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Mechanical response functions of finite-temperature Bose-Einstein condensates
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Using the Liouville space framework developed in nonlinear optics, we calculate the linear response func-
tions and susceptibilities of Bose-Einstein condensates~BEC! subject to an arbitrary mechanical force. Distinct
signatures of the dynamics of finite-temperature BEC are obtained by solving the Hartree-Fock-Bogoliubov
theory. Numerical simulations of the position-dependent linear response functions of one-dimensional trapped
BEC in the time and the frequency domains are presented.
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I. INTRODUCTION

Since the first experimental observation of atomic Bo
Einstein condensates~BEC!, extensive theoretical and ex
perimental effort have focused on understanding their pr
erties@1#. BEC presents many possible avenues of resea
as it may be viewed in a variety of ways such as mesosc
‘‘superatom,’’ gaseous ‘‘superfluid,’’ or as a source of coh
ent atoms used in an atom laser. In particular, the close a
ogy between the nonlinear interaction of BEC matter wa
and photon waves in nonlinear optics gave rise to fascina
atom optics applications@2#.

Optical spectroscopy has been a major tool for study
the properties of matter since the early days of quatum ph
ics. And, with the advent of the laser, nonlinear optical sp
troscopy has become an important technique for studying
properties of matter that are not accessible with incohe
light sources. The primary theoretical tool used in nonlin
optical spectroscopy to analyze the structure and dyna
processes in many-body quantum systems is the linear
higher-order optical response functions@3#. In this paper, we
extend the systematic formalism of optical response fu
tions to probe the response of trapped, atomic BEC to
arbitrarymechanical forcecoupled to the atomic density. W
calculate the first-order~linear! susceptibilities for the con
densate, noncondensate density, and noncondensate co
tion in the time and the frequency domains.

A major difference that arises when the formalism of no
linear spectroscopy is applied to the mesoscopic BEC is
it is generally not possible to apply the dipole approximat
commonly made in the atom-light interaction. It should a
be noted that there have been a number of calculations o
linear response of BEC in the past@4#; theresponse functions
calculated here provide a more fundamental Green’s func
description of the response to a force with arbitrary spa
and temporal profiles. The time-domain response functi
or their frequency-domain counterparts, the susceptibilit
provide unique signatures of the dynamics of the system
der consideration.

The dynamics of zero-temperature atomic BEC is co
monly described using the time-dependent and tim
independent Gross-Pitaevskii equation~GPE!. Numerical so-
lutions of the GPE for various properties of zero-temperat
1050-2947/2003/67~4!/043602~16!/$20.00 67 0436
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BEC as well as for atom optics and four-wave mixing app
cations have been reported@5–8#. BEC at finite tempera-
tures, on the other hand, require sophisticated theories
go beyond the GPE, and various approaches including
time-dependent Bogoliubov–de Gennes equations@9#, the
Hartree-Fock-Bogoliubov~HFB! theory @10–13#, quantum
kinetic theory@14–19#, and stochastic methods@20–24# have
been employed.

In order to go beyond the GPE, two or more partic
correlations have to be taken into account. One of the or
nal contributions was made by Bogoliubov with his introdu
tion of the Bogoliubov transformation@25,26# which shows
how the condensed state of an interacting homogeneous
differs from that of the noninteracting gas. That result w
extended to inhomogeneous gases by de Gennes@26#. Re-
cently, a time-dependent version of the Bogoliubov–
Gennes equations was employed by Castin and Dum@9# to
describe the dynamics of BEC in time-dependent traps. T
approach was based on an expansion of the evolution e
tions for the atomic field operator which is valid if the num
ber of noncondensate particles is small. Their result has b
used for analyzing the stability and depletion of a stron
driven BEC@9#.

The time-independent HFB theory~TIHFB! has been
used to calculate some of the important equilibrium prop
ties such as the quasiparticle excitation frequencies and
equilibrium condensate and noncondensate density pro
@12#. The dynamical properties of finite-temperature BE
predicted by the TDHFB@13# have not been studied exten
sively, because the full solution to these equations is com
tationally prohibitive. The response functions computed h
offer a systematic perturbative approach for exploring
TDHFB dynamics, at an affordable numerical cost.

The quantum kinetic theory of dilute interacting Bose g
was derived long ago by Kadanoff and Baym@14# in terms
of nonequilibrium real-time Green’s functions that para
etrize the condensating gas. Their equations were later
eralized by Hohenberg and Martin to include condensa
@15#. A more contemporary version of the quantum kine
theory applicable to the experimentally produced BEC h
been developed in a series of papers of Gardiner and Zo
@16#. They describe a system composed of interacting a c
densate and a noncondensate vapor, where the vapor i
©2003 The American Physical Society02-1
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scribed by a quantum kinetic master equation, equivalent
quantum Boltzmann equation of the Uehling-Uhlenbe
form @27#. The master equation which describes the trans
of energy and particles between the vapor and conden
has been used to describe the formation of BEC. A sim
formalism was also put forward by Walseret al. @18# who
derived, using a method reminiscent of the classi
Bogoliubov-Born-Green-Kirkwood-Yvon technique, a gen
alized kinetic theory for the coarse-grained Markovi
many-body density operator. Their result incorpora
second-order collisional processes, and describes irrever
evolution of a condensed bosonic gas of atoms towards t
mal equilibrium.

Important experimental observations such as the dam
of elementary excitations has prompted attempts to devel
theory that works in the hydrodynamic regime. These h
led to various versions of quantum kinetic theory such as
two-fluid hydrodynamic description of finite-temperatu
BEC @17# developed by Zaremba, Nikuni, and Griffi
~ZNG!. ZNG is a semiclassical Hartree-Fock descripti
where one neglects the off-diagonal distribution functions
combines a non-Hermitian generalized Gross-Pitaev
equation for the condensate wave function and the Bo
mann kinetic equation for the noncondensate phase den
This theory was recently shown to properly describe dam
ing @19#.

It will be helpful to clarify how the various kinetic theo
ries are related. The Green’s function approach of Kada
and Baym@14# are equivalent to the equations of Wals
et al. @18#. From the equations of Walseret al., the ZNG
hydrodynamic equations may be obtained by neglecting
anomalous fluctuations. This greatly simplifies the equati
and facilitates the numerical solution. The TDHFB equatio
are obtained by dropping the second-order collisional te
from the kinetic equations of Walseret al., while keeping the
anomalous fluctuations. The theory of Gardiner and Zo
@16# is based on the quantum Boltzmann master equat
reminiscent of the quantum stochastic methods used in q
tum optics; their quantum kinetic master equations also c
tain the higher-order collisional processes described
Walser et al. and ZNG. A number of approximations ar
common to these kinetic theories: the Born and Markov
proximation, ergodic assumption, and Gaussian initial re
ence distribution. The validity of these assumptions will
timately be confirmed by experiments; so far the experime
have supported the predictions of these equations.

The stochastic method is another approach used for
description of finite-temperature BEC beyond GPE. A d
scription of a Bose gas in thermal equilibrium has been
veloped using the quantum Monte Carlo techniques, ba
on Feynman path-integral formulation of quantum mech
ics @20,21#. A stochastic scheme corresponding to the d
namical evolution of density operator in the positiveP rep-
resentation has been applied to BEC@22,23#. An alternative
approach that describes the dynamics of the gas based
stochastic evolution of Hartree states and avoids some o
instability problems of earlier works was proposed recen
@24#. The stochastic methods make the simulation of the
act dynamics ofN-boson system numerically feasible; this,
04360
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present, requires assuming an initial state such as Har
Fock state which is not very realistic.

