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Ab initio simulation of the two-dimensional vibrational spectrum
of dicarbonylacetylacetonato rhodium  (I)
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(Received 12 August 2002; accepted 21 October 2002

The complete anharmonic cubic and quartic force field of the two carbonyl stretching vibrations of
a rhodium di-carbonyl complex is calculated at the density functional level and used to simulate the
third-order vibrational response function. The infrared photon echo spectrum calculated using the
diagonalized resulting exciton Hamiltonian is in qualitative agreement with measured values.
Quartic terms in the potential are critical for reproducing the experimental transition energies and
transition dipoles. ©2003 American Institute of Physic§DOI: 10.1063/1.1528605

I. INTRODUCTION lacetylacetonato rhodiugh) (RDC) (Fig. 1) into the param-
eters describing the two local carbonyl oscillators, as op-
The structure of molecules is the primary basis for un-posed to delocalized normal coordinates.
derstanding and predicting their physical, chemical, biologi-  |yformation has thus far been obtained from experimen-

cal, and material prope,\r/ltll:(:s. Anhar_senal c;]f mult;)pulse nuclga{aﬂ nonlinear spectra largely by using empirical fitting algo-
magnetic resonanceNMR) techniques have been estab- rithms which require the selection of an optimal parameter

lished and used for structure determinatfon.in recent ) . .
set, using a model comprised of only the most important
years, IR analogs to NMR pulse sequences have been devel- . . .
rms. Assumptions regarding the truncation of the expan-

oped and applied to several model systems such as sm ﬁ ) o .
peptides, acetone, and acetonitfifsAs in NMR, the power sion of the potential energy and transition dipole are un-

of nonlinear vibrational techniques is derived from the reso-2veidable in the absence of an established microscopic un-
lution of features not attainable in congested linear spectrlérstanding of the relative importance of these terms and
achieved by spreading the spectra out in multipletheir spectroscopic signaturésThus, we aim to simulate
dimensiong. "% In addition, nonlinear IR spectroscopy has and predict nonlinear vibrational spectra without having to
the potential to provide information regarding the time evo-rely on input parameters from experimental sources. In this
lution of molecular structures on the subpicosecond timearticle we present a procedure for simulating nonlinear vibra-
scale, in contrast to the millisecond regime directly accestional spectra based @b initio electronic structure calcula-
sible in NMR experiment$® tions. By developing a methodology that is generally appli-
The NMR spin Hamiltonian is well-established, and its caple to small as well as to larger systems like biomolecules,
parameters are sufficiently transferable between differend ,, method will allow us to adapt the level of theory to the

. . . l
systems that spectral analysis is facilitatéd: Conversely, specific system under investigation in terms of balancing ac-

anharmonic terms in the vibrational Hamiltonian need to becHracy and computational cost. Exciton mo@&i&? are es-

identified on a case by case basis in order to derive structural” . S . .
o Peually promising in this regard provided that an appropriate

these parameters remains an open problem. Because nonlﬁﬁheme can be dewsgd to trgnsfer Imdallnltlo.parameters
ear IR spectroscopies are sensitive to these anharmoni@ !2rger systems which are intractable by high-level quan-
terms, their extraction should allow the interpretation oftum mechanical method§.
Spectra| features in terms of molecular geom&fﬁ? Being a well-studied and rlgld molecule, RDC is an ideal
To date, the most promising structurally sensitive non-candidate for the first application of this machinery. The
linear IR technigues have involved manipulation of incidentsymmetric and antisymmetric stretching vibrations of its two
pulse polarizations. Specifically, polarization selective meastrongly coupled E=0 local oscillators are sufficiently sepa-
surements have been used to calculate angles between traated from other absorption bands that their nonlinear re-
sition dipoles, which are interpretable in the molecularsponse can be measured without contributions from other
frame’*#*~**In addition, energies and amplitudes of vibra- modes. The parameters needed to calculate the photon echo
tional peaks have been related to properties of the groundyecirum of RDC are generated at the density functional

state potential energy surfatén Ref. 25, a fitting procedure theory (DFT) level with the B3LYP®-33 density functional

was used to invert the nonlinear spectrum of dicarbony-and the LanL2D#-36 pasis set. Terms in the expansion of

the potential energy to cubic order obtained via a fit of an
dPresent address: Max-Born-Instititr fichtlineare Optik und Kurzzeit- experimental photon echo spectrum of R"Bﬁrovide a suit-
spektroskopie, D-12489 Berlin, Germany. . .

P P y ble reference for our calculations. In addition, we calculate

YAuthor to whom all correspondence should be addressed; Electronic maift ] - 3 i )
mukamel@chem.rochester.edu quartic terms in the Hamiltonian and evaluate their effect on
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0 O—O.ll calculated. Second-order force constants are taken directly
\\ +0.35 // from Hessian calculations, whereas third- and fourth-order
C 10.87 derivatives are determined numerically by finite differences.
\Rh/ ) Local transition dipole moments are evaluated to first order.

N Diagonalization of the effective vibrational exciton Hamil-
O 0 -042 ; : . . o
tonian starting with a harmonic basis yields the energy levels
+0.42 and transition dipoles that are used to compute the vibra-
tional spectra.
In Sec. Il, the procedure used to construct the Hamil-
FIG. 1. RDC molecule: (& C),Rh(0O,CsH;) and atomic Mulliken charges tonian of RDC, .WhICh e.Xp|ICIt|y includes the two .Carpony.l
calculated at the B3LYP/LanLDZ level. (C=0) bonds, is described. In Sec. Ill, the Hamiltonian is
recast using normally ordered creation and annihilation op-
erators. Section IV presents the calculated parameters and
e corresponding two-dimensional photon echo spectrum.
he calculated and experimental molecular and spectro-
_scopic parameters are generally in good agreement, demon-

In order to connect spectra with local structural proper trating that i rational ; be ad ol
ties, the Hamiltonian should be set up in a basis of localized " 21Nd that noninear vibrational spectra can be adequately
simulated usingb initio methods.

