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The full quartic six-mode force field for the NH, CO, and CN stretches of the peptide bonds of a cyclic
dipeptide rigidly held by a bridge (2,5-diazabicyclo[2,2,2]octane-3,6-dione (DABCODO)) is computed at the
ab initio level and used for the simulation of two-dimensional three-pulse femtosecond infrared measurements.
Analysis of the complete set of one- and two-color signals generated at all four possible wavevectors
(-k1 + k2 + k3, k1 - k2 + k3, k1 + k2 - k3, k1 + k2 + k3) shows distinct signatures of anharmonicities,
mode couplings, Fermi resonances, and relative transition dipole orientations.

I. Introduction

Multidimensional vibrational spectroscopy provides new
insights into structural and dynamical properties of molecules
and chemical reactions with ultrafast time resolution.1-3 Con-
gested ordinary one-dimensional (1D) spectra may be disen-
tangled by spreading the signal into additional dimensions,
allowing the time scales of environmental bath interactions to
be discerned by line shape analysis.nD techniques are based
on correlation plots displaying the signal with respect ton
variables. These may include time intervals between pulses (tj),
carrier frequencies (ωj n), or other pulse parameters such as
envelopes, polarizations, durations, and even phases.4-6 Newly
appearing cross-peaks in two-dimensional correlation plots
contain direct signatures of intra- or intermolecular interactions
that can be converted into structural and dynamical information.
Intense tunable 50-100 fs infrared pulses make it possible to
monitor structural changes and ultrafast processes such as
vibrational energy relaxation and redistribution, charge transfer,
conformational fluctuations, and chemical reactions.

Linear-infrared spectroscopy has been widely used to study
secondary structures of peptides and proteins, because many
vibrational bands of the amide units are sensitive to structure.7-8

These include the amide I band, mainly a carbonyl stretching
vibration with contributions from the C′sN stretch and C′sNsH
bend; the amide II mode (1600-1700 cm-1),8 predominantly
the C′sN stretch coupled with the CsNsH bend; and the NsH
stretch, which is split into the amide A and B bands (3100 and
3300 cm-1) due to a Fermi resonance with the first overtone of
the amide II mode.9 In recent years, experimental multidimen-
sional IR techniques have been applied toward the study of
peptides and small molecules.10-34 Double resonance pump-
probe methods with frequency selective excitation (pump) and
broad band probe pulses have been used in initial studies of
vibrational coupling and energy transfer in small oligopeptides.10

More recently, guidelines for the mapping of strong field NMR
pulse sequences into weak field optical techniques have been
established35,36 and pure time domain heterodyned two- and

three-pulse IR analogues of the NMR COSY and NOESY pulse
sequences have been implemented.13

Peptides usually have a complex energy landscape with many
local minima corresponding to various secondary structures,37-40

a number of which are relevant to the description of folding
dynamics. Multidimensional infrared and Raman techniques
have the potential to probe rapidly changing structural elements
such asR helices andâ sheets with subpicosecond resolution.
A key ingredient in the design and interpretation of these
measurements is the ability to predict force fields at the ab initio
level. Force fields employed in standard packages are not
parametrized to calculate anharmonicities and yield conflicting
results for small peptides.41

The purpose of this paper is to provide a simple benchmark
for the application of ab initio methodology for predicting
nonlinear-infrared response of peptides. Small peptides usually
do not have a well-defined structure because their potential
surface possesses many local minima.42 We found the dipeptide
2,5-diazabicyclo[2,2,2]octane-3,6-dione (DABCODO), a cyclic

diglycine with an ethano bridge,43 to be an ideal model system
for our simulations. It exists in a single and rather rigid
conformation so that the structure in the gas phase as well as in
solution is unambiguous. Also, the molecule is sufficiently small
to allow high-level ab initio quantum chemical calculations of
the vibrational eigenstates and anharmonic couplings.44

The first-principles simulation of multidimensional signals
requires the calculation of optical response functions. In the first
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step, internal coordinates (local modes) are chosen to describe
local vibrational motions; bond lengths represent stretching
vibrations, bond angles represent in-plane bending modes, and
dihedral angles represent out-of-plane vibrations. Anharmonic
force constants and dipole derivatives for selected local modes
are then calculated by numerical differentiation of the energy
and dipole to fourth and second order, respectively. Diagonal-
ization of the resulting effectiveVibrational exciton Hamiltonian
yields molecular eigenstates, eigenvectors, and transition dipole
moments between all states. Third-order nonlinear response
functions are then computed in the time domain using the sum-
over-states expression.45 This procedure was tested in a recent
simulation of the photon echo spectrum of a rhodium(I)-
dicarbonyl complex using the B3LYP density functional and
the LanLDZ basis set. Qualitative agreement was found with
experiment,28 and quartic terms in the potential energy were
shown to be critical for reproducing the experimental transition
energies and intensities. We present simulations of the signals
generated at the four possible independent signal wavevectors
and analyze the information that may be extracted from the
cross-peak pattern for each signal using both one- and two-
color pulse techniques.

II. Nonlinear Response Functions and Multidimensional
Signals

Third-order nonlinear multidimensional vibrational spec-
troscopy involves the application of three pulses (τ1-τ3) that

create and manipulate populations and coherences of vibrational
states.2,45 The total electric field at pointr is given by

with an envelopeEn(τ - τn) centered atτn, a carrier frequency
ωj n, a phaseæn, and a wavevectorkn of thenth pulse. The third-
order polarization vector induced by this field is

wherei, j, k, l ∈ {x, y, z} refer to the Cartesian components of
the linearly polarized electric field and polarization.t1 and t2
are the delay times between the three pulses, andt3 is the time
between the third pulse and the timet when the signal is finally
measured. Controllingt3 requires an additional gating device
or heterodyne detection. The nonlinear polarization is character-
ized by a response functionRijkl

(3), a fourth-rank tensor that
contains the full microscopic information about all third-order
signals.

Substituting eq 1 into eq 2 shows that a signal can be
generated in eight possible wavevector directionskS ) (k1 (
k2 ( k3. Coherent three-pulse spectroscopies may be distin-
guished and systemically classified in terms of the signal
wavevectors that represent distinct combinations of Liouville
space pathways.2,45 The details of a particular experiment are

contained in the external field profilesEn(t), eq 1, and in the
particular choice ofkS, which selects specificLiouVille space
pathways. Thus, only at this stage, the different spectroscopic
techniques may be distinguished. Only four signal wavevectors
kS are independent and will be denotedkI ) -k1 + k2 + k3,
kII ) +k1 - k2 + k3, kIII ) +k1 + k2 - k3, andkIV ) +k1 +
k2 + k3. The remaining four wavevectors are given by-kS. It
follows from eq 1 that each choice ofkSalso implies a particular
combination of field frequenciesωj s ) (ωj 1 ( ωj 2 ( ωj 3.

