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Mechanical response functions of finite-temperature Bose-Einstein condensates
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Using the Liouville space framework developed in nonlinear optics, we calculate the linear response func-
tions and susceptibilities of Bose-Einstein condens@®€&€) subject to an arbitrary mechanical force. Distinct
signatures of the dynamics of finite-temperature BEC are obtained by solving the Hartree-Fock-Bogoliubov
theory. Numerical simulations of the position-dependent linear response functions of one-dimensional trapped
BEC in the time and the frequency domains are presented.
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[. INTRODUCTION BEC as well as for atom optics and four-wave mixing appli-
cations have been report¢8—8]. BEC at finite tempera-
Since the first experimental observation of atomic Bosetures, on the other hand, require sophisticated theories that
Einstein condensatedBEC), extensive theoretical and ex- go beyond the GPE, and various approaches including the
perimental effort have focused on understanding their proptime-dependent Bogoliubov—de Gennes equati@is the
erties[1]. BEC presents many possible avenues of researchiartree-Fock-BogoliuboHFB) theory [10-13, quantum
as it may be viewed in a variety of ways such as mesoscopikinetic theory{14-19, and stochastic methofig0—24 have
“superatom,” gaseous “superfluid,” or as a source of coher-been employed.
ent atoms used in an atom laser. In particular, the close anal- In order to go beyond the GPE, two or more particle
ogy between the nonlinear interaction of BEC matter wavesorrelations have to be taken into account. One of the origi-
and photon waves in nonlinear optics gave rise to fascinatingal contributions was made by Bogoliubov with his introduc-
atom optics applicationg2]. tion of the Bogoliubov transformatiof25,26 which shows
Optical spectroscopy has been a major tool for studyindhow the condensed state of an interacting homogeneous gas
the properties of matter since the early days of quatum phydiffers from that of the noninteracting gas. That result was
ics. And, with the advent of the laser, nonlinear optical specextended to inhomogeneous gases by de Ge[2@s Re-
troscopy has become an important technique for studying theently, a time-dependent version of the Bogoliubov—de
properties of matter that are not accessible with incoherenGennes equations was employed by Castin and [&jnto
light sources. The primary theoretical tool used in nonlineardescribe the dynamics of BEC in time-dependent traps. Their
optical spectroscopy to analyze the structure and dynamiapproach was based on an expansion of the evolution equa-
processes in many-body quantum systems is the linear artibns for the atomic field operator which is valid if the num-
higher-order optical response functidi®. In this paper, we ber of noncondensate particles is small. Their result has been
extend the systematic formalism of optical response funcused for analyzing the stability and depletion of a strongly
tions to probe the response of trapped, atomic BEC to adriven BEC[9].
arbitrarymechanical forceoupled to the atomic density. We  The time-independent HFB theor§TIHFB) has been
calculate the first-ordeflinear susceptibilities for the con- used to calculate some of the important equilibrium proper-
densate, noncondensate density, and noncondensate corrdlas such as the quasiparticle excitation frequencies and the
tion in the time and the frequency domains. equilibrium condensate and noncondensate density profiles
A major difference that arises when the formalism of non-[12]. The dynamical properties of finite-temperature BEC
linear spectroscopy is applied to the mesoscopic BEC is thairedicted by the TDHFB13] have not been studied exten-
it is generally not possible to apply the dipole approximationsively, because the full solution to these equations is compu-
commonly made in the atom-light interaction. It should alsotationally prohibitive. The response functions computed here
be noted that there have been a number of calculations of thaffer a systematic perturbative approach for exploring the
linear response of BEC in the pddl; theresponse functions TDHFB dynamics, at an affordable numerical cost.
calculated here provide a more fundamental Green'’s function The quantum kinetic theory of dilute interacting Bose gas
description of the response to a force with arbitrary spatialvas derived long ago by Kadanoff and Bayfi#] in terms
and temporal profiles. The time-domain response functionsf nonequilibrium real-time Green’s functions that param-
or their frequency-domain counterparts, the susceptibilitiesgtrize the condensating gas. Their equations were later gen-
provide unique signatures of the dynamics of the system ureralized by Hohenberg and Martin to include condensates
der consideration. [15]. A more contemporary version of the quantum kinetic
The dynamics of zero-temperature atomic BEC is com+theory applicable to the experimentally produced BEC has
monly described using the time-dependent and timebeen developed in a series of papers of Gardiner and Zoller
independent Gross-Pitaevskii equati@PB. Numerical so- [16]. They describe a system composed of interacting a con-
lutions of the GPE for various properties of zero-temperaturalensate and a noncondensate vapor, where the vapor is de-
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scribed by a quantum kinetic master equation, equivalent to present, requires assuming an initial state such as Hartree-
guantum Boltzmann equation of the Uehling-UhlenbeckFock state which is not very realistic.

form [27]. The master equation which describes the transfer The TDHFB theory is a self-consistent theory of BEC in
of energy and particles between the vapor and condensatée collisionless regime that progresses logically from the
has been used to describe the formation of BEC. A similafSross-Pitaevskii equation by taking into account higher or-
formalism was also put forward by Walset al. [18] who der correlations of noncondensate operators. Although
derived, using a method reminiscent of the classicall PHFB does not take into account higher-order correlations

Bogoliubov-Born-Green-Kirkwood-Yvon technique, agener-that are done_ in the varipus quantum kinetic theories, the
alized kinetic theory for the coarse-grained Markovian |PHFB equations are valid at temperatures near zero, even
many-body density operator. Their result incorporatesdown_to the zero-temperature limit, and are far simpler than
second-order collisional processes, and describes irreversigfg€ kinetic equations which can only be solved using ap-
evolution of a condensed bosonic gas of atoms towards theRroximations such as ZNG. Another attractive feature of
mal equilibrium. TDHFB from a purely pragmatic point of view is that the
Important experimental observations such as the dampingorm":’_mC version of the theory has already been well devel-
of elementary excitations has prompted attempts to develop@ed_in nuclear physic$10]. We therefore work at the
theory that works in the hydrodynamic regime. These have PHFB level in this paper and our approach draws upon the
led to various versions of quantum kinetic theory such as th&nalogy with the time-dependent Hartree-F¢EIOHF) for-
two-fluid hydrodynamic description of finite-temperature Malism developed for nonlinear optical response of many-
BEC [17] developed by Zaremba, Nikuni, and Griffin l€ctron systemgg]. ,
(ZNG). ZNG is a semiclassical Hartree-Fock description 1he Paper is organized as follows: in Sec. II, we show
where one neglects the off-diagonal distribution functions. 170 0 Systematically solve the TDHFB equations for exter-
combines a non-Hermitian generalized Gross-Pitaevskifid!ly driven finite-temperature BEC by order expansion of

equation for the condensate wave function and the Bonzghe'dynamical variables in the external field. In_ Sec. I, we
mann kinetic equation for the noncondensate phase densilﬁ}.ef'ne thenth order response function in the time and the