coordinates. Normal modes are easily obtained from stan>
dard quantum-chemical codes and represent a common

choice for the calculation of harmonic as well as anharmonidl. AB INITIO COMPUTATION OF ANHARMONIC
vibrational spectra. Even though they are inherentlyPOTENTIAL ENERGY SURFACES

delocalized®’ they may be localized by procedures analo-
gous to localization methods developed for molecular,
orbitals’ or tge construction of Wannier excitons in solid- ) - <oacted subset of internal coordindResas
state physicé® However, we have chosen to calculate the

Hamiltonian directly in a basis of localized internal coordi- ae ae 2 e
nates(see Sec. )l As a full calculation of all 3—6 coor- H=Vo+ % fmRm+ % om. t % fmnRmRn
dinates is numerically expensive, a subset of internal coordi- '

H3C CHs

-0.24

the nonlinear spectra by calculating transition energies an
dipoles.

The potential energy in the anharmonic vibrational
amiltonian has been expanded to quartic order with respect

m

nates of interest is selected. This selection can be based on N6 3N6

the specific structural or spectral properties to be investi- +m2n frngRmRaRp+ 2 frnpdRmRaRoRy
gated. Remaining coordinates as well as environmental P mnpa

(bath degrees of freedom determine the line shapes of non- (1)

linear spectra. In the present study, we focus on simulatingyhere thenth order partial derivatives of the potential energy
and analyzing the primary spectral features and line broadgre given by

ening is taken into account by simply adding a homogeneous
; ; ; ; ; 1 "V
linewidth. Bath effects may be incorporated microscopically  ¢(n) _ =
in future studie4® KIk2-kn N1\ )R IR, * *IRn
The accuracy oéb initio quantum chemical calculations : : .
. : The nuclear dipole required to calculate IR spectra is trun-
of nonlinear spectra is yet to be tested. The parameters nec- :
. ) 42 . cated at the linear order,
essary to simulate off-resonant optiéal|R,*? and mixed

2

0

Raman/IR two-dimensional spectfaof CHCI, were calcu- o e
lated using the Hartree—Fock method. With respect to normal 4= (o™t §m: IR Rm. ()
m/o

coordinates, the cubic potential energy expansion coeffi-
cients and derivatives of both the dipole and polarizability to =~ Anharmonic potential energy surfaces of large poly-
the second-order term in the Taylor series were calculatedtomic molecules are usually determined by calculating an-
and inserted into the relevant response functions. Qualitativearmonic force constants defined as elements of a Taylor
agreement was found with experimental measurements, arsgries[Eq. (1)] expansion around a reference geoméatry.
the various experiments were shown to be complementaryhe expansions may be performed with respect to either Car-
with regard to information content. It was predicted that intesian, internal, or normal coordinates. When the force con-
both field regimes, optical and IR, the nonlinear response istants are related to spectroscopic observables, normal modes
dominated by mechanical rather than electrical anharmoniare the most common choice. However, because normal
contributions. In other words, the cubic term in the potentialmodes are delocalized, it is difficult to relate them to micro-
energy expansion is of much greater importance for the norscopic(local) properties of the molecule. In contrast to Car-
linear response than the quadratic term in the dipoldesian and internal coordinates, the mass-weighted normal
expansiorf:?° modes only provide isotope-dependent force fields, limiting
Our calculation begins with a geometry optimization. their generality. Thus, force constants must be recalculated
The Hamiltonian is constructed as a Taylor series truncatetbr every isotopic derivative. Furthermore, delocalized force
at fourth order and expansion coefficients corresponding teonstants are not easily transferred from one molecule to
gradients, quadratic, cubic, and quartic force constants ar@nother. Cartesian coordinates are well-defined and easy to
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use, but molecular motion may be better visualized usingvas demonstrated for the vibrations of compounds contain-
internal coordinates. Internal coordinates such as bonihg up to fourth-row elements or isotop&d.arge deviations
lengths, bond angles, and dihedral angles are inherently lovere found only for molecules in which dispersion forces
calized, as they are confined to two, three, and four atomslay a significant role, e.g., in molecules containing several
respectively. The resulting force constants are usually diagdialogen atoms. Complemented by a linear scaling method
nally dominant and facilitate transfer and comparison bethat corrects for anharmonic effects, high-quality DFT meth-
tween related moleculéé. Isotope effects can be readily ods like B3LYP together with large basis sets like 6-311
studied as effective masses for internal coordinates enter theG(d,p) appear to most accurately predict vibrational
vibrational Hamiltonian directlyvide infra). spectra>>® However, the accuracy of DFT, as well as per-
Internal coordinates need to be provided as input for thdurbative and certain truncated configuration interaction
quantum chemical calculations and should be carefully chomethods, with respect to the calculation of anharmonic force
sen for each molecule under investigation. It is advantageol@nstants is questionablélt has been found that Hartree—
to select the bond lengths and angles that best approximate®2ck methods are capable of predicting higher-order deriva-
the vibrational modes of interest, so that calculations can béves of the potential energy to within a few percent in the
interpreted in terms of physically meaningful local vibra- Strongly bonding region of the potential energy surfélce.
tions. If a molecule possesses some symmetry, the coordi- FOr large molecules like proteins or nucleic acils
nates can be selected accordingly to simplify the interpretallitio methods are still too expensive and one has to rely on
tion. The reference geometry can be obtained either fiom mechanical force fields. If the parametrization is proper!y
the optimum geometry at the level of theory used in the forc&hosen, reasonable results can be expected from force field

field calculation,(ii) an optimum geometry at a higher level Normal mode calculatiorfS. o _ -
of theory, (i) an empirically corrected theoretical, 6v) an The accuracy of calculated vibrational intensities has not

experimental x-ray or NMR geometry. Among these optionsbeen systematically tested, as has already been done for

5760 e vihrati :
the first appears to be most consistent and is adopted in offeduencies’"*°Compared to frequencies, vibrational inten-
study. sities are much more sensitive to the choice of the basis set.

