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Ab initio simulation of the two-dimensional vibrational spectrum
of dicarbonylacetylacetonato rhodium „I…

Andrew M. Moran, Jens Dreyer,a) and Shaul Mukamelb)

Department of Chemistry, University of Rochester, Rochester, New York 14627-0216

~Received 12 August 2002; accepted 21 October 2002!

The complete anharmonic cubic and quartic force field of the two carbonyl stretching vibrations of
a rhodium di-carbonyl complex is calculated at the density functional level and used to simulate the
third-order vibrational response function. The infrared photon echo spectrum calculated using the
diagonalized resulting exciton Hamiltonian is in qualitative agreement with measured values.
Quartic terms in the potential are critical for reproducing the experimental transition energies and
transition dipoles. ©2003 American Institute of Physics.@DOI: 10.1063/1.1528605#
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I. INTRODUCTION

The structure of molecules is the primary basis for u
derstanding and predicting their physical, chemical, biolo
cal, and material properties. An arsenal of multipulse nuc
magnetic resonance~NMR! techniques have been esta
lished and used for structure determination.1–3 In recent
years, IR analogs to NMR pulse sequences have been d
oped and applied to several model systems such as s
peptides, acetone, and acetonitrile.4,5 As in NMR, the power
of nonlinear vibrational techniques is derived from the re
lution of features not attainable in congested linear spec
achieved by spreading the spectra out in multi
dimensions.4–10 In addition, nonlinear IR spectroscopy ha
the potential to provide information regarding the time ev
lution of molecular structures on the subpicosecond ti
scale, in contrast to the millisecond regime directly acc
sible in NMR experiments.4,6

The NMR spin Hamiltonian is well-established, and
parameters are sufficiently transferable between diffe
systems that spectral analysis is facilitated.5,6,11 Conversely,
anharmonic terms in the vibrational Hamiltonian need to
identified on a case by case basis in order to derive struc
information from the measured spectra; the transferability
these parameters remains an open problem. Because no
ear IR spectroscopies are sensitive to these anharm
terms, their extraction should allow the interpretation
spectral features in terms of molecular geometry.10–22

To date, the most promising structurally sensitive no
linear IR techniques have involved manipulation of incide
pulse polarizations. Specifically, polarization selective m
surements have been used to calculate angles between
sition dipoles, which are interpretable in the molecu
frame.13,23–25In addition, energies and amplitudes of vibr
tional peaks have been related to properties of the gro
state potential energy surface.9 In Ref. 25, a fitting procedure
was used to invert the nonlinear spectrum of dicarbo
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lacetylacetonato rhodium~I! ~RDC! ~Fig. 1! into the param-
eters describing the two local carbonyl oscillators, as
posed to delocalized normal coordinates.

Information has thus far been obtained from experim
tal nonlinear spectra largely by using empirical fitting alg
rithms which require the selection of an optimal parame
set, using a model comprised of only the most import
terms. Assumptions regarding the truncation of the exp
sion of the potential energy and transition dipole are u
avoidable in the absence of an established microscopic
derstanding of the relative importance of these terms
their spectroscopic signatures.25 Thus, we aim to simulate
and predict nonlinear vibrational spectra without having
rely on input parameters from experimental sources. In
article we present a procedure for simulating nonlinear vib
tional spectra based onab initio electronic structure calcula
tions. By developing a methodology that is generally app
cable to small as well as to larger systems like biomolecu
our method will allow us to adapt the level of theory to th
specific system under investigation in terms of balancing
curacy and computational cost. Exciton models26–29 are es-
pecially promising in this regard provided that an appropri
scheme can be devised to transfer localab initio parameters
to larger systems which are intractable by high-level qu
tum mechanical methods.28

Being a well-studied and rigid molecule, RDC is an ide
candidate for the first application of this machinery. T
symmetric and antisymmetric stretching vibrations of its tw
strongly coupled CwO local oscillators are sufficiently sepa
rated from other absorption bands that their nonlinear
sponse can be measured without contributions from o
modes. The parameters needed to calculate the photon
spectrum of RDC are generated at the density functio
theory ~DFT! level with the B3LYP30–33 density functional
and the LanL2DZ34–36 basis set. Terms in the expansion
the potential energy to cubic order obtained via a fit of
experimental photon echo spectrum of RDC25 provide a suit-
able reference for our calculations. In addition, we calcul
quartic terms in the Hamiltonian and evaluate their effect
il:
7 © 2003 American Institute of Physics
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1348 J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Moran, Dreyer, and Mukamel
the nonlinear spectra by calculating transition energies
dipoles.

