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Simulation algorithms for multidimensional nonlinear response
of classical many-body systems
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The numerical effort and convergence of equilibrium and nonequilibrium~finite field! techniques for
simulating the response of classical systems to a sequence ofn short pulses are examined. The
former is recast in terms ofn point correlation functions andnth order stability matrices which
contain higher order generalized Lyapunov exponents, whereas the latter involves sums over
perturbed trajectories. The two methods are tested for a highly chaotic system: The Lorentz gas, and
for the less chaotic quartic oscillator. ©2003 American Institute of Physics.
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I. INTRODUCTION

Dynamical systems may be effectively studied by su
jecting them to external perturbations and watching
response.1–3 Most valuable information may be extracte
from multidimensional techniques4–6 based on the applica
tion of a sequence ofn short pulses at timet1 ,...,tn and
measuring a signal after the last pulse at timet.tn . Coher-
ent NMR and laser spectroscopy provide snapshots of sp
vibrational and electronic dynamics over a broad range
timescales from femtoseconds to milliseconds.7 Recently,
higher order Raman spectroscopy has received m
attention.8–11 Other types of perturbations~mechanical, tem-
perature jump, voltage! are widely used as well.

Denoting the external field envelope byE(t), the signal
can most generally be expressed as the expectation value
dynamical variableB at the time of measurementt. To nth
order in the field we have

B~n!~ t !5E
0

t

dtnE
0

tn
dtn21¯E

0

t2
dt1E~tn!E~tn21!¯E~t2!

3E~t1!S~n!~ t,tn ,tn21 ...,t2 ,t1!. ~1!

Here, S(n)(t,tn ,tn21 ,...,t2 ,t1) is the nth order response
functionof the system. The variation of the response with
n time intervalst j 112t j with j 51,...,n ~where we sett
5tn11) providesn-dimensional (nD) correlation plots, from
which details on the system’s dynamics can be extracted.
same information may be obtained in the frequency dom
by using long continuous-wave~CW! perturbing fields and
tuning their frequencies. The connection between the tw
terms of multidimensional Fourier transforms is well doc
mented and will not be discussed here.5

In this paper we examine two basic strategies for de
mining classical nonlinear response functions~NRFs! with
computer simulations: equilibrium~correlation function!12,13

and nonequilibrium~finite field!14 simulations. The former is
based on unperturbed trajectories of the system with no
9340021-9606/2003/119(18)/9344/11/$20.00
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ternal force; the same trajectories can then generate the
sponse for all values oft1 ,...,tn . This is a notable advan
tage. On the other hand, the simulations are complicated
the appearance of stability matrices which diverge rapi
with time. This poses a severe limitation on the accuracy
limits practical simulations to short times. In nonequilibriu
simulations, on the other hand, the trajectories are run
are perturbed at the times of interactions with the fields.
numerically problematic stability matrices appear. Howev
the simulation requires different trajectories for each cho
of t1 ,...,tn and therefore needs to be repeated many tim
We shall survey both strategies and propose new equilibr
simulation techniques without stability matrices which w
combine the advantages of both methods.

II. EQUILIBRIUM ‘‘SCHRÖ DINGER PICTURE’’
REPRESENTATION

We consider a system with HamiltonianH0(x) coupled
to a spatially homogeneous fieldE(t) through

H8~x,t !52E~ t !A~x!, ~2!

wherex is a point in phase-space~coordinates and momenta!
and A(x) is an arbitrary phase-space variable, such as
dipole moment of the system. The total Hamiltonian of t
externally driven system is

H~x,t !5H0~x!1H8~x,t !. ~3!

The phase-space densityr(x,t) evolves according to the
Liouville equation,

]r

]t
52 iLr, iL 5$...,H%5$...,H01H8%5 iL 01 iL 8. ~4!

Here,$..., ...% is the classicalPoisson bracketwhich for two
arbitrary phase-space variableA(x) andB(x) reads

$A,B%5v i j

]A

]xi

]B

]xj
. ~5!

Here and in the following Einstein’s summation conventi
is implied andv i j takes values21, 0, and 1.
4 © 2003 American Institute of Physics
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We now expandr(x,t) in powers of the strength of th
external field,

r~x,t !5r~0!~x,t !1r~1!~x,t !1¯1r~n!~x,t !1¯ . ~6!

The zeroth order termr (0)(x,t) is the unperturbed phase
space density and we assume that it is an equilibrium di
bution conserved by the phase flow with Liouville opera
L0 , i.e., r (0)(x,t)5requ(x).

Inserting Eq.~6! into the Liouville equation~4! and col-
lecting terms of the same order one obtains a set of cou
differential equations. These equations can be form
solved yielding15,16

r~1!~ t !5E
0

t

dt1e2 iL 0~ t2t1!$H8,requ%, ~7!

r~2!~ t !5E
0

t

dt2E
0

t2
dt1e2 iL 0~ t2t2!$H8,e2 iL 0~t22t1!

3$H8,requ%%, ~8!

¯

r~n!~ t !5E
0

t

dtnE
0

tn
dtn21¯E

0

t2
dt1e2 iL 0~ t2tn!

3$H8,e2 iL 0~tn2tn21!$H8,...$H8,e2 iL 0~t22t1!

3$H8,requ%%¯%%, ~9!

where we have assumed that the system is in equilibr
prior to t50.