The TDHFB theory is a self-consistent theory of BEC
the collisionless regime that progresses logically from
Gross-Pitaevskii equation by taking into account higher
der correlations of noncondensate operators. Althou
TDHFB does not take into account higher-order correlatio
that are done in the various quantum kinetic theories,
TDHFB equations are valid at temperatures near zero, e
down to the zero-temperature limit, and are far simpler th
the kinetic equations which can only be solved using
proximations such as ZNG. Another attractive feature
TDHFB from a purely pragmatic point of view is that th
fermionic version of the theory has already been well dev
oped in nuclear physics@10#. We therefore work at the
TDHFB level in this paper and our approach draws upon
analogy with the time-dependent Hartree-Fock~TDHF! for-
malism developed for nonlinear optical response of ma
electron systems@28#.

The paper is organized as follows: in Sec. II, we sh
how to systematically solve the TDHFB equations for ext
nally driven finite-temperature BEC by order expansion
the dynamical variables in the external field. In Sec. III, w
define thenth order response function in the time and t
frequency domains and calculate the linear (n51) response
function. Numerical results for the linear response functio
and susceptibilities of a 2000 atom condensate in a o
dimensional harmonic trap, and its variation with positio
time, and frequency, are presented in Sec. IV at zero
finite temperatures. Our main findings are finally summ
rized in Sec. V.

II. THE TDHFB EQUATIONS

A. Equations of motion

Our theory starts with a time-dependent many-bo
second-quantized Hamiltonian describing a system of ex
nally driven, trapped, structureless bosons with pairwise
teractions. Introducing the boson operatorsâi

† and âi that,
respectively, create and annihilate a particle from a ba
statei with wave functionsf i(r ), the Hamiltonian is

Ĥ5Ĥ01Ĥ8~ t !, ~1!

where

Ĥ05(
i j

~Hi j 2m!âi
†â j1

1

2 (
i jkm

Vi jkl âi
†â j

†âkâl . ~2!

The matrix elements of the single-particle HamiltonianHi j
are given by

Hi j 5E d3rf i* ~r !F2
\2

2m
¹21Vtrap~r !Gf j~r !, ~3!

whereVtrap(r ) is the magnetic potential that confines the
oms andm is the chemical potential. The basis statef i(r ) is
arbitrary; a convenient basis for trapped BEC is the eig
2-2
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states of the trap sinceHi j is then diagonal. The symmetrize
two-particle interaction matrix elements in Eq.~2! are

Vi jkl 5
1

2
@^ i j uVukl&1^ j i uVukl&#, ~4!

where

^ i j uVukl&5E d3rd3r 8f i* ~r !f j* ~r 8!V~r2r 8!fk~r 8!f l~r !,

~5!

with V(r2r 8) being a general interatomic potential.H8(t)
describes the coupling of an external field with the syste

H8~ t !5h(
i j

Ei j ~ t !âi
†â j . ~6!

h is a bookkeeping expansion parameter~to be set to 1 at the
end of the calculation!. The matrix elementsEi j (t) are given
by

Ei j 5E d3rf i* ~r !Vf~r ,t !f j~r !, ~7!

whereVf(r ,t) denotes a time- and position-dependent ex
nal potential that exerts an arbitrary mechanical force on
system.

More general forms ofH8(t) could include, for example
terms of the form( i j Fi j (t)âi â j in addition to the term given
in Eq. ~6! which couples to atomic density. In this work, w
shall focus on the most experimentally relevant perturbat
for instance, the time-dependent modulation of the t
spring constant which mimics the mechanical force that w
recently applied experimentally@29,30#.

The dynamics of the system is calculated by deriv
equations of motion for the condensate mean fieldzi[^âi&,
the noncondensate densityr i j [^âi

†â j&2^âi
†&^â j&, and the

noncondensate correlationsk i j [^âi â j&2^âi&^â j&. Closed
equations are derived starting with the Heisenberg equat
of motion for the operators,âi , âi

†â j , andâ j â j , and assum-
ing a coherent many-body state. The resulting many-b
hierarchy is then truncated using the generalized Wic
theorem for ensemble averages@31–33#:

^Ai&Þ0, ~8!

^A1A2&5^A1&^A2&1^^A1A2&&, ~9!

^A1A2A3&5^A1&^A2&^A3&1^A1&^^A2A3&&1^A2&^^A1A3&&

1^A3&^^A1A2&&, ~10!

and similarly for products involving higher number of oper
tors.Ai denote boson creation or annihilation operatorsâi

† or

âi and are assumed to be normally ordered. We follow
convention that normal ordered operators are time orde
The double angular bracketŝ̂ AiAj&& denote irreducible
04360
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two-point correlations. Using this notation, we haver i j

[^^âi
†â j&& andk i j [^^âi â j&&.

This procedure yields the TDHFB equations of moti
@10,11,13#

i\
dz

dt
5@Hz1hE~ t !#z1Hz* z* , ~11!

i\
dr

dt
5@h,r#2~kD* 2Dk* !1h@E~ t !,r#, ~12!

i\
dk

dt
5~hk1kh* !1~rD1Dr* !1D1h@E~ t !,k#1 ,

~13!

where@•••#1 denotes the anticommutator. Here,Hz , Hz* ,
h, andD are n3n matrices withn being the basis set siz
used:

@Hz# i , j5Hi j 2m1(
kl

Vikl j @zk* zl12r lk#, ~14!

@Hz* # i , j5(
kl

Vi jkl kkl , ~15!

hi j 5Hi j 2m12(
kl

Vikl j @zk* zl1r lk#, ~16!

D i j 5(
kl

Vi jkl @zkzl1kkl#. ~17!

h is known as the Hartree-Fock Hamiltonian andD as the
pairing field @11#. m is the chemical potential introduced i
Eq. ~2!. Equations~12! and~13! may also be recast in a mor
compact matrix form@11#,

i\
dg̃R

dt
5g̃@Hg̃,g̃R#1hE, ~18!

whereH, R, E, and g̃ are 2n32n matrices defined as fol
lows:

H5S h2m D

D* h* 2m D , R5S r k

k* r* 11D ,

E5S @E~ t !,r# @E~ t !,k#1

2@E~ t !,k#1* 2@E~ t !,r#* D , ~19!

g̃5S 1 0

0 21D , g̃25g̃. ~20!

B. Solutions of the TDHFB

Direct numerical solution of the TDHFB equations@Eqs.
~11!–~17!# for arbitrary field strength is complicated by the
highly nonlinear character. A practical way to proceed is e
panding all dynamical variables in powers ofh
2-3
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CHOI, CHERNYAK, AND MUKAMEL PHYSICAL REVIEW A 67, 043602 ~2003!
zi~ t !5zi
(0)1hzi

(1)~ t !1h2zi
(2)~ t !1•••, ~21!

r i j ~ t !5r i j
(0)1hr i j

(1)~ t !1h2r i j
(2)~ t !1•••, ~22!

k i j ~ t !5k i j
(0)1hk i j

(1)~ t !1h2k i j
(2)~ t !1•••, ~23!

and upon substituting these expansions in Eqs.~11!–~17!,
collecting all terms to a given power inh. This results in a
hierarchy of equations such that the equation of motion
thenth order solutiona (n), wherea denotes the variablesz,
r, or k, is expressed as a function of 0, . . . ,(n21)th order
solutions, a (0),a (1), . . . ,a (n21). While the zeroth order
equation is nonlinear, each of the higher-order equations
linear; thenth order solutions,a (n) are therefore obtained b
solving the sequence of linear equations. This is analogou
the TDHF @28# or time-dependent density-functional alg
rithms used for many-electron systems.