In order to connect spectra with local structural prop
ties, the Hamiltonian should be set up in a basis of locali
coordinates. Normal modes are easily obtained from s
dard quantum-chemical codes and represent a com
choice for the calculation of harmonic as well as anharmo
vibrational spectra. Even though they are inheren
delocalized,37 they may be localized by procedures ana
gous to localization methods developed for molecu
orbitals38 or the construction of Wannier excitons in soli
state physics.39 However, we have chosen to calculate t
Hamiltonian directly in a basis of localized internal coord
nates~see Sec. II!. As a full calculation of all 3N26 coor-
dinates is numerically expensive, a subset of internal coo
nates of interest is selected. This selection can be base
the specific structural or spectral properties to be inve
gated. Remaining coordinates as well as environme
~bath! degrees of freedom determine the line shapes of n
linear spectra. In the present study, we focus on simula
and analyzing the primary spectral features and line bro
ening is taken into account by simply adding a homogene
linewidth. Bath effects may be incorporated microscopica
in future studies.40

The accuracy ofab initio quantum chemical calculation
of nonlinear spectra is yet to be tested. The parameters
essary to simulate off-resonant optical,41 IR,42 and mixed
Raman/IR two-dimensional spectra43 of CHCl3 were calcu-
lated using the Hartree–Fock method. With respect to nor
coordinates, the cubic potential energy expansion coe
cients and derivatives of both the dipole and polarizability
the second-order term in the Taylor series were calcula
and inserted into the relevant response functions. Qualita
agreement was found with experimental measurements,
the various experiments were shown to be complemen
with regard to information content. It was predicted that
both field regimes, optical and IR, the nonlinear respons
dominated by mechanical rather than electrical anharmo
contributions. In other words, the cubic term in the poten
energy expansion is of much greater importance for the n
linear response than the quadratic term in the dip
expansion.4,29

Our calculation begins with a geometry optimizatio
The Hamiltonian is constructed as a Taylor series trunca
at fourth order and expansion coefficients corresponding
gradients, quadratic, cubic, and quartic force constants

FIG. 1. RDC molecule: (O[C)2Rh(O2C5H7) and atomic Mulliken charges
calculated at the B3LYP/LanLDZ level.
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calculated. Second-order force constants are taken dire
from Hessian calculations, whereas third- and fourth-or
derivatives are determined numerically by finite differenc
Local transition dipole moments are evaluated to first ord
Diagonalization of the effective vibrational exciton Ham
tonian starting with a harmonic basis yields the energy lev
and transition dipoles that are used to compute the vib
tional spectra.

In Sec. II, the procedure used to construct the Ham
tonian of RDC, which explicitly includes the two carbon
(C[O) bonds, is described. In Sec. III, the Hamiltonian
recast using normally ordered creation and annihilation
erators. Section IV presents the calculated parameters
the corresponding two-dimensional photon echo spectr
The calculated and experimental molecular and spec
scopic parameters are generally in good agreement, dem
strating that nonlinear vibrational spectra can be adequa
simulated usingab initio methods.

II. AB INITIO COMPUTATION OF ANHARMONIC
POTENTIAL ENERGY SURFACES

The potential energyV in the anharmonic vibrationa
Hamiltonian has been expanded to quartic order with resp
to a selected subset of internal coordinatesRk as

H5V01 (
m

3N26

f mRm1 (
m

3N26 Pm
2

2mm
1 (

m,n

3N26

f mnRmRn

1 (
m,n,p

3N26

f mnpRmRnRp1 (
m,n,p,q

3N26

f mnpqRmRnRpRq ,

~1!

where thenth order partial derivatives of the potential ener
are given by

f k1k2¯kn
(n) 5

1

n! S ]nV

]Rk1]Rk2¯]Rkn
D

0

. ~2!

The nuclear dipole required to calculate IR spectra is tr
cated at the linear order,

mW 5mW 01 (
m

3N26 S ]mW

]Rm
D

0

Rm . ~3!

Anharmonic potential energy surfaces of large po
atomic molecules are usually determined by calculating
harmonic force constants defined as elements of a Ta
series @Eq. ~1!# expansion around a reference geometry37

The expansions may be performed with respect to either C
tesian, internal, or normal coordinates. When the force c
stants are related to spectroscopic observables, normal m
are the most common choice. However, because nor
modes are delocalized, it is difficult to relate them to micr
scopic~local! properties of the molecule. In contrast to Ca
tesian and internal coordinates, the mass-weighted nor
modes only provide isotope-dependent force fields, limit
their generality. Thus, force constants must be recalcula
for every isotopic derivative. Furthermore, delocalized for
constants are not easily transferred from one molecule
another. Cartesian coordinates are well-defined and eas
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1349J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Two-dimensional vibrational spectrum
use, but molecular motion may be better visualized us
internal coordinates. Internal coordinates such as b
lengths, bond angles, and dihedral angles are inherently
calized, as they are confined to two, three, and four ato
respectively. The resulting force constants are usually dia
nally dominant and facilitate transfer and comparison
tween related molecules.37 Isotope effects can be readil
studied as effective masses for internal coordinates ente
vibrational Hamiltonian directly~vide infra!.