This theory was recently shown to properly describe dampirequency domains and calculate the linear(1) response
ing [19]. function. Numerical results for the linear response functions

It will be helpful to clarify how the various kinetic theo- @nd susceptibilities of a 2000 atom condensate in a one-

ries are related. The Green's function approach of Kadanoffimensional harmonic trap, and its variation with position,
and Baym[14] are equivalent to the equations of Walser ime, and frequency, are presented in Sec. IV at zero and
et al. [18]. From the equations of Walset al, the ZNG f|_n|te Femperatures. Our main findings are finally summa-
hydrodynamic equations may be obtained by neglecting th&Zzed in Sec. V.

anomalous fluctuations. This greatly simplifies the equations

and facilitates the numerical solution. The TDHFB equations Il. THE TDHFB EQUATIONS

are obtained by dropping the second-order collisional terms
from the kinetic equations of Walset al,, while keeping the
anomalous fluctuations. The theory of Gardiner and Zoller Our theory starts with a time-dependent many-body
[16] is based on the quantum Boltzmann master equationsecond-quantized Hamiltonian describing a system of exter-
reminiscent of the quantum stochastic methods used in quamally driven, trapped, structureless bosons with pairwise in-
tum optics; their quantum kinetic master equations also conteractions. Introducing the boson operatafsand a; that,

tain the higher-order collisional processes described byespectively, create and annihilate a particle from a basis

Walser et al. and ZNG. A number of approximations are statei with wave functionsg;(r), the Hamiltonian is
common to these kinetic theories: the Born and Markov ap-

proximation, ergodic assumption, and Gaussian initial refer- H=Hy+H'(t), (1)
ence distribution. The validity of these assumptions will ul-

timately be confirmed by experiments; so far the experimentghere

have supported the predictions of these equations.

The stochastic method is another approach used for the . 1 A
description of finite-temperature BEC beyond GPE. A de- Ho=2, (Hi,-—,u)aiTajJrE > Vijk|aiTajTaka|- 2
scription of a Bose gas in thermal equilibrium has been de- ! 1km
veloped using the quantum Monte Carlo techniques, base

on Feynman path-integral formulation of quantum mechan:Idhe matrix elements of the single-particle Hamiltondr)

ics [20,21). A stochastic scheme corresponding to the dy-2r€ given by

namical evolution of density operator in the positReaep- 52

resentation has been applied to BEZ?,Z@. An alternative Hij :f dsrfbi*(f)[— _V2+Vtrap(r) (1), 3)
approach that describes the dynamics of the gas based on a 2m

stochastic evolution of Hartree states and avoids some of the

instability problems of earlier works was proposed recentlywhereV,(r) is the magnetic potential that confines the at-
[24]. The stochastic methods make the simulation of the exems andu is the chemical potential. The basis stéi¢r) is

act dynamics oN-boson system numerically feasible; this, at arbitrary; a convenient basis for trapped BEC is the eigen-

A. Equations of motion
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states of the trap sindg;; is then diagonal. The symmetrized two-point correlations. Using this notation, we haypg

two-particle interaction matrix elements in EQ) are E«éi‘réj» and K”_E«éiéj»_
This procedure yields the TDHFB equations of motion
1. - [10,11,13
Vijk|:§[<|l IVIKI)+(ji[VIkI)T, (4) —
. dz
where i =[He+ nE(V) ]2+ M 25, (11
Y ! ! ! ! d
<'J|V|k|>=f dPrdr' @F (N @] (rIV(r=r")dy(r' ) hy(r), iﬁd_’t)z[h,p]—(KA*—AK*H EM,p], (12
©)
with V(r—r’) being a general interatomic potentiél. (t) ihd—Kz(hK+Kh*)+(pA+Ap*)+A+ 2E), k],
describes the coupling of an external field with the system dt 13
H' (=72 E;(hala;. (6)  where[-- -], denotes the anticommutator. Heté,, H,, ,
" h, and A are nXn matrices withn being the basis set size
. . . d:
7 is a bookkeeping expansion paramdterbe set to 1 at the use
end of the calculation The matrix elementg;; (t) are given
by [Hz]i,j:Hij_M_l'% Vil Zzi+ 2pid, (14
E--=Jd3r-*rVr,t (1), 7
] B (NDVA(r ) y(r) (7) Mo hi=3 Vi 19
whereVi(r,t) denotes a time- and position-dependent exter-
gsét;;%(.ential that exerts an arbitrary mechanical force on the hy=H; _’U“+2§k|: Vi [ZE 21+ pucd, (16)
More general forms oH'(t) could include, for example,
terms of the form=; F;(t)a;a; in addition to the term given o )
in Eq. (6) which couples to atomic density. In this work, we Aij _% Vijalzzi + xial. (17

shall focus on the most experimentally relevant perturbation;

for instance, the time-dependent modulation of the traph is known as the Hartree-Fock Hamiltonian afdas the

spring constant which mimics the mechanical force that wagairing field[11]. u is the chemical potential introduced in

recently applied experimental(29,30. Eq. (2). Equationg12) and(13) may also be recast in a more
The dynamics of the system is calculated by derivingcompact matrix fornj11],

equations of motion for the condensate mean fk—piﬁ(éi), -
the noncondensate density;=(a/a;)—(a/)(a;), and the i% dyR —3[H>. 3R]+ nE (18)
noncondensate correlations;=(a;a;)—(a;)(a;). Closed dt

equations are derived starting with the Heisenberg equations ~ ) i
. A Taga ~n whereH, R, E, and y are 2ZnX2n matrices defined as fol-
of motion for the operators;, a;a;, anda;a;, and assum-

ing a coherent many-body state. The resulting many-body

hierarchy is then truncated using the generalized Wick’s h—u A p K
theorem for ensemble averad@d—33: H =( A¥ p —M)' R= ( 1)
A)#0, (8

(A1A2) = (A1){(A2) +((A1A2)), 9 —[E(),«]% —[E),p]*)’

(A1AA2) = (A A)(Ag) + (A1) {((A2A3)) T (A2)((A1As3)) ;:( Y ) Pl 20
+(A3)((A1A2)), (10 0~

and similarly for products involving higher number of opera- B. Solutions of the TDHFB
tors.A; denote boson creation or annihilation operafgrer Direct numerical solution of the TDHFB equatiof&gs.

a; and are assumed to be normally ordered. We follow thé11)—(17)] for arbitrary field strength is complicated by their
convention that normal ordered operators are time orderedhighly nonlinear character. A practical way to proceed is ex-
The double angular bracket§AjA;)) denote irreducible panding all dynamical variables in powers pf

043602-3



CHOI, CHERNYAK, AND MUKAMEL PHYSICAL REVIEW A 67, 043602 (2003

z() =24 pzZ V() + 22Dt + - - -, (21)  cesible. Measuring these quantities withr' involves ob-
serving atomic correlations which is much more difficult

p”(t):pi(jo)+ npi(jl)(t)+ ,72pi(j2)(t)+ _— (220 than photon correlations.

