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Algorithms are presented for overcoming the computational challenge of nonlinear response functions which
describe the response of a classical system to a sequent@uwées and depend amth order multipoint
stability matrices containing signatures of chaos. Simulations for the Lorentz gas demonstrate that finite field
algorithms can be effectively used for the robust, long time calculation of nonlinear response functions. These
offer the possibility to characterize chaos beyond the commonly used Lyapunov exponents and suggest new
experimentally accessible measures of chaos.
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Response theory offers a convenient framework for conHere, {A,B}E"AB:wij(gA/axi)(aB/axj) is the Poisson
necting the reaction of dynamical systems to an external pelyrgcket for two arbitrary phase space variabfgx) and
turbation with the microscopic dynami¢s]. Van Kampen pB(x), Einstein's summation convention is assumed and
had raised some insightful objections to this formalism, artakes values- 1,0, and 1. --)) denotes a matrix element
guing that in nonlinear dynamical systems the perturbative, | jouville space which is calculated as follows: We start
expansion in the external field may hold only for infinitely \ith the equilibrium phase space distributipg,. Each of

SEON tirf]nes[zg_-l Cohmmon eXPel_r(ijeng_e and th$or_eticti:_a!danz?lysisthe n actions of the external field on the distribution is rep-
show that while these are valid objections for individua tra'resented by a Poisson brackkt In the time intervals be-

{:g(j:éoirslecsértrri];?dpcr)%(]am Is cured once a proper ensemble av lveen actions the time evolution is described Byr)
The long debate around this issue was narrowly focused@ 8XP("1£7), whereL=71 s the Liouville operator. Finally,
on the linear response. However, the nonlinear response of%¢ Multiply the evolved distribution wittB and take the

dynamical system to a sequence of pulses carries much mop@c?r;) ) ) )
detailed information. Nonlinear response functioiNdRF) S can be evaluated by acting with all Poisson brackets

are readily accessible by numerous spectroscopic technique8, the left. Using thisHeisenberg picturéoperators change
Multidimensional NMR[4] and its recent extension to opti- With time), we find thatS™ can be written in terms of an
cal and infrared pulseks] have the capacity to control co- (N+1)timenth order stability matrix,
herence and probe correlations of dynamical events. In this n
; ; "% (71)

paper, we show how the NRF may be recast using a hierar- M () o 1
chy of stability matricesM (™ which provide new measures el o (Theg) 0% (T2)
of classical chaos. Lyapunov exponents commonly used in
the analysis of chaotic systems are related to the lowesthe appearance of stability matrichE™ provides exciting
member of the hierarchy). We further analyze the merits possibilities for the direct observation of chaos.
of equilibrium vs nonequilibrium simulation strategies and  Alternatively, we can let the Poisson brackets act to the
specify conditions whereby these higher measures of chaagfght. In this Schralinger picture (phase space density
may be reproduced experimentally. changes with time one can use the identitfA,peqf

Consider a system with HamiltoniaH(x) coupled to a = — gAp,. to reduce the highest stability matrix degree by
spatially homogeneous fieldE(t) through H'(x,t)  one toM{" V) In particular, the stability matrix cancels out

=—E(t)A(x), wherexis a point in phase space aAdx) is  for first order and the linear response contains no signatures
an arbitrary phase space variable.nftb order in the applied of chaos:

field the expectation value of an observaBlés [6]

d
n 7 1) =
8= [dr, [ "dry 1o [y SOt 7) = g BBIA(T)). @

YE ). E St This fluctuation dissipation theorefii] connects the observ-
(Tn-2)+ - B(r) ST, Ty 0720 7). able linear response functic® with an equilibrium corre-
(1) lation function of the unperturbed system. For higher orders,
- . the stability matrices survive and NRFs carry signatures of
The nth order NRF describing the response at tim@® n chaos[7 8]y y sig

short pulses at times,, . . .7, is given by Let us first examine the response to a single intense short

S, 71, Thoys - - - T2, T1) pulse perturbing the systemtat 0. The expressions for the
~ B corresponding response functions become especially com-