The time dependent average of an observableB(x(t)) is

^B~ t !&5E dxr~x,t !B~x!. ~10!

The integration in the above equation extends over the en
phase-space. Using the expansion for the phase-space de
r(x,t) we can separate the different orders in the exter
field,

B~n!~ t ![E dxr~n!~x,t !B~x!. ~11!

Thus, for perturbations of type~2! the response function
from Eq. ~1! are

S~n!~ t,tn ,tn21 ,...,t2 ,t1!5~21!nE dxB~x!e2 iL 0~ t2tn!

3$A,e2 iL 0~tn2tn21!

3$...,e2 iL 0~t22t1!$A,requ%%¯%.

~12!

This nth order NRF describing the response at timet to n
short pulses at timest1 ,...,tn can be recast in the following
compact form:5

S~n!~ t,tn ,tn21 ,...,t2 ,t1!

5 ^̂ BuG~ t2tn!¯ÃG~t22t1!Ãurequ&&. ~13!
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Here, ÃB[$A,B% is the Poisson bracket for two arb
trary phase-space variablesA(x) and B(x). The double
bracket ^̂ ¯&& denotes a matrix element in Liouville spac
Equation~13! can be interpreted as follows: We start with th
equilibrium phase-space distribution which is a vector
Liouville space denoted by the keturequ&&. Each of then
actions of the external field on the distribution is represen
by a Poisson bracketÃ. In the time intervals between action
the time evolution is described byG(t)[exp(2iLt), where
L5H̃ is the Liouville operator. BothÃ andG~t! are opera-
tors in Liouville space. Finally we multiply the evolved dis
tribution with the brâ^Bu and take the trace. This yields th
change in the expectation value ofB to nth order in the field
for impulsive ~very short! fields. The response to arbitrar
field envelopes can then be obtained from Eq.~1!.

To evaluate the response functionS(n) we use the iden-
tity

$A,r%52bȦr, ~14!

for a canonical equilibrium distributionr. The first order
response is then given by

S~1!~ t,t1!5
d

dt1
b^B~ t !A~t1!&. ~15!

This fluctuation dissipation theorem17 connects the observ
able linear response functionS(1) with an equilibrium corre-
lation function of the unperturbed system. In order to co
pute higher order NRFs we introduce a hierarchy of differ
order stability matrices defined as follows:

Mi
~0!~t1![xi~t1!, ~16!

Mi j
~1!~t2 ,t1![

]xj~t1!

]xi~t2!
, ~17!

Mi jk
~2!~t3 ,t2 ,t1![

]2xk~t1!

]xi~t3!]xj~t2!
, ~18!

and so on. The (n11)-timenth order stability matrix is gen-
erally defined as

Mi n11 ,...,i 1
~n! ~tn11 ,tn ,...,t2 ,t1![

]nxi 1
~t1!

]xi n11
~tn11!¯]xi 2

~t2!
.

~19!

M jk
(1)(t2 ,t1) is the stability ~or monodromy) matrixassoci-

ated with the dynamics. Using this notation, the second or
response can be written as

S~2!~ t,t2 ,t1!5b2
d2

dt1dt2
^B~ t !A~t2!A~t1!&

2b
d

dt1
^B~ t !v i j

3M jk
~1!~t2 ,t1!Ai8~t2!Ak8~t1!&, ~20!

where Ai8[]A/]xi . The third order response assumes t
form
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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S~3!~ t,t3 ,t2 ,t1!5b3
d3

dt1dt2dt3
^B~ t !A~t3!A~t2!A~t1!&2b2

d2

dt1dt2
^B~ t !v i j Ai8~t3!Ak8~t2!A~t1!M jk

~1!~t3 ,t2!&

2b2
d2

dt1dt2
^B~ t !v i j Ai8~t3!Ak8~t1!A~t2!M jk

~1!~t3 ,t1!&

2b2
d2

dt1dt3
^B~ t !v i j Ai8~t2!Ak8~t1!A~t3!M jk

~1!~t2 ,t1!&

1b
d

dt1
^B~ t !vmnv i j Am8 ~t3!Ail9 ~t2!Ak8~t1!Mnl

~1!~t3 ,t2!M jk
~1!~t2 ,t1!&

1b
d

dt1
^B~ t !vmnv i j Am8 ~t3!Ai8~t2!Akl9 ~t1!Mnl

~1!~t3 ,t1!M jk
~1!~t2 ,t1!&

1b
d

dt1
^B~ t !vmnv i j Am8 ~t3!Ai8~t2!Ak8~t1!Ml jk

~2!~t2 ,t2 ,t1!Mnl
~1!~t3 ,t2!&. ~21!
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Here,Akl9 (x)[]2A(x)/]xk]xl . Note that in Eq.~11! of Ref.
12, M (2) has been factorized. Equation~21! is the complete
expression for the third order response function. While
linear response can be written as a simple correlation fu
tion, expressions for the second and third order respons
volve first and second order stability matrices, respectiv
In general,nth order response functions involve stability m
trices up to ordern21.

In a practical calculation stability matrices can be det
mined by integration of appropriate equations of motion. F
instance, application of the chain rule yields an equation
motion for the first order stability matrix,

d

dt8
M jk

~1!~ t,t8!5M ji
~1!~ t,t8!