Kij(t)= Ki(jo)+ nKi(jl)(t)+ 772Ki(j2)(t) +-.- (23 C. Liouville space representation

_ . . We next introduce theiouville spacenotation[3,34] that
and upon substituting these expansions in E48)-(17), will be used in the folllowing sections. One well-known ex-

cpllectmg all terms to a given power im. Th!s results na ample for which the Liouville space formalism is used is in
hierarchy of equations such that the equation of motion for . : . o

) . the optical Bloch equations, where th& 2 density matrix is
the nth order solutione'™, wherea denotes the variables

p, OF K, is expressed as a function of.0 . ,(n— 1)th order regast as a fqur component veqtor, and the Liouvillian is
scy)lutioﬁs 2© 4D o(-1) Whilé t.h’e seroth order written accordingly as a 44 matrix superoperator. We re-
S Lo : . . arrange the TIHFB equations Eq24)—(26) by writing p;;
equation is nonlinear, each of the higher-order equations are 4 .. as vectors in Liouville space. and introduce thé fol-
linear; thenth order solutionsa(™ are therefore obtained by lowi " t ofn2x n2 mati bace, ¢
solving the sequence of linear equations. This is analogous {gWing set ofn“xn*ma rices(superoperatojs
the TDHF [28] or time-dependent density-functional algo- HE) @5 KOs (31)
rithms used for many-electron systems. Hamn M R g
Finding the zeroth order solutiofe®,p©®, (™} should

() —h@ s OF .
be the first step in solving the TDHFB. This describes the PLij = Nim Ojn + oy Gim - Vijmn (32)
system at equilibrium in the absence of the external driving )
field, and requires the solution of the TIHFB equations Dij mn=Aim Sjn » (33
H(©)7(0) 4 37 ©)70 —g (24) D = — A5 08, (34)

[h©, pO]— (OAO* — A0, (00 )=, (25)  where then X n matricesh andA were defined in Eq<16)—
(17). We further define th@?x 1 matrices
(O ()4 ORO) 1 (HOA©) L AO),O0) L AO—(,
(26) AI'; = % Vijklzkzl . (35)
Here, H?, H{®, h(®, andA(® arenxn matrices defined

in Eqs. (14)~(17) with the variables{z,p,«} replaced by ygjng this notation, the TIHFB assume the form
{29 p© O |t follows from Eq.(18) that Egs.(25) and

(26) can be written in the compact form HO O 0 0 0 0
JHOS, JRO]=0. 27 HO* HO* 0 0 0 0
: : : 0 o H© p- 0 D
Self-consistent numerical methods for solving the TIHFB are Ax (+)
given in Appendix A. 0 0 -D H D 0
So far we have worked in the trap basis since this enables 0 0 0 D*  HO)x pAx
us to maintain a general form for the interatomic interactions " A (+)*
: . . ; 0 0 D 0 -D* H
Vij and makes the numerical solution feasible. However, it
may be more interesting to recast the solution in real space 7(0) 0
a"(r,t) (a=z, p, or k) by transforminga("(t) the solu- -
tion of TDHFB in the trap basis: z(O 0
p© 0
z(“)(r,t)=; 2" (1) ;(r), (29 1 o | | A% =0. (36)
5(0)* _EJ
p<“>(r,t>=; PP (1) BF (1) (1), (29 <(0) AF*

Hereafter, we shall denote the zeroth order solution in Liou-
kO(r,0)=2 k(1) i(r) (1) (B0 ville space notation as #O(t)
! =[Z2(9,2(0* [(0) (0) 500% LT and refer to the A(2n
In general, real-space noncondensate density and noncondehd) by 2n(2n-+1) matrix multiplying J/(o) as the zeroth
sate correlations are nonlocal functions of two spatial point®rder Liouville operator’y.
p(r’,r) andx(r’,r). We only computed these quantities for ~ Substituting the expansion fay, p;; , andx;; [Egs.(21)—
r=r’, in this paper, since these are the most physically act23)] into Egs.(11)—(13), we obtain to first order imy,
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. dzZ(l)(t) -1 Here “diad ---]” denotes thatY(r) is a block-diagonal
ih —q— =LY+ L. (37 square matrix made ofixn blocks $(r), $*(r) and n?
_ o o R X n? blocks® ,(r),® (r),®} (r),®5(r). é(r) is a diagonal
Here, ¢M(t)=[zW, 2% pM) (D) pM%  W* T je, a  matrix with theith diagonal element given by the basis states
2n(2n+1)x1 vector with the variables in first order as its ¢;(r), and ®,(r) and ®,(r) are also diagonal matrices
components. Also whose ijth diagonal element are given by (r)J;; i;
_ = ¢ (r)¢j(r) and [®(r)]ijij= ¢i(r) ¢;(r), respectively.

L=Lot Ly, B8 The real-space variable§V(r,t), p(™(r,t) and«"(r,t) are
where £ is the total Liouvillian, £, was introduced in Eq. finally obtained by summing over the appropriate elements
(36), and £, and £(t), obtained by equating all first-order Of the vectory{"(r,t),
terms iny are given in Appendix BL is given by the sum of n
the original TIHFB matrix£, plus a perturbationC;. This 2 H=> ¢Z-(”)(r t)
perturbation induces a shift in the excitation frequencies, as A =
will be shown below.

Adopting Liouville space notation, the position-dependent 2n+n? _
nth order solutiong™(r,t) can be defined using the rela- P(")(f,t)Zi_;+l V(1 p),
tions EQs.(28)—(30) and introducing a (2n+1)X2n(2n -
+1) square matrixY (r), 2n+2n2
; o K= 2 V. (4D
PO (r, =Y (r) " (1), (39 i—oninZi1
where I1l. THE RESPONSE FUNCTIONS
Y(r)=diad é(r),¢* (r),®,(r),® (1), ®*(r), ®%(r)]. The nth order response function

40 KON(tty, ... ta.r.re, ...y is defined by the relation

a(“’(r,t)=f f KOt -ty e P Vet - Vit dty, - dtgdrg - -d3r, (42)

where a("(r,t) with a=z, p, or x are position-dependent The corresponding position-dependent solution can then be
nth order solutions. The subscript ofK{}) indicate that this  written as
is the response to an external field that couple to the atomic
density. 1 .

