> (PR()P3(72))

XM(zi)(Ts,Tz»- (37) 2
Here,M (75, 71)=dp,(71)/ Ipy(7,) is a first order stability —S(E) (Px(1)Px(72)). (43)
matrix ~ element and M{2Y(7p, 75, 71)=%py(71)/ m

9Xi(72) Ip(72) is a second order stability matrix element. In ;. torms in the above equations are simple two and three

the above equation summation over the inétdég implied.
time correlation functions of the momentum xrdirection
We now apply the formalism developed in the preceding
and can be easily evaluated in an equilibrium molecular dy-

sections to the calculation of the response of the Lorentz gas
namics simulation. The evaluation of the terms depending on
to two short pulses with strengths;, and E, acting on the
first and second order stability matrices, however, is numeri-

system at t!megl andr, respectlvely. The resulting aver cally challenging. The reason for this difficulty lies in the
age currenf (t) is then measured at tinte In other words,
we expose the svstem to the time dependent perturbatio fact the stability matrix elements grow exponentially in time
P y P P %ue to the chaoticity of the underlying dynamics. As a con-
E(t)=E,6(t— ) + E,8(t— 7,) and monitor the response of
. o sequence, averages involving stability matrices converge
the system in terms of the nonequilibrium currentvery slowly.

j(t7TZ’Tl):j(l)(t!TZITl)+j(2)(ti7-2,7'1)+j(3)(t,7'2,7'1)+‘" . . .
in different orders of the field. To first order the system re- To illustrate this behavior ‘we have calculated

- in the fi (PUOMEB (72, 7)) Px(72)), (Pt)Px(2IME(2,72)), and
sponds finearly in the field strengths, (px(tYM Y 7,,75,71)) for the Lorentz gas from an equilib-
jV(t, 75, m7)=E S (t,7) + E,SY(t, 7). (38  rium simulation. Results for a density pf=0.1R"? are de-

icted in Fig. 1. While the expressions involving first order
tability matrices can be accurately evaluated for times up to
t,~1.0, (py(t)M$2Y7,,7,)) is accurate only for very short

While the second order response vanishes due by symmet
the third order current is finite,

(3) 1 . 3) 5 times due to the extremely fast growth of the second order
j (t:TZle):a{Els (t,7y,71,7) +3EIE, stability matrix. The growth of the first and second order
stability matrix elementsV{y(7,,7;) and M2y, 7,71)
xSO(t, 7,7y, 71) +3E,ESS® with time is plotted in Fig. 2 for different densmes It is

evident that the chaotic nature of the dynamics prevents us
from calculating third order response functions in the Sehro
(39 dinger picture even in a model as simple as the Lorentz gas,

X(t,79,72,71) + EgS(3)(t, To,Tp,T2)}
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(1) 60
<P OM* 7 55(Ty, 71 )Py(T1)> 10 T T T T
1 )
48
0.5 107 [~ p=0.25 1
0
0.5 "L/:.
-1 t’g
0 =
=

1
0.5
0
-0.5

M2 1>

N Ao aN

FIG. 2. Average of the squared stability matrix elemetss)(t=7,— ;)
(top) and MZY(t=7,— ;) (bottom as function oft=r,— 7, for the Lor-
entz gas at different densities

o

2
s<3>(t,rz,rz,n>=(§) (P T)PK(T2IME (72, 1))

57 Y
i ) ) B
FIG. 1. The functions (POME (72, 72)Pu(72)), (PD)P(T2)ME - (— (MY (75, 7)M B (7,1)).
X(75,71)), and(p,(t)M334 7,,71)) (from top to bottom as a function of m
the time intervalg,=t— 7, andt,=r,— 7, for the Lorentz gas at a density 4
of p=0.10R"2. The results were obtained from ®1@rajectories of length (49

t=10(mR/kgT)"2 While for short timest, the calculated surfaces are Ngte that in these expressions no second order stability ma-
smooth, the exponentially growing stability matrix elements prevent an ac;