Finding the zeroth order solution$z(0),r (0),k (0)% should
be the first step in solving the TDHFB. This describes
system at equilibrium in the absence of the external driv
field, and requires the solution of the TIHFB equations

H z
(0)z(0)1H z*

(0)z(0)* 50, ~24!

@h(0),r (0)#2~k (0)D (0)* 2D (0)k (0)* !50, ~25!

~h(0)k (0)1k (0)h(0)* !1~r (0)D (0)1D (0)r (0)* !1D (0)50.

~26!

Here,H z
(0) , H z*

(0) , h(0), andD (0) aren3n matrices defined
in Eqs. ~14!–~17! with the variables$z,r,k% replaced by
$z(0),r (0),k (0)%. It follows from Eq. ~18! that Eqs.~25! and
~26! can be written in the compact form

g̃@H (0)g̃,g̃R(0)#50. ~27!

Self-consistent numerical methods for solving the TIHFB
given in Appendix A.

So far we have worked in the trap basis since this ena
us to maintain a general form for the interatomic interactio
Vi jkl and makes the numerical solution feasible. Howeve
may be more interesting to recast the solution in real sp
a (n)(r ,t) (a5z, r, or k) by transforminga (n)(t) the solu-
tion of TDHFB in the trap basis:

z(n)~r ,t !5(
j

zj
(n)~ t !f j~r !, ~28!

r (n)~r ,t !5(
i j

r i j
(n)~ t !f i* ~r !f j~r !, ~29!

k (n)~r ,t !5(
i j

k i j
(n)~ t !f i~r !f j~r !. ~30!

In general, real-space noncondensate density and noncon
sate correlations are nonlocal functions of two spatial po
r(r 8,r ) andk(r 8,r ). We only computed these quantities f
r5r 8, in this paper, since these are the most physically
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serving atomic correlations which is much more difficu
than photon correlations.

C. Liouville space representation

We next introduce theLiouville spacenotation@3,34# that
will be used in the folllowing sections. One well-known e
ample for which the Liouville space formalism is used is
the optical Bloch equations, where the 232 density matrix is
recast as a four component vector, and the Liouvillian
written accordingly as a 434 matrix superoperator. We re
arrange the TIHFB equations Eqs.~24!–~26! by writing r i j
andk i j as vectors in Liouville space, and introduce the fo
lowing set ofn23n2 matrices~superoperators!:

H i j ,mn
(2) 5him

(0)d jn2hn j
(0)d im , ~31!

H i j ,mn
(1) 5him

(0)d jn1hn j
(0)d im1Vi jmn , ~32!

Di j ,mn5D im
(0)d jn , ~33!

Di j ,mn
D 52Dn j* (0)d im , ~34!

where then3n matricesh andD were defined in Eqs.~16!–
~17!. We further define then231 matrices

L i j
k 5(

kl
Vi jkl zkzl . ~35!

Using this notation, the TIHFB assume the form

S H z
(0) Hz*

(0) 0 0 0 0

Hz*
(0)* H z

(0)* 0 0 0 0

0 0 H (2) D D 0 D
0 0 2D D* H (1) D 0

0 0 0 D* H (2)* D D*

0 0 D* 0 2D D H (1)*

D
3S zW (0)

zW (0)*

rW (0)

kW (0)

rW (0)*

kW (0)*

D 1S 0

0

0

LkW

0

LkW *

D 50. ~36!

Hereafter, we shall denote the zeroth order solution in Lio
ville space notation as cW (0)(t)
[@zW (0),zW (0)* ,rW (0),kW (0),rW (0)* ,kW (0)* #T and refer to the 2n(2n

11) by 2n(2n11) matrix multiplying cW (0) as the zeroth
order Liouville operatorL0.

Substituting the expansion forzi , r i j , andk i j @Eqs.~21!–
~23!# into Eqs.~11!–~13!, we obtain to first order inh,
2-4
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i\
dcW (1)~ t !

dt
5LcW (1)~ t !1z~ t !. ~37!

Here, cW (1)(t)5@zW (1),zW (1)* ,rW (1),kW (1),rW (1)* ,kW (1)* #T, i.e., a
2n(2n11)31 vector with the variables in first order as i
components. Also

L[L01L1 , ~38!

whereL is the total Liouvillian,L0 was introduced in Eq.
~36!, and L1 and z(t), obtained by equating all first-orde
terms inh are given in Appendix B.L is given by the sum of
the original TIHFB matrixL0 plus a perturbationL1. This
perturbation induces a shift in the excitation frequencies
will be shown below.

Adopting Liouville space notation, the position-depende
nth order solutioncW (n)(r ,t) can be defined using the rela
tions Eqs.~28!–~30! and introducing a 2n(2n11)32n(2n

11) square matrixỸ(r ),

cW (n)~r ,t ![Ỹ~r !cW (n)~ t !, ~39!

where

Ỹ~r !5diag@f̃~r !,f̃* ~r !,Fr~r !,Fk~r !,Fr* ~r !,Fk* ~r !#.
~40!
t

m

ier
ai

04360
s

t

Here ‘‘diag@•••# ’’ denotes thatỸ(r ) is a block-diagonal
square matrix made ofn3n blocks f̃(r ), f̃* (r ) and n2

3n2 blocksFr(r ),Fk(r ),Fr* (r ),Fk* (r ). f̃(r ) is a diagonal
matrix with thei th diagonal element given by the basis sta
f i(r ), and Fr(r ) and Fk(r ) are also diagonal matrice
whose i j th diagonal element are given by@Fr(r )# i j ,i j

5f i* (r )f j (r ) and @Fk(r )# i j ,i j 5f i(r )f j (r ), respectively.
The real-space variablesz(n)(r ,t), r (n)(r ,t) andk (n)(r ,t) are
finally obtained by summing over the appropriate eleme
of the vectorcW (n)(r ,t),

z(n)~r ,t !5(
i 51

n

cW i
(n)~r ,t !,

r (n)~r ,t !5 (
i 52n11

2n1n2

cW i
(n)~r ,t !,

k (n)~r ,t !5 (
i 52n1n211

2n12n2

cW i
(n)~r ,t !. ~41!

III. THE RESPONSE FUNCTIONS

The nth order response function
Kar

(n)(t,t1 , . . . ,tn ,r ,r1 , . . . ,rn) is defined by the relation
a (n)~r ,t !5E E Kar
(n)~ t,t1 , . . . ,tn ,r ,r1 , . . . ,rn!,Vf~r1 ,t1!, . . . ,Vf~rn ,tn!dt1 , . . . ,dtndr1•••d3rn , ~42!
be

e

wherea (n)(r ,t) with a5z, r, or k are position-dependen
nth order solutions. Ther subscript ofKar

(1) indicate that this
is the response to an external field that couple to the ato
density.