The nth order susceptibility is defined as the Fourier (1) _ = Y, NG e 7(0) r eIt
transform of the responspe fun?:/tion to the frequency domainfﬂ (r.= iﬁf ar fOY(r)L{(t PSPVt

- (45
Xep (1, Q1,0 Qg 1Ty, )

I o (n) 1 t,
fo dtfo dty, . KD (Gt b E T, ) :Ef dr’fng)(t—t’,r,r')Vf(r’,t’)dt’, (46)
XexpliQt+iQq it +---+iQt,). (43

whereY (r) is as given in Eq(40) and we have defined the

A. The time-domain linear response function 2n(2n+1)x 2n(2n+1) matrices

The solution of the matrix equation E7) is
- 1 [t i .
P = Oexr{—%—ﬁ(t—t’)}é(t’)dt’. (44) L{(t—t’)ze(t—t’)exr{—;L—L‘(t—t’)}, (47)

O (r)=diad ®(r),d* (r),d(r),®E)(r), d* (1), d* ()], (48)
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with 6(t—t") being the Heaviside function and as discussed

above, the notation “didg - - ]"is used to denoteb(r’) as a

2n(2n+1)X2n(2n+ 1) block-diagonal square matrix with

the blocks consisting afixX n square matrices having tfth
row andjth column given by

[D(r)]ij= ¢ (1) (1), (49)
andn?x n? square matrices
[P ij mn= b5 (1) (1) Sjn = b (1) b (1) Sin -
(50)
The functionK(t—t,,r,r1) of Eq. (46),
K=ty rr)=Y(ut-t)@r)d®, (61

may be viewed as the linear response function for the

position-dependent vectdr(l)(r,t), i.e., for all the variables

z®, pM), and«™® in the trap basis. The real-space respons

functions for the condensatenoncondensate density and

the noncondensate correlatianare therefore given by sum-

ming over appropriate indices Iﬁg)(t—tl,r,rl), using the
relations Eqs(28)—(30):

n
(1
K (- torr) =2, KO (t—t,rrp),
=

(52
2n+n2
K(l)(t_tl,r,rl): E IZ(’})(t_tl,r,rl), (53)
P i=on+1 ¥
2n+2n2
KO(t—ty,rr)= 2 KSt-tirr). (69
i=2n+n?+1

To analyze the physical significance of the response func-
tions it will be useful to expand them in the basis of the

eigenvectorst, of matrix £

Lé=wiE, v=12...,1(2n+1). (55
We define the Green'’s function
i
Gy(t—t’)=0(t—t’)ex;{—%wy(t—t’) , (56)

and further introducee,, 7,(r), andé,(r) as the expansion

PHYSICAL REVIEW A 67, 043602 (2003

Kg)(t—tl,r,r1)=2 Kf,t,)(t,t’,r,rl)éy, (58)
where
KOt )= 8,(07,(r)psG,(t-t").
o (59)

Here,G, (t—t') is defined in Eq(56), w,, 7,(r), ands,(r)
are defined as the expansion coefficients in &q), while
the matricesb(r) andY (r) are given by Eqs(40) and(48).
Egs.(58)—(59) express the linear response function Exfl)
as an expansion in quasiparticle modes.

B. The frequency-domain response function

The linear susceptibility is defined as the Fourier trans-
form of the response function to the frequency domain,

e

;}<1>(Q,Ql,r,rl):J dtJ’ dt, KO (t—ty,r,ry)
0 0

X exp(i Qt+iQ4t;). (60)

It is possible to change variablds-t;— 7 and define
¥ B(Q,r,ry) since KO(t—t,,r,r;) only depends on the
time differencet—t;. Below, we shall keep the notation
KO(Q,Q4,r,r,), i.e., a function of both frequency of the
signal ) and frequency of perturbatiofi); rather than
KM(Q,r,r,), in line with Bloembergen’s notatiof8].

In order to evaluate the Fourier transform, we note that it
follows from causality that

©

1
u(t):_Z_wif_xdw (61)

o LriePTIen

:F doll w)expy —iot). (62

Substituting Eq.(62) into the expression fonz(d;l)(t
—t4,r,r1) Eq. (51), and taking the Fourier transform, we
obtain a vector

1 joe) o
>(1) _ N
X (Q,Q04,r,r)= PP fﬁwdwfo dtdt; Y (r)U(w)

coefficients of the following vectors in the basis of eigenvec-

tors &,
2n(2n+1) 2n(2n+1)
W= 2 wé, dmé= 2 mné,
2n(2n+1)
Yé= 2 8.né,. (57)

v=

We then have

Xexp —iwt+ioty)

X exp(iQt+iQqt)D(r) 9 (63

- de Y(NU(0)D(r) O8O~ w) 8(Q +
=57 | deY(NU@)D(r) 52— 0)5(Q1+ o).
(64)

This implies that) = —Q,, and we have the susceptibil-
ity in vector form
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-(1) — 0O =Y (OUOQND(r) 3O 65 TABLE I. The lowest positive eigenvalues @, and £ that
Xy ( RLERLALEY (NUQ)D(ry) g™ (89 correspond to the TIHFB and TDHFB, respectively, at zero and
The z, p, and « susceptibilities are obtained by summing szhtzmperatures' The eigenvalues are given in units of trap en-
. . > trap-
over the appropriate elements in the vectqrg;/l) i
(—Q;Q,r,ry), TIHFB TDHFB TIHFB TDHFB
(T=0hwlkg) (T=0hwl/kg) (T=10hw/kB) (T=10kw/kg)

n
=00, =3 X0, (69 0 0 0 0

=1 0 0 0 0.629
_— 0.3477 0.4555 0.3739 0.6485
W _ S _ 0.3528 0.7088 0.6607 0.6668
pr(_Q’Q'r’rl)—i:;H Xji (—Q:Q,r,rq),  (67) 0.7104 0.7136 0.6612 0.8213
0.7110 1.0159 0.8733 0.9282
ot on? 0.8521 1.1046 0.8873 1.0074
AD-0:0r = 3 i%’(—ﬂ;ﬂ,r,rl). 1.0161 1.1584 0.8908 1.0114
i—onene1 1.0163 1.5040 0.9903 1.0828
(68) 1.1181 1.5864 1.0070 1.5068
. 1.1324 1.7735 1.0071 1.6970
Transforming the trap basis to the basis of eigenstates 1.4644 1.7760 15478 1.7666
as before, one has 1.4840 1.8211 1.5520 1.7788
1.7743 1.8832 1.7654 2.0183
)_E(d;l)(—ﬂ:ﬂ,f,rl):}: KB(-0;Qr,r)E, (69 1.7749 2.1995 1.7660 2.4251
v 1.8281 2.2553 1.8741 2.4716
N 1.8434 2.4843 1.8824 2.6083
where 1.9372 2.4935 1.9575 2.6454
8,00 (1 D fom 2.1755 2.6050 2.4265 2.7705
KO-0;0,rr)= ORI VR g0 2.1943 2.7907 2.4272 2.7927
T Q- tie 2.4851 2.7914 2.5353 2.8689

and é,(r), 7n,(ry), andu, are as defined in E457).
As was done in Sec. Il A for the time domain, we have We assume a 2000 atom one-dimensional condensate in a
recast the linear susceptibility in two forms: matrix form of harmonic trap. The parameters used for our numerical calcu-