] ẋk~ t8!

]xj~ t8!
. ~22!

The derivatives] ẋk(t8)/]xj (t8) appearing in the right-hand
side of the above equation involve second derivatives of
potential energy. This equation of motion can be solved w
the same integrator used to determine the time evolution
the system itself. For high order stability matrices simi
equations of motion can be derived.

So far we have considered a canonical ensemble. E
tions ~14! can be extended for anyr which is a function of
the Hamiltonian only,

$A,r@H~x!#%5$A,H%
]r

]H
5Ȧ

]r

]H
. ~23!

In particular, in the microcanonical ensembler@H(x)#

}d(E2H) we have$A,r(H)%5Ȧ]r/]E. Expressions for
canonical response functions can therefore be easily m
fied to a microcanonical ensemble by using microcanon
correlation functions and simply replacingb by ]/]E. For
instance, the microcanonical fluctuation dissipation theor
reads

Smc
~1!52

]

]E

]

]t1
^B~ t !A~t1!&mc. ~24!
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III. ‘‘HEISENBERG’’ AND INTERMEDIATE
EQUILIBRIUM REPRESENTATIONS
OF RESPONSE FUNCTIONS

By invoking the classical analogues of the Schro¨dinger
and Heisenberg pictures we can recast Eq.~13! in different
forms, which provide complementary insights. In the pre
ous section we let the Poisson brackets in Eq.~13! act to the
right. This is the classical analogue of theSchrödinger pic-
ture whereby the phase-space density changes with ti
Time dependent averages^B(t)& are then written over this
evolving phase-space densityr(x,t) @see Eq.~10!#. Alterna-
tively, S(n) can be evaluated by acting with all Poisson brac
ets to the left. Using thisHeisenberg picture~operators,
rather than the density matrix, change with time! we find that
S(n) can be written in terms of an (n11)-time nth order
stability matrix. This alternative view considers the time ev
lution of observables along trajectories starting from pha
space points distributed according to an initial phase-sp
density,

^B~ t !&5E dxr~x,0!B@x~ t !#. ~25!

In the Heisenberg picture, dynamical variablesB@x(t)#
evolve according to the Liouville equation

]B

]t
5 iLB, ~26!

whereL is the Liouville operator from Eq.~4!.
By repeated integration by parts using

E dxA$B,C%5E dx$A,B%C, ~27!

one can move from the Schro¨dinger picture to the Heisen
berg picture of nonlinear response functions. Integrating
parts once and usingB(t)5exp(iLt)B(0) we obtain the first
order response function in the Heisenberg picture,

S~1!~ t,t1!5^$A~t1!,B~ t !%&. ~28!

The second order response function is
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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S~2!~ t,t2 ,t1!5^$A~t1!,$A~t2!,B~ t !%%&, ~29!

and thenth order response function can be written very co
pactly as

S~n!~ t,tn ,...,t1!

5^$A~t1!,$A~t2!,...$A~tn21!,$A~tn!,B~ t !%%¯%%&.

~30!

Note that the double bracket expression@Eq. ~13!# includes
both representations.

Evaluating the Poisson brackets appearing in the Heis
berg form of the response functions becomes complica
rapidly with growing order. The first and second order
sponse functions obtained from the above expressions a

S~1!~ t,t1!5^v i j Ai8~t1!Bk8~ t !M jk
~1!~t1 ,t !&, ~31!

and

S~2!~ t,t2 ,t1!5^v i j vklAi8~t1!@Amr9 ~t2!M jr
~1!~t1 ,t2!

3Mkm
~1!~t1 ,t2!Bn8~ t !Mln

~1!~t1 ,t !1Am8 ~t2!

3M jkm
~2! ~t1 ,t1 ,t2!Bn8~ t !Mln

~1!~t1 ,t !1Am8 ~t2!

3Mkm
~1!~t1 ,t2!Bns9 ~ t !M js

~1!~t1 ,t !Mln
~1!~t1 ,t !

1Am8 ~t2!Mkm
~1!~t1 ,t2!Bn8~ t !Ml jn

~2!~t1 ,t1 ,t !#&.

~32!

The third order response can be worked out, but it is rat
complicated and is omitted here. Note that a first order
bility matrix appears in the linear response and that the s
ond order response depends on stability matrices up to o
two. In general,S(n) explicitly depends on stability matrice
up to M (n) and may not be written in terms of simple corr
lation functions alone. While in the Heisenberg picture t
highest stability matrix degree appearing in the express
of nth order NRFs isn, it is only (n21) in the Schro¨dinger
picture.

For nth ordern integrations by part are necessary to
all the way from Schro¨dinger to Heisenberg representatio
But these two pictures are not the only possible ones. Fornth
order there are a total ofn11 different ways to distribute the
time dependence between the observables and the p
space density. Equation~13! hasn Ã factors. The number o
actions to the right can vary betweenn ~Schrödinger! to 0
~Heisenberg!, giving n11 possibilities. Besides the two lim
iting pictures ~Schrödinger to Heisenberg! there aren21
intermediaterepresentations, in which the time dependen
is shared by observables and phase-space density. Switc
among representations is equivalent to carrying out an i
gration by parts. For computational purposes it is sometim
advantageous to work in one of these intermediate pictu

There is no intermediate representation for the first or
response function. For the second order response there i
intermediate representation,

S~2!~ t,t2 ,t1!52b
d

dt1
^v i j Bk8~ t !Aj8~t2!Mik

~1!~t2 ,t !A~t1!&.