Rijkl
(3) is generally given as a sum of eight four-point correla-

tion functions of the dipole operator, each representing a distinct
Liouville space pathway. Only four out of the eight terms
contributing to the response function are independent, the other
four are given by their complex conjugates:

with

and the line shape function

ΩVV′ constitute transition frequencies between two vibrational
eigenstatesV andV′, ΓVV′ is a homogeneous dephasing line width,
and µVV′ are the corresponding transition dipole moments
describing the coupling between the states.θ(t) is the Heavyside
function, andP(a) is the thermal population of the initial state
a given as Boltzmann factor

More sophisticated simulations of environmental effects affect-
ing the signal line shapes46 will be incorporated in future work
as the main objective of the current study is to identify the main
peaks and analyze the possible global patterns of multidimen-
sional signals.

If orientational and vibrational dynamics are decoupled, each
of the terms contributing to the response function containes a
scalar part describing the vibronic dynamics and a fourth rank
tensorial part, the ensemble average〈ijkl 〉, of the orientational

E(r ,τ) ) ∑
n)1

3

[En(τ - τn) exp(iknr - iωnτ + iæn) ×

E n
/(τ - τn) exp(-iknr + iωnτ - iæn)] (1)

Pi
(3)(r ,t) ) ∫0

∞
dt1 ∫0

∞
dt2 ∫0

∞
dt3 Rijkl

(3)(t3,t2,t1) ×
Ej (r ,τ3)t-t3) Ek(r ,τ2)t-t3-t2) El(r ,τ1)t-t3-t2-t1) (2)

Rijkl
(3)(t3,t2,t1) ) ( i

p)3
〈[µi(t3+t2+t1), [µj(t2+t1), [µk(t1), µl(0)]]] 〉

(3a)

) ( i

p)3

∑
R)1

4

(RR)ijkl(t3,t2,t1) + cc (3b)

(R1)ijkl(t3,t2,t1) )

∑
a,b,c,d

P(a) 〈icdjbckablda〉 µabµbcµcdµdaIdc(t3) Idb(t2) Ida(t1)

(4a)

(R2)ijkl(t3,t2,t1) )

∑
a,b,c,d

P(a) 〈icdjbckdalab〉 µabµbcµcdµdaIdc(t3) Idb(t2) Iab(t1)

(4b)

(R3)ijkl(t3,t2,t1) )

∑
a,b,c,d

P(a) 〈icdjdakbclab〉 µabµbcµcdµdaIdc(t3) Iac(t2) Iab(t1)

(4c)

(R4)ijkl(t3,t2,t1) )

∑
a,b,c,d

P(a) 〈iabjbckcdlda〉 µabµbcµcdµdaIba(t3) Ica(t2) Ida(t1)

(4d)

IVV′ (t) ) θ(t) exp(-iΩVV′ t - ΓVV′ t) (5)

P(a) )
exp(-εa/kBT)

∑a exp(-εa/kBT)
(6)
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factor of the response.26,47,48 This factor, introduced in eq 4
relates the orientation of the electric field of the four pulses in
the laboratory frame (i, j, k, l ∈ {x, y, z}) to the orientation of
four transition dipole moment vectors involved in each Liouville
space pathway.49,50We assume that rotational dynamics is slow
on the experimental time scale, which is typically justified for
subpicosecond measurements in polyatomic molecules. Other-
wise, the orientational factor will become time dependent as
well.26,45

A full simulation of the signals should include the response
function as well as the pulse shapes. We have made our
calculations in thesnapshot limit,45 which incorporates the key
pulse characteristics at a greatly reduced computational cost.
In this ideal limit of time-domain impulsive experiments, all
the applied fields are taken to be very short (impulsive) so that
the integrations over time intervals can be eliminated and the
signal is directly proportional to the nonlinear response function.
At the same time a finite (rectangular) pulse bandwidth allows
a spectral selection of the resonant transitions of interest.

When the pulse envelopes are incorporated in the triple
integrals, all signals may be computed using the full response
functions. The time integrations automatically select the domi-
nant terms for each possible technique. Because our simplified
procedure does not include these integrations, therotating waVe
approximation(RWA) must be applied manually to select only
those terms that are resonant; that is, the material frequency
ΩVV′ must reside within the field bandwidth aroundωj n. All
nonresonant and highly oscillating terms must be neglected.
Eliminating the integrations without invoking the RWA leads
to incorrect results because it implies that the pulses are short
compared with the carrier frequency, which is, of course,
impossible. The terms that survive the RWA depend on the
molecular level scheme as well as the dipole couplings. We
shall denote the RWA response function for a specific choice

of the wavevectorkS in a three-pulse impulsive experiment as
R ijkl

S (t3,t2,t1) with S ) I, II, III, IV.
Various detection modes may be employed.2 The time-gated

homodyne detected signal is directly given by|R ijkl
S (t3,t2,t1)|2.

The signal can also be displayed in the frequency domain: Using
a two-dimensional Fourier transformation for the time variables
t1 and t3, we obtain the complex signal

similarly transformingt2 and t3 yields

These signals will be computed in the coming sections.

III. Anharmonic Force Field and the Exciton
Hamiltonian

The geometry of DABCODO has been optimized using
density functional theory (B3LYP)51-54 with a 6-31G(d,p) basis
set55-59 implemented in Gaussian98.60 The resultingC2-sym-
metric structure was in very good agreement with that reported
previously.43

Anharmonic force constants representing the complete quartic
force field and first-order dipole derivatives have been calculated
numerically following the procedure described earlier.44 Only
internal coordinates representing the predominant contributions
to the amide I, II, A, and B modes were selected (Table 1).
The amide I and II modes are described by the CdO and CsN
stretches, respectively. The C′sNsH and CRsC′sN bending

Figure 1. Logarithmic linear IR spectrum of DABCODO and the energy level scheme calculated from eigenstates and transition dipole moments
of the six-mode exciton Hamiltonian (Γ ) 5 cm-1). One exciton states (red) consist of two individual levels, single-mode two-exciton states (blue)
of three levels, mixed two-exciton states (green) of four levels, single-mode three-exciton states (magenta) of three levels, and mixed three-exciton
states (light blue) consist of four levels.

S(ω3,t2,ω1) )

∫-∞

∞
dt3 ∫-∞

∞
dt1 R ijkl

S (t3,t2,t1) exp(-iω3t3 - iω1t1) (7)

S(ω3,ω2,t1) )

∫-∞

∞
dt3 ∫-∞

∞
dt1 R ijkl

S (t3,t2,t1) exp(-iω3t3 - iω2t2) (8)
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modes carry significant amplitudes in the amide I and in
particular in the amide II modes. These coordinates were
neglected, causing small deviations from the vibrational fre-
quencies calculated in a 3N - 6 coordinate harmonic normal-
mode analysis. Nonetheless, an accurate description of the
spectra is retained as the intensities of these modes are derived
primarily from the CdO and CsN dipole derivatives.

A Fermi resonance of the amide II overtone with the
fundamental of the NsH stretch gives rise to the amide A
(≈3300 cm-1) and amide B (≈3100 cm-1) bands.9 The former
carries about 90% of the total intensity and is mostly composed
of a single excitation in the NsH stretch.61 We did not calculate
a Fermi resonance, because the NsH stretch frequency is
overestimated by DFT and at the same time the amide II

frequency, which misses the contribution from the NsH bending
vibration, is underestimated. In addition, solvation increases
(decreases) the amide II (amide A) frequencies, reducing the
energy gap between the interfering states and enhancing the
Fermi resonances.62 Our calculations are performed in vacuo
and therefore do not account for this effect.

