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Simulation strategies and signatures of chaos in classical nonlinear response
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Algorithms are presented for overcoming the computational challenge of nonlinear response functions which
describe the response of a classical system to a sequence ofn pulses and depend onnth order multipoint
stability matrices containing signatures of chaos. Simulations for the Lorentz gas demonstrate that finite field
algorithms can be effectively used for the robust, long time calculation of nonlinear response functions. These
offer the possibility to characterize chaos beyond the commonly used Lyapunov exponents and suggest new
experimentally accessible measures of chaos.
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Response theory offers a convenient framework for c
necting the reaction of dynamical systems to an external
turbation with the microscopic dynamics@1#. Van Kampen
had raised some insightful objections to this formalism,
guing that in nonlinear dynamical systems the perturba
expansion in the external field may hold only for infinite
short times@2#. Common experience and theoretical analy
show that while these are valid objections for individual t
jectories, the problem is cured once a proper ensemble a
age is carried out@3#.

The long debate around this issue was narrowly focu
on the linear response. However, the nonlinear response
dynamical system to a sequence of pulses carries much m
detailed information. Nonlinear response functions~NRF!
are readily accessible by numerous spectroscopic techniq
Multidimensional NMR@4# and its recent extension to opt
cal and infrared pulses@5# have the capacity to control co
herence and probe correlations of dynamical events. In
paper, we show how the NRF may be recast using a hie
chy of stability matricesM (n) which provide new measure
of classical chaos. Lyapunov exponents commonly use
the analysis of chaotic systems are related to the low
member of the hierarchyM (1). We further analyze the merit
of equilibrium vs nonequilibrium simulation strategies a
specify conditions whereby these higher measures of ch
may be reproduced experimentally.

Consider a system with HamiltonianH(x) coupled to a
spatially homogeneous fieldE(t) through H8(x,t)
52E(t)A(x), wherex is a point in phase space andA(x) is
an arbitrary phase space variable. Tonth order in the applied
field the expectation value of an observableB is @6#

B(n)~ t !5E
0

t

dtnE
0

tn
dtn21•••E

0

t2
dt1E~tn!

3E~tn21!•••E~t1!S(n)~ t,tn ,tn21 , . . . ,t2 ,t1!.

~1!

The nth order NRF describing the response at timet to n
short pulses at timest1 , . . . ,tn is given by

S(n)~ t,tn ,tn21 , . . . ,t2 ,t1!

5 ^̂ BuG~ t2tn!•••ÃG~t22t1!Ãureq&&. ~2!
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Here, $A,B%[ÃB5v i j (]A/]xi)(]B/]xj ) is the Poisson
bracket for two arbitrary phase space variablesA(x) and
B(x), Einstein’s summation convention is assumed andv i j
takes values21,0, and 1.^̂ •••&& denotes a matrix elemen
in Liouville space which is calculated as follows: We sta
with the equilibrium phase space distributionreq. Each of
the n actions of the external field on the distribution is re
resented by a Poisson bracketÃ. In the time intervals be-
tween actions the time evolution is described byG(t)
[exp(2iLt), whereL5H̃ is the Liouville operator. Finally,
we multiply the evolved distribution withB and take the
trace.

S(n) can be evaluated by acting with all Poisson brack
to the left. Using thisHeisenberg picture~operators change
with time!, we find thatS(n) can be written in terms of an
(n11)time nth order stability matrix,

Mi n11 , . . . ,i 1
(n) [

]nxi 1
~t1!

]xi n11
~tn11!•••]xi 2

~t2!
. ~3!

The appearance of stability matricesM (n) provides exciting
possibilities for the direct observation of chaos.

Alternatively, we can let the Poisson brackets act to
right. In this Schrödinger picture ~phase space densit
changes with time! one can use the identity$A,req%
52bȦreq to reduce the highest stability matrix degree
one toMi •••

(n21) . In particular, the stability matrix cancels ou
for first order and the linear response contains no signat
of chaos:

S(1)~ t,t1!5
d

dt1
b^B~ t !A~t1!&. ~4!