Eq. (65) and an expansion in modes of E¢89) and(70). lations are Uy,=4m#h%a/m=0.01, and temperatures
O0fi wyap/ks and 1@ wyap/Kg, Where wyy,, is the trap fre-
IV. NUMERICAL SIMULATIONS FOR CONTACT quency andg is the Boltzmann constant. We used 256 grid
POTENTIAL points for position and the basis setrof5 states. We keep

the trap units throughout.
We have followed the prescription of Griffin for solving
So fal’, all our results hold for a general paiI’\Nise inter-the TIHFB for 1/7(0) in terms of the Bogonubov_de Gennes
atomic interaction potential. In the following numerical cal- equations which are obtained from H49) by transforming
culations, we approximate the interatomic potenfiélr  to real space and using the contact interatomic poterit2il
—r') in Eq. (5) by a contact potential, as is standard in BECIn Appendix C, we show the equivalence between the

A. Zeroth order solution (TIHFB) and the frequency shifts

applications: Bogoliubov—de Gennes equations and the mati®, and
5 summarize the numerical procedure. The eigenvalues of the
V(r—r")—Ugd(r—rt'), Uo=477h a, 71) non-Hermitian matrixC required for computing the response

functions were calculated using the Arnoldi algoritfigb].

The eigenvalues of the Liouvillian are transition frequen-
wherea is thes-wave scattering length and is the atomic  cjes rather than state energies. The frequencies come in pairs
mass. This approximation may be justified since the wavef positive and negative frequencies; this indicates that the
functions at ultracold temperatures have very long wavet jouvillian may be mapped onto a harmonic-oscillator space
lengths compared to the range of interatomic potential. Thigor which there are always positive and negative frequency
implies that details of the interatomic potential become unsg|ytions. The eigenvalues af=L,+ £, are shifted with
important and the potential may be approximated by a conrespect to the corresponding eigenvaluegf(the TIHFB
tact potential. The tetradic matricé;, are then simply equations We list some of the representative eigenvalues,
given by the lowest few positive eigenvalues 6f, and £ in Table |

for both zero and nonzero temperatures. Similar frequency
* * shifts were noted by Giorgini4]. Physically, it is easy to
J ¢rNG(NEGdr. (72 derstand how theYI'DHFg frequen)c/ies m)gy be shiftgd from

4rh2a
m

Vi =

043602-7
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FIG. 1. KM(t—ty,r,r,) for the zero-temperature condensate at FIG. 2. Same as in Fig. 1, but at finite temperature
timest—t' =0/wyap, 7.2/04ap, 15. Thoyap given in different columns. 10k w/Kg .
The top, middle, and bottom rows give the response function for the

condensate, noncondensate density, and noncondensate correlation. . .
as indicated. The dashed circle represents the spatial extent of t H'Ch the external perturbation is applied, arhdr are the

trapped BEC. The positiong and x' are given in harmonic- corresponding coordinates at which the measurement is
oscillator length units. made. We found that for longer times-t'>5m/ wyy,, the
plot maintains generally the same shape as the third column

the TIHFB: a dynamical system contains the effect of theof figures; it may therefore be possible to experimentally

interacting condensate and noncondensate atoms which, §fserve the correlations at longer times. At zero temperature,

definition, is not present in the equilibrium system. This isthe correlation attains this stable shape faster than at finte

analogous to optical excitations of fermions where the timeiemperature.

dependent Hartree-Fock theory shows excitonic shifts which To model a uniform perturbation applied across the con-

are lacking by the time-independent Hartree-Fock statedensate, we have integrated the zero-temperature response

[28]. function over r’ and plotted its absolute value, i.e.,
|SK®(r,r’ t—t;)dr’| vs timet—t’ in Fig. 3. The response

B. Time-domain response functionsK,,, K,,, K,, grow exponentially within a rela-

The linear response functions were calculated by substit-lvely short-time span of aroundsJ g, , SO that the de-

. i =0 ___ tails of the structure for earlier times up te27/ w,, are
tuting the numerical solutiog\®) evaluated at zero and finite

; h ith not visible in the plot. This rapid growth is shown more
tempe_ratures .|nto Eq(E_>1) toggt_er .W't Eqs.(52—(54). clearly in the right-hand column which depicts the response
Equation(51) is a matrix multiplication of 2(2n+1)X1

" - functions integrated over bothandr’, i.e., KM (t—t;). The
vector 4 with 2n(2n+1)x 2n(2n+1) matricesY, (1),  figure shows the real and imaginary parts as well as the ab-
and® which are defined in Eq$48) and(40). ® andY are  solute values oK)(t—t;). The response function grows
constructed in terms of the harmonic-oscillator basis stategapidly by around an order of magnitude over the time scale
which are calculated numerically from the recursive formula~3#/w;,,. The response function keeps growing over time
that involves the Gaussian function multiplying the Hermitesince TDHFB does not have any dissipative term; this should
polynomials[36]. The matrixZ4(t) was calculated using a be a reasonable model for BEC in the collisionless regime. It
MATLAB function that uses the Padgproximation for ma- also shows that, even in the absence of a dissipative term, it
trix exponentiatior 37]. takes some time after the initial impulsetat=0 before the

We first present the dependence of the linear responseffect of the force is reflected appreciably in the response
function onr andr’ at fixed timest—t’. This gives a snap- functions. From the plots, we note that a mechanical force
shot of the position-dependent correlations across the corapplied on the condensate can be seen to “generate” noncon-
densate. Such dependence is important since the experimaensate atoms and anomalous correlations even at zero tem-
tally produced condensates are mesoscopic in size; iperature.
contrast, the dipole approximation usually applies in optical The calculations of Fig. 3 are repeated at finite tempera-
spectroscopy and consequently, the spatial dependence of thee in Fig. 4. The main difference is the smaller magnitude
response is not observable. ofK,,, K,,, andK,, . The fact that the BEC is less respon-

In Fig. 1, we display the real-space response functions ative at finite temperature may be attributed to the fact that
timest—t' =0/wyap, 7.2k yap, 15.Thoyap @t zero temperature. the condensate to noncondensate interaction is greater at fi-
Figure 2 shows the corresponding finite-temperature resultsite temperatures where additional collisions shield the effect
Physically,t’ andr’ are, respectively, the time and postion at of the applied perturbation.