The anharmonic exciton Hamiltonian has been recast in a
normally ordered second quantized form for the 6 local modes.
A sum of 10 excitation quanta over all basis states results in a
total number of 2153 basis states.44 Table 2 summarizes the
eigenvectors of the fundamental (one-exciton) transitions. Ener-
gies and anharmonic shifts are collected in Table 3 for all

Figure 2. kI ) -k1 + k2 + k3: Feynman diagrams (Rs ) R2 + R3 - R1
/) and energy level schemes (dashed arrows, interaction from the right;

solid arrows, interaction from the left; wavy arrows, signal pulse) forωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1 (ν(CdO)). For a pulse width of(100 cm-1 the
following number of Liouville space pathways result: R2 and R3, 4 each; R1

/, 20.

Figure 3. kI: 2D spectra (zzzz) for ωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1(ν(CdO)). Upper panel:t2 ) 0. Lower panel: t1 ) 0.

TABLE 1: Selected Internal Coordinates for Each Peptide
Unit with Intrinsic Frequencies ω̃k

no. coordinate amide band bond length (pm) ω̃k
a

1 CdO I 121.9 1786.5
2 NsC II 136.8 1468.4
3 NsH A, B 101.0 3644.1

a Diagonal element of the quadratric force constant matrix.

TABLE 2: Eigenstates of Fundamental Transitions of the
Six-Mode Hamiltonian (10 Excitation Quanta)

energy eigenvector:|CN CN CO CO NH NH〉
0.0 0.98 |000000〉

νs(CsN) Ωe 1420.4 + 0.38 |100000〉 + 0.86 |010000〉
νas(CsN) Ωf 1441.7 + 0.86 |100000〉 - 0.38 |010000〉
νas(CdO) Ωa 1773.6 + 0.65 |001000〉 - 0.66 |000100〉
νs(CdO) Ωb 1780.8 - 0.66 |001000〉 - 0.65 |000100〉
νas(NsH) Ωc 3458.9 - 0.61 |000010〉 + 0.73 |000001〉
νs(NsH) Ωd 3463.6 - 0.71 |000010〉 - 0.59 |000001〉
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fundamental and doubly excited states. The indicesa and b
denote the antisymmetric and symmetric stretching vibrations

of the CdO group (amide I),c andd denote the antisymmetric
and symmetric stretching vibrations of the NsH group (amide
A), and e and f denote the symmetric and antisymmetric
stretching vibrations of the CsN group (amide II). The
parametersω̃k, Ωj, ∆ii, and∆ij denote the intrinsic frequencies
of the local modes, the transition energies for the one exciton
states, and the diagonal and off-diagonal anharmonicities of the
two-exciton states, respectively.

The low-resolution linear IR spectrum calculated using the
eigenstates and transition dipole moments of the six-mode
exciton Hamiltonian in the 1000-8000 cm-1 range is shown
in Figure 1 together with an energy level scheme for all one-
and two-exciton as well as some relevant three-exciton states,
for a total of 139 states. A homogeneous line width ofΓ ) 5
cm-1 (eq 5) has been assumed.

The fundamental transition frequencies obtained from the
diagonalized exciton Hamiltonian are compared in Table 4 to
the harmonic normal-mode frequencies and with experiment.43

The transition frequencies obtained from the exciton Hamil-
tonian are considerably lower than the corresponding harmonic
values, particularly for the NsH and CdO vibrations, because
higher excitations introduce stabilizing effects. In addition, the
band splittings calculated using the anharmonic exciton Hamil-

TABLE 3: Local Mode Intrinsic Frequencies ω̃k (Unscaled),
Eigenstate Energies for Fundamental TransitionsΩj, and
Anharmonic Shifts for Overtone (∆ii) and Combination
Bands (∆ij) (cm-1)

parameter energy parameter energy

ω̃1 1468.4 ∆ab 16.9
ω̃2 1468.4 ∆cd 2.4
ω̃3 1786.5 ∆ef 3.4
ω̃4 1786.5 ∆ea 1.2
ω̃5 3644.1 ∆eb 0.9
ω̃6 3644.1 ∆fa 1.4
Ωe 1420.4 ∆fb 0.5
Ωf 1441.7 ∆ec (0.0
Ωa 1773.8 ∆ed -3.1
Ωb 1780.8 ∆fc 0.8
Ωc 3458.9 ∆fd -5.3
Ωd 3463.6 ∆ac -1.9
∆ee 4.7 ∆ad -1.7
∆ff 4.6 ∆bc -2.0
∆aa 12.3 ∆bd -2.2
∆bb 4.6
∆cc 22.9
∆dd 2.1

Figure 4. kI: Feynman diagrams (Rs ) R2 + R3 - R1
/) and energy level schemes forωj 1 ) ωj 3 ) 1770 cm-1 (ν(CdO)), ωj 2 ) 3461 cm-1

(ν(NsH)). R2: 10 pathways. R3: forbidden in the RWA. R1
/: 80 pathways. Pulse width) (100 cm-1.

Figure 5. kI: 2D spectra (zzzz) for ωj 1 ) ωj 3 ) 1770 cm-1 (ν(CdO)), ωj 2 ) 3461 cm-1 (ν(NsH)). Upper panel:t2 ) 0. Lower panel: t1 ) 0.
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tonian are larger than those of the normal modes in which the
symmetric and antisymmetric combinations of the NsH and
CdO vibrations are nearly degenerate. The experimental NsH
stretching band (amide A) in DMSO as well as in KBr is
sufficiently broad that two individual bands are not resolved.43

Also, the band maximum is still considerably red-shifted
compared to the exciton Hamiltonian. The agreement of the
exciton Hamiltonian band positions for the CdO vibrations with
experiment is much better, although the splitting is overestimated

compared to the experimental spectrum in DMSO.43 Overtones
and combination bands of the CsN stretching vibrations, which
significantly contribute to the amide II bands, absorb at 2836,
2859, and 2879 cm-1. This is about 600 cm-1 lower than the
fundamental NsH frequencies. Thus, a Fermi resonance split-
ting between them is missed, although the modes mutually
contribute to the eigenvectors, but only marginally.

IV. Survey of Third-Order 2D IR Spectra

In this section, we present one- and two-color simulations of
all possible three-pulse techniques using the simplestzzzz
polarization. Other polarizations will be discussed in the next
section.

A. kI ) -k1 + k2 + k3. One-Color Simulations.Figure 2
shows all possible Liouville space pathways depicted as double-
sided Feynman diagrams forkI within the RWA. The corre-
sponding energy level schemes are shown to the right of the
respective diagrams. (A rectangular bandwidth of 200 cm-1 is
assumed for each of the three interacting pulses; that is, all
energy levels withinωj n ( 200/2 cm-1 are considered to be
resonant with the carrier frequencyωj n). For a one-color
experiment whereωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1 are resonant
with the symmetric and antisymmetric CdO stretching modes,

Figure 6. kII ) +k1 - k2 + k3: Feynman diagrams (Rs ) R1 + R4 - R2
/) and energy level schemes forωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1 (ν(CdO)).