~33!
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Note that while in the Heisenberg picture no time derivat
appears in the second order response function, there is o
the intermediate picture and two in the Schro¨dinger picture.

In the case of the third order response function chang
from the Schro¨dinger representation to the first intermedia
representation reduces the highest order of stability matr
appearing in the equation by one@expressions includeM (1)

but notM (2)]. We then get

S~3!~ t,t3 ,t2 ,t1!52b2
d2

dt1dt2
^vmnBl8~ t !Mml

1 ~t3 ,t !

3An8~t3!A~t2!A~t1!&

1b
d

dt1
^vmnBl8~ t !Mml

1 ~t3 ,t !An8~t3!

3v i j Ai8~t2!Ak8~t1!M jk~t2 ,t1!&. ~34!

In contrast to the third order response function in the Sch¨-
dinger representation@see Eq.~21!#, there are no second or
der stability matrices in the expression above. This sign
cant computational advantage was exploited by Loring18

Naively, one might hope to get rid of even the first ord
stability matrix by proceeding another step towards
Heisenberg representation. When doing that, however,
ond order matrices return and one loses the numerical ad
tage.

IV. RESPONSE FUNCTIONS OF THE LORENTZ GAS

As an illustrative example, we have calculated the
sponse of the Lorentz gas19 to short pulses. This two-
dimensional model consists of a point particle of massm
moving with momentump through an infinite array of circu-
lar scatterers with radiusR arranged on a triangular lattic
with lattice constanta. To avoid difficulties in the calculation
of stability matrices, the interaction energyV(r ) of the mov-
ing particle with the scatterers is assumed to be steep
smooth instead of impulsive. If the moving particle is farth
away thanR from the center of the scatterer, i.e.,r .R,
V(r )50. For r ,R the interaction potential is given b
V(r )5a(12r 2)4 with a51010 in all our numerical ex-
amples. At collisions with the scatterer the equations of m
tion of the system itself and of the stability matrices a
integrated with the velocity Verlet algorithm.20 The density
of the scatterersr[N/V is related to the lattice constant b
r52/()a2). At close packing with the scatterer in conta
a52R and the close packed density isr51/(2)R2). The
state of the system is uniquely specified by coordinates
momenta,x5$x0 ,x1 ,x2 ,x3%[$qx ,qy ,px ,py%. Initial condi-
tions of the moving particle are distributed canonically, i.
positions q[$qx ,qy% are homogeneously distributed i
the area not occupied by the scatterers and mom
p[$px ,py% are distributed according to P(p)
}exp(2bp2/2m). All results presented in this article wer
obtained forb51. Throughout, the unit of length isR, the
unit of energy iskBT, the unit of momentum and field
strength is (mkBT)1/2, and the unit of time is (mR2/kBT)1/2.

We imagine that the Lorentz gas is perturbed at differ
times t i by short pulsesEid(t2t i) coupling to qx , the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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x-coordinate of the moving particle. As a consequence
such an impulsive perturbation thex-component of the mo-
mentum,px , changes discontinuously frompx to px1Ei .
The resulting average current inx-direction, j (t)[px(t),
can be written in terms of the response functio
S(n)(t,tn ,...,t1). For the Lorentz gas these response fu
tions take particularly simple forms. For instance, the Sch¨-
dinger picture response functions up to order three are

S~1!~ t,t1!5S b

mD ^px~ t !px~t1!&, ~35!

S~2!~ t,t2 ,t1!5S b

mD 2

^px~ t !px~t2!px~t1!&

2S b

mD ^px~ t !M22
~1!~t2 ,t1!&, ~36!

S~3!~ t,t3 ,t2 ,t1!5S b

mD 3

^px~ t !px~t3!px~t2!px~t1!&

2S b

mD 2

^px~ t !px~t1!M22
~1!~t3 ,t2!&

2S b

mD 2

^px~ t !px~t2!M22
~1!~t3 ,t1!&

2S b

mD 2

^px~ t !px~t3!M22
~1!~t2 ,t1!&

1S b

mD ^px~ t !Mk22
~2! ~t2 ,t2 ,t1!

3M2k
~1!~t3 ,t2!&. ~37!

Here,M22
(1)(t2 ,t1)[]px(t1)/]px(t2) is a first order stability

matrix element and Mk22
(2) (t2 ,t2 ,t1)[]2px(t1)/

]xk(t2)]px(t2) is a second order stability matrix element.
the above equation summation over the indexk is implied.

We now apply the formalism developed in the preced
sections to the calculation of the response of the Lorentz
to two short pulses with strengthsE1 and E2 acting on the
system at timest1 andt2 , respectively. The resulting ave
age currentj (t) is then measured at timet. In other words,
we expose the system to the time dependent perturba
E(t)5E1d(t2t1)1E2d(t2t2) and monitor the response o
the system in terms of the nonequilibrium curre
j (t,t2 ,t1)5 j (1)(t,t2 ,t1)1 j (2)(t,t2,t1)1 j (3)(t,t2 ,t1)1¯

in different orders of the field. To first order the system
sponds linearly in the field strengths,

j ~1!~ t,t2 ,t1!5E1S~1!~ t,t1!1E2S~1!~ t,t2!. ~38!