The nth order susceptibility is defined as the Four
transform of the response function to the frequency dom

xar
(n)~V,V1 , . . . ,Vn ,r ,r1 , . . . ,rn!

5E
0

`

dtE
0

`

dt1 , . . . ,dtnKar
(n)~ t,t1 , . . . ,tn ,r ,r1 , . . . ,rn!

3exp~ iVt1 iV1t11•••1 iVntn!. ~43!

A. The time-domain linear response function

The solution of the matrix equation Eq.~37! is

cW (1)~ t !5
1

i\E0

t

expF2
i

\
L~ t2t8!Gz~ t8!dt8. ~44!
ic

n,

The corresponding position-dependent solution can then
written as

cW (1)~r ,t !5
1

i\E dr 8E
0

t

Ỹ~r !U~ t2t8!F̃~r 8!cW (0)Vf~r 8,t8!dt8

~45!

5
1

i\E dr 8E
0

t

KW cW
(1)

~ t2t8,r ,r 8!Vf~r 8,t8!dt8, ~46!

whereỸ(r ) is as given in Eq.~40! and we have defined th
2n(2n11)32n(2n11) matrices

U~ t2t8!5u~ t2t8!expF2
i

\
L~ t2t8!G , ~47!
F̃~r !5diag@F~r !,F* ~r !,F (2)~r !,F (1)~r !,F (2)* ~r !,F (1)* ~r !#, ~48!
2-5
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with u(t2t8) being the Heaviside function and as discuss
above, the notation ‘‘diag@•••# ’’ is used to denoteF̃(r 8) as a
2n(2n11)32n(2n11) block-diagonal square matrix wit
the blocks consisting ofn3n square matrices having thei th
row and j th column given by

@F~r !# i j 5f i* ~r !f j~r !, ~49!

andn23n2 square matrices

@F (6)~r !# i j ,mn5f i* ~r !fm~r !d jn6fn* ~r !f j~r !d im .
~50!

The functionKW cW
(1)(t2t1 ,r ,r1) of Eq. ~46!,

KW cW
(1)

~ t2t1 ,r ,r1![Ỹ~r !U~ t2t1!F̃~r1!cW (0), ~51!

may be viewed as the linear response function for
position-dependent vectorcW (1)(r ,t), i.e., for all the variables
z(1), r (1), andk (1) in the trap basis. The real-space respon
functions for the condensatez, noncondensate densityr, and
the noncondensate correlationk are therefore given by sum
ming over appropriate indices inKW cW

(1)(t2t1 ,r ,r1), using the
relations Eqs.~28!–~30!:

Kzr
(1)~ t2t1 ,r ,r1!5(

i 51

n

KW cW i
(1)

~ t2t1 ,r ,r1!, ~52!

Krr
(1)~ t2t1 ,r ,r1!5 (

i 52n11

2n1n2

KW cW i
(1)

~ t2t1 ,r ,r1!, ~53!

Kkr
(1)~ t2t1 ,r ,r1!5 (

i 52n1n211

2n12n2

KW cW i
(1)

~ t2t1 ,r ,r1!. ~54!

To analyze the physical significance of the response fu
tions it will be useful to expand them in the basis of t
eigenvectorsjW n of matrix L

LjW n5vnjW n , n51,2, . . . ,2n~2n11!. ~55!

We define the Green’s function

Gn~ t2t8!5u~ t2t8!expF2
i

\
vn~ t2t8!G , ~56!

and further introducemn , hn(r ), anddn(r ) as the expansion
coefficients of the following vectors in the basis of eigenve
tors jW n :

cW (0)5 (
n51

2n(2n11)

mnjW n , F̃~r !jW n5 (
n51

2n(2n11)

hn~r !jW n ,

Ỹ~r !jW n5 (
n51

2n(2n11)

dn~r !jW n . ~57!

We then have
04360
d

e

e
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KW cW
(1)

~ t2t1 ,r ,r1!5(
n

K nr
(1)~ t,t8,r ,r1!jW n , ~58!

where

K nr
(1)~ t,t8,r ,r1!5 (

n8,n9
dn~r !hn8~r1!mn9Gn8~ t2t8!.

~59!

Here,Gn(t2t8) is defined in Eq.~56!, mn , hn(r ), anddn(r )
are defined as the expansion coefficients in Eq.~57!, while
the matricesF̃(r ) andỸ(r ) are given by Eqs.~40! and~48!.
Eqs.~58!–~59! express the linear response function Eq.~51!
as an expansion in quasiparticle modes.

B. The frequency-domain response function

The linear susceptibility is defined as the Fourier tra
form of the response function to the frequency domain,

xW (1)~V,V1 ,r ,r1!5E
0

`

dtE
0

`

dt1KW (1)~ t2t1 ,r ,r1!

3exp~ iVt1 iV1t1!. ~60!

It is possible to change variablest2t1→t and define
xW (1)(V,r ,r1) since KW (1)(t2t1 ,r ,r1) only depends on the
time differencet2t1. Below, we shall keep the notatio
KW (1)(V,V1 ,r ,r1), i.e., a function of both frequency of th
signal V and frequency of perturbationV1 rather than
KW (1)(V,r ,r1), in line with Bloembergen’s notation@3#.

In order to evaluate the Fourier transform, we note tha
follows from causality that

U~ t !52
1

2p i E2`

`

dv
1

v2L1 i e
exp~2 ivt ! ~61!

5E
2`

`

dvU~v!exp~2 ivt !. ~62!

Substituting Eq. ~62! into the expression forKW cW
(1)(t

2t1 ,r ,r1) Eq. ~51!, and taking the Fourier transform, w
obtain a vector

xW cW
(1)

~V,V1 ,r ,r1!5
1

2p i E2`

`

dvE
0

`

dtdt1Ỹ~r !U~v!

3exp~2 ivt1 ivt1!

3exp~ iVt1 iV1t1!F̃~r1!cW (0) ~63!

5
1

2p i E2`

`

dvỸ~r !U~v!F̃~r1!cW (0)d~V2v!d~V11v!.

~64!

This implies thatV52V1, and we have the susceptibi
ity in vector form
2-6
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xW cW
(1)

~2V1 ;V1 ,r ,r1!5Ỹ~r !U~V1!F̃~r1!cW (0). ~65!

The z, r, and k susceptibilities are obtained by summin
over the appropriate elements in the vectorxW cW

(1)

(2V;V,r ,r1),

xzr
(1)~2V;V,r ,r1!5(

i 51

n

xW cW i
(1)

~2V;V,r ,r1!, ~66!

xrr
(1)~2V;V,r ,r1!5 (

i 52n11

2n1n2

xW cW i
(1)

~2V;V,r ,r1!, ~67!

xkr
(1)~2V;V,r ,r1!5 (

i 52n1n211

2n12n2

xW cW i
(1)

~2V;V,r ,r1!.

~68!

Transforming the trap basis to the basis of eigenstatejW n

as before, one has

xW cW
(1)

~2V;V,r ,r1!5(
n

K nr
(1)~2V;V ,r ,r1!jW n , ~69!

where

K nr
(1)~2V;V,r ,r1!5 (

n8n9

dn~r !hn8~r1!mn9

V2vn81 i e
, ~70!

anddn(r ), hn(r1), andmn are as defined in Eq.~57!.
As was done in Sec. III A for the time domain, we ha

recast the linear susceptibility in two forms: matrix form
Eq. ~65! and an expansion in modes of Eqs.~69! and ~70!.