curate calculations of the functions for larger times. This numerical errors ismx a_ppears. '”Stea}‘?" we h_ave to average over a product of
evident in the increased ruggedness of the surfaces with incregsiipe ~ tWO first order stability matrices.
effect is particularly drastic fofp,(t)M$)(7,,7;)) which cannot be evalu- Results obtained in this intermediate picture are shown
ated even for time interl\fg_lsi much shorter than the average collision time in Fig. 3. The function{M (212)(7.2 ,71) M(212)(72 1)) is shown
which is 2.74(R'/kgT)™ in this particular case. in the top panel. The complete third order response
j®)(t, 75, 7,) for the caseE;=E,=1.0(mksT)*? is depicted
in the bottom panel. While in the intermediate picture one
can calculate the third order response to longer time than in
for which we can integrate the equations of motion numerithe Schrainger picture, the chaoticity of the underlying dy-
cally at very low computational cost. namics still imposes strong bounds on the accuracy of the
By changing from the Schdinger to the first intermedi-  Simulation in the long time regime. Nonequilibrium simula-
ate picture, one reduces the highest stability matrix order bjion techniques offer a way out of this limitation as will be
one obtaining more benign expression for the third ordediscussed in Sec. VI.
response functions, If the dynamics of the system is regular, stability matri-
ces grow slowly and response functions can be calculated
even in the Schidinger picture. To demonstrate this we have
3) B E 2 5 1 calculated the third order response for a quartic oscillator,
St 7, T1)= m (Px(T1)M2; (72,1)) i.e., a two-dimensional particle of mass oscillating in a
potential of the formV(r)=yr#, wherer is the distance of
B\? the particle from the origin. Like in the Lorentz gas we imag-
_<E) (Pl 72)P( 1), (44 ine that the perturbation couples to theoordinate of the
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<M(1)22(T2,T1)M(1)22(1:2,t)>

40 T I T I T l 1 I T
30— —
N/\
_820}- -
% @
v
10 — —
M(l)
0 1 1 I 1
0 1 2 3 4 5
FIG. 3. AverageMY(,,7)M2(7,,t)) and total third order response to t

two pulses with strength&,;=E,=1.0(mksT)*? as a function of the time

intervalst, andt, calculated for the Lorentz gas in the intermediate picture. FIG. 4. (Top) total third order response to two pulses with strenBth
Both plots were obtained for a density @ 0.1R 2 from 1 trajectories of ~ =E,=1.0(mkT)*? as a function of the time intervalg andt, for the
length t=10(mR/kgT)Y2. Evaluating the response functions in the inter- quartic oscillator described in the main text. The plot was obtained in the
mediate picture mitigates the problems associated with the exponentigchralinger picture for a density 0p=0.1R~? from 1(f trajectories of
growth of stability matrices, but does not eliminate them. In the examplelengtht=10(mR/kgT)¥2 (Bottom) average of the squared stability matrix
shown in the figure, the third order response can be accurately evaluateslementsM{Y)(t=r,— ;) and M@Yt=7,—7;) as a function oft=r,

only for t; +t,~1.5(mR/kgT) 2 For longer times the numerical error be- — 7, for the quartic oscillator.

comes overwhelming.

particle and that initial conditions are distributed canonically. (M N iLt

We have calculateff®)(t, ,,7;) for this model in the Schro STH=(-1) f dxB(x)e""HA, .. {Ap} (46)
dinger picture using Eq439)—(43) and the results are de- )

picted in Fig. 4(here, y=1kgT/R%). In the top panel the in the Schrdinger representation and

third order response is plotted as a function of the time de- M) res

lays t;=7,— 7, andt,=t—7,. In contrast to the Lorentz ST =(Al{ABOI) (47
gas, the surface is smooth indicating the absence of numefi the Heisenberg representation. The right-hand side of this
cal problem associated with diverging stability matrices. Thissquation(46) can be written as

is evident also in the averaged square of the stability matrix

elementsV ) andM(? shown in the lower panel of Fig. 4. noo

In contrast to the Lorentz gas, for which the stability matrix ~ {A,..{A,p}}= Z B'C;, (48)
elements grow quickly to very large numbers, growth is =

modest in the quartic oscillator thus permitting the evaluawhere the operator§; are obtained by repeated applications
tion of averages involving stability matrices. of the Poisson bracket. Using E@8) we can then recast Eq.
(47) in the form