043602-8
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FIG. 3. The left column show&(V(t—t;,r), i.e., linear response in time at zero temperature integrated gwerd plotted as a function
of t—t, andr for zero temperature. The details for the time of evolutiert’ =07/ w,, t0 57/ wy,, are shown. The right column shows
linear response integrated over botandr,, K()(t—t,), plotted as a function af—t, from O to 57l wyap; the solid, dashed, and dotted
lines represent the absolute value, real part, and imaginary part, respectively, of the integrated response& ftittidn). The position
X is given in harmonic-oscillator length units.

C. Frequency-domain response Similar to the time-domain calculations of Figs. 1 and 2,

The susceptibilities were computed using E&f) in con- ~ We show in Fig. 6 the linear respong&”(—Q,Q,r.ry) at
junction with Eqs.(66)—(68). Equation(65) is a matrix mul- ~ Z€ro temperature as a function r_oémdrl for three different
tiplication of 2n(2n+1)x1 vector ) with on(2n+1) frequencies. These frequencies represent the resonant

X 2n(2n+ 1) matricesY, U(w), and®. The matrix/( ) is :‘jrequency c((;riespondmg 0 f(?e strongesft peak for tahg con-
calculated as follovs: ensate atQ)=0wy,, an off-resonant frequency

=0.25wy,p, and the resonant frequency corresponding to the

&t second highest peak for the condensat€)at0.46w,p,. In
Uw)= wo—L+ie 22;4 o—w +ie (73 Fig. 7, we repeat the calculations for a finite temperature, and

the frequencies represent the resonant frequency correspond-
where ¢, is the right eigenvalue of with eigenvaluesw, INg to the strongest peak for the condensate (at
(Lé,=w,&,) and ¢, are the left eigenvectors such that =0.63wyqp, an off-resonant frequency &= 1.25wy,p, and
zygudz ]. The eigenvalues, of £ were calculated using the resonant frequency corresponding to the second highest
the Arnoldi algorithm[35]. peak for the condensate Qt=1.7w,,. Similar to the time-

To clearly display the resonance structure, we present ifomain plots, the frequency-domain response is strongly po-
Fig. 5 the absolute value of zero and finite-temperature lineagition dependent. Off-resonant frequencies give a more com-
response integrated overandr; in the frequency domain, Plicated pattern. o
|fX21!3(_Q,Q,r,rr)drdrr|, a=z,p,k on a logarithmic The absolute values of the zero and finite temperature
scale. The eigenvalues dfand hence the resonant frequen- x(—Q;Q,r,r’)  integrated  over r’,  |[x®
cies come in positive and negative pairs; we present only thée—Q;Q,r,r')dr’|, are plotted as a function & in Figs. 8
positive frequencies since the function is symmetric abouand 9. This represents the response to a spatially uniform
the zero frequency. We note that low-frequency resonancesxternal perturbation. Since the resonance peaks vary vastly
are dominant; this may explain the absence of any oscillatorin strength, we also present a contour plot in which all the
features in the time-domain plots. intensities have been normalized to one.
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FIG. 4. Same as in Fig. 3, but at finite temperaturé @(kg .
V. DISCUSSION sional condensate the entire set of eigenvalues could be cal-

We h lied th ; fic f i f i culated directly. For larger matrices, the algorithm only gives
e have applie € systematic formalism of noniin€aly, o \4\yest few eigenvalues. This should be sufficient to de-

S.E?.C.trOSC?%/EtO calculate tr?e feslp?”se funcu?nds and SUSCERsine realistic experiments such as three-dimensional asym-
tibilities of BEC to a mechanical force coupled to atomic o vic tran holding up to foatoms.

density for the condensate, noncondensate density, and non- 1,4 damping of excitations is not included in TDHFB. In

condensate correlatlons. S'F‘CG.OL” r_esults h.OId for_ an arbhef. [4] Landau and Beliaev damping were introduced by
trary external perturbation, it will be interesting to investi-

gate the effects of specifically taylored external force, e.qg., K D-g;0)]

impulsive or “continuous-wave” perturbations. The contour - - - T - T

plots of the response functions and susceptibilities may be 1o ‘ |H 1 Ky
used for the design of experiments involving applications of o] |: | | | ] | —t |
mechanical forces to a condensate. For instance, by carefullj? 1o} ‘ ’ 1 Ko,
specifying the shape of the external poten¥g(r,t), one  — 4 L. M ‘ |, .l 1 ;d , l, ‘ — ‘

may effectively cancel out the response of, say, the noncon | 1K
densate atoms. This would provide new insights into the dy- || |,y , M H |: " 1 I 1“ | ‘ ‘ ®

namics of the condensate and noncondensate interaction

Our results show the time delay between the application of e~ "[| || H | n” 1l i [ | h Kap

mechanical force at'=0 and the buildup of response. We © ° e e e

further note that the noncondensate correlations as well a |, ' | \ H | H| M “ ‘ 1 K,

the condensate and noncondensate atoms respond to the ¢— °© L A —L—

ternal mechanical force. 10-| I H | | M ‘ ‘ { K,
The response functions computed in this paper offer a ot |1“ L é“ﬂ " . P ‘; eyl

practical way to solve the TDHFB numerically with modest Q

computational effort. Still, one potential bottleneck is the :

computational cost required to diagonalize a large matrix. F|G. 5. Logarithm of linear response functions in frequency
Krylov space techniques such as the Arnoldi algorithm usethtegrated over both andr, vs frequency. Top three panels, zero
in the paper considerably reduces that ¢88]. As our ma-  temperature; bottom three panels, finite temperatufevlRg . The
trices were only 118110 in these simulations of one dimen- frequency(, is given in units of trap frequency.
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FIG. 6. x")(~,Q,r.r1) at zero temperature for frequencies  FiG. 8. The linear susceptibility at zero temperature integrated
0 =0wrap,0.2504rap, 0.46wy;5p given in different columns. These gyerr, and plotted as a function @?,. The left column shows the
frequencies represent the resonant frequency corresponding to ty@scaled spectrum as a function of position; not all resonances are
strongest peak for the condensate(btOwy,p, an off-resonant  spown due to scaling; only the most dominant ones are represented.
frequency() =0.25wy,, and the resonant frequency corresponding, the right-hand column, the function has been normalized so that
to the second highest peak for the condensaf@-a0.46wyap- The )| the resonances have a height of one. The posttingiven in
positionsx andx’ are given in harmonic-oscillator length units. harmonic-oscillator length units, while the frequertey is given in

. . . units of the trap frequency.
calculating the imaginary part of the self-energy. The theory

of damping of oscillations in BEC is currently far from con-
clusive and requires further investigation. This has motivate

various authors to try and extend the HFB theBB— clear. The TDHFB equations do constitute a systematic and

40,17,19. It should be noted that there is currently no all- ; . X -
encompassing theory of BEC that explains all observed phec_onS|stent description of trapped atomic BEC at finite tem-

nomena. In addition, as noted by Legddt], the validity of peratures in the collisionless regime, just as the Gross-

various approximations made in some of the existing theo_F’ltaevsku equation is valid near zero temperature. In the fu-

ries of strongly nonequilibrium dynamics of BE@.g., ki- ture it should be p(_)ssmle to observe directly the effects of
anomalous correlations.