This fluctuation dissipation theorem@1# connects the observ
able linear response functionS(1) with an equilibrium corre-
lation function of the unperturbed system. For higher orde
the stability matrices survive and NRFs carry signatures
chaos@7,8#.

Let us first examine the response to a single intense s
pulse perturbing the system att50. The expressions for the
corresponding response functions become especially c
pact if the observablesA andB are phase space variables. L
©2003 The American Physical Society05-1
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us assumeA5x1 andB5p, wherep is the momentum con
jugate tox1. In the Heisenberg picture, the single-pulse
sponse function of ordern is

S(n)~ t,0!5K ]np~ t !

]pn~0!
L 5^M (n)~ t,0!&. ~5!

However, the first few response functions in the Schro¨dinger
picture are S(1)(t)5(b/m)^p(0)p(t)&, S(2)(t)
5(b/m)2^p2(0)p(t)&2(b/m)^p(t)&, and S(3)(t)
5(b/m)3^p3(0)p(t)&23(b/m)2^p(0)p(t)&. Thus, for a
single pulse, a fluctuation dissipation like relation holds
response of arbitrary order and the stability matrices can
be eliminated from all higher order response functions.

In contrast, multipulse NRFs explicitly depend onM (n)

and cannot be written in terms of correlation functions alo
For example, the second-order response is

S(2)~ t,t2,t1!5b2
d2

dt1dt2
^B~ t !A~t2!A~t1!&

2b
d

dt1
^B~ t !v i j M jk

(1)~t2 ,t1!Ai8~t2!Ak8~t1!&,

~6!

where Ai8[]A/]xi . Such multipulse ~multidimensional!
NRFs carry additional most valuable information connec
to the ability to observe correlation effects between the
namics in various time intervals. This is what enables mu
dimensional NMR to determine the structure of comp
molecules@4#. Recent work has extended these ideas to
optical and infrared regimes. In particular, the field of fift
order Raman spectroscopy of liquids@9# has triggered exten
sive simulation activity@10–12#. Both equilibrium and finite
field techniques were successfully used to calculate hig
order NRFs in the short time regime (;200 fs). The follow-
ing simulations examine the merits of these two approac

We have performed numerical simulations for the tw
dimensional Lorentz gas@13# consisting of a point particle o
massm moving with momentump through an infinite array
of circular scatterers with radiusR arranged on a triangula
lattice. When the particle collides with a scatterer it is
flected elastically. Between collisions it moves on straig
lines with constant velocity. To avoid difficulties in the ca
culation of stability matrices at collisions, the interaction p
tentialV(r ) of the particle with the scatterer is assumed to
steep but smooth instead of impulsive. Forr ,R, V(r )
5a(12r 2)2 and it vanishes otherwise. In all simulationsa
51010. At collisions the equations of motion are integrat
with the velocity Verlet algorithm@14#. The scatterer density
is r54/5r0, wherer0 is the close packed density at whic
the scatterers are in contact, and canonical initial conditi
are assumed. Throughout, length is measured in units oR,
energy in units ofkBT, mass in units ofm, momentum and
field strength in units of (mkBT)1/2, velocity in units of
(kBT/m)1/2, and time in units of (mR2/kBT)1/2.

At equilibrium, the average currentj [^px&/m along x
vanishes. But after a perturbationE(t) coupling to the posi-
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tion qx this currentj (t) may have a finite value. For sma
perturbations, the relaxation ofj (t) can be predicted from
linear response theory, but for larger perturbations, hig
order response functions must be taken into account.

Let us first examine the numerical stability of the r
sponse to a single impulsive perturbationEd(t). Averaging
over trajectories started at canonically distributed initial co
ditions, we determined equilibrium correlation function
^px(0)px(t)&, ^px

2(0)px(t)&, ^px
3(0)px(t)&, etc., from which

the response functionsS(n)(t) can be calculated. Due to in
version symmetry, even response functions vanish. The
three nonvanishing response functionsS(1)(t), S(5)(t), and
S(5)(t) obtained from 5003106 trajectories are shown in Fig
1 as solid lines.