R1, R4: 4 pathways each. R2
/: 20 pathways. Pulse width) (100 cm-1.

Figure 7. kII : 2D spectra (zzzz) for ωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1 (ν(CdO)). Upper panel:t2 ) 0. Lower panel: t1 ) 0.

TABLE 4: Calculated Normal Mode (B3LYP/6-31G(d,p)),
Six-Mode Exciton Hamiltonian and Experimental Amide
Bands (cm-1, Unscaled)

amide
band eigenstate

normal
mode

exciton
Hamiltonian exptla description

III Ωe 1450b 1420 d νs(CsN)
III Ωf 1433b 1442 d νas(CsN)
I Ωa 1831b,c 1774 ≈1720 νas(CdO)
I Ωb 1831b,c 1781 ≈1720 νs(CdO)
A Ωc 3643 3459 ≈3150e νas(NsH)
A Ωd 3644 3463 ≈3150e νs(NsH)

a In DMSO.43 b δ(NsH) vibrations contribute to this normal mode.
c δ(CsH) vibrations contribute to this normal mode.d Not assigned.
e Broad band.
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this results in a total number of 4 terms each for R2 and R3 and
20 terms for R1

/. 2D IR spectra are calculated fort1 ) 0 as well
ast2 ) 0 and displayed in the frequency domain as a function
of -ω1 andω3 or ω2 andω3, respectively (Figure 3); logarithmic
magnitude and real and imaginary signals are shown here and
in all subsequent spectral figures from left to right.

Along the-ω1 axis, we see the twoν(CdO) resonances of
1773.6 and 1780.8 cm-1 (Table 3). Resonances corresponding
to the energy difference between the states populated byωj 2

andωj 3 (R2, R3) andωj 1 andωj 3 (R1
/), respectively, appear along

theω3 axis. For R2 and R3 these resonances include the diagonal
peaks (-Ωa, Ωa) and (-Ωb, Ωb) as well as the cross-peaks of
theν(CdO) modes (-Ωa, Ωb) and (-Ωb, Ωa) representing their
anharmonic coupling (cf. Table 2 for notation). R1

/ contributes
off-diagonal resonances with theν(CdO) overtones (-Ωa,
Ωa - ∆aa), (-Ωa, 2Ωb - ∆bb - Ωa) and (-Ωb, Ωb - ∆bb),
(-Ωb, 2Ωa - ∆aa - Ωb), respectively, as well as with the
combination modes (-Ωa, Ωb - ∆ab) and (-Ωb, Ωa - ∆ab). In
addition, cross-peaks betweenν(CdO) and the fundamental
NsH stretching modes result from R1

/ pathways [(-Ωa, Ωc -
Ωa), (-Ωb, Ωc - Ωb), and (-Ωa, Ωd - Ωa), (-Ωb, Ωd - Ωb)].
These would show up between 1678.1 and 1689.8 cm-1 on the
ω3 axis, but their coupling is very weak and the resulting

transition dipole moments are several orders of magnitude
smaller than those for couplings within the CdO manifold.
Thus, this frequency range is excluded from the plots in Figure
3. However, analysis of CdO/NsH coupling is readily acces-
sible in two-color experiments, as will be shown below.

This simulation corresponds to a two-pulse photon echo
experiment, where the first pulse creates a coherence, and after
the delayt1, a pulse pair interrupts the coherence evolution and
generates a set of Bohr frequencies from the transferred
coherence. This scheme is analogous to the NMR 2D COSY
pulse sequence. Ift2 is finite, coherence and population transfer
occurs during t2. This three-pulse stimulated photon echo
experiment corresponds to the NMR 2D NOESY or stimu-
lated spin-echo methods. Both IR techniques, named IR-
COSY and three infrared pulse stimulated echo spectroscopy
(THIRSTY), have already been applied in studies of small
peptides.13,22,23,25,28,31,32,63

Setting t1 ) 0 corresponds to a transient grating pulse
configuration, where a pulse pair-k1 + k2 creates a grating
from which the third pulse is scattered after a delayt2. The
calculated spectra show identical resonances in theω3 axis, but
now correlated to peaks appearing on theω2 axis (Figure 3,
lower panel). After the action of the pulse pair (duringt2) the

Figure 8. kII ) +k1 - k2 + k3: Feynman diagrams (Rs ) R1 + R4 - R2
/) and energy level schemes forωj 1 ) ωj 3 ) 1770 cm-1 (ν(CdO)),

ωj 2 ) 3461 cm-1 (ν(NsH)). R1: 20 pathways. R2
/: 50 pathways. Pulse width) (100 cm-1.

Figure 9. kII : 2D spectra (zzzz) for ωj 1 ) ωj 3 ) 1770 cm-1 (ν(CdO)), ωj 2 ) 3461 cm-1 (ν(NsH)). Upper panel:t2 ) 0. Lower panel: t1 ) 0.
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system is either in a population (ω2 ) 0) or a coherence between
the symmetric and antisymmetricν(CdO) stretching vibrations
(ω2 ) ((Ωa - Ωb)) for R2 and R1

/ pathways. For R3 the
system is back in the vibrational ground state. Thus, resonances
in ω2 appear either at 0 cm-1 or at positive and negative energy
level splittings between the CdO modes. Inω3, peaks appear
at (0,Ωa), (0, Ωb), (Ωb - Ωa, Ωa), and (Ωa - Ωb, Ωb) for R2

pathways and at (0,Ωa) and (0,Ωb) for R3 pathways. For R1
/,

energy splittings between the CdO overtones or NsH stretching
bands, respectively, and the CdO fundamental transitions
appear.

Two-Color Simulations.Feynman diagrams and energy level
schemes are shown in Figure 4 for a two-colorkI experiment
with ωj 1 ) ωj 3 ) 1770 cm-1 tuned to theν(CdO) resonances
andωj 2 ) 3461 cm-1 tuned to the N-H stretching bands. For
R2 and R1

/ the first two pulses excite CdO fundamental and
NsH fundamental or CdO two-exciton states, respectively. The
third pulse leads either to deexcitation of the one exciton CdO
states (R2) or excitation of CdO three-exciton and CdO/NsH
two-exciton states (R1

/). R3 pathways are forbidden within the
RWA as the second pulse is nonresonant. Figure 5 displays two-

color 2D IR photon echo spectra fort2 ) 0 (upper panel) and
t1 ) 0 (lower panel). In-ω1 only CdO one-exciton resonances
appear just as in the one-color experiment. Inω3 R2 pathways
contribute 10 two-exciton CdO and NsH one-exciton reso-
nances. The R1

/ diagram leads to 80 terms showing the splitting
between the CdO three-exciton or CdO/NsH two-exciton
states, respectively, and CdO fundamental bands. Cross-peaks
showing the coupling between the CdO and the NsH modes
are thus observed at (Ωa, Ωc), (Ωa, Ωd), (Ωb, Ωc), and
(Ωa, Ωd). The ω2 axis shows splittings between the CdO
two-exciton or NsH one-exciton states and the CdO funda-
mentals. This corresponds to a two-color transient grating
experiment.