The calculation of harmonic vibrational frequencies byMedlum or large basis sets, at least polarized split valence

Hartree—Fock-based methods, D¥Bnd by molecular me- b_aS|s sfet,lart;: needed tlotprod_uce satlsfactoryi.tre:guhslu—d.
chanics has recently been review/@dt has been shown that sion c: € e(f[ ror; tc?crre ation mp:qut(_as qut:;n tative p()jref_ I(':t-
Hartree—Fock methods with at least split valence basis se{%):;énr; C(i)r? (;?/Zr Oorriﬂlcjjeerr]gti%;isr:Oor;si’nteirsei}t;:sno efinite
predict qualitatively correct force constarifé'’ they contain y N

. We have used the standard quantum chemical packages
systematic errors because of the neglect of electron correla-

. : S o~ GAMESSUS)®! and caussian 92 to calculate harmonic
tion, which usually leads to an overestimation of vibrational

; . second-order force constants. Both programs construct the
frequencies by about 10%. Electron correlation can be take

into account by post-Hartree—Fock methods such as lelerHeSSian matrix in the basis of internal coordinates specified
Y P in the input. Preferably, quantum chemical methods with

Plesset perturbation theory or - configuration Interacnon'analytical first- and second-order derivati¥esapabilities

However, thesg procedure§ are computationally EXPENSIVE, 5uld be used to minimize numerical errors at this stage of
and thus restricted to relatively small molecules. DFT iN-the calculation

cludes electron correlatidfi, but is computationally much We determined the cubic and quartic anharmonic force

less demandmg than post-Hartree—Fock methods_ and h%ﬁnstants numerically, by calculating first- and second-order
thus developed into a general method to study physical profyeyiyatives of analytical quadratic force constants. We used
erties of medium-sized molecules. BLYP and B3LYP funC-y, e and five-point central difference formulas, as forward
tionals with polarized split valence basis sets have given thBr backward formulas are known to be an order of magnitude
best agreement between calculated and experimental Vibrgses accuratd” In our experience, the change of the force
tional frequenC|e§‘.‘.'49‘52Compared to Hartree—Fock the de- ¢onstants in going from three-point to five-point formulas is
viation from experiment appears to be much more uniformeather small, but the computational effort is increased by a
In fact, empirical frequency scaling factors of 0.99 and 0.964ctor of 2. We thus restrict ourselves to three-point formu-
have been reported for BLYP and B3LYP methods, respecras. we found literature recommendations for displacement
tively, whereas the corresponding Hartree—Fock scaling faCstepS to be appropriate, namely 0.01 A for bond lengths and
tor is 0.90"°47°*>*Depending on the molecular class of in- 902 rad for angle displacemerifsAs we calculated only
terest, DFT methods gave average errors of®13° 19>  nonredundant force constants one should be aware that in the
and 34-45cm'.®! Average frequency errors are about calculation of cubic {yne and quartic {yn,9 force con-
20-40 cm ! larger for Hartree—Fock as well as for Mgller— stants the different treatment of the derivativesndn (ana-
Plesset approach&sSemiempirical methods exhibit consid- |ytically or, e.g., in the case of semiempirical calculatioms,
erably larger deviations with reported errors of 126 andanalytically anch numerically versusp andq (numerically
159 cni * for AM1 and PM3, respectively* Quadratic con-  may lead to artificial asymmetries for cubic and quartic force
figuration interaction calculations in which single and doubleconstants that are actually identical by molecular symmetry.
substitutions are included are similar in quality to DFT, butThese are usually rather small, but we found that they may
they are not competitive with respect to computational costbecome appreciable for certain quartic force constants.
Recently, the very good performance of DFT methods Numerical internal first-order dipole derivatives were
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calculated concomitantly. It should be noted that rotation owhere the parameters of E(f) are defined by EqgA2)—
distortion(displacemenfsof chemical bonds upon vibrations (A7). The dipole operator is similarly given as

may cause the inertial axes to rotate with respect to the rest 3N-6
of the molecular gtructure. Th|§ can result in the p(_armanent = E Dgnl)(B:‘njL By). ®)
dipole moment giving a contribution to the transition mo- m

ment. This artifact may affect the intensity of vibrational

i‘ggggﬁt}f” ban(;is, as was first p(;mted out ?_y (;rawforc(jj IrI:rystals made out of similar repeat units are described by the
- A proceaure to_ overcome these complications ana Grenkel exciton Hamiltonian which bears a resemblance to
perform such calculations accurately has recently been givep, ) The main differences are that in the electronic case
by Ford and Steel€’ Thgy potlced, however, that. in larger the creation and annihilation operators satisfy the Pauli
molecules these contributions only have a minor effectrather than the Bose commutation rules. In addition, the

Thus, in the present work we neglected these corrections % eitler—London approximatioricouplings among units are

the calculated dipole derivatives. weak compared to frequencjeallows one to retain only a

few nonlinear terms in the Frenkel case. The vibrational

Hamiltonian is more complex since many types of anharmo-
Ill. THE NORMALLY ORDERED VIBRATIONAL nicities may be relevant. Nevertheless, many concepts and
EXCITON HAMILTONIAN techniques such as Green functions and quasiparticle repre-
. . . ... __sentations developed for electronic excitons may be applied
Numerical computations and the systematic classifica; . Lo ) . : ;
. . ; for computing vibrational excitons. Pioneering studies of the
tion of spectra can be better carried out by transforming the L : 29 .

o . structure of vibrational excitoA%2°in pure and mixed crys-

Hamiltonian to the second quantized normally ordered form 68

tals were made by Kopelman and co-work¥® More re-

This also helps establish the connection with exciton modelsCentl thev have also been studied in peptfie&The onl
To that end we transform the internal coordinaisand Y, ey Pep : y