Internal coordinates need to be provided as input for
quantum chemical calculations and should be carefully c
sen for each molecule under investigation. It is advantage
to select the bond lengths and angles that best approxim
the vibrational modes of interest, so that calculations can
interpreted in terms of physically meaningful local vibr
tions. If a molecule possesses some symmetry, the coo
nates can be selected accordingly to simplify the interpr
tion. The reference geometry can be obtained either from~i!
the optimum geometry at the level of theory used in the fo
field calculation,~ii ! an optimum geometry at a higher lev
of theory,~iii ! an empirically corrected theoretical, or~iv! an
experimental x-ray or NMR geometry. Among these optio
the first appears to be most consistent and is adopted in
study.

The calculation of harmonic vibrational frequencies
Hartree–Fock-based methods, DFT,44 and by molecular me-
chanics has recently been reviewed.45 It has been shown tha
Hartree–Fock methods with at least split valence basis
predict qualitatively correct force constants;46,47 they contain
systematic errors because of the neglect of electron cor
tion, which usually leads to an overestimation of vibration
frequencies by about 10%. Electron correlation can be ta
into account by post-Hartree–Fock methods such as Møl
Plesset perturbation theory or configuration interacti
However, these procedures are computationally expen
and thus restricted to relatively small molecules. DFT
cludes electron correlation,48 but is computationally much
less demanding than post-Hartree–Fock methods and
thus developed into a general method to study physical p
erties of medium-sized molecules. BLYP and B3LYP fun
tionals with polarized split valence basis sets have given
best agreement between calculated and experimental v
tional frequencies.44,49–52Compared to Hartree–Fock the d
viation from experiment appears to be much more unifo
In fact, empirical frequency scaling factors of 0.99 and 0
have been reported for BLYP and B3LYP methods, resp
tively, whereas the corresponding Hartree–Fock scaling
tor is 0.90.46,47,53,54Depending on the molecular class of i
terest, DFT methods gave average errors of 13,49 26,50 19,50

and 34– 45 cm21.51 Average frequency errors are abo
20– 40 cm21 larger for Hartree–Fock as well as for Møller
Plesset approaches.51 Semiempirical methods exhibit consid
erably larger deviations with reported errors of 126 a
159 cm21 for AM1 and PM3, respectively.51 Quadratic con-
figuration interaction calculations in which single and dou
substitutions are included are similar in quality to DFT, b
they are not competitive with respect to computational co

Recently, the very good performance of DFT metho
Downloaded 21 Jan 2003 to 128.151.176.185. Redistribution subject to A
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was demonstrated for the vibrations of compounds cont
ing up to fourth-row elements or isotopes.55 Large deviations
were found only for molecules in which dispersion forc
play a significant role, e.g., in molecules containing seve
halogen atoms. Complemented by a linear scaling met
that corrects for anharmonic effects, high-quality DFT me
ods like B3LYP together with large basis sets like 6-3
1G(d,p) appear to most accurately predict vibration
spectra.55,56 However, the accuracy of DFT, as well as pe
turbative and certain truncated configuration interact
methods, with respect to the calculation of anharmonic fo
constants is questionable.37 It has been found that Hartree
Fock methods are capable of predicting higher-order der
tives of the potential energy to within a few percent in t
strongly bonding region of the potential energy surface.37

For large molecules like proteins or nucleic acidsab
initio methods are still too expensive and one has to rely
mechanical force fields. If the parametrization is prope
chosen, reasonable results can be expected from force
normal mode calculations.45

The accuracy of calculated vibrational intensities has
been systematically tested, as has already been done
frequencies.57–60Compared to frequencies, vibrational inte
sities are much more sensitive to the choice of the basis
Medium or large basis sets, at least polarized split vale
basis set, are needed to produce satisfactory results.57 Inclu-
sion of electron correlation improves quantitative pred
tions. In contrast to frequency predictions, there is no defin
tendency in over- or underestimation of intensities.

We have used the standard quantum chemical pack
GAMESS~US!

61 and GAUSSIAN 9862 to calculate harmonic
second-order force constants. Both programs construct
Hessian matrix in the basis of internal coordinates speci
in the input. Preferably, quantum chemical methods w
analytical first- and second-order derivatives63 capabilities
should be used to minimize numerical errors at this stage
the calculation.