B. kII ) +k1 - k2 + k3. One-Color Simulations.Feynman
diagrams forkII together with energy level schemes forωj 1 )
ωj 2 ) ωj 3 ) 1770 cm-1 are shown in Figure 6. An assumed
pulse bandwidth of(100 cm-1 selects 4 terms for R1 and R4

and to 20 for R2
/. Simulated 2D IR spectra are displayed in

Figure 7.
For t1 ) 0, thekI and kII techniques are identical and are

known as transient grating. Fort2 ) 0 the order of the pulse

Figure 10. kII ) +k1 - k2 + k3: Feynman diagrams (Rs ) R1 + R4 - R2
/) and energy level schemes forωj 1 ) ωj 3 ) 1431 cm-1 (ν(CsN)),

ωj 2 ) 3461 cm-1 (ν(NsH)). R2
/: 30 pathways. Pulse width) (100 cm-1.

Figure 11. kII : 2D spectra (zzzz) for ωj 1 ) ωj 3 ) 1431 cm-1 (ν(CsN)), ωj 2 ) 3461 cm-1 (ν(NsH)). Upper panel:t2 ) 0. Lower panel: t1 ) 0.
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pair (k1 - k2) and the single pulse are reversed defining a
reversed transient grating experiment.

Two-Color Simulations.A two-color experiment is simulated
for ωj 1 ) ωj 3 ) 1770 cm-1 andωj 2 ) 3461 cm-1. The R1 diagram
contributes 20 terms, R4 is RWA forbidden and the R2

/ diagram
gives 50 terms (Figure 8).

2D spectra are shown in Figure 9. On theω2 axis the splitting
between the NsH fundamental or CdO two-exciton states,
respectively, and the CdO one-exciton states is seen. During
t3 R1 generates either a population state of the CdO fundamental
or a coherence between them, and thus, resonances on theω3

axis appear at 0 cm-1 or (Ωa - Ωb). R2
/ leads to populations or

coherences of the NsH fundamental and the CdO two-exciton
states so that theω3 axis displays the respective splittings.

We next propose a two-color experiment designed to probe
a potential Fermi resonance between the overtones of the amide
II modes. This is approximately described by the CsN two-
exciton states, and the NsH fundamental transitions. At the
same time, the coupling between overtones of the amide I mode,
the CdO two-exciton states, and the NsH one-exciton states
will be included. We propose to tune theωj 1 andωj 3 pulses to
the CsN fundamental transition (amide II) and to adjustωj 2 to

the NsH one-exciton frequencies (amides A and B). The
corresponding Feynman diagram is shown in Figure 10. Only
R2

/ Liouville space pathways survive, whereas R1 and R4

diagrams are forbidden within the RWA. 2D IR spectra for this
two-color kII technique are shown in Figure 11.

The R2
/ Feynman diagram (Figure 10) shows that duringt3

the system evolves with frequencies corresponding to the energy
splittings between the NsH fundamental (amides A and B) or
CdO (amide I) two-exciton states, respectively, and the CsN
(amide II) overtones and combination bands, which thus appear
as resonances on the-ω3 axis. The 2D spectra plotted versus
ω1 show the coupling with CsN fundamental excitation (Figure
11, upper panel), whereas those plotted versus-ω2 show
resonances for the NsH one-exciton and CdO two-exciton state
energy splittings with the CsN fundamental energy levels
(Figure 11, lower panel). With exception of the coupling
between the CdO two-exciton combination band and the CsN
two-exciton states, all other couplings are large enough to be
seen in the spectra. Thus, resonances along the-ω3 axis should
directly monitor Fermi resonance couplings.

C. kIII ) +k1 + k2 - k3. One-Color Simulations.Only two
Feynman diagrams contribute tokIII (Figure 12). Settingt2 ) 0

Figure 12. kIII ) +k1 + k2 - k3: Feynman diagrams (Rs ) R4 - R3
/) and energy level schemes forωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1 (ν(CdO)). R4:

20 pathways. R3
/: 20 pathways. Pulse width) (100 cm-1.

Figure 13. kIII : 2D spectra (zzzz) for ωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1 (ν(CdO)). Upper panel:t2 ) 0. Lower panel: t1 ) 0.
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defines a reversed transient grating experiment (Figure 13, upper
panel), where a single pulse (k1) comes first followed by a pulse
pair (k2 - k3). For t1 ) 0 a reversed photon echo pulse
configuration results (Figure 13, lower panel). Forωj 1 ) ωj 2 )
ωj 3 ) 1770 cm-1 the first two pulses (k1 + k2) generate a
coherence of the vibrational ground state and the CdO overtone
and combination bands or the NsH stretching bands. Thus, the
corresponding energy levels appear asω2 resonances. Inω3 the
two CdO resonances appear for R4 (20 terms totally), whereas
R3

/ pathways (20 totally) lead to resonances corresponding to
the splitting between the CdO overtones or NsH fundamentals,
respectively, and the CdO fundamental bands. Again, reso-
nances involving the NsH bands are rather weak and not
shown.

Two-Color Simulations.In a kIII two-color experiment with
ωj 1 ) ωj 2 ) 1770 cm-1 (ν(CdO)) and ωj 3 ) 3461 cm-1

(ν(NsH)) the diagram R4 is forbidden within the RWA and all
20 terms originate from R3

/ (Figure 14). The corresponding 2D
spectra are shown in Figure 15. On theω2 axis resonances
corresponding to the NsH fundamental and two-exciton CdO

energy levels appear. The splittings between those levels are
seen on theω3 axis.

D. kIV ) +k1 + k2 + k3. One-Color Simulations.This sum
frequency generation technique, which has not been reported
yet using ultrafast infrared pulses, is particularly interesting
because it is the only one that carries information on triply
excited states. The signal, however, is expected to be much
weaker than for the other techniques as a transition dipole
moment for a three-quantum transition, which is usually rather
small, is involved. Only a single Feynman diagram contributes
to kIV, as all interactions occur as absorption on the ket side
(Figure 16). Forωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1 three-exciton
states (CdO, V ) 3, 21, 12) as well as CdO/NsH two-exciton
bands are reached after the third pulse. These cannot be observed
with any other one-color technique. The calculation involves a
total number of 80 terms. 2D IR spectra with CdO two-exciton
states and NsH fundamental bands as resonances inω2 and
resonances from the CdO three-exciton and the CdO/NsH
combination bands inω3 are shown in Figure 17.

Two-Color Simulations.The kIV two-color experiment with
two CdO and one NsH excitation reaches higher excited states

Figure 14. kIII ) +k1 + k2 - k3: Feynman diagrams (Rs ) R4 - R3
/) and energy level schemes forωj 1 ) ωj 2 ) 1770 cm-1 (ν(CdO)), ωj 3 ) 3461

cm-1 (ν(NsH)). R3
/: 20 pathways. Pulse width) (100 cm-1.