. : t S realistic and logical strategy for modeling large molecules
momentaP; by bosonic cregﬂonE{k) and annihilation B such as peptides or DNA will be to use quantum chemistry
operators operators according to

computations on small segments to construct an effective

The electronic excitations of molecular aggregates and

f + exciton Hamiltonian which can then be diagonalized.
Ry= V Zmean (Bx+ By, 4
IV. APPLICATION TO RDC
. mkﬁ Wk +
Pi=iy—5— (B=Bw, (5) The anharmonic potential energy surface along the two

, _ . . carbon—oxygen triple bonds was constructed using the
where my and wy rgpresent effecpve masses and intrinsic g 5 p30-33 density functional and LanL2DZ basis S4t%°
frequencies of the internal coprdlnaﬁg and# is PIangk’s This method was selected because of its agreement with ex-
c_onstant. These operators satisfy the Bose commutation relB'erimentaI frequencies and similarity to a method previously
tion used to study the vibrations of rhodium compleXedhe

[By.B[1=6y. (6) LanL2DZ basis incorporates an effective core potential for
I _ . . the rhodium atom rather than treating all electrons explicitly,

The Hamﬂtoman may be W,”tte? in many different fqrms and uses the Dunning/Huzinaga full double zeta basis for the
by changing the order of various, and By factors. It is oy aining atom&*-3*We have calculated anharmonic force

. . t
convenient to adopnormal orderingwhere all Bi’s are  .,nqiants for a selected subset of2) internal coordinates
moved to the left and,’s to the right. Neglecting the con-

stant term and recognizing that the derivatives are invariant '.I'he vibrational eigenstates were obtained by diagonaliz-
to permutations of the dummy indices, the vibrational Ham"'ing the Hamiltonian expanded in a harmonic basis set. The

tonian[Eaq. (1)] becomes basis state wave functionis factorized into a product of
356 ) local harmonic oscillators according to
H= Un(B,,tB
m (Bt Brm) M2 My2Ng - M) = M) | M) [ myg)- - [ myy), )
3N-6 wherem denotes the number of vibrational quanta in local
+ 2 [NoBrBat Unn(BhBA+BrBy)] oscillatorin. Matrix elements of the Hamiltonian are evalu-
m.n ated by application of the following rules:
3N—-6 +
m;| B |n;)=vn+1{m;|n;+1)=+n+14 , (10
+ E Umnp(B:nBEBEJF\?BLBpr+3BLBan < || || |> < || i > m;,n+1 (10)
mnp
aN_6 <mi|Bi|ni>=\/ﬁ<mi|nn—1>=\/ﬁami,ni—lv (11)
+BmBnBp)+ X Umnpd BHBABIBY wherem andn represent the number of vibrational quanta in
mnpq the local oscillatoii .

We should include a minimum number of three energy
levels for each local vibrational coordinate to produce the
+BmBnBpBy), (7)  singly and doubly excited eigenstate manifolds. Thus, our

+4B!BIB/B,+6B]B!B,B,+4B}B.B,B,
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two-coordinate model requires at least six states: a vibralABLE I. Calculated and empirically determined parameters.
tlon_al ground state, two s_mgl_y excited s_,tates, tvvo_do_ubI)_/Paramete?S Third order
excited states, and a combination band with one excitation in

Fourth-order diag Fourth order Empirfcal

each coordinate. However, the energies of excited vibrational Vibrational frequencies (c)®
states do not converge with this minimum basis set, becaug® (1°¢@ Lo74 1974 1974 20735
; e ge v T w (local) 1974 1974 1974 2073.5
coupling with hlg_her excm?d statésore than two_ quanias ¢, 1903.9 1922.8 1922.9 2015
needed to stabilize the singly and doubly excited levels. A, 1931.6 1950.5 1950.3 2084
similar effect is observed in the truncated configuration in-2aa 47 12.2 12.3 13
teraction electronic structure scheme, where (ithynamio iss é?'g 232 zg'é 122
electron correlation energy is not sufficiently taken into ac- *° ’ ' '
count due to the truncation. Therefore, the manifold of basis Expansion coefficients (cn)*
states was expanded until convergence of the singly and dotf22 13.6 13.6 13.6 35
. : ) . ; 1 —244.6 —244.6 —244.6 170
bly excited state energies and eigenvectors is achieved. In ttgt’iz 05 00 05 3
present two-coordinate calculation, we truncated our manig,,, -05 0.0 -05 3
fold of basis states at thirteen vibrational quanta, i.e., the sur. —244.6 —244.6 —244.6 170
of the quanta among all local modes is thirteen. At each leve§iu 58-3 58-53
of the manifold, all possible basis states are generated, r%—mz 0.0 0.0
. . . . 1122 . .
sulting in one-hundred-five basis vectors. 1220 0.0 0.1
Table | contains the parameters calculated at three af,, 50.8 50.8
proximation levels. The symr_netncally equalent_EO Angle between transition dipoldgleg
bonds are denoted by the indices 1 and 2. The six lowes |ocal 91.8 91.8 91.8 92
energy eigenstates consist of the vibrational ground state eigenstates 92.2 92.3 94.2 90
(g), the symmetric §) and antlsymmetnca() singly excited Transition dipolesnormalized to.)°
vibrational s_tate_s, as well as their two overtones,69), fga 0.97 1.04 1.04 1.05
and a combination bandag). The parameterey, j, Aj; Kgs 1.00 1.00 1.00 1.00
are the intrinsic frequencies of the loca=O oscillators, the  Hg.aa 0.06 0.05 005 -
frequency of the eigenmode, and the anharmonicity of thé‘ess 8'85 8'82 8'82
doubly excited states. The relations of the expansion coeffi- ' ' ’

. : _ ST 1.35 1.45 1.45 1.48
cients[Eq. (A6)] to the parameters in the table are given in, 1.29 1.39 1.39 1.41
the footnotes of Table I. Transition dipoles are normalized toxa,ss 0.61 0.27 0.27 0.13
the transition dipole of the symmetric fundamental transitions.aa 0.61 0.27 0.27 0.13