V. ONE-DIMENSIONAL RESPONSE n
TO A SINGLE INTENSE PULSE sn(t)= BI(B(1)C)). (49)
=1

Valuable insight into the nonlinear dynamics of the sys-
tem can be gleaned from the response to a single short pulse The response functions to a single short perturbation be-
perturbing the system &at=0. In this case, thenth order = come especially simple and easy to interpret if the observ-
response function of the system is able A is one of the phase-space variables. So, assume that
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A=x4 and call this variablg=x, and its conjugate momen-

. . . : U,
tum p. Then, the first few response functions in the Sehro ,,,,;zizgézg;///,,,,,”/;
i i 5 2 iy Uy
ikl Ky Ml iy
B g g W Ul
e 2 )
. % 7% %7 B
0.4 S % LA
02 1y l”"’tﬁ”’%"’/’/’””’/’l’w”/]’”’l’”/[ 7
S?(t)={ =] (p?(0)B(1))—| = |(B(1)) (51) A 2 avdl
m m ’ 0 s 0.15
3  a\ 2 l 02 P
s<3>(t>=(ﬁ) <p3<0>B<t>>—3(f1) (P(O)B(1), (52 *
’ /'3?2;,%3'/7’"///,,
A iy
S
(4) 4 2 i
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02 Ly
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In the Heisenberg picture the single pulse response function ,‘,‘WWWW%
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wheref is the dimension of configuration space. The partial 0.2
derivatives in the above equation can be easily evaluated 38
with the recursion formula,
n n—1 G A
s T
<pk(0) IPON_(B pk+1(0) (975’“) Wm%%%gg%%%%
- - S e M W W
ap"(0)/ \m ap"(0) S(t) SR
7O S e
Syl g i g Wiy
SR
M p(t) 9 g il
—k{ P 0) ——FFr v (56) 2 W F% S
1 . : y
ap"*1(0) 3 EY
-4
5 0.05
Application of this recursion formula is equivalent to inte- 4
0

gration by parts and yields the time correlation function ex-
pressions obtained in the Schinger picture. In contrast to
the multiple pulse case, stability matrices do not appear in
the Schrdinger picture response functions for a single pulsefiG, s. First, third, fifth, and seventh order response functiéren top
As a consequence, such response functions up to arbitraty bo_tton) of the Lorentz to a single pulse as a function of timeand
order can be easily determined by calculating ordinary timeensityp.
correlation functions.

First, third, fifth, and seventh order response functions
(from top to bottom of the Lorentz gas as a function of time functions for the Lorentz gas can be obtained analytically to
t and density are depicted in Fig. 5. The first order response@rbitrary order from a simple model with exponential distri-
function SI(t) shown in the top panel is relatively smooth bution of collision times:
and featureless over the whole density range. At densities
near close packing, howeve3')(t) displays a slight nega- \, \GNEQUILIBRIUM, FINITE FIELD, SIMULATIONS
tive dip originating from correlated collisions in the cage
formed by the scatterers. At low densities, on the other hand, It is also possible to calculate NRFs using a nonequilib-
the first order correlation function decays exponentially. Therium simulation strategy. In this approach which more
higher order correlation function$®)(t), S®)(t), and closely mimics real experiment$one applies finite pertur-
S()(t) acquire additional features in the high density rangebations to the system. For a sequence of impulsive perturba-
but remain smooth for low densities, at which collisions aretions the free time evolution of the system accordingitois
uncorrelated. In fact, in the low density regime responsgunctuated by interactions with a finite field which causes

Downloaded 08 Dec 2003 to 128.200.11.122. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