=(B|G(t— 1) - -AG(mo— T1)Alpeg).  (2)  pactif the observable& andB are phase space variables. Let

()
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us assumé&=x, andB=p, wherep is the momentum con-
jugate tox,. In the Heisenberg picture, the single-pulse re-
sponse function of order is

a"p(t)
ap"(0)

However, the first few response functions in the Sdinger
picture are  SU(t)=(B8/m){p(0)p(t)), S@)(t)
= (BIM)XpX(0)p(t))— (B/m)(p(1)), ~ and SOt
= (BIm)*(p3(0)p(1))—3(B/M)%(p(0)p(t)). Thus, for a
single pulse, a fluctuation dissipation like relation holds for
response of arbitrary order and the stability matrices can stil|
be eliminated from all higher order response functions.
In contrast, multipulse NRFs explicitly depend oh("
and cannot be written in terms of correlation functions alone,
For example, the second-order response is

s(“><t,0)=< > =(M"(t,0)). (5)

dZ
5(2)01 T2, T1) = ,32 dr,d7, <B(t)A( 72)A( 7'1)>

s%q)
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FIG. 1. First-, third-, and fifth-order response functions obtained
from equilibrium simulations(solid lineg and nonequilibrium
simulations(dashed lings (Fori=1 andi= 3 the equilibrium and
nonequilibrium results are indistinguishable on the scale of the fig-
ure) The inset contains the nonequilibrium currepty for various
field strength<E.

tion gy this currentj(t) may have a finite value. For small
perturbations, the relaxation ¢ft) can be predicted from

d linear response theory, but for larger perturbations, higher
_'B’F<B(t)w” Mj(l%)(TZle)Ai’(TZ)AIL(Tl»v order response functions must be taken into account.
1

Let us first examine the numerical stability of the re-

(6) sponse to a single impulsive perturbatiB@(t). Averaging
over trajectories started at canonically distributed initial con-

where A/=0A/dx;. Such multipulse (multidimensiongl  ditions, we determined equilibrium correlation functions
NRFs carry additional most valuable information connected p,(0)py(t)), (p2(0)p«(t)), (p2(0)py(1)), etc., from which
"(t) can be calculated. Due to in-
namics in various time intervals. This is what enables multi-version symmetry, even response functions vanish. The first
dimensional NMR to determine the structure of complexthree nonvanishing response functiogd)(t), S®)(t), and
molecules[4]. Recent work has extended these ideas to the&(®)(t) obtained from 508 10° trajectories are shown in Fig.
optical and infrared regimes. In particular, the field of fifth- 1 as solid lines.

to the ability to observe correlation effects between the dythe response functio

order Raman spectroscopy of liquid has triggered exten-

Alternatively, we can calculate NRFs using a nonequilib-

sive simulation activity 10—12. Both equilibrium and finite  rium simulation strategy which more closely mimics real ex-
field techniques were successfully used to calculate highgseriments[10]. An impulsive perturbatiorE5(t) is applied
order NRFs in the short time regime-@00 fs). The follow- to a canonical distribution of points in phase space, increas-
ing simulations examine the merits of these two approachesng the momentum ix direction by an amouri. The non-

We have performed numerical simulations for the two-equilibrium currentj(t) is then obtained by averaginm(t)
dimensional Lorentz gg4.3] consisting of a point particle of over trajectories initiated at the perturbed phase points. Cur-
massm moving with momentunp through an infinite array  rentsj(t), each obtained from 50010° trajectories, are dis-
of circular scatterers with radiuR arranged on a triangular played in the inset of Fig. 1 for several field strengths rang-
lattice. When the particle collides with a scatterer it is re-ing from E=0.2 toE=2.6.