Kaas 1.02 1.00 1.00 1.00
(Kg,s)- s as 1.05 1.05 1.04 1.05

Results obtained by truncating the potential energy ex °
pansion at the third and fourth order are shown in columngThe indices 1:nd 2 denote |0€a@h009rdiratesy_whereaﬁ s, anda
two and four, respectively. In addition, the results of a cal- "6Présenting the ground state and the singly excited symmetric and anti-

- . . . . symmetic eigenstates. The indicaa, ss, andas represent the two over-
culation in which the off-diagonal third- and fourth-order (gnes and the combination band, respectively.
expansion coefficient&oefficients involving more than one P"Empirical fit of a cubic potential to the photon echo spectrum given in
coordinate indexare neglected are given in column three. Ref-3. o )
The ab initio parameters are compared with those of a fit to‘The parameters, ), Aj; are the intrinsic frequency of the local oscil-

h p p ] . lator, the frequency of the eigenmode, and the anharmonicity of the doubly
the experimental photon echo spectrum in which a two 0S-excited state.
cillator Hamiltonian was truncated at the cubic tefm. “The relation of the expansion coeﬁicierﬁﬁqsié)AZ)—(An] to tr:3e) param-
Intrinsic () and eigenstate frequencie@ ) of the two ~ Sters n the table are as followsf=2x Uy, Grnp=6Unnp, and
singly excited states are about 100chbelow the experi- e 2% Unnsa:

aly ) - P _ “The transition dipoles are normalized to the transition dipole between the
mental values. A harmonic normal mode analysis includingground state and singly excited level of the symmetric stretching mode.
all 3BN—6 coordinates at the same level of theory produces
vibrational frequencies of 1972 and 2033 ¢chifor the re-
spective modes, indicating that the lower frequencies are in27.5 cni'ly, indicating that the collective effect of many
herent in the level of calculation and not the result of using ayeakly coupled coordinates is significant.

subset of coordinates. Our calculated splitting between the |4 our fourth-order calculation, the anharmonicities

two levels is 27.4cm’, less than half the experimental (A, ) deviate by less than 6 cn from the measured values.
value (69 cm?). Accordingly, the quadratic off-diagonal Truncation at the cubic term results in anharmonicities that
termVy, is less than half the size of the experimenta} as  are much greater than those of experiment, by up to
well. Although most of the amplitude resides in thesO 41 cnmi . The magnitudegas well as the signf the cubic
bonds, additional coordinates are needed to improve the bexpansion coefficientsg(;) show substantial deviations
linear coupling between the eigenmodes. Inclusion of thérom the experimental fit. Quartic coefficients cannot be di-
Rh—-CO) coordinates, which comprise less than 1% of therectly compared to experimental values because the Hamil-
mode composition, produces a negligible change in the entonian used to model the spectra was truncated at third
ergy difference between the singly excited levelsorder?® The calculated transition dipoles are in excellent
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FIG. 2. Double-sided Feynman diagrams describing the third-order nonlin- 500

ear response for the signal in the wave vector direckQs —k;+k,
+Ks.
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agreement with the measurements, suggesting that nearly fp 3. (Color) T_hree pulse photon echo spectrum of RDC calculated using
e parameters in column 4 of Table |, where all potential energy terms to

of the oscillator strength of these transitions are associateyrth order are included. The axes labels and w5 correspond to the
with the two G=0 bonds. Transition dipoles calculated by respective time intervals. The plotted intensity represents the absolute value
truncating Eq(8) at second order deviated by less than 1.2%0f [SzzzAs,t2=0.01)| [Eq. (13)]. The spectrum has been normalized to
from those found using only the linear term. It is therefore!"® Maximum peak intensity.
well justified to truncate the expansion of the dipole operator
at the linear term for RDC.

Our rgsglts show a sigr_lifican.t change in energies and Sjkl(w3-t21wl):Jm dtgfc dt;Rijp (s, o, ty)
anharmonicites due to the inclusion of fourth-order terms, —o —o
resulting in a substantial reduction in the deviation from ex-
perimental values. Thgkkkk(R‘k‘) type terms are most impor-
tant in this regard. This suggests that while a cubic truncatiomvhereS;j,| (w3,t;, 1) is the complex signal and the indices
of the Hamiltonian includes enough parameters to fit experitjkl represent lab frame polarizations of the four fields.
mental data, the effects of cubic and quartic expansion coef- Figure 3 shows the three pulse photon echo spectrum
ficients must be artificially combined in the cubic param-calculated using the parameters given in column four of
eters. It is therefore not surprising that the magnitudes of th&able | and Eq(13). The homogeneous linewidth is equal to
empirical third-order expansion coefficients differ so greatlythe experimentally measurédzalue of 2.6 cm* for all tran-
from ours. While the difference in sign hardly affects thesitions and the polarizations of all four fields were taken to
calculated energies, negative diagonal third derivatives arbe parallel. Orientational factors were incorporated using Eq.
intuitive and more commonly encounter&dys they describe  (13) of Ref. 23. The spectral features can be interpreted in
an increase in the intrinsic frequency of the bond as it determs of transitions between the six lowest energy eigen-
creases in length. states. The fundamental and overtone transitions are clearly

We have calculated the photon echo signal generated iseen in the splitting of the diagonal peaks. The fundamental
the kg=—k;+k,+ks direction using the sum over states transitions at - ,,{Q,) and (—Q4,{)s) correspond to the
expressiort’ The response function is given by the sum of double-sided Feynman diagrarRs andR; depicted in Fig.