While the second order response vanishes due by symm
the third order current is finite,

j ~3!~ t,t2 ,t1!5
1

3!
$E1

3S~3!~ t,t1 ,t1 ,t1!13E1
2E2

3S~3!~ t,t2 ,t1 ,t1!13E1E2
2S~3!

3~ t,t2 ,t2 ,t1!1E2
3S~3!~ t,t2 ,t2 ,t2!%.

~39!
Downloaded 08 Dec 2003 to 128.200.11.122. Redistribution subject to A
f

s
-

g
as

on

t

-

try,

The third order response functions appearing in the ab
equation can be expressed as

S~3!~ t,t1 ,t1 ,t1!5S b

mD 3

^px~ t !px
3~t1!&

23S b

mD 2

^px~ t !px~t1!&, ~40!

S~3!~ t,t2 ,t1 ,t1!5S b

mD 3

^px~ t !px~t2!px
2~t1!&

22S b

mD 2

^px~ t !M22
~1!~t2 ,t1!px~t1!&

2S b

mD 2

^px~ t !px~t2!&, ~41!

S~3!~ t,t2 ,t2 ,t1!5S b

mD 3

^px~ t !px
2~t2!px~t1!&

22S b

mD 2

^px~ t !px~t2!M22
~1!~t2 ,t1!&

2S b

mD 3

^px~ t !px~t1!&

1S b

mD ^px~ t !M222
~2! ~t2 ,t2 ,t1!&, ~42!

S~3!~ t,t2 ,t2 ,t2!5S b

mD 3

^px~ t !px
3~t2!&

23S b

mD 2

^px~ t !px~t2!&. ~43!

Most terms in the above equations are simple two and th
time correlation functions of the momentum inx-direction
and can be easily evaluated in an equilibrium molecular
namics simulation. The evaluation of the terms depending
first and second order stability matrices, however, is num
cally challenging. The reason for this difficulty lies in th
fact the stability matrix elements grow exponentially in tim
due to the chaoticity of the underlying dynamics. As a co
sequence, averages involving stability matrices conve
very slowly.

To illustrate this behavior we have calculate
^px(t)M22

(1)(t2 ,t1)px(t1)&, ^px(t)px(t2)M22
(1)(t2 ,t1)&, and

^px(t)M222
(2)(t2 ,t2 ,t1)& for the Lorentz gas from an equilib

rium simulation. Results for a density ofr50.1R22 are de-
picted in Fig. 1. While the expressions involving first ord
stability matrices can be accurately evaluated for times u
t2'1.0, ^px(t)M222

(2)(t2 ,t1)& is accurate only for very shor
times due to the extremely fast growth of the second or
stability matrix. The growth of the first and second ord
stability matrix elementsM22

(1)(t2 ,t1) and M222
(2)(t2 ,t2 ,t1)

with time is plotted in Fig. 2 for different densities. It i
evident that the chaotic nature of the dynamics prevents
from calculating third order response functions in the Sch¨-
dinger picture even in a model as simple as the Lorentz g
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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for which we can integrate the equations of motion nume
cally at very low computational cost.

By changing from the Schro¨dinger to the first intermedi-
ate picture, one reduces the highest stability matrix orde
one obtaining more benign expression for the third or
response functions,

S~3!~ t,t2 ,t1 ,t1!5S b

mD 2

^px
2~t1!M22

~1!~t2 ,t !&

2S b

mD 2

^px~t2!px~ t !&, ~44!

FIG. 1. The functions ^px(t)M22
(1)(t2 ,t1)px(t1)&, ^px(t)px(t2)M22

(1)

3(t2 ,t1)&, and^px(t)M222
(2)(t2 ,t1)& ~from top to bottom! as a function of

the time intervalst2[t2t2 andt1[t22t1 for the Lorentz gas at a densit
of r50.10R22. The results were obtained from 106 trajectories of length
t510(mR2/kBT)1/2. While for short timest1 the calculated surfaces ar
smooth, the exponentially growing stability matrix elements prevent an
curate calculations of the functions for larger times. This numerical erro
evident in the increased ruggedness of the surfaces with increasingt1 . The
effect is particularly drastic for̂px(t)M222

(2)(t2 ,t1)& which cannot be evalu-
ated even for time intervalst1 much shorter than the average collision tim
which is 2.74(mR2/kBT)1/2 in this particular case.
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S~3!~ t,t2 ,t2 ,t1!5S b

mD 2

^px~t1!px~t2!M22
~1!~t2 ,t !&

2S b

mD ^M22
~1!~t2 ,t1!M22

~1!~t2,t!&.

~45!

Note that in these expressions no second order stability
trix appears. Instead, we have to average over a produc
two first order stability matrices.

Results obtained in this intermediate picture are sho
in Fig. 3. The function̂ M22

(1)(t2 ,t1)M22
(1)(t2 ,t)& is shown

in the top panel. The complete third order respon
j (3)(t,t2 ,t1) for the caseE15E251.0(mkBT)1/2 is depicted
in the bottom panel. While in the intermediate picture o
can calculate the third order response to longer time tha
the Schro¨dinger picture, the chaoticity of the underlying dy
namics still imposes strong bounds on the accuracy of
simulation in the long time regime. Nonequilibrium simul
tion techniques offer a way out of this limitation as will b
discussed in Sec. VI.