Alternatively, we can calculate NRFs using a nonequil
rium simulation strategy which more closely mimics real e
periments@10#. An impulsive perturbationEd(t) is applied
to a canonical distribution of points in phase space, incre
ing the momentum inx direction by an amountE. The non-
equilibrium currentj (t) is then obtained by averagingpx(t)
over trajectories initiated at the perturbed phase points. C
rentsj (t), each obtained from 5003106 trajectories, are dis-
played in the inset of Fig. 1 for several field strengths ran
ing from E50.2 toE52.6.

From the currentsj (t), we determined nonlinear respons
functions S(n)(t) by fitting j (t)5ES(1)(t)1E3S(3)(t)/3!
1E5S(5)(t)/5!1E7S(7)(t)/7!1E9S(9)(t)/9! to the numeri-
cally determined currents. The resulting response functi
are shown in Fig. 1~dashed lines! along with the equilibrium
results ~solid lines!. The excellent agreement validates t
nonequilibrium method. WhileS(1) shows a simple mono
tonic decay,S(3) andS(5) display further features originating
in multiple correlated collisions.

We next turn to higher order multitime response functio
which can be extracted from equilibrium trajectories by u
ing expressions such as Eq.~6!, involving higher order sta-
bility matrices M ( i ). In the practical application of thes
equations, however, numerical difficulties arise due to
exponential growth of stability matrix elements originatin
in the sensitivity of initial conditions to small perturbation

FIG. 1. First-, third-, and fifth-order response functions obtain
from equilibrium simulations~solid lines! and nonequilibrium
simulations~dashed lines!. ~For i 51 andi 53 the equilibrium and
nonequilibrium results are indistinguishable on the scale of the
ure.! The inset contains the nonequilibrium currentsj (t) for various
field strengthsE.
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known asLyapunov instability. As a consequence, the co
vergence of averages such as those appearing in Eq.~6! is
extremely slow and, in practice, they can be accura
evaluated only for very short times.

To illustrate this numerical difficulty we have calculate
the third-order response of the Lorentz gas to two sh
pulses of equal magnitudeE acting at timest1 andt2. In this
case, the third-order responsej (3)(t,t2 ,t1) can be written in
terms of S(3), which in the Schro¨dinger representation in
volves stability matrices up to order two. Although the
stability matrices can be readily determined along equi
rium trajectories, our simulations indicate that due to
Lyapunov instability the calculation ofj (3) in the Schro¨-
dinger representation is impossible but for extremely sh
times. This difficulty can be mitigated by acting with twoÃ
to the right and one to the left. In this intermediate repres
tation ~between Schro¨dinger and Heisenberg! the highest or-
der stability matrix isM (1) instead ofM (2). Since the expo-
nential growth is faster for higher order stability matrice
this reduction in order improves the convergence of avera
allowing calculation ofj (3) to longer times. Results obtaine
for E50.4 from 503106 trajectories are shown in Fig.
~top!. It is, however, evident that even in the intermedia
representation the third-order response cannot be reli
calculated ift11t2.1.

Using the alternative, finite field approach, we perturbe
set of canonically distributed initial conditions with a sho
pulseE1d(t) ~here, we sett150). Then, starting from thes
perturbed initial conditions trajectories were integrated fo
time t1[t22t1, after which a second perturbationE2d(t
2t1) acted on the system. After another interval of leng
t2[t2t2 , px was measured and averaged over all trajec

FIG. 2. Third-order response to two short pulses of strengtE
50.4 as a function oft1[t22t1 andt2[t2t2 obtained from equi-
librium ~top! and nonequilibrium simulations~bottom!.
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ries yielding the nonequilibrium currentj (t1 ,t2). The third-
order termj (3) was determined by subtracting the linear r
sponse to the two pulses from the total response~assuming
higher order responses are negligible!. The resultingj (3) is
displayed in Fig. 2~bottom! for E15E250.4. In contrast to
the equilibrium results, the finite field response is not
fected by the Lyapunov instability and can be determined
longer times.