Xexq—i(w3t3+ wltl)), (13)

three Liouville space pathways: 2, whereas the overtones are represented birfhpath and
appear in the off-diagonal at (Q,,Q,—A,,) and
R(t3,t5,t1)=Ry(t3,t5,t;)+ Ra(ts,t5,t;) (—Qg,Qs—Ag). Consistent with the harmonic approxima-
. tion, the overtone peaks are approximateldy times as in-
—RI(t3,t2,1). (12 tense as the fundamentals. The cross peaks, i.e., peaks result-

ing from intermode coupling, can be interpreted similarly.
The Liouville space paths are represented by the doublePeaks seen at{(),,()) and (—Q,,Q,) are represented by
sided Feynman diagrams shown in Fig. 2. When the pulsethe diagramsR, andR; Fig. 2, whereas contributions from
are short relative to the system dynamics, the polarizatiothe R} path show up as anharmonically shifted peaks at
P®) is directly proportional to the response function. It is (—Q,,9,—A, and (—Q,,Q,—A,). However, the peak
often most intuitive to view the signal in the frequency do-at (- Q,,Q.—A,o is unresolved due to overlap with the
main by Fourier transforming the polarization with respect tostronger diagonal peak at-(2,,(,).
the relevant time variables. Orientational factors related to
t_he angles betwegn the transition d|po_les aqd the polanzev DISCUSSION
tions of the four fields can be conveniently introduced by
taking the orientational and vibrational part®fts,t,,t;) to The overall agreement between the calculated and ex-
be separable, and assuming the chromophore is fixed in thgerimental parameters is satisfactory. However, the energy
laboratory frame during the course of the experinférithe  splitting between the singly excited eigenstates must be im-
nonlinear polarization is Fourier transformed with respect tgproved. Preliminary calculations of small peptides are much
t, andts, better in this regard, suggesting that the results of the present
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work may be limited by the presence of the rhodium atom,
which requires the introduction of a partially semiempirical '
basis set. Indeed, an accurate description of the electronic
structure in the vicinity of the rhodium atom is expected to
be critical in describing the mechanical coupling between the
two C=0 local oscillators. The molecule has an interesting
delocalized charge distributiofsee Fig. 1 and other vibra-
tions that are strongly coupled to the charges may affect the
spectra.

Even though the computed bilinear coupling coefficient }
differs by a factor of~2 from experiment we believe that 0.000 1
our conclusions drawn regarding the effects of quartic terms 4050 4100 . 4150
hold, because anharmonicities and harmonically allowed frequency/cm
transition dipole amplitudes are relatively insensitive to thisFIG. 4. Linear absorption spectra of RDC in the overtone region calculated
parameter. For example, substitution of g, coefficient  using both our empirical fitting parametefs — —) and those of Ref. 25
from Ref. 25 into our quartic DFT potentiéTable ) results ~ (—). Our final fiting parameters arew;=w,=2083 cm*, Vy,
in the energiesN,=1901.7 cm?, Q=1972.1cm?, A,,  —34CM’ Gu=9y=—229cm ", gy=gy=—15cM" gui =0y
—102cml A.—=84cnt andA..=207cnl where =31 e, Giiij = Gijjj =0cm -, gndg”” =-0.3cm g The intensities are

v =SS ! as ! normalized to the peak absorption of the symmetric fundamental.
all anharmonicities change by less than 5.5 énfrom the
values obtained with the DFT bilinear coupling coefficient. ) ) )
Furthermore, the transition dipole magnitudes for all har{ational cost, however, increases rapidly for the determina-
monically allowed transitions change by less than 1% uporﬁIon of anhgrmonlt_: fqrce constants as well as for the
substitution. However, the transition dipole amplitudes be- completg diagonalization of the vibrational Hamiltonian.

tween states that differ by more than one quah&rmoni- The latter step can be improved by implementirjg Krylov
cally forbidden change by less than 11% with the exceptionSpace based routines such as the Lanczos algorithm that do
not diagonalize the full Hamiltonian, but calculate individual

of pass and uga,, Which both decrease by about 58%. . . .
Thus, the underestimation of the bilinear coupling coefficiente'genStateS sequentially.Other procedures such as time-

by DFT is primarily manifested in the energy splitting of the dependent Hartree method can be used to generate approxi-

eigenstates and the harmonically forbidden singly to doubl){mate eigenstatés. Alternatively, a perturbative approach
excited state transition dipoles. hat takes the effect of higher excitations into account could

In order to better evaluate our calculated parameters witrt])e .UF'I'zeQ' The size .Of t.he baS|s_ can also be _reduced by
- . .defining linear combinations of internal coordinates, al-
respect to empirical values, we performed a fit to the experi- . . .
o : : . though this requires at least partial abandonment of the more
mental transition energies and dipoles of Ref. 25 using quar- -2 "~ )
. : - . ... intuitive internal coordinates.
tic expansion coefficients as adjustable parameters. Initially,
a model in W.hICh the onI)_/ nonzero anharmonic terms Were\ cKkNOWLEDGMENTS
diagonal cubic and quartic coefficientg;{ and g;;;) was
used to achieve convergence to within 2 ¢hof the experi- The support of NIH Grant No. GM59230-01A2 and NSF
mental energies. However, we found that snga|l andg;;; Grant No. CHE-0132571 is gratefully acknowledged. J.D.
parameters must be introduced to converge within IJcm would like to thank the Max-Kade foundation for financial
Our final fitihng parameters arew;=w,=2083 cni’l,  Support of his stay in Rochester.
Vi,=34 Cfoll, Giii =gjj; = —229 cm' Y, 9iij = 9ij
=—-15cm ", g =0 =31 cm 7, gjii; = Gij;; =0cm 7,
and g;;; =—0.3 cm 1, resulting in transition dipoles that _
differ by less than 2.5% from those shown in column four of ~ In normally ordered form, the creation operators are
Table 1. moved to the left of the annihilation operators in all operator
The dominant effect of including quartic terms is the products. Expressing the coordinates as normal ordered field
increase in the transition dipoles between eigenstates th@perators results in the most convenient form for program
differ by two quanta. This point is illustrated by Fig. 4, a implementation. Most generally, products of field operators
linear absorption spectrum calculated in the overtone regiorfan be normal ordered using
The inclusion of quartic terms increases the ground to doubly N ic
excited states absorbance crqss sec_tions by 10%—30%. Simi- (uB,,+ ,,B;)n: 2 (k) Mk(?) Mn—an_k
lar effects could be observed in nonlinear experiments where k=0
the absorbance between excited states that differ by two
guanta is probed; transient grating or two-color photon echo X
experiments are possibiliti€Our transition dipoles between
the singly and triply excited levels are 20%—30% greatewhere Hy_, is a Hermite polynomial and¢=(2uv)*2."°
than those calculated using the parameters of Ref. 25. Substituting Eqs(4) and (5) into Eqg. (1) and normal order-
To describe the spectroscopy of larger molecules the exng the terms results in Eq7), where the expansion coeffi-
plicit treatment of more coordinates is required. The compu<ients are given by