If the dynamics of the system is regular, stability mat
ces grow slowly and response functions can be calcula
even in the Schro¨dinger picture. To demonstrate this we ha
calculated the third order response for a quartic oscilla
i.e., a two-dimensional particle of massm oscillating in a
potential of the formV(r )5gr 4, wherer is the distance of
the particle from the origin. Like in the Lorentz gas we ima
ine that the perturbation couples to thex-coordinate of the

c-
is

FIG. 2. Average of the squared stability matrix elementsM 22
(1)(t5t22t1)

~top! and M222
(2)(t5t22t1) ~bottom! as function oft[t22t1 for the Lor-

entz gas at different densitiesr.
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particle and that initial conditions are distributed canonica
We have calculatedj (3)(t,t2 ,t1) for this model in the Schro¨-
dinger picture using Eqs.~39!–~43! and the results are de
picted in Fig. 4~here,g51kBT/R4). In the top panel the
third order response is plotted as a function of the time
lays t1[t22t1 and t2[t2t2 . In contrast to the Lorentz
gas, the surface is smooth indicating the absence of num
cal problem associated with diverging stability matrices. T
is evident also in the averaged square of the stability ma
elementsM (1) andM (2) shown in the lower panel of Fig. 4
In contrast to the Lorentz gas, for which the stability mat
elements grow quickly to very large numbers, growth
modest in the quartic oscillator thus permitting the eval
tion of averages involving stability matrices.

V. ONE-DIMENSIONAL RESPONSE
TO A SINGLE INTENSE PULSE

Valuable insight into the nonlinear dynamics of the sy
tem can be gleaned from the response to a single short p
perturbing the system att50. In this case, thenth order
response function of the system is

FIG. 3. Averagê M22
(1)(t2 ,t1)M22

(2)(t2 ,t)& and total third order response t
two pulses with strengthsE15E251.0(mkBT)1/2 as a function of the time
intervalst1 andt2 calculated for the Lorentz gas in the intermediate pictu
Both plots were obtained for a density ofr50.1R22 from 106 trajectories of
length t510(mR2/kBT)1/2. Evaluating the response functions in the inte
mediate picture mitigates the problems associated with the expone
growth of stability matrices, but does not eliminate them. In the exam
shown in the figure, the third order response can be accurately evalu
only for t11t2'1.5(mR2/kBT)1/2. For longer times the numerical error be
comes overwhelming.
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S~n!~ t !5~21!nE dxB~x!e2 iLt$A,...$A,r%% ~46!

in the Schro¨dinger representation and

S~n!~ t !5^$A$¯$A,B~ t !%%%& ~47!

in the Heisenberg representation. The right-hand side of
equation~46! can be written as

$A,...$A,r%%5(
j 51

n

b jCj , ~48!

where the operatorsCj are obtained by repeated applicatio
of the Poisson bracket. Using Eq.~48! we can then recast Eq
~47! in the form

S~n!~ t !5(
j 51

n

b j^B~ t !Cj&. ~49!

The response functions to a single short perturbation
come especially simple and easy to interpret if the obse
able A is one of the phase-space variables. So, assume

.

ial
e
ted

FIG. 4. ~Top! total third order response to two pulses with strengthE1

5E251.0(mkBT)1/2 as a function of the time intervalst1 and t2 for the
quartic oscillator described in the main text. The plot was obtained in
Schrödinger picture for a density ofr50.1R22 from 106 trajectories of
lengtht510(mR2/kBT)1/2. ~Bottom! average of the squared stability matri
elementsM22

(1)(t5t22t1) and M 222
(2)(t5t22t1) as a function oft[t2

2t1 for the quartic oscillator.
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A5x1 and call this variableq[x1 and its conjugate momen
tum p. Then, the first few response functions in the Sch¨-
dinger picture are

S~1!~ t !5S b

mD ^p~0!B~ t !&, ~50!

S~2!~ t !5S b

mD 2

^p2~0!B~ t !&2S b

mD ^B~ t !&, ~51!

S~3!~ t !5S b

mD 3

^p3~0!B~ t !&23S b

mD 2

^p~0!B~ t !&, ~52!

S~4!~ t !5S b

mD 4

^p4~0!B~ t !&26S b

mD 3

^p2~0!B~ t !&

13S b

mD 2

^B~ t !&, ~53!

S~5!~ t !5S b

mD 5

^p5~0!B~ t !&210S b

mD 4

^p3~0!B~ t !&

115S b

mD 3

^p~0!B~ t !&. ~54!

In the Heisenberg picture the single pulse response func
of ordern is

S~n!5 K ]np~ t !

]pn~0!L 5^M f , f
~n!~ t,0!&, ~55!

wheref is the dimension of configuration space. The par
derivatives in the above equation can be easily evalua
with the recursion formula,

K pk~0!
]np~ t !

]pn~0!L 5S b

mD K pk11~0!
]n21p~ t !

]pn21~0!L
2kK pk21~0!

]n11p~ t !

]pn11~0!L . ~56!