The origin of the numerical problems discussed above
be nicely exemplified by comparing the first-order respon
function S(1) in the Schro¨dinger and in the Heisenberg pic
ture. In the former, it is related to the velocity autocorrelati
function S(1)(t)5(b/m)^px(0)px(t)&. This function, com-
puted as an average over 53106 equilibrium trajectories is
shown as a dashed line in the top panel of Fig. 3. In the la
S(1)(t)5^M33

(1)(t)&5^]px(t)/]px(0)&. Although these ex-
pressions are equivalent, the numerical effort required
their calculation differs greatly. In the Schro¨dinger represen-
tation one averages over quantities within the interva
@21,1# and no numerical difficulties arise in this case. T
Heisenberg representation, on the other hand, requires a
aging over the stability matrix element]px(t)/]px(0), a
quantity whose magnitude grows exponentially in time a
which can be either positive or negative. As a result,
number of trajectories necessary to calculateS(1)(t) with
given accuracy grows exponentially with time presenting
practically unsurmountable numerical barrier. This limitati
is apparent in the top panel of Fig. 3, in which the solid li
denotes the average over the stability matrix. For timet
,1 the average stability matrix element coincides with t
corresponding velocity autocorrelation function, but th
quickly diverges from it, wildly oscillating around the tru
value. The fast growth of the stability matrix responsible f
this behavior is illustrated in the bottom panel. The equa
^]px(t)/]px(0)&5(b/m)^px(0)px(t)& ~simply obtained by
integration by parts! also nicely illustrates how ensemble a
eraging cures issues such as Van Kampen’s criticism of
ear response theory. While each stability matrix element

FIG. 3. Top: averageŝM33
( i )(t)& for i 51 and 2 as a function of

time. Also shown is the time correlation function̂px(0)px(t)&
~dashed line!. Bottom: logarithm of the variance ofM33

( i )(t) for i
51 and 2.
5-3
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pearing on the left hand side diverges exponentially in tim
their average yields an innocuous time correlation functio

The numerical divergence associated with stability ma
ces becomes stronger as one proceeds to higher order. A
example, the variance of the second-order stability mat
^@M33

(2)(t)#2&, is displayed in the bottom panel of Fig. 3 as
dotted line on a logarithmic scale. The corresponding av
age^M33

(2)(t)& is shown in the top panel. Due to symmetr
this average must vanish and any deviation is caused by
numerical convergence. Thus, the average of the sec
order stability matrix can be calculated accurately only
extremely short times. This divergence, absent in finite fi
simulations, lies at the root of the numerical difficulties
the computation of NRFs with equilibrium methods. Obta
ing a numerically stable equilibrium simulation strategy is
open challenge.

Finally, we discuss how these higher signatures of ch
may be probed experimentally. Macroscopic nonlinear
sponse functions are usually well behaved, while individ
trajectories have a higher degree of instability and div
gence. The extensive phase space averaging eliminates
discrepancies. In order to observe the stability matrices,
should use the ability to control the phase space distribu
at various times in the course of the response. Optical pu
can do that. Coherent control algorithms@15# have been de-
vised towards moving wave packets to a desired place
even controlling chemical reactivity. Such methods may
on

re
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used to design experiments where the wave packets are
row so that the effects of the averaging may be overco
and the genuine chaotic dynamics be observed, for insta
in trajectories of single molecules subjected to mechan
forces@16#.

In summary, the multidimensional nonlinear response
classical systems to a sequence ofn short pulses contains
valuable dynamical information that can be recast in terms
n point correlation functions andnth order stability matrices
M (n). M (1) is commonly used in the study and characteriz
tion of chaotic systems~Lyapunov exponents!. M (n), which
has not been studied in detail, should contain a wealth
additional information. Multiple pulse experiments conta
specific signatures of such stability matrices and should p
vide extremely useful insights into chaotic systems. The fi
pulse in the sequence may be used to prepare a wave p
~doorway state! corresponding to a narrow region of pha
space. Subsequent pulses may then probe the dynami
the wave packet. Some signatures of chaotic dynam
which disappear upon ensemble averaging, may then be
covered for this narrowly controlled preparation@5,17#. With
recent progress in femtosecond pulse shaping, multiple p
experiments could be targeted to specifically probe sig
tures of chaos in higher order stability matrices.
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