flected elastically. Between collisions it moves on straight

From the currentg(t), we determined nonlinear response

lines with constant velocity. To avoid difficulties in the cal- functions S("(t) by fitting j(t)=ESY(t)+E3SE)(t)/3!
culation of stability matrices at collisions, the interaction po-+ E5S®)(t)/5! +E’S7)(t)/7! + E®S®)(t)/9! to the numeri-
tential V(r) of the particle with the scatterer is assumed to becally determined currents. The resulting response functions
steep but smooth instead of impulsive. FoxR, V(r)  are shown in Fig. 1dashed linesalong with the equilibrium
=a(1-r?? and it vanishes otherwise. In all simulatioas  results(solid lines. The excellent agreement validates the
=10' At collisions the equations of motion are integrated nonequilibrium method. Whil&s™ shows a simple mono-
with the velocity Verlet algorithni14]. The scatterer density tonic decayS® andS(® display further features originating

is p=4/5p,, Wherepy is the close packed density at which in multiple correlated collisions.

the scatterers are in contact, and canonical initial conditions We next turn to higher order multitime response functions
are assumed. Throughout, length is measured in uni&® of which can be extracted from equilibrium trajectories by us-
energy in units okgT, mass in units ofn, momentum and ing expressions such as E®), involving higher order sta-
field strength in units of kg T)Y2 velocity in units of  bility matrices M®. In the practical application of these

(ksT/m)*2 and time in units of MR/ kgT) Y2

equations, however, numerical difficulties arise due to the

At equilibrium, the average curreft=(p,)/m alongx  exponential growth of stability matrix elements originating
vanishes. But after a perturbati@({t) coupling to the posi- in the sensitivity of initial conditions to small perturbations,
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FIG. 3. Top: averagegM§)(t)) fori=1 and 2 as a function of
time. Also shown is the time correlation functidp,(0)p.(t))
(dashed ling Bottom: logarithm of the variance d#1$}(t) for i
=1 and 2.

ries yielding the nonequilibrium currefft,,t,). The third-
FIG. 2. Third-order response to two short pulses of strefigth order termj(®) was determined by subtracting the linear re-
=0.4 as a function of;= 7,— 7; andt,=t— 7, obtained from equi- ~ sponse to the two pulses from the total respof@ssuming
librium (top) and nonequilibrium simulationgottor. higher order responses are negligibi€he resultingj® is
displayed in Fig. 2bottom for E;=E,=0.4. In contrast to
the equilibrium results, the finite field response is not af-
known asLyapunov instabilityAs a consequence, the con- fected by the Lyapunov instability and can be determined for
vergence of averages such as those appearing if6Eds longer times.
extremely slow and, in practice, they can be accurately The origin of the numerical problems discussed above can
evaluated only for very short times. be nicely exemplified by comparing the first-order response
To illustrate this numerical difficulty we have calculated function S(V in the Schrdinger and in the Heisenberg pic-
the third-order response of the Lorentz gas to two shorfyre. In the former, it is related to the velocity autocorrelation
pulses of equal magnitudeacting at timesr; and,. Inthis  fynction SI(t) = (BIM)(py(0)px(t)). This function, com-
case, the third-order respong@)(t,,,7;) can be written in  puted as an average ovexa0® equilibrium trajectories is
terms of S®), which in the Schidinger representation in- shown as a dashed line in the top panel of Fig. 3. In the latter,
volves stability matrices up to order two. Although theses(l)(t)=(M%’(t»:(apx(t)/apx(O)). Although these ex-
stability matrices can be readily determined along equilibpressions are equivalent, the numerical effort required for
rium trajectories, our simulations indicate that due to thetheir calculation differs greatly. In the Scifiager represen-
Lyapunov instability the calculation of® in the Schie  tation one averages over quantities within the interval
dinger representation is impossible but for extremerNShorE_lll] and no numerical difficulties arise in this case. The
times. This difficulty can be mitigated by acting with twlo  Heisenberg representation, on the other hand, requires aver-
to the right and one to the left. In this intermediate represenaging over the stability matrix elementp,(t)/dp,(0), a
tation (between Schidinger and Heisenberghe highest or-  quantity whose magnitude grows exponentially in time and
der stability matrix isM) instead ofM ®). Since the expo- which can be either positive or negative. As a result, the
nential growth is faster for higher order stability matrices,number of trajectories necessary to calcul&t®(t) with
this reduction in order improves the convergence of averagegiven accuracy grows exponentially with time presenting a
allowing calculation off®) to longer times. Results obtained practically unsurmountable numerical barrier. This limitation
for E=0.4 from 50< 10° trajectories are shown in Fig. 2 is apparent in the top panel of Fig. 3, in which the solid line
(top). It is, however, evident that even in the intermediatedenotes the average over the stability matrix. For tirhes
representation the third-order response cannot be reliably. 1 the average stability matrix element coincides with the
calculated ift; +t,>1. corresponding velocity autocorrelation function, but then
Using the alternative, finite field approach, we perturbed ayuickly diverges from it, wildly oscillating around the true
set of canonically distributed initial conditions with a short value. The fast growth of the stability matrix responsible for
pulseE, 4(t) (here, we set;=0). Then, starting from these this behavior is illustrated in the bottom panel. The equality
perturbed initial conditions trajectories were integrated for & dp,(t)/dp,(0))=(B/m){p,(0)p«(t)) (simply obtained by
time t;=7,— 7, after which a second perturbatidgy, 5(t integration by parfsalso nicely illustrates how ensemble av-
—1t,) acted on the system. After another interval of lengtheraging cures issues such as Van Kampen'’s criticism of lin-
t,=t—7,, py was measured and averaged over all trajectoear response theory. While each stability matrix element ap-
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pearing on the left hand side diverges exponentially in timeused to design experiments where the wave packets are nar-