We determined the cubic and quartic anharmonic fo
constants numerically, by calculating first- and second-or
derivatives of analytical quadratic force constants. We u
three- and five-point central difference formulas, as forwa
or backward formulas are known to be an order of magnitu
less accurate.37 In our experience, the change of the for
constants in going from three-point to five-point formulas
rather small, but the computational effort is increased b
factor of 2. We thus restrict ourselves to three-point form
las. We found literature recommendations for displacem
steps to be appropriate, namely 0.01 Å for bond lengths
0.02 rad for angle displacements.37 As we calculated only
nonredundant force constants one should be aware that in
calculation of cubic (f mnp) and quartic (f mnpq) force con-
stants the different treatment of the derivativesm andn ~ana-
lytically or, e.g., in the case of semiempirical calculations,m
analytically andn numerically! versusp andq ~numerically!
may lead to artificial asymmetries for cubic and quartic for
constants that are actually identical by molecular symme
These are usually rather small, but we found that they m
become appreciable for certain quartic force constants.

Numerical internal first-order dipole derivatives we
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1350 J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Moran, Dreyer, and Mukamel
calculated concomitantly. It should be noted that rotation
distortion~displacements! of chemical bonds upon vibration
may cause the inertial axes to rotate with respect to the
of the molecular structure. This can result in the perman
dipole moment giving a contribution to the transition m
ment. This artifact may affect the intensity of vibration
absorption bands, as was first pointed out by Crawford
1952.64 A procedure to overcome these complications and
perform such calculations accurately has recently been g
by Ford and Steele.65 They noticed, however, that in large
molecules these contributions only have a minor effe
Thus, in the present work we neglected these correction
the calculated dipole derivatives.

III. THE NORMALLY ORDERED VIBRATIONAL
EXCITON HAMILTONIAN

Numerical computations and the systematic classifi
tion of spectra can be better carried out by transforming
Hamiltonian to the second quantized normally ordered fo
This also helps establish the connection with exciton mod
To that end we transform the internal coordinatesRk and
momentaPk by bosonic creation (Bk

†) and annihilation (Bk)
operators operators according to

Rk5A \

2mkvk
~Bk

†1Bk!, ~4!

Pk5 iAmk\vk

2
~Bk

†2Bk!, ~5!

where mk and vk represent effective masses and intrin
frequencies of the internal coordinateRk and \ is Planck’s
constant. These operators satisfy the Bose commutation
tion

@Bk ,Bl
†#5dkl . ~6!

The Hamiltonian may be written in many different form
by changing the order of variousBk

† and Bk factors. It is
convenient to adoptnormal ordering where all Bk

†’s are
moved to the left andBk’s to the right. Neglecting the con
stant term and recognizing that the derivatives are invar
to permutations of the dummy indices, the vibrational Ham
tonian @Eq. ~1!# becomes

H5 (
m

3N26

Um~Bm
† 1Bm!

1 (
m,n

3N26

@hmnBm
† Bn1Umn~Bm

† Bn
†1BmBn!#

1 (
mnp

3N26

Umnp~Bm
† Bn

†Bp
†13 Bm

† Bn
†Bp13 Bm

† BnBp

1BmBnBp!1 (
mnpq

3N26

Umnpq~Bm
† Bn

†Bp
†Bq

†

14 Bm
† Bn

†Bp
†Bq16 Bm

† Bn
†BpBq14 Bm

† BnBpBq

1BmBnBpBq!, ~7!
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where the parameters of Eq.~7! are defined by Eqs.~A2!–
~A7!. The dipole operator is similarly given as

mW 5 (
m

3N26

Dm
(1)~Bm

† 1Bm!. ~8!

The electronic excitations of molecular aggregates a
crystals made out of similar repeat units are described by
Frenkel exciton Hamiltonian which bears a resemblance
Eq. ~7!. The main differences are that in the electronic ca
the creation and annihilation operators satisfy the Pa
rather than the Bose commutation rules. In addition,
Heitler–London approximation~couplings among units are
weak compared to frequencies! allows one to retain only a
few nonlinear terms in the Frenkel case. The vibratio
Hamiltonian is more complex since many types of anharm
nicities may be relevant. Nevertheless, many concepts
techniques such as Green functions and quasiparticle re
sentations developed for electronic excitons may be app
for computing vibrational excitons. Pioneering studies of t
structure of vibrational excitons28,29 in pure and mixed crys-
tals were made by Kopelman and co-workers.66–68 More re-
cently, they have also been studied in peptides.69–71The only
realistic and logical strategy for modeling large molecu
such as peptides or DNA will be to use quantum chemis
computations on small segments to construct an effec
exciton Hamiltonian which can then be diagonalized.