9352 J. Chem. Phys., Vol. 119, No. 18, 8 November 2003 C. Dellago and S. Mukamel

the system to jump discontinuously in phase-space. The cor-
responding nonequilibrium phase-space density evolves ac-
cording to

p()=G(t— 1) TG(m— 1) T Pequs (57)
where
T=exp—EA) (58) )

is the operator associated with the finite field perturbation. In
a practical nonequilibrium simulation one generates initial
conditions according to an equilibrium distribution, for in-
stance, the canonical ensemble. Then, each of the initial con-
ditions is evolved in time by integration of the appropriate
equations of motion. At times; this free evolution is inter-
rupted and the system is displaced in phase-space in a way
depending on both the strength of the external field and on
how it couples to the system. After each perturbation the free
evolution is resumed and carried out until the next interac-
tions with the external field occurs. Finally, the value of the
dynamical variableB(t) is determined at timé. Averaging
over a large number of such nonequilibrium trajectories
yields (B(t)), the full response of the system to finite field
perturbations. For each particular set of interaction times
separate simulation must be carried out. This is in contrast to
equilibrium simulations in which response functions can be
calculated for all times; from a single long trajectory.

While in an equilibrium simulation the different orders
of the system’s response are calculated separately, a honequi-
librium simulations yields only the total response of the sys-
tem, i.e., the sum of all orders. Equati(B¥) is a generating
function for response functions. It represents coupling to
fields that are short but not necessarily weak. To separate the
different orders, simulations at different field strengths need
to be carried out. For instance, the first order response can be
extracted from a simulation carried out for small, but finite
perturbations provided all higher orders can be neglected.
Next, one increases the strengths of the perturbation to a
level, where the second order becomes important, but all
higher order responses are still negligible. The second order
is then extracted by subtracting the linear response from the
total response of the system. One can proceed in an analo-
gous way to obtain higher order responses. Since the field
strength at which a particular order becomes negligible is
unknown a priori, this procedure requires some trial and
error. More systematic approaches can be developed to sepas. 6. Third order respongé® as a function of the time intervalg andt,

rate different response orders from simulations carried oufer densitiesp=0.25R"% p=0.2R"? p=0.1R"? and p=0.1R"?
for different field strength%l (from top to bottom and field strength&,=E,=0.4(mksT)¥2 Each sur-

A le f ilibri . |ati h face was obtained from a nonequilibrium simulation of<200f trajectories
S an example 1or a nonequuibrium simulation, we aveof lengtht=10(m RZ/kBT)UZ each.

calculated the average nonequilibrium currgftt 7,,7;) at

time t induced by two impulsive perturbations with field

strengthsE; andE, acting on the Lorentz gas described in we can obtain the third order response by subtracting the
the previous sections at times and 7, respectively. Again, linear responsg®)(t) [see Eq.(38)] from j(t), the total

the distribution of initial conditions is canonical and the ex-response of the system. In this particular case we used the
ternal field couples to th&-coordinate of the moving par- linear response obtained from a separated equilibrium simu-
ticle. Each time the external field acts on the system, théation. Third order responses obtained for the densities
momentum of the moving particle is changed frgpto  p=0.2R" 2, p=0.20R 2%, p=0.1R 2, and p=0.1R?

px+ E. The nonequilibrium currenj(t) is then obtained by (from top to bottom and field strengths E;=E,
averagingpy(t) over many nonequilibrium trajectories. As- =0.4(mkgT)Y?are shown in Fig. 6. At all densities, the third
suming that response orders higher than three are negligiblerder response can be determined accurately for all times
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considered. This is in contrast to the equilibrium results dis7("* (g
cussed in the previous sections, which for longer times were
strongly limited in accuracy by the Lyapunov instability of _| ... (n+1)
the underlying dynamics. _j fdpl APt P (1T g, XaT)-

To extract response functioi®" rather then responses (62
i™ from nonequilibrium data, several simulations for differ-
ent field strength&; need to be carried out. For instance, ONe1(n+1) 4oes not contain enough information to compute the
might be interested in knowing the response function
S(s)(t,Tl,Tl,Tl), 8(3)(t,72,71,71), 8(3)(t,7'2,7'2,7'1),
and S®)Xt,7,,7,,7,) appearing in Eq. (39. While
SC)(t,7y,71,7) and SG)(t,7,,7,,7,) are best calculated
from equilibrium simulationgexpressions for single pulse
response functions can be written without stability matpices
calculation ofS®)(t, 7,,71,7,) andS®(t,7,,7,,7,) requires
two nonequilibrium simulations carried out for different
combinations of field strengths, andE, (for example E;
= E2 and E]_: - E2)

+1Tnt1,---0171)

Sresponse since the momenta were integrated out. Response
functions thus carry more information than the correspond-
ing correlation functions. The stability matrices provide the
extra information required for computing the NRF. The fact
that classical correlation functions do not carry enough infor-
mation for computing the NRF has important practical im-
plications for simulation strategies: It is not possible to simu-
late and interpret NRF as standard equilibrium fluctuations,
since NRF contain additional nonequilibrium information.