0.002 1 i

0.001

Relative absorbance

APPENDIX: TRANSFORMING PARAMETERS
OF THE HAMILTONIAN

(Bm)", (A1)

12
—B!
ic™m

Downloaded 21 Jan 2003 to 128.151.176.185. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



1354 J. Chem. Phys., Vol. 118, No. 3, 15 January 2003

3N-6
Up=UD+3 }n‘, uie ., (A2)
3N-6
Nmn= Omn| @m+6 % U#llr%pp)
3N—-6
+<1—6mn>(US§%+6 2 uai‘%pp>, (A3)
3N-6
Unn=U@)+6 % U oo (A4)
Umnp:UEr?%p' (A5)
Umnpq:UE’r?%pq* (A6)
£(n)
U(n) _ k1k2---kn
K Mg oah 2Mgwieh - 2Mgogh
(A7)

Intrinsic frequencies; of the internal coordinates are calcu-

Moran, Dreyer, and Mukamel

0. Golonzka, N. Demirdeen, M. Khalil, and A. Tokmakoff, J. Chem.
Phys.113 9893(2000.

15A. Tokmakoff, J. Phys. Chem. A04, 4247(2000.

18w, Zhao and J. C. Wright, Phys. Rev. Le8, 1411(2000).

7M. Khalil, N. Demirdoven, O. Golonzka, C. J. Fecko, and A. Tokmakoff,
J. Phys. Chem. A04, 5711(2000.

K. M. Murdoch, N. J. Condon, W. Zhao, D. M. Beseman, K. A. Meyer,
and J. C. Wright, Chem. Phys. Le&35 349 (2001.

19N.-H. Ge, M. T. Zanni, and R. M. Hochstrasser, J. Phys. Cheff0&\962
(2001).

20K, Okumura and Y. Tanimura, Chem. Phys. L&T8 175 (1997.

21K. Okumura, A. Tokmakoff, and Y. Tanimura, Chem. Phys. L21t4, 488
(1999.

22K, Okumura, A. Tokmakoff, and Y. Tanimura, J. Chem. Physl, 492
(1999.

2R. M. Hochstrasser, Chem. Phy66, 273(2001); M. T. Zanni, S. Gnan-
akaren, J. Stenger, and R. M. Hochstrasser, J. Phys. Chetd5 8520
(2001).

240. Golonzka and A. Tokmakoff, J. Chem. Phy45 297 (2001).

%50. Golonzka, M. Khalil, N. Demirdeen, and A. Tokmakoff, J. Chem.
Phys.115 10814(2002.

2y, Capek and E. SilinstQrganic Molecular Crystals: Interaction, Local-
ization, and Transport PhenomerfAlP Press, New York, 1994

27H, Torii and M. Tasumi, J. Chem. Phya6, 3379(1992.

283, Tretiak, W. M. Zhang, V. Chernyak, and S. Mukamel, Proc. Nat Acad.

lated using the diagonal elements of the second-order har-Sci- 96, 13003(1999; S. Tretiak, C. Middleton, V. Chernyak, and S.

monic force constant matrix by

1 [

wWy= _2 C Hk (AS)

Effective masses for internal coordinateg are taken di-

Mukamel J. Phys. Chem. B04, 4519(2000.

293, Mukamel,Principles of Nonlinear Optical Spectroscop@xford Uni-
versity Press, New York, Oxford, 1985

30C. Lee and R. G. Yang, and W. Parr, Phys. Re31 785 (1988.

31B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. L%, 200
(1989.

32/, D. Becke, J. Chem. Phy88, 5648(1993.

rectly from reciprocal diagonal elements of the Wilson G3R. H. Hertwig and W. Koch, Chem. Phys. Le268 345 (1997).

matrix (m,=G,,>) "® provided by the quantum chemical pro-

grams. More sophisticated determinations of intrinsic fre-,

quencies have been put forward in the literattré*

34P J. Hay and W. R. Wadt, J. Chem. Phg8, 270 (1985.
35W. R. Wadt and P. J. Hay, J. Chem. Phgg, 284 (1985.
36p.J. Hay and W. R. Wadt, J. Chem. Phg8, 299 (1985.
S7A. G. Csaza, in The Encyclopedia of Computational Chemistegited

Using Eq.(4) and neglecting the constant term, which by p. schieyer, N. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. A.

has no effect on the spectra, Eg) can be recast as E(),
where

DW= /L(
m 2M,wm

The x, y, andz components of the transition dipole were
calculated.

"

)Rm—O

R (A9)

IR. R. Ernst, G. Bodenhausen, and A. WokaRrinciples of Nuclear Mag-
netic Resonance in One and Two Dimensi@@&rendon, Oxford, 1987
2Protein NMR Spectroscopy: Principles and Practieglited by J. Ca-
vanagh, W. J. Fairbrother, I. Palmer, and G. Arthicademic, San Diego,

1996.
3S. F. Lienen, T. Bremi, B. Brutscher, R. Bithweiler, and R. R. Ernst, J.
Am. Chem. Soc120 9870(1998.

Schaefer Ill, and P. R. Schrein@niley, Chichester, 1998 pp. 13—30.

38]. Pipek and P. G. Mezey, Chem. Phg8, 4916(1989.