Figure 15. kIII : 2D spectra (zzzz) for ωj 1 ) ωj 2 ) 1770 cm-1 (ν(CdO)), ωj 3 ) 3461 cm-1 (ν(NsH)). Upper panel:t2 ) 0. Lower panel: t1 ) 0.
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in the frequency range between 6895 and 7106 cm-1 (Figure
18). These correspond to the NsH two-exciton states, combined
CdO three-exciton and NsH states, and CdO four-exciton
states. They appear as resonances along theω3 axis in 2D spectra
plotted as a function ofω1 or ω2, respectively, andω3 (Figure
19). The resonances along theω2 axis originate from the NsH
fundamentals and the CdO two-exciton states.

V. Improving Resolution by Coherent Selectivity

There are numerous possibilities for enhancing the selectivity
and resolution ofnD techniques that can be based on, for
example, pulse shapes and phases. In this section, we present
two examples.

A. Linear Combinations of the Basic Signals.Inspection
of the combination of Feynman diagrams that give rise to the

signals in different wavevector directions (kI-kIV) shows that
a system can evolve with the same frequencies in certain time
intervals. Thus, they can share some of the resonances that are
observed in frequency domain spectra. The peak intensities,
however, may deviate, because of different Liouville space
pathway couplings. Nevertheless, this suggests that linear
combinations of heterodyne signals observed at different direc-
tions can eliminate or enhance certain peaks so that the spectra
may be simplified or tuned to satisfy a specific goal.35,36 For
example, cross-peaks may be better resolved if the diagonal
peaks are minimized. In NMR, there is no directional selectivity
because the radiowave wavelength is larger than the sample,
k j ) 0, and all the terms that satisfy the RWA contribute in all
directions. They can be distinguished, however, by their
variations with the phase of the fields (each directional signal

Figure 16. kIV ) +k1 + k2 + k3: Feynman diagram (Rs ) R4) and energy level schemes forωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1 (ν(CdO)). R4: 80
pathways. Pulse width) (100 cm-1.

Figure 17. kIV: 2D spectra (zzzz) for ωj 1 ) ωj 2 ) ωj 3 ) 1770 cm-1 (ν(CdO)). Upper panel:t2 ) 0. Lower panel: t1 ) 0.
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has a characteristic phase signature). This is then used in phase
cycling techniques to generate the combination of interest. In
optical techniques the various heterodyne signals are separated
spatially and may be combined to give the same information
as in NMR phase cycling.

ThekI, kII, andkIII spectra all show four peaks corresponding
to the two diagonal peaks (Ωa, Ωa and Ωb, Ωb) and the two
off-diagonal peaks representing the coupling between the CdO
groups (Ωa, Ωb and Ωb, Ωa). The peak intensities depend on
the wavevector directions. ThekII and kIII spectra exhibit 20
identical resonances and intensities for the couplings to the two-
exciton CdO and the one-exciton NsH states. ForkI, however,
two pathways add up to give the same resonance resulting in
only 10 unique peaks. Thus, a linear combinationkIII -kII

(Figure 20) eliminates all peaks resulting from the Feynman
diagramsR2

/ (kII) and R3
/ (kIII ) and the remaining diagonal

peaks and cross-peaks change their relative intensities (Figure
21).

B. Polarization Configuration of Pulses.We now turn to
discussing the role of specific polarization configurations in 2D
spectra.23,26,47The orientational part of the response function,
eq 3b, is a fourth-rank tensor composed of 81 elements. For
isotropic materials such as solutions of randomly oriented
molecules, however, only four types of elements are nonzero,
three of which are independent48 because they are related by

wherey and z refer to polarizations of the four pulses in the
laboratory frame, andν1, ν2, ν3, ν4 are the four transition
dipole moment vectors contributing to each Liouville space
pathway. Expressions for three tensor elements were given in
ref 26.

Angles between dipole derivatives calculated in the local
internal coordinates basis with respect to each other and with

Figure 18. kIV ) +k1 + k2 + k3: Feynman diagram (Rs ) R4) and energy level schemes forωj 1 ) ωj 2 ) 1770 cm-1 (ν(CdO)), ωj 3 ) 3461 cm-1

(ν(NsH)). R4: 120 pathways. Pulse width) (100 cm-1.

Figure 19. kIV: 2D spectra (zzzz) for ωj 1 ) ωj 2 ) 1770 cm-1 (ν(CdO)), ωj 3 ) 3461 cm-1 (ν(NsH)). Upper panel:t2 ) 0. Lower panel:t1 ) 0.
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respect to the corresponding chemical bonds are given in Table
5. The CsN and CdO dipole derivatives point toward the
carbon atoms of the respective bonds, and the NsH dipole
derivative points to the hydrogen atom of the NsH bond. The
CsN dipole derivatives reside nearly in the OdCsNsH plane
(0.8°), whereas the NsH (9.6°) and CdO (19.2°) dipole
derivative deviate appreciably from the peptide bond plane.
Table 6 compiles angles between transition dipole moments in
the eigenstate basis that are involved in the calculation ofkI

one-color (ν(CdO)) spectra. The left four columns contain the
four four states (a-d) that contribute to a single Liouville space
pathway. The corresponding four transition dipole moments are
different for R2, R3, and R1* Feynman diagrams.

Normalized spectra for the four nonzero tensor elements for
the techniquekI are shown in Figure 22 fort2 ) 0 and in Figure
23 for t1 ) 0. Inspection of the corresponding Liouville space
pathways reveals that diagonal peak intensities are identical for
thezzyy, zyzy, andzyyztensor elements, whereas the cross-peak
intensities are only identical forzzyyand zyzy. Overtone and
combinations band peak intensities forzzyyandzyzyare similar,
though not identical. Thezzzztensor element differs from the
other three components. Thus, the combinationszyzy-zyyz,
which can be obtained in a single measurement with the
following choice of pulse polarizations (0,π/2, -π/4, π/4), and
zzyy-zyyz(0, -π/4, π/2, π/4) are expected to eliminate the
intense diagonal peaks, leaving only the important cross-

Figure 20. Linear combination of 2D spectra (zzzz) for ωj 1 ) ωj 2 ) ωj 3 ) 1777 cm-1 (ν(CdO)). Upper panel:k II . Middle panel: k III . Lower panel:
k III - k II .

TABLE 5: Angles (deg) between Dipole Derivatives (Local Basis) and between Dipole Derivatives and Chemical Bonds

dipole derivative dipole derivative angle dipole derivative dipole derivative angle dipole derivative dipole derivative angle

CsN(1) CsN(2) 147.0 CsN(2) CdO(1) 46.8 CdO(1) NsH(1) 100.3
CsN(1) CdO(1) 155.7 CsN(2) CdO(2) 155.7 CdO(1) NsH(2) 100.8
CsN(1) CdO(2) 46.8 CsN(2) NsH(1) 60.5 CdO(2) NsH(1) 100.8
CsN(1) NsH(1) 103.4 CsN(2) NsH(2) 103.4 CdO(2) NsH(2) 100.3
CsN(1) NsH(1) 60.5 CdO(1) CdO(2) 133.1 NsH(1) NsH(2) 125.3

dipole derivative bond angle dipole derivative bond angle dipole derivative bond angle

CsN CsN 154.4 CdO CdO 175.7 NsH NsH 9.2
CsN CdO 28.6 CdO CsN 49.6 NsH CsN 129.0
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Figure 21. Cross-peak (zzzz), (Ωa, Ωb) for ωj 1 ) ωj 2 ) ωj 3 ) 1777 cm-1 (ν(CdO)). Upper panel:k II . Middle panel: k III . Lower panel:k III - k II .