IV. NUMERICAL SIMULATIONS FOR CONTACT
POTENTIAL

A. Zeroth order solution „TIHFB … and the frequency shifts

So far, all our results hold for a general pairwise int
atomic interaction potential. In the following numerical ca
culations, we approximate the interatomic potentialV(r
2r 8) in Eq. ~5! by a contact potential, as is standard in BE
applications:

V~r2r 8!→U0d~r2r 8!, U05
4p\2a

m
, ~71!

wherea is thes-wave scattering length andm is the atomic
mass. This approximation may be justified since the w
functions at ultracold temperatures have very long wa
lengths compared to the range of interatomic potential. T
implies that details of the interatomic potential become
important and the potential may be approximated by a c
tact potential. The tetradic matricesVi jkl are then simply
given by

Vi jkl 5
4p\2a

m E f i* ~r !f j* ~r !fk~r !f l~r !dr . ~72!
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We assume a 2000 atom one-dimensional condensate
harmonic trap. The parameters used for our numerical ca
lations are U054p\2a/m50.01, and temperature
0\v trap/kB and 10\v trap/kB , where v trap is the trap fre-
quency andkB is the Boltzmann constant. We used 256 g
points for position and the basis set ofn55 states. We keep
the trap units throughout.

We have followed the prescription of Griffin for solvin
the TIHFB for cW (0) in terms of the Bogoliubov–de Genne
equations which are obtained from Eq.~19! by transforming
to real space and using the contact interatomic potential@12#.
In Appendix C, we show the equivalence between
Bogoliubov–de Gennes equations and the matrixH (0), and
summarize the numerical procedure. The eigenvalues of
non-Hermitian matrixL required for computing the respons
functions were calculated using the Arnoldi algorithm@35#.

The eigenvalues of the Liouvillian are transition freque
cies rather than state energies. The frequencies come in
of positive and negative frequencies; this indicates that
Liouvillian may be mapped onto a harmonic-oscillator spa
for which there are always positive and negative freque
solutions. The eigenvalues ofL[L01L1 are shifted with
respect to the corresponding eigenvalues ofL0 ~the TIHFB
equations!. We list some of the representative eigenvalu
the lowest few positive eigenvalues ofL0 andL in Table I
for both zero and nonzero temperatures. Similar freque
shifts were noted by Giorgini@4#. Physically, it is easy to
understand how the TDHFB frequencies may be shifted fr

TABLE I. The lowest positive eigenvalues ofL0 and L that
correspond to the TIHFB and TDHFB, respectively, at zero a
finite temperatures. The eigenvalues are given in units of trap
ergy \v trap.

TIHFB
(T50\v/kB)

TDHFB
(T50\v/kB)

TIHFB
(T510\v/kB)

TDHFB
(T510\v/kB)

0 0 0 0
0 0 0 0.629

0.3477 0.4555 0.3739 0.6485
0.3528 0.7088 0.6607 0.6668
0.7104 0.7136 0.6612 0.8213
0.7110 1.0159 0.8733 0.9282
0.8521 1.1046 0.8873 1.0074
1.0161 1.1584 0.8908 1.0114
1.0163 1.5040 0.9903 1.0828
1.1181 1.5864 1.0070 1.5068
1.1324 1.7735 1.0071 1.6970
1.4644 1.7760 1.5478 1.7666
1.4840 1.8211 1.5520 1.7788
1.7743 1.8832 1.7654 2.0183
1.7749 2.1995 1.7660 2.4251
1.8281 2.2553 1.8741 2.4716
1.8434 2.4843 1.8824 2.6083
1.9372 2.4935 1.9575 2.6454
2.1755 2.6050 2.4265 2.7705
2.1943 2.7907 2.4272 2.7927
2.4851 2.7914 2.5353 2.8689
2-7
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the TIHFB: a dynamical system contains the effect of
interacting condensate and noncondensate atoms which
definition, is not present in the equilibrium system. This
analogous to optical excitations of fermions where the tim
dependent Hartree-Fock theory shows excitonic shifts wh
are lacking by the time-independent Hartree-Fock sta
@28#.

B. Time-domain response

The linear response functions were calculated by sub
tuting the numerical solutioncW (0) evaluated at zero and finit
temperatures into Eq.~51! together with Eqs.~52!–~54!.
Equation~51! is a matrix multiplication of 2n(2n11)31
vectorcW (0) with 2n(2n11)32n(2n11) matricesỸ, U(t),
andF̃ which are defined in Eqs.~48! and~40!. F̃ andỸ are
constructed in terms of the harmonic-oscillator basis sta
which are calculated numerically from the recursive form
that involves the Gaussian function multiplying the Herm
polynomials @36#. The matrixU(t) was calculated using a
MATLAB function that uses the Pade´ approximation for ma-
trix exponentiation@37#.

We first present the dependence of the linear respo
function onr andr 8 at fixed timest2t8. This gives a snap-
shot of the position-dependent correlations across the
densate. Such dependence is important since the experi
tally produced condensates are mesoscopic in size
contrast, the dipole approximation usually applies in opti
spectroscopy and consequently, the spatial dependence o
response is not observable.

In Fig. 1, we display the real-space response function
timest2t850/v trap,7.2/v trap,15.7/v trap at zero temperature
Figure 2 shows the corresponding finite-temperature res
Physically,t8 andr 8 are, respectively, the time and postion

FIG. 1. K (1)(t2t1 ,r ,r1) for the zero-temperature condensate
timest2t850/v trap,7.2/v trap,15.7/v trap given in different columns.
The top, middle, and bottom rows give the response function for
condensate, noncondensate density, and noncondensate corre
as indicated. The dashed circle represents the spatial extent o
trapped BEC. The positionsx and x8 are given in harmonic-
oscillator length units.
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which the external perturbation is applied, andt andr are the
corresponding coordinates at which the measuremen
made. We found that for longer timest2t8.5p/v trap, the
plot maintains generally the same shape as the third colu
of figures; it may therefore be possible to experimenta
observe the correlations at longer times. At zero temperat
the correlation attains this stable shape faster than at
temperature.

To model a uniform perturbation applied across the c
densate, we have integrated the zero-temperature resp
function over r 8 and plotted its absolute value, i.e
u*K (1)(r ,r 8,t2t1)dr 8u vs time t2t8 in Fig. 3. The response
functionsKzr , Krr , Kkr grow exponentially within a rela-
tively short-time span of around 5p/v trap , so that the de-
tails of the structure for earlier times up to;2p/v trap are
not visible in the plot. This rapid growth is shown mo
clearly in the right-hand column which depicts the respon
functions integrated over bothr andr 8, i.e.,K (1)(t2t1). The
figure shows the real and imaginary parts as well as the
solute values ofK (1)(t2t1). The response function grow
rapidly by around an order of magnitude over the time sc
;3p/v trap . The response function keeps growing over tim
since TDHFB does not have any dissipative term; this sho
be a reasonable model for BEC in the collisionless regime
also shows that, even in the absence of a dissipative term
takes some time after the initial impulse att850 before the
effect of the force is reflected appreciably in the respo
functions. From the plots, we note that a mechanical fo
applied on the condensate can be seen to ‘‘generate’’ non
densate atoms and anomalous correlations even at zero
perature.