IV. APPLICATION TO RDC

The anharmonic potential energy surface along the
carbon–oxygen triple bonds was constructed using
B3LYP30–33 density functional and LanL2DZ basis set.34–36

This method was selected because of its agreement with
perimental frequencies and similarity to a method previou
used to study the vibrations of rhodium complexes.72 The
LanL2DZ basis incorporates an effective core potential
the rhodium atom rather than treating all electrons explici
and uses the Dunning/Huzinaga full double zeta basis for
remaining atoms.34–36 We have calculated anharmonic forc
constants for a selected subset of (n52) internal coordinates
only.

The vibrational eigenstates were obtained by diagona
ing the Hamiltonian expanded in a harmonic basis set. T
basis state wave functioni is factorized into a product o
local harmonic oscillators according to

umi1mi2ni3¯min&5umi1&umi2&umi3&¯umin&, ~9!

wherem denotes the number of vibrational quanta in loc
oscillator in. Matrix elements of the Hamiltonian are evalu
ated by application of the following rules:

^mi uBi
†uni&5An11^mi uni11&5An11dmi ,ni11 , ~10!

^mi uBi uni&5An^mi unn21&5Andmi ,ni21 , ~11!

wherem andn represent the number of vibrational quanta
the local oscillatori .

We should include a minimum number of three ener
levels for each local vibrational coordinate to produce
singly and doubly excited eigenstate manifolds. Thus,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1351J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Two-dimensional vibrational spectrum
two-coordinate model requires at least six states: a vib
tional ground state, two singly excited states, two dou
excited states, and a combination band with one excitatio
each coordinate. However, the energies of excited vibratio
states do not converge with this minimum basis set, beca
coupling with higher excited states~more than two quanta! is
needed to stabilize the singly and doubly excited levels
similar effect is observed in the truncated configuration
teraction electronic structure scheme, where the~dynamic!
electron correlation energy is not sufficiently taken into a
count due to the truncation. Therefore, the manifold of ba
states was expanded until convergence of the singly and
bly excited state energies and eigenvectors is achieved. In
present two-coordinate calculation, we truncated our ma
fold of basis states at thirteen vibrational quanta, i.e., the s
of the quanta among all local modes is thirteen. At each le
of the manifold, all possible basis states are generated
sulting in one-hundred-five basis vectors.

Table I contains the parameters calculated at three
proximation levels. The symmetrically equivalent C[O
bonds are denoted by the indices 1 and 2. The six low
energy eigenstates consist of the vibrational ground s
(g), the symmetric (s) and antisymmetric (a) singly excited
vibrational states, as well as their two overtones (aa,ss),
and a combination band (as). The parametersvk , V j , D j j

are the intrinsic frequencies of the local C[O oscillators, the
frequency of the eigenmode, and the anharmonicity of
doubly excited states. The relations of the expansion co
cients@Eq. ~A6!# to the parameters in the table are given
the footnotes of Table I. Transition dipoles are normalized
the transition dipole of the symmetric fundamental transit
(mg,s).

Results obtained by truncating the potential energy
pansion at the third and fourth order are shown in colum
two and four, respectively. In addition, the results of a c
culation in which the off-diagonal third- and fourth-ord
expansion coefficients~coefficients involving more than on
coordinate index! are neglected are given in column thre
The ab initio parameters are compared with those of a fit
the experimental photon echo spectrum in which a two
cillator Hamiltonian was truncated at the cubic term.25

Intrinsic (vk) and eigenstate frequencies (V j ) of the two
singly excited states are about 100 cm21 below the experi-
mental values. A harmonic normal mode analysis includ
all 3N26 coordinates at the same level of theory produ
vibrational frequencies of 1972 and 2033 cm21 for the re-
spective modes, indicating that the lower frequencies are
herent in the level of calculation and not the result of usin
subset of coordinates. Our calculated splitting between
two levels is 27.4 cm21, less than half the experimenta
value (69 cm21). Accordingly, the quadratic off-diagona
termV12 is less than half the size of the experimentalV12 as
well. Although most of the amplitude resides in the C[O
bonds, additional coordinates are needed to improve the
linear coupling between the eigenmodes. Inclusion of
Rh–~CO! coordinates, which comprise less than 1% of t
mode composition, produces a negligible change in the
ergy difference between the singly excited leve
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(27.5 cm21), indicating that the collective effect of man
weakly coupled coordinates is significant.