39J. Singh, Excitation Energy Transfer Processes in Condensed Media:
Theory and ApplicationgPlenum, New York, 1994

“°R. Venkatramani and S. Mukamel, J. Chem. Plfi@be publishel

413, Hahn, K. Park, and M. Cho, J. Chem. Phyl, 4121(1999.

42K. Park, M. Cho, S. Hahn, and D. Kim, J. Chem. Phi/sl, 4131(1999.

43M. Cho, J. Chem. Phyd.11, 4140(1999.

4H. Matsuura and H. Yoshida, irlandbook of Vibrational Spectroscopy
(Wiley, Chichester, 2002 Vol. 3, pp. 2012-2028.

4SH. Hotokka, in Ref. 44, Vol. 3. pp. 2029-2039.

46p, pulay, G. Fogorasi, P. Pongor, J. E. Boggs, and A. Vargha, J. Am. Chem.
Soc.105, 7037(1983.

47G. Fogorasi and P. Pulay, Annu. Rev. Phys. Cha5).191 (1984.

48R. G. Parr and W. Yandpensity-Functional Theory of Atoms and Mol-
ecules(Oxford University Press, New York, 1989

4°B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. PI9s5.5612
(1993.

50G. Rauhut and P. Pulay, J. Phys. Ch@8, 3093(1995.

4S. Mukamel and R. Hochstrasser, eds., Special issue on Multldlmensmn@LA Scott and L. Radom, J. Phys. Cher@0, 16502(1996.

Spectroscopies, Chem. Phy66, 135(2002).

M. W. Wong, Chem. Phys. Let256, 391 (1995.

5H. Hamaguchi and T. Kitagawa, eds., Proceedings of TRVS 2001, speC|a| °T. Sundius, Vib. Spectros@9, 89 (2000.

issue in Bull. Chem. Soc. Jprb, 883(2002.

6S. Mukamel, Annu. Rev. Phys. Che#l, 691 (2000.

Y. Tanimura and S. Mukamel, J. Chem. Ph98, 9496(1993.

8J. D. Hyhl, J. Christophe, and D. M. Jonas, Chem. P&g§, 295 (2001).

90. Golonzka, M. Khalil, N. Demirdeen, and A. Tokmakoff, Phys. Rev.
Lett. 86, 2154(2001).

10M. Khalil and A. Tokmakoff, Chem. Phy266, 213 (2001).

11C. Scheurer and S. Mukamel, J. Chem. PHyl§, 4989 (2001).

M. A. Palafox and V. K. Rastogi, Spectrochim. Acta, Part58 411
(2002.

5®H. Yoshida, A. Ehara, and H. Matsuura, Chem. Phys. L&25 477
(2000.

%6H. Yoshida, K. Takeda, J. Okamura, A. Ehara, and H. Matsuura, J. Phys.
Chem.106, 3580(2002.

57B. S. Galabov and T. Dudewibrational Intensities(Elsevier Science,
Amsterdam, 1996 \Vol. 22.

12p Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, Proc. Natl.®Y. Yamaguchi, M. Frisch, J. Gaw, H. F. Schaefer Ill, and J. Binkley, J

Acad. Sci. U.S.A96, 2036(1999.
BM. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, Proc. Natl.
Acad. Sci. U.S.A98, 11265(2001.

Chem. Phys84, 2262(1986.
9B. Galabov, P. Bobadova-Parvanova, and T. Dudev, J. Mol. S#06.
119 (1997.

Downloaded 21 Jan 2003 to 128.151.176.185. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 118, No. 3, 15 January 2003 Two-dimensional vibrational spectrum 1355

0B, Galabov, Y. Yamaguchi, R. B. Remington, and H. F. Schaefer I, J.9°D. M. Alexander and J. A. Krumhansl, Phys. Rev3B 7172(1986.

Phys. Chem. AL06, 819 (2002. "OA. C. Scott, Phys. Re217, 1 (1992.
61M. W. Schmidt, K. K. Baldridge, J. A. Boatet al., J. Comput. Chenl4, 1J. Edler and P. Hamm, J. Chem. Phy&7, 2415(2002.
1347(1993. 2N, Gbureck, W. Kiefer, M. E. Schneider, and H. Werner, Vib. Spectrosc.

62M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. 17, 105(1998.
R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J/°B. Parlett, Symmetric Eigenvalue ProbletPrentice—Hall, Englewood
C. Burant,et al, caussian 98 Revision A.9Gaussian, Inc., Pittsburgh PA Cliffs, 1980.
1998. "R. Gerber and M. Ratner, Adv. Chem. Phy$, 70 (1988.

63J. Gauss, inModern Methods and Algorithms in Quantum Chemistry "°A. Wiinsche, J. Opt. B: Quantum Semiclassical Qp264 (1999.
edited by J. Grotendordtlohn von Neumann Institute for Computing, "®E. B. Wilson Jr., J. C. Decius, and P. C. Cro8plecular Vibrations

Juich, 2000, Vol. 3, pp. 541-592. (Dover, New York, 1955

64B. J. Crawford, J. Chem. Phy&0, 977 (1952. 7J. A. Boatz and M. S. Gordon, J. Phys. Chedf, 1819(1989.

85T, A. Ford and D. Steele, Spectrochim. Acta, Pai5%) 2823(1999. 787. Konkoli and D. Cremer, Int. J. Quantum Che&7, 1 (1998.

86E. R. Bernstein, S. D. Colson, R. Kopelman, and G. W. Robinson, J/°Z. Konkoli, A. Larsson, and D. Cremer, Int. J. Quantum Ch&M. 11
Chem. Phys48, 5596 (1968. (1998.

57p. N. Prasad and R. Kopelman, J. Chem. PBys856 (1972. 807, Konkoli and D. Cremer, Int. J. Quantum Che67, 29 (1998.

%8R. Kopelman, inExcited Statgsedited by E. C. Lim(Academic, New 87, Konkoli, A. Larsson, and D. Cremer, Int. J. Quantum Ché&m. 41
York, 1979, Vol. 2. (1998.

Downloaded 21 Jan 2003 to 128.151.176.185. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