Application of this recursion formula is equivalent to int
gration by parts and yields the time correlation function e
pressions obtained in the Schro¨dinger picture. In contrast to
the multiple pulse case, stability matrices do not appea
the Schro¨dinger picture response functions for a single pul
As a consequence, such response functions up to arbi
order can be easily determined by calculating ordinary ti
correlation functions.

First, third, fifth, and seventh order response functio
~from top to bottom! of the Lorentz gas as a function of tim
t and densityr are depicted in Fig. 5. The first order respon
function S(1)(t) shown in the top panel is relatively smoo
and featureless over the whole density range. At dens
near close packing, however,S(1)(t) displays a slight nega
tive dip originating from correlated collisions in the cag
formed by the scatterers. At low densities, on the other ha
the first order correlation function decays exponentially. T
higher order correlation functionsS(3)(t), S(5)(t), and
S(7)(t) acquire additional features in the high density ran
but remain smooth for low densities, at which collisions a
uncorrelated. In fact, in the low density regime respon
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functions for the Lorentz gas can be obtained analytically
arbitrary order from a simple model with exponential dist
bution of collision times.21

VI. NONEQUILIBRIUM, FINITE FIELD, SIMULATIONS

It is also possible to calculate NRFs using a nonequi
rium simulation strategy. In this approach which mo
closely mimics real experiments,14 one applies finite pertur-
bations to the system. For a sequence of impulsive pertu
tions the free time evolution of the system according toH0 is
punctuated by interactions with a finite field which caus

FIG. 5. First, third, fifth, and seventh order response functions~from top
to bottom! of the Lorentz to a single pulse as a function of timet and
densityr.
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the system to jump discontinuously in phase-space. The
responding nonequilibrium phase-space density evolves
cording to

r~ t !5G~ t2tn!¯T̃G~t22t1!T̃requ, ~57!

where

T̃5exp~2EÃ! ~58!

is the operator associated with the finite field perturbation
a practical nonequilibrium simulation one generates ini
conditions according to an equilibrium distribution, for in
stance, the canonical ensemble. Then, each of the initial
ditions is evolved in time by integration of the appropria
equations of motion. At timest i this free evolution is inter-
rupted and the system is displaced in phase-space in a
depending on both the strength of the external field and
how it couples to the system. After each perturbation the f
evolution is resumed and carried out until the next inter
tions with the external field occurs. Finally, the value of t
dynamical variableB(t) is determined at timet. Averaging
over a large number of such nonequilibrium trajector
yields ^B(t)&, the full response of the system to finite fie
perturbations. For each particular set of interaction timest i a
separate simulation must be carried out. This is in contras
equilibrium simulations in which response functions can
calculated for all timest i from a single long trajectory.

While in an equilibrium simulation the different orde
of the system’s response are calculated separately, a non
librium simulations yields only the total response of the s
tem, i.e., the sum of all orders. Equation~57! is a generating
function for response functions. It represents coupling
fields that are short but not necessarily weak. To separate
different orders, simulations at different field strengths ne
to be carried out. For instance, the first order response ca
extracted from a simulation carried out for small, but fin
perturbations provided all higher orders can be neglec
Next, one increases the strengths of the perturbation
level, where the second order becomes important, but
higher order responses are still negligible. The second o
is then extracted by subtracting the linear response from
total response of the system. One can proceed in an an
gous way to obtain higher order responses. Since the
strength at which a particular order becomes negligible
unknown a priori, this procedure requires some trial an
error. More systematic approaches can be developed to s
rate different response orders from simulations carried
for different field strengths.21

As an example for a nonequilibrium simulation, we ha
calculated the average nonequilibrium currentj (t,t2 ,t1) at
time t induced by two impulsive perturbations with fie
strengthsE1 andE2 acting on the Lorentz gas described
the previous sections at timest1 andt2 , respectively. Again,
the distribution of initial conditions is canonical and the e
ternal field couples to thex-coordinate of the moving par
ticle. Each time the external field acts on the system,
momentum of the moving particle is changed frompx to
px1E. The nonequilibrium currentj (t) is then obtained by
averagingpx(t) over many nonequilibrium trajectories. As
suming that response orders higher than three are neglig
Downloaded 08 Dec 2003 to 128.200.11.122. Redistribution subject to A
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we can obtain the third order response by subtracting
linear responsej (1)(t) @see Eq.~38!# from j (t), the total
response of the system. In this particular case we used
linear response obtained from a separated equilibrium si
lation. Third order responses obtained for the densi
r50.25R22, r50.20R22, r50.15R22, and r50.10R22

~from top to bottom! and field strengths E15E2

50.4(mkBT)1/2 are shown in Fig. 6. At all densities, the thir
order response can be determined accurately for all tim

FIG. 6. Third order responsej (3) as a function of the time intervalst1 andt2

for densities r50.25R22, r50.20R22, r50.15R22, and r50.10R22

~from top to bottom! and field strengthsE15E250.4(mkBT)1/2. Each sur-
face was obtained from a nonequilibrium simulation of 203106 trajectories
of length t510(mR2/kBT)1/2 each.
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considered. This is in contrast to the equilibrium results d
cussed in the previous sections, which for longer times w
strongly limited in accuracy by the Lyapunov instability
the underlying dynamics.