The relative merits of equilibrium versus nonequilibrium
(finite field) simulation algorithms can be rationalized as
follows. Equilibrium expressions for nonlinear response
VIIl. DISCUSSION functions can be easily derived in the Sdfirger, Heisen-

berg, or an intermediate picture. All these expressions in-

Correlation functions are given by moments of joint dis-yo|ve stability matrices. Although stability matrices such as
tribution functions of the relevant variable obtained by suc-M ™), ,7,) can be determined in molecular dynamics simu-
cessive measurements. Let us consider for example an opefgtions by solving an appropriate set of equations of motion,
tor A(q) that depends solely on coordinates but not on theerigus difficulties are encountered in the evaluation of aver-
momenta.n+1 measurements of the coordinate yield theages involving stability matricels! ). The reason is that due
joint distribution T"*Y(q, 170+ 1,...,0271) Of measuring o the chaotic dynamics of nonlinear systems the matrix el-
q; at 71, g, at 7>, and so on. The+1 point correlation  ements of stability matrices grow exponentially in time. Av-
function of A is then given by eraging over such diverging quantities leads to extremely
slow convergence. This behavior practically forbids equilib-
rium calculation of such nonlinear response functions for
time larger than the typical time scale of chaos. Changing
between different representations can slightly ameliorate the
problem, but does not solve it. Obtaining a numerically

(59 stable equilibrium simulation strategy not suffering from is
an open challenge.

Let us consider now anth order response measurement | the nonequilibrium approach the Lyapunov instability
involving A [Eq. (13) with B=A]. To represen" we in-  of the underlying dynamics has no similar deleterious effect.
troduce the jOint distribution in phase-spe(ceordinates and The response Of the System is determined by averaging over
momenta H(Xp417n41,... X1 71) Wherex;=q;p;. Equation  many independent trajectories which are perturbed by finite
(13) can then be recast in the foffn external fields. For each specific sequence of perturbations
such simulations need to be repeated. In addition, extracting
NRFs from the finite field response requires several simula-
tions carried out for different field strength. In contrast, equi-
librium simulations yield(in principle) NRFs for all orders
and times from a single simulated trajectory. The need for
repeated simulations in the nonequilibrium approach causes
extra computational cost. This cost is, however, compensated
by the benefit of the absence of diverging quantities.

<A(71)"‘A(Tn+1)>:f f T(n+l)(Qn+1Tn+1,---1Q17'1)

XA(Q1) *A(Qn+1)dgs--dgns .

S(n)(7n+1"'71):J f dxg - dXns g
XF(n+l)(xn+17’n+1,...,X]_Tl), (60)

wherer,, 1=t and

FO D00 171, Xa ) While the appearance of stability matrices in the equilib-
J 9 rium expressions for NRFs poses serious computational
=A(Qn+1)A'(Qn)'"A'(Q1)£'“£ problems it also raises the hope that multidimensional non-
" ! linear spectroscopy might be used to experimentally detect

“H(Xn11Tne1y---X171), (61) chaotic motion. We have demonstrated that the multidimen-

sional nonlinear response of classical systems to a sequence
andA’(q)=0A/dq. The correlation function depends on the of n short pulses contains valuable dynamical information
joint distribution of coordinatesT("*Y), whereas the re- that can be recast in terms ofpoint correlation functions
sponse function requires the joint distribution in phase-spacand thenth order stability matricesM(™ which contain
F(*1)_ Note that higher order generalized Lyapunov exponents. In general
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S(™ depends om point correlation functions as well agh
order stability matriced1 ™. M) is commonly used in the
study and characterization of chaotic systdinspunov ex-
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