In our fourth-order calculation, the anharmonicitie
(D j j ) deviate by less than 6 cm21 from the measured values
Truncation at the cubic term results in anharmonicities t
are much greater than those of experiment, by up
41 cm21. The magnitudes~as well as the signs! of the cubic
expansion coefficients (giii ) show substantial deviation
from the experimental fit. Quartic coefficients cannot be
rectly compared to experimental values because the Ha
tonian used to model the spectra was truncated at t
order.25 The calculated transition dipoles are in excelle

TABLE I. Calculated and empirically determined parameters.

Parametersa Third order Fourth-order diag Fourth order Empiricab

Vibrational frequencies (cm21)c

v1 ~local! 1974 1974 1974 2073.5
v2 ~local! 1974 1974 1974 2073.5
Va 1903.9 1922.8 1922.9 2015
Vs 1931.6 1950.5 1950.3 2084
Daa 47 12.2 12.3 13
Dss 16.7 7.9 8.2 12
Das 61.6 20.1 20.3 26

Expansion coefficients (cm21)d

V12 13.6 13.6 13.6 35
g111 2244.6 2244.6 2244.6 170
g112 20.5 0.0 20.5 3
g122 20.5 0.0 20.5 3
g222 2244.6 2244.6 2244.6 170
g1111 ¯ 50.8 50.8 ¯

g1112 ¯ 0.0 0.0 ¯

g1122 ¯ 0.0 0.0 ¯

g1222 ¯ 0.0 0.1 ¯

g2222 ¯ 50.8 50.8 ¯

Angle between transition dipoles~deg!
Q local 91.8 91.8 91.8 92
Q eigenstates 92.2 92.3 94.2 90

Transition dipoles~normalized toms)
e

mg,a 0.97 1.04 1.04 1.05
mg,s 1.00 1.00 1.00 1.00
mg,aa 0.06 0.05 0.05 ¯

mg,ss 0.02 0.03 0.03 ¯

mg,as 0.07 0.06 0.06 ¯

ma,aa 1.35 1.45 1.45 1.48
ms,ss 1.29 1.39 1.39 1.41
ma,ss 0.61 0.27 0.27 0.13
ms,aa 0.61 0.27 0.27 0.13
ma,as 1.02 1.00 1.00 1.00
ms,as 1.05 1.05 1.04 1.05

aThe indices 1 and 2 denote local CwO coordinates, whereasg, s, anda
representing the ground state and the singly excited symmetric and
symmetic eigenstates. The indicesaa, ss, andas represent the two over-
tones and the combination band, respectively.

bEmpirical fit of a cubic potential to the photon echo spectrum given
Ref. 3.

cThe parametersvk , V j , D j j are the intrinsic frequency of the local osci
lator, the frequency of the eigenmode, and the anharmonicity of the do
excited state.

dThe relation of the expansion coefficients@Eqs.~A2!–~A7!# to the param-
eters in the table are as follows:Vmn523Umn

(2) , gmnp563Umnp
(3) , and

gmnpq5243Umnpq
(4) .

eThe transition dipoles are normalized to the transition dipole between
ground state and singly excited level of the symmetric stretching mode
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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agreement with the measurements, suggesting that near
of the oscillator strength of these transitions are associ
with the two C[O bonds. Transition dipoles calculated b
truncating Eq.~8! at second order deviated by less than 1.2
from those found using only the linear term. It is therefo
well justified to truncate the expansion of the dipole opera
at the linear term for RDC.

Our results show a significant change in energies
anharmonicites due to the inclusion of fourth-order term
resulting in a substantial reduction in the deviation from e
perimental values. Thegkkkk(Rk

4) type terms are most impor
tant in this regard. This suggests that while a cubic trunca
of the Hamiltonian includes enough parameters to fit exp
mental data, the effects of cubic and quartic expansion c
ficients must be artificially combined in the cubic para
eters. It is therefore not surprising that the magnitudes of
empirical third-order expansion coefficients differ so grea
from ours. While the difference in sign hardly affects t
calculated energies, negative diagonal third derivatives
intuitive and more commonly encountered,37 as they describe
an increase in the intrinsic frequency of the bond as it
creases in length.

We have calculated the photon echo signal generate
the ks52k11k21k3 direction using the sum over state
expression.29 The response function is given by the sum
three Liouville space pathways:6

R~ t3 ,t2 ,t1!5R2~ t3 ,t2 ,t1!1R3~ t3 ,t2 ,t1!

2R1* ~ t3 ,t2 ,t1!. ~12!