their average yields an innocuous time correlation function.row so that the effects of the averaging may be overcome
The numerical divergence associated with stability matri-and the genuine chaotic dynamics be observed, for instance,

ces becomes stronger as one proceeds to higher order. As @ntrajectories of single molecules subjected to mechanical

example, the variance of the second-order stability matrixforces[16]. o . _

(IM@(t)13), is displayed in the bottom panel of Fig. 3 as a !N summary, the multidimensional nonlinear response of

dotted line on a logarithmic scale. The corresponding averclassical systems to a sequencenoshort pulses contains

age(M%?(t)) is shown in the top panel. Due to symmetry, valuable dynamical information that can be recast in terms of

this average must vanish and anv deviation is caused by sloh point correlation functions andth order stability matrices
9 y y %yj(“). M®) is commonly used in the study and characteriza-

numerical convergence. Thus, the average of the secon on of chaotic systemé.yapunov exponentsM (™, which
order stability matrix can be calculated accurately only forp .o ot been studied in detail. should contain a wealth of
extremely short times. This divergence, absent in finite field,qitional information. Multiple pulse experiments contain
simulations, lies at the root of the numerical difficulties in gpecific signatures of such stability matrices and should pro-
the computation of NRFs with equilibrium methods. Obtain-jge extremely useful insights into chaotic systems. The first
ing a numerically stable equilibrium simulation strategy is aNpulse in the sequence may be used to prepare a wave packet
open challenge. _ _ (doorway state corresponding to a narrow region of phase
Finally, we discuss how these higher signatures of Cha°§pace. Subsequent pulses may then probe the dynamics of
may be probed experimentally. Macroscopic nonlinear reyhe wave packet. Some signatures of chaotic dynamics,
sponse functions are usually well behaved, while individualypich disappear upon ensemble averaging, may then be re-
trajectories have a higher degree of instability and diverqyered for this narrowly controlled preparatid?17]. With
gence. The extensive phase space averaging eliminates thggent progress in femtosecond pulse shaping, multiple pulse
discrepancies. In order to observe the stability matrices, ONgyperiments could be targeted to specifically probe signa-

should use the ability to control the phase space distributioR ,res of chaos in higher order stability matrices.
at various times in the course of the response. Optical pulses

can do that. Coherent control algorithiri&] have been de- S.M. gratefully acknowledges the support of NSF Grant
vised towards moving wave packets to a desired place olo. CHE-0132571 and NIH Grant No. 1 RO1 GM 59230-01
even controlling chemical reactivity. Such methods may beA2.
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