Most current work on BEC excitations deals only with the

@etics of the condensation process, the damping of collective
excitations, and the decay of vortex states not entirely

K™ (2,063, x, x) K™ (@,=1.25, x, x) KD (@=17, % x) . g
linear response; however nonlinear effects should be observ-
19 able with stronger perturbations. Just as in standard nonlinear
o (5) K,, optics, thenth order response functions are expected to be
-5
=i KD (-9, %)
10
5 8
X o K 6
. pp Q, . P sz
= 1o} 5 — e —
10 —_—
5 8
X _2 KKp Ql j ® = KPP
|  Tm=ew
-10 0 10 -10 0 10 -10 0 10 S e
X X X 8 AVA)
Q, ® — e K.
FIG. 7. x'V(—Q,Q,r,r,) at finite temperature for frequencies 4 a—_ o ’
0 =0.630ap, 1.250ap, 1. 704, given in different columns. These 2 ==
frequencies represent the resonant frequency corresponding to tr -5 0 5
strongest peak for the condensate)at 0.63wy,,, an off-resonant X X
frequency() = 1.25w,;,, and the resonant frequency corresponding
to the second highest peak for the condensat@ atl. 7w,,. The FIG. 9. Same as in Fig. 8, but at finite temperature

positionsx andx’ are given in harmonic-oscillator length units. 10h w/kg .
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most valuable for characterizing BEC in the context of

matter-wave nonlinear optics. Our formalism allows the cal-E=2> (Hij—w)[z* 7%+ p{"]

culation of nonlinear susceptibilities which may be used to '

probe finite-temperature condensates by four-wave mixing 1

[8]. Nonlinear response functions will be computed in a +§_E Vijkm[zi(O)*Z](O)*ZE(O)ZS?)_F‘]'Zi(O)*ZﬁO)p](r%)
forthcoming work. Other possible future applications include 'Jkm

detailed study of atom optics at finite temperatures, and su- 4 Z(00 70, (0) 1, ()% 7(0)7(0) 1. 5 ,(0) ,(O) 4, (O, (01
perchemistry that involves the study of the formation of mol- J ' J J

ecules from mesoscopic BEC matter way42]. (AB)
It is easy to show that the local minimum f&robtained by
ACKNOWLEDGMENT setting its derivative with respect #”* to zero satisfies Eq.
_ (AL).
The support of NSF Grant No. CHE-0132571 is gratefully  |n addition, R() is found by minimizing the thermody-
acknowledged. namic potential for a system of bosons in thermal equilib-

rium. In Ref.[11], the generalized density matriR® in
thermal equilibrium, assuming a grand-canonical form for

APPENDIX A: EQUILIBRIUM TIHFB SOLUTION the density matrix is shown to be given by

The TIHFB is given by the coupled equations L
RO=—— © 5. (A7)
H§0)2(0)+H§2)z* ©=p, (A1) expyH™/kT)—1

It may be shown straightforwardly that the generalized den-
sity matrix of Eqg.(A7) obeys Eq.(A2), and is therefore a
stationary solution. The proof requires using the property
%=1, and the fact that a matrik commutes with a function
where Eq.(A1) is the time-independent GPE with ") and  of A, f(A). The minimization of the thermodynamic poten-
H&?) defined, respectively, in Eq$14) and (15), and the tial also gives the relatiofil1]
matricesR(®), H(®) 7 of Eq. (A2) are as defined in Eq19).

The equilibrium solution to TIHFB is obtained variation- 1 .0_ 9
ally. Equation(A1l) is solved forz(®) by using a numerical 27T 4RO
optimization routine to minimize the energy functioril N
=(H) with respect taz(®*. The energy functional is found Using Eq.(A6) and the definition oR® given in Eq.(19),
by applying the thermal Wick’s theorem to the Hamiltonian Eq. (A8) implies
H. For the Wick theorem, Eq10), to hold the state of the
system is assumed to be described by a trial statistical den- h@:ﬁ:
sity matrix of the form 1 f9Pi(j0)

YHOy,3RO]=0, (A2)

(A8)

Hy =t 23 IV 40 +f0),
(A9)

D= Zo=Tre PK, (A3) ©_ 9E
L _ax$ﬂ

=3 GilVIkn[ZOZ+ ). (A10)

where the operatdK is taken to be quadratic in the annihi- These variational results satisfy Eq46) and (17), derived
lation (Creat|0r) Opel’ator for the noncondensate atoms, using the Heisenberg equations of motion.

(c]) defined axj=a,~z (¢/=a/-2z"): We now discuss the self-consistent solution to the TIHFB.
The solution to the TIHFB involves simultaneous minimiza-
1 tion of Eq. (A6), coupled to Eq(A7), whereH® is as de-
K=> > [hO(clc;+cich+ A0l + A% ¢y, fined in Egs.(16) and (17), and (19). SinceH© is itself a
249 function of R, the solution is found iteratively. In order to
(A4)  evaluateR(®, Eq. (A7), we need to diagonalize the matrix

YH©). The specific form of the matrixH(® implies that its
with eigenvalues and eigenvectors come in pairs. LeftiAgind
W" denote right eigenvectors belonging to the eigenvalues

pi(jo)zTrchTci , Ki(l-o)=TI‘DCiCj . (A5) *En,
YHOY =g " JHOW=-E,W", E,>0,
Then one obtains for the ener@=(H), (A11)
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where the normalization and closure relations of the eigenwjth n_ =[expE,/kT)—1] % The possible zero energy

vectors are

VM= G W= — 5, VTR0,

(A12)

5mna
and

2 (’\“/nvn‘r’;,_ WanT';,) =1.

n=0

(A13)

It is noted that the eigenvectox® andW" have the follow-
ing structure:

Un Vﬂ*
Vn:(vn)! Wn:(Un*)’
and given a right eigenvectd’”, the left eigenvector be-
longing to the eigenvalug} is V"= (U™,—-V™), and the
left eigenvector belonging to the eigenvalueE} is W"
=(V",—U").
Using the closure relationshifR® of Eq. (A7) may be
written as

(A14)

RP= 3 (Vv + WR I+ 3 W
m=o m>0

states are ignored, as indicated in the summation aver
>0. From this expression, one can calculate the matpces
and « from the explicit form ofR given in Eq.(19).
The iteration process consists of the following stglis.
(1) Make an initial guess & ?) and setp=«=0.
(2) Solve Eq.(Al) which determinest andz. Normalize
z according to

N=> |z|>+Trp, (A16)
I

where N is the total number of atoms and Tr denotes the
trace.