To extract response functionsS(n) rather then response
j (n) from nonequilibrium data, several simulations for diffe
ent field strengthsEi need to be carried out. For instance, o
might be interested in knowing the response functio
S(3)(t,t1 ,t1 ,t1), S(3)(t,t2 ,t1 ,t1), S(3)(t,t2 ,t2 ,t1),
and S(3)(t,t2 ,t2 ,t2) appearing in Eq. ~39!. While
S(3)(t,t1 ,t1 ,t1) and S(3)(t,t2 ,t2 ,t2) are best calculated
from equilibrium simulations~expressions for single puls
response functions can be written without stability matrice!,
calculation ofS(3)(t,t2 ,t1 ,t1) andS(3)(t,t2 ,t2 ,t1) requires
two nonequilibrium simulations carried out for differe
combinations of field strengthsE1 andE2 ~for example,E1

5E2 andE152E2).

VII. DISCUSSION

Correlation functions are given by moments of joint d
tribution functions of the relevant variable obtained by su
cessive measurements. Let us consider for example an o
tor A(q) that depends solely on coordinates but not on
momenta.n11 measurements of the coordinate yield t
joint distribution T(n11)(qn11tn11 ,...,q1t1) of measuring
q1 at t1 , q2 at t2 , and so on. Then11 point correlation
function of A is then given by

^A~t1!¯A~tn11!&5E ¯E T~n11!~qn11tn11 ,...,q1t1!

3A~q1!¯A~qn11!dq1¯dqn11 .

~59!

Let us consider now annth order response measureme
involving A @Eq. ~13! with B5A]. To representS(n) we in-
troduce the joint distribution in phase-space~coordinates and
momenta! H(xn11tn11 ,...,x1t1) wherexj5qj pj . Equation
~13! can then be recast in the form22

S~n!~tn11¯t1!5E ¯E dx1¯dxn11

3F ~n11!~xn11tn11 ,...,x1t1!, ~60!

wheretn115t and

F ~n11!~xn11tn11 ,...,x1t1!

5A~qn11!A8~qn!¯A8~q1!
]

]pn
¯

]

]p1

•H~xn11tn11 ,...,x1t1!, ~61!

andA8(q)[]A/]q. The correlation function depends on th
joint distribution of coordinatesT(n11), whereas the re-
sponse function requires the joint distribution in phase-sp
F (n11). Note that
Downloaded 08 Dec 2003 to 128.200.11.122. Redistribution subject to A
-
re

s

-
ra-
e

t

e

T~n11!~qn11tn11 ,...,q1t1!

5E ¯E dp1¯dpn11F ~n11!~xn11tn11 ,...,x1t1!.

~62!

T(n11) does not contain enough information to compute
response since the momenta were integrated out. Resp
functions thus carry more information than the correspo
ing correlation functions. The stability matrices provide t
extra information required for computing the NRF. The fa
that classical correlation functions do not carry enough inf
mation for computing the NRF has important practical im
plications for simulation strategies: It is not possible to sim
late and interpret NRF as standard equilibrium fluctuatio
since NRF contain additional nonequilibrium information.

The relative merits of equilibrium versus nonequilibriu
~finite field! simulation algorithms can be rationalized
follows. Equilibrium expressions for nonlinear respon
functions can be easily derived in the Schro¨dinger, Heisen-
berg, or an intermediate picture. All these expressions
volve stability matrices. Although stability matrices such
M (1)(t1 ,t2) can be determined in molecular dynamics sim
lations by solving an appropriate set of equations of moti
serious difficulties are encountered in the evaluation of av
ages involving stability matricesM ( i ). The reason is that due
to the chaotic dynamics of nonlinear systems the matrix
ements of stability matrices grow exponentially in time. A
eraging over such diverging quantities leads to extrem
slow convergence. This behavior practically forbids equil
rium calculation of such nonlinear response functions
time larger than the typical time scale of chaos. Chang
between different representations can slightly ameliorate
problem, but does not solve it. Obtaining a numerica
stable equilibrium simulation strategy not suffering from
an open challenge.

In the nonequilibrium approach the Lyapunov instabil
of the underlying dynamics has no similar deleterious effe
The response of the system is determined by averaging
many independent trajectories which are perturbed by fi
external fields. For each specific sequence of perturbat
such simulations need to be repeated. In addition, extrac
NRFs from the finite field response requires several simu
tions carried out for different field strength. In contrast, eq
librium simulations yield~in principle! NRFs for all orders
and times from a single simulated trajectory. The need
repeated simulations in the nonequilibrium approach cau
extra computational cost. This cost is, however, compens
by the benefit of the absence of diverging quantities.

While the appearance of stability matrices in the equil
rium expressions for NRFs poses serious computatio
problems it also raises the hope that multidimensional n
linear spectroscopy might be used to experimentally de
chaotic motion. We have demonstrated that the multidim
sional nonlinear response of classical systems to a sequ
of n short pulses contains valuable dynamical informat
that can be recast in terms ofn point correlation functions
and the nth order stability matricesM (n) which contain
higher order generalized Lyapunov exponents. In gen
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9354 J. Chem. Phys., Vol. 119, No. 18, 8 November 2003 C. Dellago and S. Mukamel
S(n) depends onn point correlation functions as well asnth
order stability matricesM (n). M (1) is commonly used in the
study and characterization of chaotic systems~Lyapunov ex-
ponents!. M (n), which has not been studied in detail, shou
contain a wealth of additional information. This is an op
challenge for simulations.
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