The calculations of Fig. 3 are repeated at finite tempe
ture in Fig. 4. The main difference is the smaller magnitu
of Kzr , Krr , andKkr . The fact that the BEC is less respo
sive at finite temperature may be attributed to the fact t
the condensate to noncondensate interaction is greater
nite temperatures where additional collisions shield the ef
of the applied perturbation.

t

e
tion
the

FIG. 2. Same as in Fig. 1, but at finite temperatu
10\v/kB .
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FIG. 3. The left column showsK (1)(t2t1 ,r ), i.e., linear response in time at zero temperature integrated overr1 and plotted as a function
of t2t1 and r for zero temperature. The details for the time of evolutiont2t850p/v trap to 5p/v trap are shown. The right column show
linear response integrated over bothr andr1 , K (1)(t2t1), plotted as a function oft2t1 from 0 to 5p/v trap; the solid, dashed, and dotte
lines represent the absolute value, real part, and imaginary part, respectively, of the integrated response functionK (1)(t2t1). The position
x is given in harmonic-oscillator length units.
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C. Frequency-domain response

The susceptibilities were computed using Eq.~65! in con-
junction with Eqs.~66!–~68!. Equation~65! is a matrix mul-
tiplication of 2n(2n11)31 vector cW (0) with 2n(2n11)
32n(2n11) matricesỸ, U(v), andF̃. The matrixU(v) is
calculated as follows:

U~v!5
1

v2L1 i e
5(

n

jnzn
†

v2vn1 i e
, ~73!

wherejn is the right eigenvalue ofL with eigenvaluesvn

(Ljn5vnjn) and zn are the left eigenvectors such th
(njnzn

†51. The eigenvaluesvn of L were calculated using
the Arnoldi algorithm@35#.

To clearly display the resonance structure, we presen
Fig. 5 the absolute value of zero and finite-temperature lin
response integrated overr and r1 in the frequency domain
u*xar

(1)(2V,V,r ,r 8)drdr 8u, a5z,r,k on a logarithmic
scale. The eigenvalues ofL and hence the resonant freque
cies come in positive and negative pairs; we present only
positive frequencies since the function is symmetric ab
the zero frequency. We note that low-frequency resonan
are dominant; this may explain the absence of any oscilla
features in the time-domain plots.
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Similar to the time-domain calculations of Figs. 1 and
we show in Fig. 6 the linear responsex (1)(2V,V,r ,r1) at
zero temperature as a function ofr andr1 for three different
frequencies. These frequencies represent the reso
frequency corresponding to the strongest peak for the c
densate atV50v trap, an off-resonant frequency atV
50.25v trap, and the resonant frequency corresponding to
second highest peak for the condensate atV50.46v trap. In
Fig. 7, we repeat the calculations for a finite temperature,
the frequencies represent the resonant frequency corresp
ing to the strongest peak for the condensate atV
50.63v trap, an off-resonant frequency atV51.25v trap, and
the resonant frequency corresponding to the second hig
peak for the condensate atV51.7v trap. Similar to the time-
domain plots, the frequency-domain response is strongly
sition dependent. Off-resonant frequencies give a more c
plicated pattern.

The absolute values of the zero and finite temperat
x (1)(2V;V,r ,r 8) integrated over r 8, u*x (1)

(2V;V,r ,r 8)dr 8u, are plotted as a function ofV in Figs. 8
and 9. This represents the response to a spatially unif
external perturbation. Since the resonance peaks vary va
in strength, we also present a contour plot in which all t
intensities have been normalized to one.
2-9
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FIG. 4. Same as in Fig. 3, but at finite temperature 10\v/kB .
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V. DISCUSSION

We have applied the systematic formalism of nonline
spectroscopy to calculate the response functions and sus
tibilities of BEC to a mechanical force coupled to atom
density for the condensate, noncondensate density, and
condensate correlations. Since our results hold for an a
trary external perturbation, it will be interesting to inves
gate the effects of specifically taylored external force, e
impulsive or ‘‘continuous-wave’’ perturbations. The conto
plots of the response functions and susceptibilities may
used for the design of experiments involving applications
mechanical forces to a condensate. For instance, by care
specifying the shape of the external potentialVf(r ,t), one
may effectively cancel out the response of, say, the nonc
densate atoms. This would provide new insights into the
namics of the condensate and noncondensate interact
Our results show the time delay between the application
mechanical force att850 and the buildup of response. W
further note that the noncondensate correlations as we
the condensate and noncondensate atoms respond to th
ternal mechanical force.

The response functions computed in this paper offe
practical way to solve the TDHFB numerically with mode
computational effort. Still, one potential bottleneck is t
computational cost required to diagonalize a large mat
Krylov space techniques such as the Arnoldi algorithm u
in the paper considerably reduces that cost@35#. As our ma-
trices were only 1103110 in these simulations of one dime
04360
r
ep-

on-
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e
f
lly

n-
-
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a
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ex-

a

.
d

sional condensate the entire set of eigenvalues could be
culated directly. For larger matrices, the algorithm only giv
the lowest few eigenvalues. This should be sufficient to
scribe realistic experiments such as three-dimensional as
metric trap holding up to 106 atoms.

The damping of excitations is not included in TDHFB.
Ref. @4# Landau and Beliaev damping were introduced

FIG. 5. Logarithm of linear response functions in frequen
integrated over bothr and r1 vs frequency. Top three panels, ze
temperature; bottom three panels, finite temperature 10\v/kB . The
frequencyV1 is given in units of trap frequency.
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calculating the imaginary part of the self-energy. The the
of damping of oscillations in BEC is currently far from con
clusive and requires further investigation. This has motiva
various authors to try and extend the HFB theory@38–
40,17,19#. It should be noted that there is currently no a
encompassing theory of BEC that explains all observed p
nomena. In addition, as noted by Leggett@41#, the validity of
various approximations made in some of the existing th
ries of strongly nonequilibrium dynamics of BEC~e.g., ki-

FIG. 6. x (1)(2V,V,r ,r1) at zero temperature for frequencie
V50v trap,0.25v trap,0.46v trap given in different columns. These
frequencies represent the resonant frequency corresponding t
strongest peak for the condensate atV50v trap, an off-resonant
frequencyV50.25v trap, and the resonant frequency correspond
to the second highest peak for the condensate atV50.46v trap. The
positionsx andx8 are given in harmonic-oscillator length units.

FIG. 7. x (1)(2V,V,r ,r1) at finite temperature for frequencie
V50.63v trap,1.25v trap,1.7v trap given in different columns. These
frequencies represent the resonant frequency corresponding t
strongest peak for the condensate atV50.63v trap, an off-resonant
frequencyV51.25v trap, and the resonant frequency correspond
to the second highest peak for the condensate atV51.7v trap. The
positionsx andx8 are given in harmonic-oscillator length units.
04360
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netics of the condensation process, the damping of collec
excitations, and the decay of vortex states! is not entirely
clear. The TDHFB equations do constitute a systematic
consistent description of trapped atomic BEC at finite te
peratures in the collisionless regime, just as the Gro
Pitaevskii equation is valid near zero temperature. In the
ture it should be possible to observe directly the effects
anomalous correlations.