TABLE 6: Angles (deg) between Transition Dipole Moments (Eigenstate Basis) Involved in the Calculation of One-Color
(ν(CdO)) kI Spectra for R2, R3, and R1* Feynman Diagrams

R2 and R3

states angle between transition dipole moments

a b c d (af b)/(af c) (af b)/(b f a) (af b)/(c f a) (af c)/(b f a) (af c)/(c f a) (bf a)/(cf a)

|0〉 CdO(as) CdO(s) |0〉 89.8 0.0 89.8 89.8 0.0 89.8
|0〉 CdO(s) CdO(as) |0〉 89.8 0.0 89.8 89.8 0.0 89.8

R1*

angle between transition dipole moments

(a f b)/(af c) (af b)/(c f d) (af b)/(d f b) (af c)/(c f d) (af c)/(d f b) (c f d)/(d f b)

|0〉 CdO(as) CdO(as) NsH(a) 0.0 112.4 112.4 112.4 112.4 89.5
|0〉 CdO(as) CdO(as) NsH(s) 0.0 22.5 22.5 22.5 22.5 76.8
|0〉 CdO(as) CdO(as) CdO(V)2,as) 0.0 176.7 176.7 176.7 176.7 0.0
|0〉 CdO(as) CdO(as) CdO(V)11) 0.0 104.3 104.3 104.3 104.3 0.0
|0〉 CdO(as) CdO(as) CdO(V)2,s) 0.0 175.9 175.9 175.9 175.9 0.0
|0〉 CdO(as) CdO(s) NsH(a) 89.8 143.8 112.4 82.9 115.6 89.7
|0〉 CdO(as) CdO(s) NsH(s) 89.8 131.3 22.5 77.4 92.8 92.8
|0〉 CdO(as) CdO(s) CdO(V)2,as) 89.8 108.5 176.7 159.8 92.2 69.5
|0〉 CdO(as) CdO(s) CdO(V)11) 89.8 3.7 104.3 91.1 16.0 105.7
|0〉 CdO(as) CdO(s) CdO(V)2,s) 89.8 90.0 175.9 6.0 90.3 90.1
|0〉 CdO(s) CdO(as) NsH(a) 89.8 115.6 82.9 112.4 143.8 89.7
|0〉 CdO(s) CdO(as) NsH(s) 89.8 92.8 77.4 22.5 131.3 92.8
|0〉 CdO(s) CdO(as) CdO(V)2,as) 89.8 92.2 159.8 176.7 108.5 69.5
|0〉 CdO(s) CdO(as) CdO(V)11) 89.8 16.0 91.1 104.3 3.7 105.7
|0〉 CdO(s) CdO(as) CdO(V)2,s) 89.8 90.3 6.0 175.9 90.0 90.1
|0〉 CdO(s) CdO(s) NsH(a) 0.0 82.9 82.9 82.9 82.9 88.5
|0〉 CdO(s) CdO(s) NsH(s) 0.0 77.4 77.4 77.4 77.4 89.4
|0〉 CdO(s) CdO(s) CdO(V)2,as) 0.0 159.8 159.8 159.8 159.8 10.6
|0〉 CdO(s) CdO(s) CdO(V)11) 0.0 91.1 91.1 91.1 91.1 0.0
|0〉 CdO(s) CdO(s) CdO(V)2,s) 0.0 6.0 6.0 6.0 6.0 0.0
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peaks. The former polarization condition has already been
reported experimentally.23 Figures 24 and 25 show the respective
2D spectra. The (-ω1, ω3) plots (upper panels) are very
similar: The diagonal peaks are eliminated entirely, whereas
the desired cross-peaks survive with equal intensities for both
polarization conditions. Overtone and combination band peak
patterns are also very similar, but not fully identical for both
cases.

The two polarization conditions differ considerably for the
(ω2, ω3) correlation plot (lower panels). For the combination
zyzy-zyyz(0, π/2, -π/4, π/4) all resonances with frequencies
ω2 ) 0 cancel and only the peaks withω2 ) ((Ωa - Ωb)
remain. For the combinationzzyy-zyyz, however, only the two
peaks at (Ωa - Ωb, Ωb) and (Ωb - Ωa, Ωa) cancel, whereas all
other peaks show up.

2D zzyy-zyzy(0, -π/4, π/4, π/2) spectra are displayed in
Figure 26. Diagonal peaks as well as cross-peaks cancel entirely
in the (-ω1, ω3) spectra (upper panels), leaving only the
overtone and combination band peaks. There are no cancella-

tions in the (ω2, ω3) spectra (lower panels), but the relative
intensities do change compared to the single tensor element
spectra.

VI. Discussion

We presented an ab initio procedure for simulating coherent
three-pulse vibrational spectroscopies. Our calculations dem-
onstrate how these experiments may be designed and analyzed
using 2D correlation plots. Cross-peaks reveal the coupling
between vibrational modes that may be used to gain structural
information on molecules or chemical reactions with femtosec-
ond time resolution. This information is not available from 1D
spectra.

Density functional theory at the B3LYP functional level is
well-known to yield very good agreement of calculated har-
monic and experimental frequencies64-70 as well as reasonable
agreement with respect to intensity patterns.71-74 We have
therefore adopted this level of theory to calculate a complete

Figure 22. kI spectra with normalized intensities for tensor elementszzzz, zzyy, zyzy, andzyyz(top to bottom).ωj 1 ) ωj 2 ) ωj 3 ) 1777 cm-1

(ν(CdO)), t2 ) 0.
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quartic anharmonic force field for the six coupled stretching
vibrations (NsH, CdO, CsN) involved in the peptide bonds
of a rigid bicyclic model dipeptide. The force field is expanded
in internal coordinates to obtain an inherently local, and
hopefully transferable, description of the vibrational modes. We
compute eigenstate energies and eigenvectors from an effective
anharmonic exciton Hamiltonian generated by distributing 10
excitation quanta among the six basis local modes. This results
in 2153 states, 139 of which lie below 8000 cm-1, which is the
frequency range covered by the spectroscopic techniques
presented here.

The different coherent four-wave mixing techniques are
classified by constructing all possible wavevector combinations
of the three incoming pulses, which leads to four distinct signal
directions that can be measured independently. We simulated
one- and two-color 2D vibrational spectra at these wavevectors,
either with all three pulses in resonance with theν(CdO) bands
or with two resonant with theν(CdO) bands and one (either
the second or the third) tuned to theν(NsH) transitions. The

one-color experiments reveal information on the coupling of
amide I modes, which can be used to monitor the secondary
structure of peptides and proteins and follow its fluctuations
on ultrafast time scales. The two-color experiments yield the
coupling of peptide CdO and NsH bonds, which provides
additional insight into structural and dynamical properties. We
further show that the Fermi resonance coupling observed in
peptides between the amide II overtones and the NsH stretching
bands (amides A and B) can be directly monitored by a two-
color experiment measured in thekII direction with the pulses
tuned to the respective bands.