The Liouville space paths are represented by the dou
sided Feynman diagrams shown in Fig. 2. When the pu
are short relative to the system dynamics, the polariza
P(3) is directly proportional to the response function. It
often most intuitive to view the signal in the frequency d
main by Fourier transforming the polarization with respect
the relevant time variables. Orientational factors related
the angles between the transition dipoles and the polar
tions of the four fields can be conveniently introduced
taking the orientational and vibrational part ofR(t3 ,t2 ,t1) to
be separable, and assuming the chromophore is fixed in
laboratory frame during the course of the experiment.23 The
nonlinear polarization is Fourier transformed with respec
t1 and t3 ,

FIG. 2. Double-sided Feynman diagrams describing the third-order no
ear response for the signal in the wave vector directionks52k11k2

1k3 .
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Si jkl ~v3 ,t2 ,v1!5E
2`

`

dt3E
2`

`

dt1Ri jkl ~ t3 ,t2 ,t1!

3exp~2 i ~v3t31v1t1!!, ~13!

whereSi jkl (v3 ,t2 ,v1) is the complex signal and the indice
i jkl represent lab frame polarizations of the four fields.

Figure 3 shows the three pulse photon echo spect
calculated using the parameters given in column four
Table I and Eq.~13!. The homogeneous linewidth is equal
the experimentally measured25 value of 2.6 cm21 for all tran-
sitions and the polarizations of all four fields were taken
be parallel. Orientational factors were incorporated using
~13! of Ref. 23. The spectral features can be interpreted
terms of transitions between the six lowest energy eig
states. The fundamental and overtone transitions are cle
seen in the splitting of the diagonal peaks. The fundame
transitions at (2Va ,Va) and (2Vs ,Vs) correspond to the
double-sided Feynman diagramsR2 andR3 depicted in Fig.
2, whereas the overtones are represented by theR1* path and
appear in the off-diagonal at (2Va ,Va2Daa) and
(2Vs ,Vs2Dss). Consistent with the harmonic approxima
tion, the overtone peaks are approximately& times as in-
tense as the fundamentals. The cross peaks, i.e., peaks r
ing from intermode coupling, can be interpreted similar
Peaks seen at (2Va ,Vs) and (2Vs ,Va) are represented by
the diagramsR2 andR3 Fig. 2, whereas contributions from
the R1* path show up as anharmonically shifted peaks
(2Va ,Vs2Das) and (2Vs ,Va2Das). However, the peak
at (2Va ,Vs2Das) is unresolved due to overlap with th
stronger diagonal peak at (2Va ,Va).

V. DISCUSSION

The overall agreement between the calculated and
perimental parameters is satisfactory. However, the ene
splitting between the singly excited eigenstates must be
proved. Preliminary calculations of small peptides are mu
better in this regard, suggesting that the results of the pre

n-

FIG. 3. ~Color! Three pulse photon echo spectrum of RDC calculated us
the parameters in column 4 of Table I, where all potential energy term
fourth order are included. The axes labelsv1 and v3 correspond to the
respective time intervals. The plotted intensity represents the absolute v
of uSZZZZ(v3 ,t250,v1)u @Eq. ~13!#. The spectrum has been normalized
the maximum peak intensity.
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work may be limited by the presence of the rhodium ato
which requires the introduction of a partially semiempiric
basis set. Indeed, an accurate description of the electr
structure in the vicinity of the rhodium atom is expected
be critical in describing the mechanical coupling between
two C[O local oscillators. The molecule has an interest
delocalized charge distribution~see Fig. 1! and other vibra-
tions that are strongly coupled to the charges may affect
spectra.

Even though the computed bilinear coupling coefficie
differs by a factor of;2 from experiment we believe tha
our conclusions drawn regarding the effects of quartic te
hold, because anharmonicities and harmonically allow
transition dipole amplitudes are relatively insensitive to t
parameter. For example, substitution of theV12 coefficient
from Ref. 25 into our quartic DFT potential~Table I! results
in the energiesVa51901.7 cm21, Vs51972.1 cm21, Daa

510.2 cm21, Dss58.4 cm21, and Das520.7 cm21, where
all anharmonicities change by less than 5.5 cm21 from the
values obtained with the DFT bilinear coupling coefficie
Furthermore, the transition dipole magnitudes for all h
monically allowed transitions change by less than 1% up
substitution. However, the transition dipole amplitudes
tween states that differ by more than one quanta~harmoni-
cally forbidden! change by less than 11% with the excepti
of ma,ss and ms,aa , which both decrease by about 58%
Thus, the underestimation of the bilinear coupling coeffici
by DFT is primarily manifested in the energy splitting of th
eigenstates and the harmonically forbidden singly to dou
excited state transition dipoles.