Most current work on BEC excitations deals only with th
linear response; however nonlinear effects should be obs
able with stronger perturbations. Just as in standard nonlin
optics, thenth order response functions are expected to

the

the

FIG. 8. The linear susceptibility at zero temperature integra
over r1 and plotted as a function ofV1. The left column shows the
unscaled spectrum as a function of position; not all resonances
shown due to scaling; only the most dominant ones are represe
In the right-hand column, the function has been normalized so
all the resonances have a height of one. The positionx is given in
harmonic-oscillator length units, while the frequencyV1 is given in
units of the trap frequency.

FIG. 9. Same as in Fig. 8, but at finite temperatu
10\v/kB .
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CHOI, CHERNYAK, AND MUKAMEL PHYSICAL REVIEW A 67, 043602 ~2003!
most valuable for characterizing BEC in the context
matter-wave nonlinear optics. Our formalism allows the c
culation of nonlinear susceptibilities which may be used
probe finite-temperature condensates by four-wave mix
@8#. Nonlinear response functions will be computed in
forthcoming work. Other possible future applications inclu
detailed study of atom optics at finite temperatures, and
perchemistry that involves the study of the formation of m
ecules from mesoscopic BEC matter waves@42#.
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APPENDIX A: EQUILIBRIUM TIHFB SOLUTION

The TIHFB is given by the coupled equations

H z
(0)z(0)1Hz*

(0)z* (0)50, ~A1!

g̃@H (0)g̃,g̃R(0)#50, ~A2!

where Eq.~A1! is the time-independent GPE withH z
(0) and

Hz*
(0) defined, respectively, in Eqs.~14! and ~15!, and the

matricesR(0), H (0), g̃ of Eq. ~A2! are as defined in Eq.~19!.
The equilibrium solution to TIHFB is obtained variation

ally. Equation~A1! is solved forz(0) by using a numerica
optimization routine to minimize the energy functionalE

5^Ĥ& with respect toz(0)* . The energy functional is found
by applying the thermal Wick’s theorem to the Hamiltoni
Ĥ. For the Wick theorem, Eq.~10!, to hold the state of the
system is assumed to be described by a trial statistical
sity matrix of the form

D5
e2bK

Z0
, Z05Tre2bK, ~A3!

where the operatorK is taken to be quadratic in the annih
lation ~creation! operator for the noncondensate atoms,ci

(ci
†) defined asci[ai2zi (ci

†[ai
†2zi* ) :

K5
1

2 (
i j

@hi j
(0)~ci

†cj1cjci
†!1D i j

(0)ci
†cj

†1D i j
(0)* cicj #,

~A4!

with

r i j
(0)5TrDcj

†ci , k i j
(0)5TrDcicj . ~A5!

Then one obtains for the energyE5^H&,
04360
f
l-
o
g

u-
-

n-

E5(
i j

~Hi j 2m!@zi
(0)* zj

(0)1r i j
(0)#

1
1

2 (
i jkm

Vi jkm@zi
(0)* zj

(0)* zk
(0)zm

(0)14zi
(0)* zk

(0)r jm
(0)

1zi
(0)* zj

(0)* kkm
(0)1k i j

(0)* zk
(0)zm

(0)12r ik
(0)r jm

(0)1k i j
(0)* kkm

(0)#.

~A6!

It is easy to show that the local minimum forE obtained by
setting its derivative with respect toz(0)* to zero satisfies Eq
~A1!.

In addition, R(0) is found by minimizing the thermody
namic potential for a system of bosons in thermal equil
rium. In Ref. @11#, the generalized density matrixR(0) in
thermal equilibrium, assuming a grand-canonical form
the density matrix is shown to be given by

R(0)5
1

exp~ g̃H (0)/kT!21
g̃. ~A7!

It may be shown straightforwardly that the generalized d
sity matrix of Eq.~A7! obeys Eq.~A2!, and is therefore a
stationary solution. The proof requires using the prope
g̃251, and the fact that a matrixA commutes with a function
of A, f (A). The minimization of the thermodynamic poten
tial also gives the relation@11#

1

2
Hi j

(0)5
]E

]Ri j
(0)

. ~A8!

Using Eq.~A6! and the definition ofR(0) given in Eq.~19!,
Eq. ~A8! implies

hi j
(0)5

]E

]r i j
(0)

5Hi j 2m12(
kl

^ ikuV̂u l j &@zk
(0)* zl

(0)1r lk
(0)#,

~A9!

D i j
(0)5

]E

]k i j
(0)*

5(
kl

^ i j uV̂ukl&@zk
(0)zl

(0)1kkl
(0)#. ~A10!

These variational results satisfy Eqs.~16! and ~17!, derived
using the Heisenberg equations of motion.

We now discuss the self-consistent solution to the TIHF
The solution to the TIHFB involves simultaneous minimiz
tion of Eq. ~A6!, coupled to Eq.~A7!, whereH (0) is as de-
fined in Eqs.~16! and ~17!, and ~19!. SinceH (0) is itself a
function ofR(0), the solution is found iteratively. In order t
evaluateR(0), Eq. ~A7!, we need to diagonalize the matri
g̃H (0). The specific form of the matrixg̃H (0) implies that its
eigenvalues and eigenvectors come in pairs. LettingṼn and
W̃n denote right eigenvectors belonging to the eigenval
6En ,

g̃H (0)Ṽn5EnṼn, g̃H (0)W̃n52EnW̃n, En.0,

~A11!
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where the normalization and closure relations of the eig
vectors are

Ṽn†g̃Ṽm5dmn , W̃n†g̃W̃m52dmn , Ṽn†g̃W̃m50,
~A12!

and

(
n>0

~ṼnVn†g̃2W̃nW̃n†g̃ !51. ~A13!

It is noted that the eigenvectorsṼn andW̃n have the follow-
ing structure:

Ṽn5S Un

Vn D , W̃n5S Vn*

Un* D , ~A14!

and given a right eigenvectorṼn, the left eigenvector be
longing to the eigenvalueEn* is V̄n5(Un* ,2Vn* ), and the

left eigenvector belonging to the eigenvalue2En* is W̄n

5(Vn,2Un).
Using the closure relationship,R(0) of Eq. ~A7! may be

written as

Ri j
(0)5 (

m.0
@Ṽi

mṼj
m* 1W̃i

mW̃j
m* #n̄m1 (

m.0
W̃i

mW̃j
m* ,

~A15!
04360
-with n̄m5@exp(Em/kT)21#21. The possible zero energ
states are ignored, as indicated in the summation ovem
.0. From this expression, one can calculate the matricer
andk from the explicit form ofR given in Eq.~19!.

The iteration process consists of the following steps@11#.
~1! Make an initial guess atH z

(0) and setr5k50.
~2! Solve Eq.~A1! which determinesm andz. Normalize

z according to

N5(
i

uzi u21Trr, ~A16!

where N is the total number of atoms and Tr denotes t
trace.

~3! Solve the eigenvalue problem Eq.~A11! and normal-
ize the eigenvectors according to Eq.~A12!.

~4! CalculateR from Eq.~A15! and deduce the matricesr
andk.

~5! Calculate the fieldsH z
(0) andHz*

(0) and return to step 2
~6! Stop the iteration when two successive iterations yi

the same values ofz, r, andk to the desired accuracy.