2D spectra of multilevel vibrational systems contain a large
number of peaks that are likely to overlap. In particular, the
usually intense diagonal peaks often obscure the desired cross-
peaks, which carry more detailed structural signatures. We
therefore presented two methods that can be used to simplify
the spectra: The superposition of single wavevector spectra,
and the use of specific polarization configurations to select
desired combinations of tensor components. Both procedures

Figure 23. kI spectra with normalized intensities for tensor elementszzzz, zzyy, zyzy, andzyyz(top to bottom).ωj 1 ) ωj 2 ) ωj 3 ) 1777 cm-1

(ν(CdO)), t1 ) 0.

5982 J. Phys. Chem. B, Vol. 107, No. 24, 2003 Dreyer et al.



can be applied to control or remove certain groups of peaks
from the spectra, i.e., diagonal peaks, cross-peaks, or overtone
peaks.

The present study focused on the calculation of the peak
patterns. Future microscopic simulations of the line shapes
should allow more realistic predictions of experimental
spectra.

The present ab initio methodology for simulating coherent
2D vibrational spectra is directly applicable to small and
medium-sized molecules. For larger systems, however, the
quantum chemical calculations become too expensive. There-
fore, different approaches that facilitate ab initio investigations
of biologically relevant systems such as proteins or DNA must
be developed. One possibility is to utilize high-level ab initio

Figure 24. kI spectra for tensor elementszyzy-zyyz) (0, π/2, -π/4, π/4). ωj 1 ) ωj 2 ) ωj 3 ) 1777 cm-1 (ν(CdO)). Upper panel:t2 ) 0. Lower
panel: t1 ) 0.

Figure 25. kI spectra for tensor elementszzyy-zyyz) (0, -π/4, π/2, π/4). ωj 1 ) ωj 2 ) ωj 3 ) 1777 cm-1 (ν(CdO)). Upper panel:t2 ) 0. Lower
panel: t1 ) 0.
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calculations performed on small subunits to derive parameters
that can be used to parametrize the Hamiltonian for the entire
system.75 The interaction between the subunits might be treated
by simple models, for instance, dipole-dipole interactions.76
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(40) Wüthrich, K. NMR of Proteins and Nucleic Acids; J. Wiley &

Sons: New York, 1986.
(41) Mu, D. Y.; Kosov, D. S.; Stock, G.J. Phys. Chem. A, submitted

for publication.
(42) van der Spoel, D.Biochem. Cell. Biol. 1998, 76, 164.
(43) Besley, N. A.; Brienne, M.-J.; Hirst, J. D.J. Phys. Chem. B2000,

104, 12371.

Figure 26. kI spectra for tensor elementszzyy-zyzy) (0, -π/4, π/4, π/2). ωj 1 ) ωj 2 ) ωj 3 ) 1777 cm-1 (ν(CdO)). Upper panel:t2 ) 0. Lower
panel: t1 ) 0.

5984 J. Phys. Chem. B, Vol. 107, No. 24, 2003 Dreyer et al.



(44) Moran, A. M.; Dreyer, J.; Mukamel, S.J. Chem. Phys. 2003, 118,
1347.

(45) Mukamel, S.Principles of nonlinear optical spectroscopy; Oxford
University Press: New York, Oxford, 1995.

(46) Venkatramani, R.; Mukamel, S.J. Chem. Phys. 2002, 117, 11089.
(47) Golonzka, O.; Tokmakoff, A.J. Chem. Phys. 2001, 115, 297.
(48) Barron, L. D., Ed.Molecular Light Scattering and Optical ActiVity;

Cambridge University Press: Cambridge, U.K., 1982.
(49) Equation 13 in ref 26.
(50) Monson, P. R.; McClain, W. M.J. Chem. Phys. 1970, 53, 29.
(51) Lee, C.; Yang, R. G.; Parr, W.Phys. ReV. B 1988, 37, 785.
(52) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H.Chem. Phys. Lett.

1989, 157, 200.
(53) Becke, A. D.J. Chem. Phys. 1993, 98, 5648.
(54) Hertwig, R. H.; Koch, W.Chem. Phys. Lett. 1997, 268, 345.
(55) Hehre, W. J.; Ditchfield, R.; Pople, J. A.J. Chem. Phys. 1971, 54,

724.
(56) Hehre, W. J.; Ditchfield, R.; Pople, J. A.J. Chem. Phys. 1972, 56,

2257.
(57) Hariharan, P. C.; Pople, J. A.Theor. Chim. Acta1973, 28,

213.
(58) Hariharan, P. C.; Pople, J. A.Mol. Phys. 1974, 27, 209.
(59) Gordon, M. S.Chem. Phys. Lett. 1980, 76, 163.
(60) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann,
R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K.
N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.
V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;

Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.;
Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.;
Replogle, E. S.; Pople, J. A.Gaussian 98, Revision A.9; Gaussian, Inc.:
Pittsburgh, PA, 1998.

(61) Brazhnikov, E.; Chirgadze, Y.J. Mol. Biol. 1978, 122, 127.
(62) Mirkin, N.; Krimm, S.J. Am. Chem. Soc. 1991, 113, 9742.
(63) Golonzka, O.; Khalil, M.; Demirdo¨ven, N.; Tokmakoff, A.Phys.

ReV. Lett. 2001, 86, 2154.
(64) Matsuura, H.; Yoshida, H. inHandbook ofVibrational spectroscopy;

Wiley: Chichester, 2002; vol. 3, pp 2012-2028.
(65) Johnson, B. G.; Gill, P. M. W.; Pople, J. A.J. Chem. Phys. 1993,

98, 5612.
(66) Rauhut, G.; Pulay, P.J. Phys. Chem. 1995, 99, 3093.
(67) Scott, A.; Radom, L.J. Phys. Chem.1996, 100, 16502.
(68) Wong, M. W.Chem. Phys. Lett. 1995, 256, 391.
(69) Yoshida, H.; Ehara, A.; Matsuura, H.Chem. Phys. Lett. 2000, 325,

477.
(70) Yoshida, H.; Takeda, K.; Okamura, J.; Ehara, A.; Matsuura, H.J.

Phys. Chem. 2002, 106, 3580.
(71) Galabov, B. S.; Dudev, T.Vibrational intensities; Elsevier Sci-

ence: Amsterdam, 1996; Vol. 22.
(72) Yamaguchi, Y.; Frisch, M.; Gaw, J.; Schaefer, H., III; Binkley, J.

J. Chem. Phys. 1986, 84, 2262.
(73) Galabov, B.; Bobadova-Parvanova, P.; Dudev, T.J. Mol. Struct.

1997, 406, 119.
(74) Galabov, B.; Yamaguchi, Y.; Remington, R. B.; Schaefer, H. F.,

III. J. Phys. Chem. A2002, 106, 819.
(75) Moran, A. M.; Park, S.-M.; Dreyer, J.; Mukamel, S.J. Chem. Phys.

2003, 118, 3651.
(76) Cha, S.; Ham, S.; Cho, M.J. Chem. Phys. 2002, 117, 740.

Spectroscopy of Coupled Vibrations in a Rigid Dipeptide J. Phys. Chem. B, Vol. 107, No. 24, 20035985