In order to better evaluate our calculated parameters w
respect to empirical values, we performed a fit to the exp
mental transition energies and dipoles of Ref. 25 using q
tic expansion coefficients as adjustable parameters. Initi
a model in which the only nonzero anharmonic terms w
diagonal cubic and quartic coefficients (giii and giii i ) was
used to achieve convergence to within 2 cm21 of the experi-
mental energies. However, we found that smallgii j andgii j j

parameters must be introduced to converge within 1 cm21.
Our final fitting parameters arev15v252083 cm21,
V12534 cm21, giii 5gj j j 52229 cm21, gii j 5gi j j

521.5 cm21, giii i 5gj j j j 531 cm21, giii j 5gi j j j 50 cm21,
and gii j j 520.3 cm21, resulting in transition dipoles tha
differ by less than 2.5% from those shown in column four
Table I.

The dominant effect of including quartic terms is th
increase in the transition dipoles between eigenstates
differ by two quanta. This point is illustrated by Fig. 4,
linear absorption spectrum calculated in the overtone reg
The inclusion of quartic terms increases the ground to dou
excited states absorbance cross sections by 10%–30%. S
lar effects could be observed in nonlinear experiments wh
the absorbance between excited states that differ by
quanta is probed; transient grating or two-color photon e
experiments are possibilities.9 Our transition dipoles betwee
the singly and triply excited levels are 20%–30% grea
than those calculated using the parameters of Ref. 25.

To describe the spectroscopy of larger molecules the
plicit treatment of more coordinates is required. The com
Downloaded 21 Jan 2003 to 128.151.176.185. Redistribution subject to A
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tational cost, however, increases rapidly for the determi
tion of anharmonic force constants as well as for t
~complete! diagonalization of the vibrational Hamiltonian
The latter step can be improved by implementing Kryl
space based routines such as the Lanczos algorithm tha
not diagonalize the full Hamiltonian, but calculate individu
eigenstates sequentially.73 Other procedures such as tim
dependent Hartree method can be used to generate app
mate eigenstates.74 Alternatively, a perturbative approac
that takes the effect of higher excitations into account co
be utilized. The size of the basis can also be reduced
defining linear combinations of internal coordinates,
though this requires at least partial abandonment of the m
intuitive internal coordinates.
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APPENDIX: TRANSFORMING PARAMETERS
OF THE HAMILTONIAN

In normally ordered form, the creation operators a
moved to the left of the annihilation operators in all opera
products. Expressing the coordinates as normal ordered
operators results in the most convenient form for progr
implementation. Most generally, products of field operat
can be normal ordered using

~mBm1nBm
† !n5 (

k50

n S n
kDmkS ic

2 Dmn2kHn2k

3S n

ic
Bm

† D ~Bm!k, ~A1!

where HN2k is a Hermite polynomial andc5(2mn)1/2.75

Substituting Eqs.~4! and ~5! into Eq. ~1! and normal order-
ing the terms results in Eq.~7!, where the expansion coeffi
cients are given by

FIG. 4. Linear absorption spectra of RDC in the overtone region calcula
using both our empirical fitting parameters~ ! and those of Ref. 25
~—!. Our final fitting parameters arev15v252083 cm21, V12

534 cm21, giii 5gj j j 52229 cm21, gii j 5gi j j 521.5 cm21, giii i 5gj j j j

531 cm21, giii j 5gi j j j 50 cm21, andgii j j 520.3 cm21. The intensities are
normalized to the peak absorption of the symmetric fundamental.
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Um5Um
(1)13 (

n

3N26

Umnn
(3) , ~A2!

hmn5dmnS vm16 (
p

3N26

Umnpp
(4) D

1~12dmn!S Umn
(2)16 (

p

3N26

Umnpp
(4) D , ~A3!

Umn5Umn
(2)16 (

p

3N26

Umnpp
(4) , ~A4!

Umnp5Umnp
(3) , ~A5!

Umnpq5Umnpq
(4) , ~A6!

Uk1k2¯kn
(n) 5

f k1k2¯kn
(n)

A2mk1vk1\212mk2vk2\21
¯2mknvkn\

21
.

~A7!

Intrinsic frequenciesv i of the internal coordinates are calc
lated using the diagonal elements of the second-order
monic force constant matrix by

vk5
1

2pc
Af kk

mk
. ~A8!

Effective masses for internal coordinatesmk are taken di-
rectly from reciprocal diagonal elements of the Wilson
matrix (mk5Gkk

21)76 provided by the quantum chemical pro
grams. More sophisticated determinations of intrinsic f
quencies have been put forward in the literature.77–81

Using Eq. ~4! and neglecting the constant term, whic
has no effect on the spectra, Eq.~3! can be recast as Eq.~8!,
where

Dm
(1)5A \

2mmvm
S ]mW

]Rm
D

Rm50

. ~A9!

The x, y, and z components of the transition dipole we
calculated.
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