APPENDIX B: THE L1 MATRIX

In Eq. ~37!, L[L01L1. The 2n(2n11)32n(2n11)
matrix L1 is defined as follows:
L15S V zz1 V zz2 V z1 V z2 0 0

V zz2* V zz1* 0 0 V z1* V z2*

V rz1 V rz2 W rh WkD 0 W kD†

V kz1 V kz2 W kh WrD W kh† 0

V rz2* V rz1* 0 ~W kD†!* ~W rh!* ~W kD!*

V kz2* V kz1* ~W kh†!* 0 ~W kh!* ~W rD!*

D , ~B1!

where the set ofn3n submatricesV zz1 andV zz2, n3n2 submatricesV z1 andV z2, n23n submatricesV rz1, V rz2, V kz1, and
V kz2, andn23n2 component submatricesW rh, W rD, W kh, andW kD of L1 are given as follows,

V i ,l
zz15(

kr
Viklr zk*

(0)zr
(0) , V i ,k

zz25(
lr

Viklr zl
(0)zr

(0) , ~B2!

V i ,kl
z1 52(

r
Vilkr zr

(0) , V i ,kl
z2 5(

r
Viklr zr

(0) , ~B3!

V i j ,l
rz152(

kr
Viklr zk*

(0)r r j
(0)2Vrkl j zk*

(0)r ir
(0)1(

kr
@Virkl zk

(0)1Virlk zk
(0)#k r j*

(0) , ~B4!

V i j ,k
rz252(

lr
Viklr zl

(0)r r j
(0)2Vrkl j zl

(0)r ir
(0)2(

lr
@Vr jkl zl*

(0)1Vr jlk zl*
(0)#k ir

(0) , ~B5!
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V i j ,k
kz152(

lr
Vilkr zl*

(0)k r j
(0)1Vrkl j zl*

(0)k ir
(0)1(

lr
@Vr jkl zl

(0)1Vr jlk zl
(0)#r ir

(0)1(
lr

@Virkl zl
(0)1Virlk zl

(0)#r r j*
(0)

1(
l

@Vi jkl zl
(0)1Vi jlk zl

(0)#, ~B6!

V i j ,k
kz252(

lr
Viklr zl

(0)k r j
(0)1Vrlk j zl

(0)k ir
(0) , ~B7!

W i j ,kl
rh 52(

r
Viklr r r j

(0)2Vrkl j r ir
(0) , W i j ,kl

rD 5(
r

Virkl r r j
(0)* 1Vr jkl r ir

(0), ~B8!

W i j ,kl
kh 5(

r
Viklr k r j

(0) , W i j ,kl
kh† 5(

r
Vrkl j k ir

(0) , ~B9!

W i j ,kl
kD 5(

r
Virkl k r j

(0)* , W i j ,kl
kD†5(

r
Vr jkl k ir

(0) . ~B10!

In addition, we define

z~ t !5diagS E~ t !

E* ~ t !

e (2)~ t !

e (1)~ t !

@e (2)~ t !#*

@e (1)~ t !#*

D cW (0)[S E~ t ! 0 0 0 0 0

0 E* ~ t ! 0 0 0 0

0 0 e (2)~ t ! 0 0 0

0 0 0 e (1)~ t ! 0 0

0 0 0 0 @e (2)~ t !#* 0

0 0 0 0 0 @e (1)~ t !#*

D S zW (0)

zW (0)*

rW (0)

kW (0)

rW (0)*

kW (0)*

D . ~B11!
ce
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We have further defined then23n2 matrices

e (6)~ t ! i j ,kl5Eik~ t !d j l 6El j ~ t !d ik . ~B12!

As mentioned in the main text, ‘‘diag@ABC•••# ’’ denotes
block-diagonal square matrix with the component matri
A,B,C, . . . as its diagonal blocks.

APPENDIX C: BOGOLIUBOV –de GENNES EQUATIONS
FOR CONTACT INTERATOMIC INTERACTION

Griffin has provided a prescription for solving TIHFB i
terms of the Bogoliubov–de Gennes equations under
contact interatomic potential approximation@12#. In this sec-
tion, we show that self-consistent equations forR(0) @Eq.
~A7!# is simply the Bogoliubov–de Gennes equations writ
in the trap basis, under the contact interatomic potential
proximation, and summarize the numerical procedure use
find the solution to the TIHFB.

The Bogoliubov–de Gennes equations are@12#

Hsp2m12U0@ ucg~r !u21ñ~r !#ui~r !1U0@cg
2~r !

1m̃~r !#v i~r !5Eiui~r !,
04360
s

e

n
p-
to

Hsp2m12U0@ ucg~r !u21ñ~r !#v i~r !1U0@cg*
2~r !

1m̃* ~r !#ui~r !52Eiv i~r !, ~C1!

where the quantitiescg(r ), ñ(r ), andm̃(r ) are as defined in
Ref. @12# which are, respectively,z(r ), r(r ), and k(r ) of
Eqs. ~28!–~30! when written in terms of our variableszi ,
r i j , andk i j . ui(r ) andv i(r ) are the eigenstates to be calc
lated and can be shown to satisfy the orthogonality and s
metry relations

E ui* ~r !uk~r !2v i* ~r !vk~r !5d ik , ~C2!

E ui* ~r !vk~r !1v i* ~r !uk~r !50. ~C3!

In matrix form, Eq.~C1! is

g̃S h D

D* h* D S u

v D 5ES u

v D , ~C4!

where we have changed the basis from the position bas
the trap basis by introducing the matrix elements in terms
the trap eigenstatesf i(r ) as follows:
2-14
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hi j 5E f i* ~r …$Hsp2m12U0@ ucg~r !u21ñ~r !#%f j~r …dr .

~C5!

D i j 5E f i* ~r …U0@cg
2~r !1m̃~r !#f j~r …dr . ~C6!

ui5E f i* ~r …ui~r !dr . ~C7!

v i5E f i* ~r …v i~r !dr . ~C8!

Using the contact interaction, and Eqs.~28!–~30! for
cg(r ), ñ(r ), andm̃(r ), it is clear thath andD coincide with
those of Eqs.~16! and ~17!; the Bogoliubov–de Genne
equations in the trap basis therefore give the same eigenv
problem as that of diagonalizing the matrixg̃H of Eq. ~A7!.
,

y

K

P

.

s

ch

s

s.

04360
lue

The steps to follow in solving the TIHFB are, therfore, th
following @12#.

~1! Solve Eq.~A1! for zi assumingr i j 5k i j 50.
~2! DiagonalizeH of Eq. ~A2! with the current value of

zi , r i j , k i j . Get eigenvectorsU andV.
~3! Calculate newr i j andk i j usingU andV,

r i j ~ t !5 (
pÞ0

@UpiUp j* 1Vpi* Vp j#Np1Vpi* Vp j , ~C9!

k i j ~ t !5 (
pÞ0

@UpiVp j* 1Up jVpi* #Np1Up jVpi* , ~C10!

whereNp5@exp(\vp /kT)21#21.
~4! Solve Eq.~A1! for zi using the calculated values ofr i j

andk i j .
~5! Iterate: go back to Step~2!.
~6! Stop the iteration when the solutionszi , r i j , andk i j

converge.
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