(3) Solve the eigenvalue problem E@11) and normal-
ize the eigenvectors according to E&.12).

(4) CalculateR from Eq.(A15) and deduce the matrices
and «.

(5) Calculate the fields{ (¥ and ! and return to step 2.

(6) Stop the iteration when two successive iterations yield
the same values o p, and « to the desired accuracy.

APPENDIX B: THE £; MATRIX
In Eq. (37), L=Ly+ L. The Z(2n+1)X2n(2n+1)

(A15) matrix £4 is defined as follows:
|
VZZL VZZZ Vzl VZZ 0 0
VZZQ* vzzl* 0 0 VZl* VZZ*
szl VpZZ th WKA 0 WKAT
‘Cl: VKZ]. VKZZ WKh WpA WKhT 0 ' (Bl)
VpZZ* szl* 0 (WKAT)* (th)* (WKA)*
VKZZ* szl* (WKhT)* 0 (WKh)* (WpA)*
where the set ofix n submatriced’?% andV?%, nxn? submatrice’?! andV?, n?x n submatriced’*?*, VY% y«?1 and
V<22 andn?Xxn? component submatriced?", Wr, W, andW** of £, are given as follows,
Viz,lﬂzé Vikr 2t 929, Viz,f:; Vi 292, (B2
Viu= 22 Vi 29, Viz,zkI:Z Vi 2, (B3)
ﬁZ?—ZE Vi zi ¢ PS?)_Vran*(O)PFrO)’L% [VirklZ(k0)+Vir|kZ(k0)]K:](O), (B4)
.‘]Zﬁ—ZE VikirZ (O)st)_ w2 Vp (0)_2 [Viiazr @+ Vijizr @1« (B5)
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Vﬁzﬁzzz V“kle*(O)KE?)+Vrkler(O)Ki(r())+; [VrjklZI(O)+VriIkZI(O)]Pi(rO)+; [VirklZI(O)+VirIkZI(O)]P:}(O)

+2| [Vijklzl(0)+vijlkzl(0)]1 (B6)
V{fﬁ=2; Vikr ZE6 D+ Vi 2V, (B7)

Wﬁr,]m:zz Vikir ol = Veiipl, Wﬁém:z: Vira 05 +Vijiaple, (B8)
Wi’}ijmzz VikIrKE?)- Wﬁmzz VrkIjKi(rO)' (B9)

Wﬁd:z Vina &%, W{jﬁ:ﬁzz Vi 2. (B10)

In addition, we define

7(0)
E(1) E(t) 0 0 0 0 0
E*(1) 0 E*1t) 0 0 0 0 7%

i e(t) -0 0 0o ) o0 0 0 p©@ a11
(O=dag g Y51 0 o 0 &I o 0 o |- B
[e)()]* 0 0 0 0 [ 0 5O
[eD(t)]* 0 0 0 0 0 [eM(D)]* O

[
: 2 H ~
We have further defined the? x n> matrices HS”—,u,+2Uo[|¢g(r)|2+n(r)]vi(r)+Uo[¢’52(r)
E(i)(t)ij’“:Eik(t)6j|iE|j(t)5ik. (812) +Fn*(r)]ui(r):_Eivi(r)v (Cl)

where the quantitiegy,(r), n(r), andm(r) are as defined in
Ref. [12] which are, respectivelyz(r), p(r), and «(r) of
‘I%qs. (28)—(30) when written in terms of our variables,

pij » andx;; . u;(r) andv;(r) are the eigenstates to be calcu-
lated and can be shown to satisfy the orthogonality and sym-

APPENDIX C: BOGOLIUBOV —de GENNES EQUATIONS metry relations
FOR CONTACT INTERATOMIC INTERACTION

Griffin has provided a prescription for solving TIHFB in f U (Nu(r) —of (Nog(r) = ik, (C2
terms of the Bogoliubov—de Gennes equations under the
contact interatomic potential approximatigi®]. In this sec-
tion, we show that self-consistent equations Rf) [Eq. f uF (Nov(r)+ol(ru(r)=0. (C3)
(A7)]is simply the Bogoliubov—de Gennes equations written
in th_e trap basis, under the contact int(_eratomic potential ap- |, matrix form, Eq.(CY) is
proximation, and summarize the numerical procedure used to

As mentioned in the main text, “diagBC- - - ]” denotes
block-diagonal square matrix with the component matrice
A,B,C, ... as its diagonal blocks.

find the solution to the TIHFB. [ h A\flu u
The Bogoliubov—de Gennes equations 2] V(A* h*)( =E( ) (Co
v 1%
HSP— u+ 2U0[|¢g(r)|2+ﬁ(r)]ui(r)+ U0[¢5(r) where we have changed the basis from the position basis to
5 the trap basis by introducing the matrix elements in terms of
+m(r)]u;(r)=E;u(r), the trap eigenstates;(r) as follows:
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hu=J¢fUHH”—M+2UdeﬂF?W”H¢ﬂ”m-

(C5)

A.,=f B (NULy5(r)+m(r)]gi(r)dr.  (C6)
=f F (ruy(r)dr. (7

v.=f ¥ (No;(r)dr. ()

Using the contact interaction, and Eq®8)—(30) for

y(r), N(r), andm(r), it is clear thath andA coincide with
those of Egs.(16) and (17); the Bogoliubov—de Gennes

PHYSICAL REVIEW A 67, 043602 (2003

The steps to follow in solving the TIHFB are, therfore, the
following [12].

(1) Solve Eq.(Al) for z; assumingp;; = x;;=0.

(2) DiagonalizeH of Eq. (A2) with the current value of
z, pij, ki - Get eigenvectort) and V.

(3) Calculate newp;; and«;; usingU andV,

pij (1) 2 [UpiUpi+ VaiVpINg+ ViV, (C9)
Kij(t)zgo[Upiv;j+upjvgi]Np+u Vi, (C10

whereN,=[exp(iw,/kT)—1] "%

(4) Solve Eq.(Al) for z; using the calculated values pf
and k;; .

(5) Iterate: go back to Ste(®).

equations in the trap basis therefore give the same eigenvalue () Stop the iteration when the solutioas, pij» andx;;

problem as that of diagonalizing the matmi of Eq. (A7).

converge.
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